Faculty Directory
Justin M. Notestein

Associate Professor of Chemical and Biological Engineering


2145 Sheridan Road
Evanston, IL 60208-3109

Email Justin Notestein


Notestein Research Group


Chemical and Biological Engineering

Download CV


Post-doc Fellow Chemistry, University of Illinois at Urbana, Champaign, IL

Ph.D. Chemical Engineering, University of California, Berkeley, CA

B.S.E Chemical Engineering (magma cum laude), Princeton University, Princeton, NJ

Research Interests

Catalytic materials are central to most industrial processes. We develop novel designs and syntheses of catalysts, adsorbents, and other functional materials especially for the purpose of more sustainable routes to important chemicals and fuels. We frequently collaborate with industry and national laboratories on such projects. We typically synthesize materials by modifying existing particle surfaces with organic functionalities (e.g. amines or carboxylates), inorganic complexes (e.g. Mn triazacyclononane, Ta calixarenes) or we build up additional, ultra-thin oxide layers. These groups are intended to control isolated or cooperative active sites consisting of acids, bases, redox groups, metals, and designed cavities in ways that can be difficult to engineer with traditional homogeneous or heterogeneous catalysts. The active sites on these new materials are also functional models for spectroscopy and simulation for the development of improved structure-function relationships. It is our guiding hypothesis that increasing control over - and diversity of - the active sites available for heterogeneous catalysts promises to yield new, more selective, and better understood chemical transformations.

We have developed supported metal nanoparticle catalysts, oxide catalysts, immobilized molecular catalysts, and nanocavity catalysts. Chemical transformations currently being explored include selective oxidation, NO reduction, hydrotreating (hydrodenitrogenation and hydrodeoxygenation), photocatalysis, CO2 photoreduction, carbon capture and conversion, aldol condensation and related reactions, sugar and other biomass conversions, dehydration, decarboxylation, and selective adsorption of butanol and other molecules. An overarching long-term goal is to be able to design systems of active sites on a single surface capable of complex, efficient transformations of challenging molecules, in ways that mimic the connectivity of biological reaction pathways.

Selected Publications

    1. M. Bachrach, N. Morlanes, C. P. Canlas, J. T. Miller, T. J. Marks, J. M. Notestein, “Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOx–Al2O3,” Catal. Lett. 2014, 144, 1832-1838.
    2. C-C Yang, B. A. Kilos, D. G. Barton, E. Weitz, J. M. Notestein, “The role of iodide promoters and the mechanism of ethylene carbonylation catalyzed by molybdenum hexacarbonyl,” J. Catal. 2014, 319, 211-219.
    3. T. R. Eaton, A. M. Boston, A. B. Thompson, K. A. Gray, J. M. Notestein, “Counting Active Sites on Titanium Oxide–Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid,” ChemCatChem 2014, 6, 3215-3222.
    4. A. B. Thompson, R. C. Scholes, J. M. Notestein, “Recovery of Dilute Aqueous Acetone, Butanol, and Ethanol with Immobilized Calixarene Cavities,” ACS Appl. Mater. & Interfaces, 2014, 6, 289-297.
    5. T. R. Eaton, M. P. Campos, K. A. Gray, J. M. Notestein, “Quantifying accessible sites and reactivity on titania-silica (photo)catalysis: Refining TOF calculations,” J. Catal. 2014, 309, 156-165.
    6. C. P. Canlas, J. Lu, N. A. Ray, N. A. Grosso-Giordano, J. W. Elam, S. Lee, R. E. Winans, P. C. Stair, R. P. Van Duyne, and J. M. Notestein, “Shape-Selective Sieving Layers on an Oxide Catalyst Surface,” Nature Chem., 2012, 4, 1030-1036.
    7. D. Prieto-Centurion, A. M. Boston, J. M. Notestein, “Structural and electronic promotion with alkali cations of silica-supported Fe(III) sites for alkane oxidation,” J. Catal., 2012, 296, 77-85.
    8. P. Young, J. M. Notestein, “The Role of Amine Surface Density on Carbon Dioxide Adsorption on Functionalized Mixed Oxide Surfaces,” ChemSusChem, 2011, 4, 1671-1678.
    9. N. J. Schoenfeldt, Z. Ni, A. W. Korinda, R. J. Meyer, J. M. Notestein, “Manganese Triazacyclononane Oxidation Catalysts Grafted under Reaction Conditions on Solid Co-Catalytic Supports,” J. Am. Chem. Soc., 2011, 133, 18684-18695.
    10. N. Morlanes, J. M. Notestein, “Grafted Ta-calixarenes: tunable, selective catalysts for direct olefin epoxidation with aqueous H2O2,” J. Catal., 2010, 275, 191-201.