Faculty Directory
Zhe Ji

Assistant Professor of Biomedical Engineering (beginning on January 1, 2018)

Assistant Professor of Pharmacology (beginning on January 1, 2018)

Contact

2145 Sheridan Road
Tech
Evanston, IL 60208-3109

Email Zhe Ji

Website

Zhe Ji Research Group


Departments

Biomedical Engineering

Education

Postdoc Cancer Systems Biology, Harvard Medical School, Boston, MA

Postdoc Computational Biology, Broad Institute of MIT and Harvard, Cambridge, MA

Ph.D Computational Genomics, Rutgers University, Newark, NJ

B.S. Biotechnology, Nanjing University, China

 


Research Interests

Our group uses high-throughput genomic technologies and computational modeling to examine the regulation of gene transcription and RNA translation underlying oncogenic processes. We aim at revealing novel cancer therapeutic strategies for precision medicine and immunotherapy.

 


Selected Publications

    Henry, W.*, Hendrickson, D.*, Beca, F., Glass, B., Lindahl-Allen, M., He, L., Ji, Z., Struhl, K., Beck, A, Rinn, J, and Toker, A. (2016).  LINC00520 is Induced by Src, STAT3, and PI3K and Plays an Oncogenic Role in Breast Cancer. Oncotarget, 13;7(50):81981-81994.

    Miotto, B.*, Ji, Z.* and Struhl, K. (2016). Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Proc Natl Acad Sci U S A, 113, E4810-E4819.

    Ji, Z., Song, R., Huang, H., Regev, A. and Struhl, K. (2016). Transcriptome-scale RNase-footprinting of RNA-protein complexes. Nature Biotechnology, 34 (4), 410-413.

    Ji, Z.*, Song, R.*, Regev, A. and Struhl, K. (2015). Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife, 4: e08890.

    Rotem, A., Janzer, A., Izar, B., Ji, Z., Doench J.G., Garraway L.A., and Struhl, K. (2015). An alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation. Proc Natl Acad Sci U S A, 112, 5708-5713.

    Luo, W.*, Ji, Z.*, Pan, Z.*, You B., Hoque, M., Li, W., Gunderson, S., and Tian, B. (2013). The conserved intronic cleavage and polyadenylation site of CstF-77 gene imparts control of 3’ end processing by feedback autoregulation and U1 snRNP. PLoS Genetics 9, e1003613.

    Hoque, M.*, Ji, Z.*, Zheng, D., Luo, W., Li, W., You, B., Park, J.Y., Yehia, G., and Tian, B. (2013). Analysis of alternative cleavage and polyadenylation by 3’ region extraction and deep sequencing. Nature Methods 10, 133-139.

    Haenni, S.*, Ji, Z.*, Hoque, M., Rust, N., Sharpe, H., Eberhard, R., Browne, C., Hengartner, M.O., Mellor, J., McGhee, J., Tian, B. and Furger, A.  (2012). Analysis of C. elegans intestinal nuclear gene expression using fluorescence-activated nuclei sorting and 3’ end-seq. Nucleic Acids Research 40, 6304-6318.

    Ji, Z.*, Luo, W.*, Li, W., Hoque, M., Pan, Z., Zhao, Y., and Tian, B. (2011). Transcriptional activity regulates alternative cleavage and polyadenylation. Molecular Systems Biology 7, 534.

    Ji, Z., and Tian, B. (2009). Reprogramming of 3’ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 4, e8419.

    Ji, Z.*, Lee, J.Y.*, Pan, Z.*, Jiang, B. and Tian, B. (2009). Progressive lengthening of 3’ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 106, 7028-7033.

Patents

Tian, B., Luo, W., Ji, Z., and Hoque, M., Methods of isolating RNA and mapping of polyadenylation isoforms, WO Patent 2,013,028,902, 2013