Faculty Directory
William Kath

Professor of Engineering Sciences and Applied Mathematics and (by courtesy) Neurobiology

Margaret B. Fuller Boos Professor


2145 Sheridan Road
Evanston, IL 60208-3109

Email William Kath


Kath Research

Google Scholar


Engineering Sciences and Applied Mathematics

Download CV


Ph.D. Applied Mathematics, California Institute of Technology, Pasadena, CA

S.B. Mathematics, MIT, Cambridge, MA

Research Interests

Quantitative biological modeling, circadian rhythms, growth and development; computational neuroscience, action potential propagation and dendritic integration in neurons; optical fibers and waveguides, polarization mode dispersion; importance sampling and rare event simulation; stochastic and nonlinear dynamics

Significant Recognition

  • Fellow, Optical Society of America
  • ASEE Mathematics Division Distinguished Educator and Service Award
  • McCormick School Teaching Award

Significant Professional Service

  • Editor of Wave Motion

Selected Publications

  1. E. M. Johnson, W. L. Kath and M. Mani, EMBEDR: Distinguishing signal from noise in single-cell omics data, Cell Patterns 12 (2022) p. 100443.
  2. J. M. Simões, J. I. Levy, E. E. Zaharieva, L. T. Vinson, P. Zhao, M. H. Alpert, W. L. Kath, A. Para & M. Gallio, Robustness and plasticity in Drosophila heat avoidance, Nature Communications 12:2044 (2021).
  3. N. L. Sanford, G. M. Donovan and W. L. Kath, Slip rates and slip modes in an actively mode-locked laser, SIAM J. Applied Dynamical Systems 19 (2020), pp. 1472--1495.
  4. R. Braun, W. L. Kath, M. Iwanaszko, E. Kula-Eversole, S. M. Abbott, K. J. Reid, P. C. Zee & R. Allada, Universal method for robust detection of circadian state from gene expression, PNAS, 39 (2018), pp. E9247-E9256.
  5. D. K. Wells, W. L. Kath & A. E. Motter, Control of Stochastic and Induced Switching in Biophysical Networks, Physical Review X, 5 (2015), pp. 031036.
  6. D. K. Wells, Y. Chuang, L. M. Knapp, D. Brockmann, W. L. Kath & J. N. Leonard, Spatial and Functional Heterogeneities Shape Collective Behavior of Tumor-Immune Networks, PLOS Computational Biology 11 (2015) pp. e1004181.
  7. H. Choi, L. Zhang, M. S. Cembrowski, C. F. Sabottke, A. L. Markowitz, D. A. Butts, W. L. Kath, J. H. Singer, & H. Riecke, Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina, Journal of Neurophysiology, 112 (2014), pp 1491-1504.
  8. V. Menon, T. F.Musial, A. Liu, Y. Katz, W. L.Kath, N. Spruston, D. A. Nicholson, Balanced Synaptic Impact via Distance-Dependent Synapse Distribution and Complementary Expression of AMPARs and NMDARs in Hippocampal Dendrites, Neuron 80 (2013), pp. 1451-1463.
  9. M. T. Harnett, J. K. Makara, N. Spruston, W. L. Kath & J. C. Magee, Synaptic amplification by dendritic spines enhances input cooperativity, Nature, 491 (2012), pp. 599-602.
  10. J. L. Li and W. L. Kath, A Path-Based Method for Simulating Large Deviations and Rare Events in Nonlinear Lightwave Systems, Studies in Applied Math., 137 (2016) pp. 159-173.