See all NewsEngineering News
Honors and Awards

Chad Mirkin Awarded Prestigious Kavli Prize in Nanoscience

Northwestern scientist recognized for discovery of spherical nucleic acids

Northwestern University nanoscientist Chad Mirkin has been awarded The 2024 Kavli Prize in Nanoscience by The Norwegian Academy of Science and Letters. Mirkin is the first Northwestern scientist to receive the prestigious award. 

Mirkin is recognized for his discovery of spherical nucleic acids (SNAs), nanostructures comprised of a nanoparticle core and a shell of radially distributed DNA or RNA strands. These globular forms of nucleic acids have become the cornerstones of the burgeoning fields of nanomedicine and colloidal crystal engineering with DNA. They allow scientists to construct new forms of matter using particle “atoms” as the basic building blocks and DNA “bonds” as particle interconnects, and they are the basis for powerful tools that allow researchers and clinicians to track and treat disease in new ways. In particular, SNAs have led to the development of fast, automated point-of-care medical diagnostic systems and new experimental drugs for treating many forms of cancer, neurological disorders, and diseases of the skin. 

Chad Mirkin

Mirkin is one of three laureates in nanoscience recognized by The Norwegian Academy for revolutionizing the field of nanomedicine by demonstrating how engineering nanoscale structures can advance biomedical research and application. The other two are Robert Langer of the Massachusetts Institute of Technology and Paul Alivisatos of the University of Chicago. The scientists’ discoveries “contributed foundationally to the development of therapeutics, vaccines, bioimaging, and diagnostics,” The Norwegian Academy said in a release. They will share the $1 million award.

“When I first found out I won The Kavli Prize, there was both excitement but also relief, because I consider Northwestern to be the ultimate center for nanotechnology research,” Mirkin said. “To be recognized with this award, along with my incredible co-awardees, was great validation of what we’ve been trying to do at Northwestern. While I’m proud of what we’ve accomplished, the best is yet to come.”

The laureates will be awarded the prize on Sept. 3 during a ceremony in Oslo, Norway, presided over the by The Royal Family. The Kavli Prizes thus far have honored 65 scientists from 13 countries. Ten laureates received the Nobel Prize after receiving The Kavli Prize.

“I am thrilled for Chad, for the International Institute for Nanotechnology, and for Northwestern,” Northwestern President Michael Schill said. “Chad has earned this prestigious and influential award in a pathbreaking area of science that is aligned with two of the University’s key priorities — to lead in decarbonization, renewable energy and sustainability, and innovating in the biosciences to help prolong lives and make the world a healthier place.

“Through groundbreaking research and hard work, Chad and his team have made Northwestern a leading center for nanotechnology research and investment. The fact that he is sharing this award with President Alivisatos at U of C further emphasizes how the Chicago area has become an international hub for nano research.”

The vision for The Kavli Prize comes from Fred Kavli, a Norwegian-American entrepreneur and philanthropist who turned his lifelong fascination with science into a lasting legacy for recognizing scientific breakthroughs and supporting basic research.

Since the first awards in 2008, The Kavli Prize has recognized innovative scientific research — from the discovery of CRISPR-Cas9 to the detection of gravitational waves — transforming our understanding of the big, the small and the complex.

Mirkin’s discovery of SNAs has far-reaching implications for biology and medicine. SNAs, which have no known natural equivalents, interact uniquely with living systems compared to nucleic acids of other forms. Mirkin was the first to synthesize SNAs and elucidate the distinctive chemical and physical properties that underpin their use in transformative techniques and technologies in medicine and the life sciences. This work has led to the development of the first commercialized molecular medical diagnostic systems of the modern nanotechnology era, such as the Food and Drug Administration-cleared Verigene System, used in over half of the world’s top hospitals to detect diseases with high sensitivity and selectivity.

Illinois Gov. JB Pritzker praised Mirkin for his extraordinary contributions to the field of nanotechnology and how his innovations have helped find solutions to some of society’s biggest challenges.

“Academic institutions in Chicago and across Illinois have become the biggest drivers in nanoscience and technology over the last three decades,” Pritzker said. “Chad Mirkin and his Northwestern colleagues have made outstanding scientific discoveries that change how we view the world around us.”

Through groundbreaking research and hard work, Chad and his team have made Northwestern a leading center for nanotechnology research and investment. Michael Schill

In 1996, Mirkin created the first SNAs with DNA shells on gold nanoparticle cores. Over the years, he has developed numerous other types of SNAs with other shells and cores, including proteins, liposomes and FDA-approved materials, as well as core-less, hollow structures composed entirely of nucleic acids. These cores impart unique properties to the SNAs, such as optical and magnetic characteristics, while also serving as scaffolds to densely arrange the oligonucleotides, which participate in binding. This dense arrangement gives rise to the novel functional properties that differentiate SNAs from the natural linear and two-dimensional nucleic acids and make them particularly effective in interacting with certain biological structures within cells and tissues. SNAs, unlike conventional DNA and RNA, are naturally taken up by cells without the need for toxic, positively charged co-carriers, making them highly effective in RNA interference (RNAi), antisense gene regulation, and gene editing pathways.

Mirkin’s pioneering work on SNAs has also advanced the development of immunotherapeutics, structures capable of stimulating a patient’s immune response to fight both infectious diseases and certain forms of cancer. Using SNAs, Mirkin has pioneered the concept of rational vaccinology, where he demonstrated that the structure of a vaccine, rather than the components alone, is crucial for dictating its therapeutic effectiveness. This insight and these “structural nanomedicines” have opened new possibilities for developing curative treatments by rearranging known components into more effective structures at the nanoscale. Mirkin founded Flashpoint Therapeutics to commercialize these innovations, focusing on nucleic acid-based nanostructure cancer vaccines. Mirkin also invented the first SNA-based antiviral vaccine, using COVID-19 as a model. These SNAs, featuring the spike protein’s RBD subunit in the core, achieved a 100 percent survival rate in humanized mice challenged with the live virus. These structures and concepts for designing such vaccines are poised to move vaccine development beyond the current mRNA vaccines.

In addition, Mirkin invented dip-pen nanolithography, initially a technique for molecular writing with nanometer-scale precision that has evolved into a powerful platform for tip-based materials synthesis that, when combined with artificial intelligence, is revolutionizing how materials important for many sectors, especially clean energy, are discovered. Dip-pen nanolithography, which has spurred subsequent techniques that now use tens of millions of tiny tips to rapidly synthesize materials to be explored for such purposes, was recognized by National Geographic as one of the “top 100 scientific discoveries that changed the world.” These innovations are being commercialized by Mattiq Inc., another venture-backed company Mirkin cofounded. Mirkin and his students also invented high-area rapid printing, an additive manufacturing technology, that is being commercialized by Azul 3D and being used to disrupt the microelectronics and optical lens industries.

Mirkin’s research has progressed SNA drugs through seven human clinical trials so far for treating various cancers, including glioblastoma multiforme and Merkel cell carcinoma. One SNA drug has shown remarkable potential in stimulating the immune system, proving effective in models of breast, colorectal and bladder cancers, lymphoma and melanoma. This drug has achieved complete tumor elimination in a subset of patients with Merkel cell carcinoma during Phase 1b/2 clinical trials, earning FDA fast-track and orphan drug status.

It was recently licensed to Bluejay Therapeutics to treat hepatitis.

In 2000, Mirkin founded the International Institute for Nanotechnology (IIN) at Northwestern University, which he also directs. Research at the IIN has led to over 2,000 new commercial products sold globally and the creation of more than 40 startup companies. The IIN has collectively brought together over $1.2 billion to support research, education and infrastructure at Northwestern since its inception.

Mirkin is the George B. Rathmann Professor of Chemistry and a professor of medicine, chemical and biological engineering, biomedical engineering, and materials science and engineering at Northwestern. He is among an elite group of scientists elected to all three branches of the US National Academies — the National Academy of Sciences, the National Academy of Engineering, and the National Academy of Medicine. He is a member of the American Academy of Arts and Sciences. Mirkin served on President Obama’s Council of Advisors on Science and Technology for eight years.