Faculty Directory
Vladimir Volpert

Professor of Engineering Sciences and Applied Mathematics


2145 Sheridan Road
Evanston, IL 60208-3109

Email Vladimir Volpert


Personal Website


Engineering Sciences and Applied Mathematics


Ph.D. Chemical Physics, USSR Academy of Sciences, Russia

M.S. Mathematicas and Mechanics, Moscow State University, Moscow, Russia

B.S. Mathematics and Mechanics, Moscow State University, Moscow, Russia

Research Interests

Nonlinear dynamics and pattern formation; bifurcation and stability; traveling waves in reaction-diffusion systems; combustion; frontal polymerization; mathematical biology

Significant Recognition

  • McCormick School Teaching Award
  • Northwestern Alumni Association Excellence in Teaching Award

Significant Professional Service

  • Editorial Board, International Journal of Self-Propagating High-Temperature Synthesis
  • Editorial Board, Mathematical Methods in the Applied Sciences

Selected Publications

A. Bayliss, A.A. Nepomnyashchy, V.A. Volpert, Mathematical modeling of cyclic population dynamics, Physica D 394 (2019), pp. 56–78

E.A. Autry, A. Bayliss and V.A. Volpert, Biological control with nonlocal interactions, Mathematical Biosciences,  301 (2018), pp. 129--146.

V.A. Volpert, A.A. Nepomnyashchy, Y. Kanevsky, Drug diffusion in a swollen polymer, SIAM J. Appl. Math. 78 (2018), pp. 124--144.

A. Bayliss, V.A. Volpert, Complex predator invasion waves in a Holling-Tanner model with nonlocal prey interaction, Physica D 346 (2017), pp. 37 -- 58.

E.A. Autry, A. Bayliss and V.A. Volpert, Traveling waves in a nonlocal, piecewise linear reaction-diffusion population model, Nonlinearity 30 (2017), pp. 3304 -- 3331

V.A. Volpert, A.A. Nepomnyashchy, Similarity solution of a Stefan drug-release subdiffusion problem, Physica Scripta 91 (2016), art. 044005.

A.A. Nepomnyashchy, V.A. Volpert, Pore growth in a planar liquid membrane, Math. Model. Nat. Phenom. 10 (2015), No. 4, pp. 76 -- 82.

A. Bayliss, V.A. Volpert, Patterns for competing populations with species specific nonlocal coupling, Math. Model. Nat. Phenom. 10 (2015), No. 6, pp. 30-47

M.C. Tanzy, V.A. Volpert, A. Bayliss, M.E. Nehrkorn, A Nagumo-type model for competing populations with nonlocal coupling, Mathematical Biosciences 263 (2015), pp. 70 -- 82.

V.A. Volpert, Y. Kanevsky, A.A. Nepomnyashchy, Propagation failure for a front between stable states in a system with subdiffusion, Physical Review E 89 (2014), art. 012901.

M. C. Tanzy, V. A. Volpert, A. Bayliss, M. E. Nehkron,  Stability and pattern formation for competing populations with asymmetric nonlocal coupling, Mathematical Biosciences 246 (2013), pp. 14 -- 26.

J.C. Tzou, Y.-P. Ma, A. Bayliss, B.J. Matkowsky, V.A. Volpert, Homoclinic snaking near a codimension two Turing-Hopf bifurcation point in the Brusselator model, Physical Review E 87 (2013), art. 022908.

A.A. Nepomnyashchy, V.A. Volpert, Particle growth in a subdiffusive medium, Physica Scripta T155 (2013), art. 014045.

A.A. Nepomnyashchy, V.A. Volpert, An exactly solvable model of subdiffusion-reaction front propagation, Journal of Physics A 46 (2013), art. 065101.

B.L. Segal, V.A. Volpert, A. Bayliss, Pattern formation in a model of competing populations with nonlocal interactions, Physica D253 (2013), pp. 12-22.

V.A. Volpert, Y. Nec, A.A. Nepomnyashchy,  Fronts in anomalous diffusion-reaction systems, Philosophical Transactions of the Royal Society A 371 (2013), art. 20120179.

M.C. Tanzy, E.M. Lennon, V.A. Volpert, A. Bayliss, Competing reactions in condensed phase combustion: Wave structure and stability, Journal of Engineering Mathematics 80 (2013), pp. 129-145.

A. Bayliss, E.M. Lennon, M.C. Tanzy, V.A. Volpert, Solution of adiabatic and non-adiabatic combustion problems using step-function reaction models, Journal of Engineering Mathematics 79 (2013), pp. 101-124.