A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with $O(\epsilon^{-3/2})$ Complexity

Mohammadreza Samadi, Lehigh University
joint work with
Frank E. Curtis, Lehigh University
Daniel P. Robinson, Johns Hopkins University

U.S.–Mexico Workshop
OPTIMIZATION AND ITS APPLICATIONS
Huatulco, Mexico

January 8, 2018
Outline

Motivation

Proposed Algorithm

Theoretical Results

Numerical Results

Summary
Outline

- **Motivation**
- **Proposed Algorithm**
- **Theoretical Results**
- **Numerical Results**
- **Summary**
Consider nonconvex equality constrained optimization problems of the form

\[
\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t. } c(x) = 0.
\]

where \(f : \mathbb{R}^n \to \mathbb{R} \) and \(c : \mathbb{R}^n \to \mathbb{R}^m \) are twice continuously differentiable.

- We are interested in algorithm worst-case iteration / evaluation complexity.
- Constraints are not necessarily linear!
Algorithms for equality constrained (nonconvex) optimization

Sequential Quadratic Programming (SQP) / Newton’s method

Trust Funnel; Gould & Toint (2010)

Short-Step ARC; Cartis, Gould, & Toint (2013)
Sequential Quadratic Programming (SQP) / Newton’s method

- **Global convergence**: globally convergent (trust region/line search)

Trust Funnel; Gould & Toint (2010)

- **Global convergence**: globally convergent

Short-Step ARC; Cartis, Gould, & Toint (2013)

- **Global convergence**: globally convergent
Sequential Quadratic Programming (SQP) / Newton’s method

- **Global convergence**: globally convergent (trust region/line search)
- **Worst-case complexity**: No proved bound

Trust Funnel; Gould & Toint (2010)

- **Global convergence**: globally convergent
- **Worst-case complexity**: No proved bound

Short-Step ARC; Cartis, Gould, & Toint (2013)

- **Global convergence**: globally convergent
- **Worst-case complexity**: $O(\epsilon^{-3/2})$
Short-Step ARC

\[(0, f^*) \to \|c(x)\|^2 \]

\[f(x) \]

\[(0, f^*) \]
Short-Step ARC

\[f(x) \]

\[(0, f^*) \]

\[\|c(x)\|^2 \]
Short-Step ARC

\[f(x) \]

\[\| c(x) \|^2 \]

\[(0, f^*)\]
Main Concerns

- Completely ignores the objective function during the first phase
- **Question**: Can we do better?
Main Concerns

- Completely ignores the objective function during the first phase
- **Question:** Can we do better?
- **Yes! (?)**
- First, rather than two-phase approach that ignores objective in phase 1, wrap in a **trust funnel** framework that observes objective in both phases.
- Second, consider **TRACE** method for unconstrained nonconvex optimization
Outline

Motivation

Proposed Algorithm

Theoretical Results

Numerical Results

Summary
SQP “core”

- Given x_k, find s_k as a solution of

$$\min_{s \in \mathbb{R}^n} f_k + g_k^T s + \frac{1}{2} s^T H_k s$$

s.t. $c_k + J_k s = 0$

Issues:

- H_k might not be positive definite over $\text{Null}(J_k)$.
- Trust region!... but constraints might be incompatible.
Step decomposition

\[c_k + J_k s = 0 \]
Step decomposition
Step decomposition

\[c_k + J_k s = c_k + J_k s_k^n \]
Trust funnel basics

Step decomposition approach:

- First, compute a *normal step* toward minimizing constraint violation

\[
v(x) = \frac{1}{2} \|c(x)\|^2 \Rightarrow \min_{s^n \in \mathbb{R}^n} m_k^v(s^n) \quad \text{s.t. } \|s^n\| \leq \delta_k^v
\]

- Second, compute multipliers \(y_k\) (or take from previous iteration).

- Third, compute a *tangential step* toward optimality:

\[
\min_{s^t \in \mathbb{R}^n} m_k^f(s_k^n + s^t) \quad \text{s.t. } J_k s^t = 0, \|s_k^n + s^t\| \leq \delta_k^f.
\]
Main idea

Two-phase method combining trust funnel and TRACE.

- Trust funnel for globalization
- TRACE for good complexity bounds

Phase 1 towards feasibility, two types of iterations:

- F-ITERATIONS improve objective and reduce constraint violation.
- V-ITERATIONS reduce constraint violation.

Our algorithm vs. basic trust funnel

- modified F-ITERATION conditions and a different funnel updating procedure
- uses TRACE ideas (for radius updates) instead of tradition trust region
- after getting approximately feasible, switches to “phase 2”.
Our algorithm-Illustration

\[f(x) \]

\[(0, f^*) \]

\[\| c(x) \|^2 \]
Our algorithm-Illustration

\[f(x) \]

\[\|c(x)\|^2 \]

\((0, f^*)\)
Our algorithm-Illustration
Our algorithm-Illustration

\[(0, f^*) \]

\[\|c(x)\|^2 \]
Our algorithm-Illustration

\[f(x) \quad \|c(x)\|^2 \]

\[(0, f^*)\]
Our algorithm-Illustration

\[(0, f^*) \rightarrow \| c(x) \|^2 \]
Our algorithm-Illustration

\[f(x) \]

\[(0, f^*) \]

\[\| c(x) \|^2 \]
Our algorithm-Illustration
Our algorithm-Illustration

\[f(x) \]

\[(0, f^*) \]

\[\|c(x)\|^2 \]
Outline

Motivation

Proposed Algorithm

Theoretical Results

Numerical Results

Summary
Phase 1

Recall that $\nabla v(x) = J(x)^T c(x)$ and define the iteration index set

$$\mathcal{I} := \{k \in \mathbb{N} : \|J_k^T c_k\| > \epsilon_v\}.$$

Theorem

For any $\epsilon_v \in (0, \infty)$, the cardinality of \mathcal{I} is at most $K(\epsilon_v) \in \mathcal{O}(\epsilon_v^{-3/2})$:

- $\mathcal{O}(\epsilon_v^{-3/2})$ successful steps and
- finite contraction and expansion steps between successful steps.

Corollary

If $\{J_k\}$ have full row rank with singular values bounded below by $\xi \in (0, \infty)$, then

$$\mathcal{I}_c := \{k \in \mathbb{N} : \|c_k\| > \epsilon_v/\xi\}$$

has cardinality $\mathcal{O}(\epsilon_v^{-3/2})$.
Options for phase 2:
- trust funnel method (no complexity guarantees) or
- “target-following” approach similar to Short-Step ARC to minimize

\[\Phi(x, t) = \|c(x)\|^2 + |f(x) - t|^2. \]

Theorem

For \(\epsilon_f \in (0, \epsilon_v^{1/3}] \), the number of iterations until

\[\|g_k + J_k^T y\| \leq \epsilon_f \|(y_k, 1)\| \text{ or } \|J_k^T c_k\| \leq \epsilon_f \|c_k\| \]

is \(\mathcal{O}(\epsilon_f^{-3/2} \epsilon_v^{-1/2}) \).

Same complexity as Short-Step ARC:
- If \(\epsilon_f = \epsilon_v^{2/3} \), then overall \(\mathcal{O}(\epsilon_v^{-3/2}) \)
- If \(\epsilon_f = \epsilon_v \), then overall \(\mathcal{O}(\epsilon_v^{-2}) \)
A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization

Outline

Motivation

Proposed Algorithm

Theoretical Results

Numerical Results

Summary
Implementation

MATLAB implementation:

- Phase 1: our algorithm vs. one doing V-iteration only
- Phase 2: trust funnel method [Curtis, Gould, Robinson, & Toint (2016)]

Termination conditions:

- Phase 1:
 \[\|c_k\|_\infty \leq 10^{-6} \max\{\|c_0\|_\infty, 1\} \quad \text{or} \quad \left\{ \begin{array}{l}
 \|J_k^T c_k\|_\infty \leq 10^{-6} \max\{\|J_0^T c_0\|_\infty, 1\} \\
 \text{and} \quad \|c_k\|_\infty > 10^{-3} \max\{\|c_0\|_\infty, 1\}
\end{array} \right. \]

- Phase 2
 \[\|g_k + J_k^T y_k\|_\infty \leq 10^{-6} \max\{\|g_0 + J_0^T y_0\|_\infty, 1\}. \]
Test set

Equality constrained problems (190) from CUTEst test set:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>constant (or null) objective</td>
</tr>
<tr>
<td>60</td>
<td>time limit</td>
</tr>
<tr>
<td>13</td>
<td>feasible initial point</td>
</tr>
<tr>
<td>3</td>
<td>infeasible phase 1</td>
</tr>
<tr>
<td>2</td>
<td>function evaluation error</td>
</tr>
<tr>
<td>1</td>
<td>small stepsizes (less than 10^{-40})</td>
</tr>
</tbody>
</table>

Remaining set consists of 33 problems.
<table>
<thead>
<tr>
<th>Problem</th>
<th>n</th>
<th>m</th>
<th>#V</th>
<th>#F</th>
<th>(| g + J^T y |)</th>
<th>(| f + J^T y |)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>199</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Phase 2</td>
<td>4</td>
<td>0</td>
<td>-8.00e-01</td>
<td>47.79e-01</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TF-V-only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>199</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Phase 2</td>
<td>4</td>
<td>0</td>
<td>-8.00e-01</td>
<td>47.79e-01</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization

Phase 1

TF

- **Motivation**
- **Proposed Algorithm**
- **Theoretical Results**
- **Numerical Results**
- **Summary**
<table>
<thead>
<tr>
<th>Problem</th>
<th>n</th>
<th>m</th>
<th>#V</th>
<th>#F</th>
<th>f</th>
<th>$|g + J^T y|$</th>
<th>#V</th>
<th>#F</th>
<th>f</th>
<th>$|g + J^T y|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT11</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>+8.25e-01</td>
<td>+4.84e-03</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>+4.55e+04</td>
</tr>
<tr>
<td>BT12</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>+6.19e+00</td>
<td>+1.18e-05</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>+3.34e+01</td>
</tr>
</tbody>
</table>

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization
Summary of results

Our algorithm, at the end of phase 1

- for 26 problems, reaches a smaller function value
- for 6 problems, reaches the same function value

Total number of iterations of our algorithm

- for 18 problems is smaller
- for 8 problems is equal
Outline

Motivation

Proposed Algorithm

Theoretical Results

Numerical Results

Summary
Summary

- Proposed an algorithm for equality constrained optimization
- Trust funnel algorithm with improved complexity properties
- Promising performance in practice based on our preliminary numerical experiment
- A step toward practical algorithms with good iteration complexity