
Efficient Architecture Search for Continual Learning

Qiang Gao
School of Information and Software Engineering

University of Electronic Science and Technology of China
Chengdu, China 610054

qianggao@std.uestc.edu.cn

Zhipeng Luo
Center for Deep Learning
Northwestwern University

Evanston, IL 60201
zhipeng.luo@northwestern.edu

Diego Klabjan∗
Industrial Engineering and Management Sciences

Northwestwern University
Evanston, IL 60201

d-klabjan@northwestern.edu

Abstract

Continual learning with neural networks is an important learning framework in
AI that aims to learn a sequence of tasks well. However, it is often confronted
with three challenges: (1) overcome the catastrophic forgetting problem, (2) adapt
the current network to new tasks, and meanwhile (3) control its model complexity.
To reach these goals, we propose a novel approach named as Continual Learning
with Efficient Architecture Search, or CLEAS in short. CLEAS works closely
with neural architecture search (NAS) which leverages reinforcement learning
techniques to search for the best neural architecture that fits a new task. In particular,
we design a neuron-level NAS controller that decides which old neurons from
previous tasks should be reused (knowledge transfer), and which new neurons
should be added (to learn new knowledge). Such a fine-grained controller allows
finding a very concise architecture that can fit each new task well. Meanwhile,
since we do not alter the weights of the reused neurons, we perfectly memorize
the knowledge learned from previous tasks. We evaluate CLEAS on numerous
sequential classification tasks, and the results demonstrate that CLEAS outperforms
other state-of-the-art alternative methods, achieving higher classification accuracy
while using simpler neural architectures.

1 Introduction
Continual learning, or lifelong learning, refers to the ability of continually learning new tasks and
also performing well on learned tasks. It has attracted enormous attention in AI as it mimics a human
learning process - constantly acquiring and accumulating knowledge throughout their lifetime [1].
Continual learning often works with deep neural networks [2, 3, 4] as the flexibility in a network
design can effectively allow knowledge transfer and knowledge acquisition. However, continual
learning with neural networks usually faces three challenges. The first one is to overcome the
so-called catastrophic forgetting problem [5], which states that the network may forget what has been
learned on previous tasks. The second one is to effectively adapt the current network parameters or
architecture to fit a new task, and the last one is to control the network size so as not to generate an
overly complex network.

In continual learning, there are two main categories of strategies that attempt to solve the aforemen-
tioned challenges. The first category is to train all tasks within a network with fixed capacity. For

∗Corresponding author.

Preprint. Under review.

example, [6, 7, 8] replay some old samples with the new task samples and then learn a new network
from the combined training set. The drawback is that they typically require a memory system that
stores past data. [5, 9] employ some regularization terms to prevent the re-optimized parameters
from deviating too much from the previous ones. Approaches using fixed network architecture,
however, cannot avoid a fundamental dilemma - they must either choose to retain good model perfor-
mances on learned tasks, leaving little room for learning new tasks, or compromise the learned model
performances to allow learning new tasks better.

To overcome such a dilemma, the second category is to expand the neural networks dynamically [10,
11, 4]. They typically fix the parameters of the old neurons (partially or fully) in order to eliminate
the forgetting problem, and also permit adding new neurons to adapt to the learning of a new task.
In general, expandable networks can achieve better model performances on all tasks than the non-
expandable ones. However, a new issue appears: expandable networks can gradually become overly
large or complex, which may break the limits of the available computing resources and/or lead to
over-fitting.

In this paper, we aim to solve the continual learning problems by proposing a new approach that
only requires minimal expansion of a network so as to achieve high model performances on both
learned tasks and the new task. At the heart of our approach we leverage Neural Architecture Search
(NAS) to find a very concise architecture to fit each new task. Most notably, we design NAS to
provide a neuron-level control. That is, NAS selects two types of individual neurons to compose a
new architecture: (1) a subset of the previous neurons that are most useful to modeling the new task;
and (2) a minimal number of new neurons that should be added. Reusing part of the previous neurons
allows efficient knowledge transfer; and adding new neurons provides additional room for learning
new knowledge. Our approach is named as Continual Learning with Efficient Architecture Search, or
CLEAS in short. Below are the main features and contributions of CLEAS.

• CLEAS dynamically expands the network to adapt to the learning of new tasks and uses
NAS to determine the new network architecture;

• CLEAS achieves zero forgetting of the learned knowledge by keeping the parameters of the
previous architecture unchanged;

• NAS used in CLEAS is able to provide a neuron-level control which expands the network
minimally. This leads to an effective control of network complexity;

• The RNN-based controller behind CLEAS is using an entire network configuration (with
all neurons) as a state. This state definition deviates from the current practice in related
problems that would define a state as an observation of a single neuron. Our state definition
leads to improvements of 0.31%, 0.29% and 0.75% on three benchmark datasets.

• If the network is a convolutional network (CNN), CLEAS can even decide the best filter size
that should be used in modeling the new task. The optimized filter size can further improve
the model performance.

We evaluate CLEAS as well as other alternative methods on numerous sequential classification tasks.
The results lend great credence to the fact that CLEAS is able to achieve higher classification accuracy
while using simpler neural architectures. Compared to the state-of-the-art method RCL [4], we
improve the model accuracy relatively by 0.21%, 0.21% and 6.70% on the three benchmark datasets
and reduce network complexity by 29.9%, 19.0% and 51.0%, respectively.

We start the rest of the paper by first reviewing the related work in Section 2. Then we detail our
CLEAS design in Section 3. Experimental evaluations and the results are presented in Section 4.

2 Related Work
Continual Learning Continual learning is often considered as an online learning paradigm where
new skills or knowledge are constantly acquired and accumulated. Recently, there are remarkable
advances made in many applications based on continual learning: sequential task processing [12],
streaming data processing [13], self-management of resources [1, 14], etc. A primary obstacle in
continual learning, however, is the catastrophic forgetting problem and many previous works have
attempted to alleviate it. We divide them into two categories depending on whether their networks
are expandable.

2

The first category uses a large network with fixed capacity. These methods try to retain the learned
knowledge by either replaying old samples [6, 15, 16] or enforcing the learning with regularization
terms [5, 7, 9, 17]. Sample replaying typically requires a memory system which stores old data.
When learning a new task, part of the old samples are selected and added to the training data. As for
regularized learning, a representative approach is Elastic Weight Consolidation (EWC) [5] which
uses the Fisher information matrix to regularize the optimization parameters so that the important
weights for previous tasks are not altered too much. Other methods like [7, 9, 17] also address
the optimization direction of weights to prevent the network from forgetting the previously learned
knowledge. The major limitation of using fixed networks is that it cannot properly balance the learned
tasks and new tasks, resulting in either forgetting old knowledge or acquiring limited new knowledge.

To address the above issue, another stream of works propose to dynamically expand the network,
providing more room for obtaining new knowledge. For example, Progressive Neural Network
(PGN) [10] allocates a fixed number of neurons and layers to the current model for a new task.
Apparently, PGN may end up generating an overly complex network that has high redundancy
and it can easily crash the underlying computing system that has only limited resources. Another
approach DEN (Dynamically Expandable Network) [11] partially mitigates the issue of PGN by
using group sparsity regularization techniques. It strategically selects some old neurons to retrain,
and adds new neurons only when necessary. However, DEN can have the forgetting problem due to
the retraining of old neurons. Another drawback is that DEN has very sensitive hyperparameters that
need sophisticated tuning. Both of these algorithms only grow the network and do not have a neuron
level control which is a significant departure from our work. Most recently, a novel method RCL
(Reinforced Continual Learning) [4] also employs NAS to expand the network and it can further
decrease model complexity. The main difference between RCL and CLEAS is that RCL blindly
reuses all the neurons from all of the previous tasks and only uses NAS to decide how many new
neurons should be added. However, reusing all the old neurons has two problems. First, it creates a
lot of redundancy in the new network and some old neurons may even be misleading and adversarial;
second, excessively many old neurons reused in the new network can dominate its architecture, which
may significantly limit the learning ability of the new network. Therefore, RCL does not really
optimize the network architecture, thus it is unable to generate an efficient and effective network for
learning a new task. By comparison, CLEAS designs a fine-grained NAS which provides neuron-level
control. It optimizes every new architecture by determining whether to reuse each old neuron and
how many new neurons should be added to each layer.

Neural Architecture Search NAS is another promising research topic in the AI community. It
employs reinforcement learning techniques to automatically search for a desired network architecture
for modeling a specific task. For instance, Cai et al. [18] propose EAS to discover a superb architecture
with a reinforced meta-controller that can grow the depth or width of a network; Zoph et al. [19]
propose an RNN-based controller to generate the description of a network, and the controller is
reinforced by the predicting accuracy of a candidate architecture. Pham et al. [19] propose an
extension of NAS, namely ENAS, to speed up training processing by forcing all child networks
to share weights. Apart from algorithms, NAS also has many valuable applications such as image
classification [20, 21], video segmentation [22], text representation [23] and etc. Hence, NAS is a
demonstrated powerful tool and it is especially useful in continual learning scenarios when one needs
to determine what is a good architecture for the new task.

3 Methodology
There are two components in the CLEAS framework: one is the task network that continually learns a
sequence of tasks; and the other is controller network that dynamically expands the task network. The
two components interact with each other under the reinforcement learning context - the task network
sends the controller a reward signal which reflects the performance of the current architecture design;
the controller updates its policy according to the reward, and then generates a new architecture for
the task network to test its performance. Such interactions repeat until a good architecture is found.
Figure 1 illustrates the overall structure of CLEAS. On the left is the task network, depicting an
optimized architecture for task t− 1 (it is using gray and pink neurons) and a candidate architecture
for task t. They share the same input neurons but use their own output neurons. Red circles are newly
added neurons and pink ones are reused neurons from task t− 1 (or any previous task). To train the
network, only the red weights that connect new-old or new-new neurons are optimized. On the right

3

is the controller network which implements an RNN. It provides a neuron-level control to generate a
description of the task network design. Each blue square is an RNN cell that decides to use or drop a
certain neuron in the task network.

0

1

1

0

1

0

0

1

1

0

1

0

drop drop useuseuse

1

0

use

State

Action

t-1 t

input

output

hidden layers

use

controller networktask network

reward

configuration
1

0

use

layer l-1 layer l

sj−1sj−2 sj sj+1 sj+2 sj+3 · · ·· · ·

Figure 1: The framework of CLEAS.

3.1 Neural Architecture Search Model

Task Network The task network can be any neural network with expandable ability, for example,
a fully connected network or a CNN, etc. We use the task network to model a sequence of tasks.
Formally, suppose there are T tasks and each has a training set Dt = {(xi, yi)}Ot

i=1, a validation
set Vt = {(xi, yi)}Mt

i=1 and a test set Tt = {(xi, yi)}Kt
i=1, for t = 1, 2, . . . , T . We denote by At the

network architecture that is generated to model task t. Moreover, we denote At = (Nt,Wt) where
Nt are the neurons or filters used in the network and Wt are the corresponding weights. We train the
first task with a basic network A1 by solving the standard supervised learning problem

W 1 = arg min
W1

L1(W1;D1), (1)

where L1 is the loss function for the first task. For the optimization procedure, we use stochastic
gradient descent (SGD) with a constant learning rate. The network is trained till the required number
of epochs or convergence is reached.

When task t (t > 1) arrives, for every task k < t we already know its optimized architecture
Ak and parameters W k. Now we use the controller to decide a network architecture for task t.
Consider a candidate network At = (Nt,Wt). There are two types of neurons in Nt: Nold

t are
used neurons from previous tasks and Nnew

t = Nt \ Nold
t are the new neurons added. Based on

this partition, the weights Wt can be also divided into two disjoint sets: W old
t are the weights that

connect only used neurons, and Wnew
t = Wt \W old

t are the new weights that connect old-new
or new-new neurons. Formally, Nold

t = {n ∈ Nt | there exists k < t such that n ∈ Nk} and
W old
t = {w ∈ Wt | there exists n1, n2 ∈ Nold

t such that w connects n1, n2}. The training
procedure for the new task is to only optimize the new weights Wnew

t and leave W old
t unchanged,

equal to their previously optimized values W
old

t . Therefore, the optimization problem for the new
task reads

W
new

t = arg min
Wnew

t

Lt(Wt|W old
t =W

old
t

;Dt). (2)

Then we set W t = (W
old

t ,W
new

t). Finally, this candidate network At with optimized weights
W t is tested on the validation set Vt. The corresponding accuracy and network complexity is
used to compute a reward R (described in Section 3.2). The controller updates its policy based on
R and generates a new candidate network A′t to repeat the above procedure. After enough such
interactions, the candidate architecture that achieves the maximal reward is the optimal one for task t,
i.e. At = (Nt,W t), where Nt finally denotes the neurons of the optimal architecture.

Controller Network The goal of the controller is to provide a neuron-level control that can decide
which old neurons from previous tasks can be reused, and how many new neurons should be added.
In our actual implementation, we assume there is a large hyper-network for the controller to search
for a task network. Suppose the hyper-network has l layers and each layer i has a maximum of
ui neurons. Each neuron has two actions, either “drop” or “use” (more actions for CNN, to be
described later). Thus, the search space for the controller would be 2n where n =

∑l
i=1 ui is the

total number of neurons. Apparently, it is infeasible to enumerate all the action combinations and

4

determine the best one. To deal with this issue, we treat the action sequence as a fixed-length string
a1:n = a1, a2, . . . , an that describes a task network. We design the controller as an LSTM network
where each cell controls one ai in the hyper-network. Formally, we denote by π(a1:n|s1:n; θc) the
policy function of the controller network as

π(a1:n|s1:n; θc) = P (a1:n|s1:n; θc) =

n∏
i=1

P (ai|s1:i; θc) . (3)

The state s1:n is a sequence that represents one state; the output is the probability of a task network
described by a1:n; and θc denotes the parameters of the controller network. At this point we note
that our model is a departure from standard models where states are considered individual sj and
an episode is comprised of s1:n. In our case we define s1:n as one state and episodes are created by
starting with different initial states (described below).

Recall that in Fig.1, the two components in CLEAS work with each other iteratively and there are
H · U such iterations whereH is the number of episodes created and U the length of each episode.
Consider an episode e = (s1

1:n, ā
1
1:n, R

1, s2
1:n, ā

2
1:n, R

2, . . . , sU1:n, ā
U
1:n, R

U , sU+1
1:n). The initial state

s1
1:n is either generated randomly or copied from the terminal state sU+1

1:n of the previous episode.
The controller starts with some initial θc. For any u = 1, 2, . . . ,U , the controller generates the most
probable task network specified by āu1:n from su1:n by following LSTM. To this end, we use the
recursion auj = f(suj , h

u
j−1) where huj−1 is the hidden vector and f standard LSTM equations to

generate au1:n from su1:n. Let us point out that our RNN application auj = f(suj , h
u
j−1) differs from

the standard practice that uses auj = f(auj−1, h
u
j−1). Action āu1:n is obtained from au1:n by selecting

the maximum probability value for each j, 1 ≤ j ≤ n. The task trains this task network, evaluates it
on the validation set and returns reward Ru. We then construct su+1

1:n from the previous neuron action
āuj together with the layer index as bu+1

j for each 1 ≤ j ≤ n. More concretely, su+1
j = āuj ⊕ buj

where āuj , buj have been one-hot encoded, and ⊕ is the concatenation operator. Finally, a new network
architecture āu+1

1:n is generated from su+1
1:n . At the end of each episode, the controller updates its

parameter θc by a policy gradient algorithm. After all H · U total iterations, the task network that
achieves the maximum reward is used for that task.

The choice for treating the state as s1:n and not sj has the following two motivations. In standard
NAS type models after updating sj the network is retrained. This is intractable in our case as the
number of neurons n is typically large. For this reason we want to train only once per s1:n. The
second reason is related and stems from the fact that the reward is given only at the level of s1:n.
For this reason it makes sense to have s1:n as the state. This selection also leads to computational
improvements as is attested later in Section 4.

CLEAS-C for CNN The design of CLEAS also works for CNN with fixed filter sizes where one
filter corresponds to one neuron. However, we know that filter sizes in a CNN can have a huge impact
on its classification accuracy. Therefore, we further improve CLEAS so that it can decide the best
filter sizes for each task. In particular, we allow a new task to increase the filter size by one upon
the previous task. For example, a filter size 3× 3 used in some convolutional layer in task t− 1 can
become 4× 4 in the same layer in task t. Note that for one task all the filters in the same layer must
use the same filter size, but different layers can use different filter sizes.

We name the new framework as CLEAS-C. There are two major modifications to CLEAS-C. First,
the output actions in the controller are now encoded by 4 bits and their meanings are “only use,”“use
& extend,”“only drop” and “drop & extend” (see Fig. 2). Note that the extend decision is made
at the neuron layer, but there has to be only one decision at the layer level. To this end, we apply
simple majority voting of all neurons at a layer to get the layer level decision. The other modification
regards the training procedure of the task network. The only different case we should deal with is
how to optimize a filter (e.g. 4× 4) that is extended from a previous smaller filter (e.g. 3× 3). Our
solution is to preserve the optimized parameters that are associated with the original smaller filter
(the 9 weights) and to only optimize the additional weights (the 16− 9 = 7 weights). The preserved
weights are placed in the center of the larger filter, and the additional weights are initialized as the
averages of their surrounding neighbor weights.

5

1

0

0

1

0

0

0

1

0

0

0

1

0

1

0

0

0

0

use&extend drop&extend only droponly useonly use

layer l − 1 layer l + 1layer l

use&extend

1

0

0

use&extend

0

1

0

only use

State

Controller

Action

0 0 0 0 0 0 1 0

· · ·· · · sjsj−1sj−2 sj+2 sj+3sj+1

Figure 2: The controller design for convolutional networks.

3.2 Training with REINFORCE

Lastly, we present the training procedure for the controller network. Note that each task t has an
independent training process so we drop subscript t here. Within an episode, each action string au1:n
represents a task architecture and after training gets a validation accuracyAu. In addition to accuracy,
we also penalize the expansion of the task network in the reward function, leading to the final reward

Ru = R(au1:n) = A(au1:n)− αC(au1:n) (4)

where C is the number of newly added neurons, and α is a trade-off hyperparameter. With such
episodes we train

J(θc) = Ea1:n∼p(·|s1:n;θc)[R] (5)

by using REINFORCE. We use an exponential moving average of the previous architecture accuracies
as the baseline.

We summarize the key steps of CLEAS in Algorithm 1 whereH is the number of iterations, U is the
length of episodes, and p is the exploration probability. We point out that we do not strictly follow the
usual ε-greedy strategy; an exploration step consists of starting an epoch from a completely random
state as opposed to perturbing an existing action.

Algorithm 1: CLEAS.
Input: A sequence of tasks with training sets {D1,D2, ...,DT }, validation sets {V1,V2, ...,VT }
Output: Optimized architecture and weights for each task: At = (Nt,W t) for t = 1, 2, . . . , T
for t = 1, 2, . . . , T do

if t = 1 then
Train the initial network A1 on D1 with the weights optimized as W 1;

else
Generate initial controller parameters θc;
for h = 1, 2, . . . ,H do

/* A new episode */
w ∼ Bernoulli(p);
if w = 1 or h = 1 then

/* Exploration */
Generate a random state string s1

1:n but keep layer encodings fixed;
else

Set initial state string s1
1:n = sU+1

1:n , i.e. the last state of previous episode (h− 1);
for u = 1, 2, . . . ,U do

Generate the most probable action string āu1:n from su1:n by the controller;
Configure the task network as Au based on āu1:n and train weights Wu on Dt;
Evaluate Au with trained W

u
on Vt and compute reward Ru;

Construct su+1
1:n from āu1:n and bu1:n where bu1:n is the layer encoding;

Update θc by REINFORCE using (s1
1:n, ā

1
1:n, R

1, . . . , sU1:n, ā
U
1:n, R

U , sU+1
1:n);

Store Ah = (N ū,W
ū
) where ū = arg maxuR

u and R̄h = maxuR
u;

Store At = Ah̄ where h̄ = arg maxh R̄
h;

6

4 Experiments
We evaluate CLEAS and other state-of-the-art continual learning methods on MNIST and CIFAR-100
datasets. The key results delivered are model accuracies, network complexity and training time. All
methods are implemented in Tensorflow and ran on a GTX1080Ti GPU unit.

4.1 Datasets and Benchmark Algorithms

We use three benchmark datasets as follows. Each dataset is divided into T = 10 separate tasks.
MNIST-associated tasks are trained by fully-connected neural networks and CIFAR-100 tasks are
trained by CNNs.

(a) MNIST Permutation [5]: Ten variants of the MNIST data, where each task is transformed by
a different (among tasks) and fixed (among images in the same task) permutation of pixels. (b)
Rotated MNIST [4]: Another ten variants of MNIST, where each task is rotated by a different and
fixed angle between 0 to 180 degree. (c) Incremental CIFAR-100 [6]: The original CIFAR-100
dataset contains 60,000 32×32 colored images that belong to 100 classes. We divide them into 10
tasks and each task contains 10 different classes and their data.

Each task in MNIST Permutations or MNIST Rotations contains 55,000 training samples, 5,000
validation samples. and 10,000 test samples. Each task in CIFAR-100 contains 5,000 samples for
training and 1,000 for testing. We randomly select 1,000 samples from each task training samples as
the validation samples and assure each class in a task has at least 100 validation samples. The model
observes the tasks one by one and does not see any data from previous tasks.

We select four other continual learning methods to compare. One method (MWC) uses a fixed
network architecture while the other three use expandable networks.

(1) MWC: An extension of EWC [5]. By assuming some extent of correlation between consecutive
tasks it uses regularization terms to prevent large deviation of the network weights when re-optimized.
(2) PGN: Expands the task network by adding a fixed number of neurons and layers [10]. (3) DEN:
Dynamically decides the number of new neurons by performing selective retraining and network
split [11]. (4) RCL: Uses NAS to decide the number of new neurons. It also completely eliminates
the forgetting problem by holding the previous neurons and their weights unchanged [4].

For the two MNIST datasets, we follow [4] to use a three-layer fully-connected network. We start
with 784-312-128-10 neurons with RELU activation for the first task. For CIFAR-100, we develop a
modified version of LeNet [24] that has three convolutional layers and three fully-connected layers.
We start with 16 filters in each layer with sizes of 3× 3, 3× 3 and 4× 4 and stride of 1 per layer.
Besides, to fairly compare the network choice with [4, 11], we set: ui = 1000 for MNIST and
ui = 128 for CIFAR-100. We also useH = 200 and U = 1. The exploration probability p is set to
be 30%. We select the RMSProp optimizer for REINFORCE and Adam for the training task.

We also implement a version with states corresponding to individual neurons where the controller
is following auj = f(auj−1, h

u
j−1). We configure this version under the same experimental settings

as of CLEAS and test it on the three datasets. The results show that compared to CLEAS, this
version exhibits an inferior performance of -0.31%, -0.29%, -0.75% in relative accuracy, on the
three datasets, respectively. Details can be found in Appendix.

4.2 Experimental Results

MNIST permutation Rotated MNIST CIFAR-100
datasets

0

25

50

75

100

125

150

175

200

225

im
pr
ov
em

en
t a
ga
in
st
M
W
C(
%
)

95.8 96.1

58.4

96.0 96.6

59.1

96.1 96.8

62.7

96.3 97.0

66.9

PGN DEN RCL CLEAS

Figure 3: Average test accuracy across all tasks.

MNIST permutation Rotated MNIST CIFAR-100
datasets

0

1

2

3

4

5

6

pa
ra
m
ete

rs
(×
10

5)

MWC PGN DEN RCL CLEAS

Figure 4: Average number of parameters.

7

Model Accuracy We first report the averaged model accuracies among all tasks. Fig.3 shows the
relative improvements of the network-expandable methods against MWC (numbers on the top are
their absolute accuracies). We clearly observe that methods with expandability can achieve much
better performance than MWC. Furthermore, we see that CLEAS outperforms other methods. The
average relative accuracy improvement of CLEAS vs RCL (the state-of-the-art method and the second
best performer) is 0.21%, 0.21% and 6.70%, respectively. There are two reasons: (1) we completely
overcome the forgetting problem by not altering the old neurons/filters; (2) our neuron-level control
can precisely pick useful old neurons as well as new neurons to better model each new task.

Network Complexity Besides model performance, we also care about how complex the network is
when used to model each task. We thus report the average number of model weights across all tasks
in Fig. 4. First, no surprise to see that MWC consumes the least number of weights since its network
is non-expandable. But this also limits its model performance. Second, among the other four methods
that expand networks we observe CLEAS using the least number of weights. The average relative
complexity improvement of CLEAS vs RCL is 29.9%, 19.0% and 51.0% reduction, respectively.
It supports the fact that our NAS using neuron-level control can find a very efficient architecture to
model every new task.

Network Descriptions We visualize some examples of network architectures the controller gener-
ates. Fig. 5 illustrates four optimal configurations (tasks 2 to 5) of the CNN used to model CIFAR-100.
Each task uses three convolutional layers and each square represents a filter. A white square means it
is not used by the current task; a red square represents it was trained by some earlier task and now
reused by the current task; a light yellow square means it was trained before but not reused; and a
dark yellow square depicts a new filter added. According to the figure, we note that CLEAS tends to
maintain a concise architecture all the time. As the task index increases it drops more old filters and
only reuses a small portion of them that are useful for current task training, and it is adding fewer
new neurons.

CLEAS-C We also test CLEAS-C which decides the best filter sizes for CNNs. In the CIFAR-100
experiment, CLEAS uses fixed filter sizes 3× 3, 3× 3 and 4× 4 in its three convolutional layers.
By comparison, CLEAS-C starts with the same sizes but allows each task to increase the sizes by
one. The results show that after training the 10 tasks with CLEAS-C the final sizes become 4× 4,
8× 8, and 8× 8. It achieves a much higher accuracy of 67.4% than CLEAS (66.9%), i.e. a 0.7%
improvement. It suggests that customized filter sizes can better promote model performances. On the
other hand, complexity of CLEAS-C increases by 92.6%.

1
2

3ta
sk

 2
1

2
3ta
sk

 3
1

2
3ta
sk

 4

1 2 3 ...
neuron index

1
2

3ta
sk

 5

Figure 5: Examples of CNN architectures for CIFAR-100.

Neuron Allocation We compare CLEAS to RCL on neuron reuse and neuron allocation. Fig. 6
visualizes the number of reused neurons (yellow and orange for RCL; pink and red for CLEAS)
and new neurons (dark blue for both methods). There are two observations. On one hand, CLEAS
successfully drops many old neurons that are redundant or useless, ending up maintaining a much
simpler network. On the other hand, we observe that both of the methods recommend a similar
number of new neurons for each task. Therefore, the superiority of CLEAS against RCL lies more on
its selection of old neurons. RCL blindly reuses all previous neurons.

Training Time We also report the training time in Fig.7. It is as expected that CLEAS’ running
time is on the high end due to the neuron-level control that results in using a much longer RNN for
the controller. On the positive note, the increase in the running time is not substantial.

8

1 2 3 4 5 6 7 8 9 10
task id

0

100

200

300

400

500

nu
m
be

r
of
 n
eu

ro
ns

RCL-1st layer RCL-2st layer CLEAS-1st layer CLEAS-2st layer

Figure 6: Neuron allocation for MNIST Permulation.

MNIST permutation Rotated MNIST CIFAR-100
datasets

0

10

20

30

40

50

60

70

ru
nt
im

e (
×1

02
s)

MWC PGN DEN RCL CLEAS

Figure 7: Training time

Hyperparameter Sensitivity We show the hyperparameter analysis in Appendix. The observation
is that the hyperparameters used in CLEAS are not as sensitive as those of DEN and RCL. Under all
hyperparameter settings CLEAS performs the best.

5 Conclusions
We have proposed and developed a novel approach CLEAS to tackle continual learning problems.
CLEAS is a network-expandable approach that uses NAS to dynamically determine the optimal
architecture for each task. NAS is able to provide a neuron-level control that decides the reusing
of old neurons and the number of new neurons needed. Such a fine-grained control can maintain a
very concise network through all tasks. Also, we completely eliminate the catastrophic forgetting
problem by never altering the old neurons and their trained weights. With demonstration by means
of the experimental results, we note that CLEAS can indeed use simpler networks to achieve yet
higher model performances compared to other alternatives. In the future, we plan to design a more
efficient search strategy or architecture for the controller such that it can reduce the runtime while not
compromising the model performance or network complexity.

References
[1] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual

lifelong learning with neural networks: A review. Neural Networks, 2019.

[2] Khurram Javed and Martha White. Meta-learning representations for continual learning. In
Advances in Neural Information Processing Systems, pages 1818–1828, 2019.

[3] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual
learning. arXiv preprint arXiv:1710.10628, 2017.

[4] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Advances in Neural Information
Processing Systems, pages 899–908, 2018.

[5] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences, 114(13):3521–3526, 2017.

[6] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[7] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
In Advances in Neural Information Processing Systems, pages 6467–6476, 2017.

[8] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision, pages 139–154, 2018.

[9] Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez, and Andrew D
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting.
In 2018 24th International Conference on Pattern Recognition, pages 2262–2268. IEEE, 2018.

9

[10] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[11] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. In International Conference on Learning Representation,
2018.

[12] Sebastian Thrun. A lifelong learning perspective for mobile robot control. In Intelligent Robots
and Systems, pages 201–214. Elsevier, 1995.

[13] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In The
IEEE Conference on Computer Vision and Pattern Recognition, June 2019.

[14] Tom Diethe, Tom Borchert, Eno Thereska, Borja de Balle Pigem, and Neil Lawrence. Continual
learning in practice. arXiv preprint arXiv:1903.05202, 2019.

[15] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Expe-
rience replay for continual learning. In Advances in Neural Information Processing Systems,
pages 348–358, 2019.

[16] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science,
7(2):123–146, 1995.

[17] Jie Zhang, Junting Zhang, Shalini Ghosh, Dawei Li, Jingwen Zhu, Heming Zhang, and Yalin
Wang. Regularize, expand and compress: Nonexpansive continual learning. In The IEEE Winter
Conference on Applications of Computer Vision, pages 854–862, 2020.

[18] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search
by network transformation. In Thirty-Second AAAI conference on artificial intelligence, 2018.

[19] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[20] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

[21] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network
design spaces for visual recognition. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1882–1890, 2019.

[22] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid. Architecture search of dynamic
cells for semantic video segmentation. In The IEEE Winter Conference on Applications of
Computer Vision, March 2020.

[23] Yujing Wang, Yaming Yang, Yiren Chen, Jing Bai, Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai
Tong, Mao Yang, and Lidong Zhou. Textnas: A neural architecture search space tailored for
text representation. arXiv preprint arXiv:1912.10729, 2019.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

10

Appendix

0

1

1

0

1

0

0

1

1

0

1

0

drop drop useuseuse

1

0

use use

controller network

episode

1

0

use

layer 1 layer 2

s0

Figure 8: The standard implementation of NAS controller.

1 2 3 4 5 6 7 8 9 10
task id

90

92

94

96

98

100

a
cc
u
ra

cy
(%

)

Standard CLEAS

(a) MNIST permutations.

1 2 3 4 5 6 7 8 9 10
task id

90

92

94

96

98

100

a
cc
u
ra

cy
(%

)

Standard CLEAS

(b) Rotated MNIST.

1 2 3 4 5 6 7 8 9 10
task id

50

55

60

65

70

75

a
cc
u
ra

cy
(%

)

Standard CLEAS

(c) CIFAR-100.
Figure 9: Task accuracy of standard NAS controller vs. CLEAS NAS controller.

CLEAS vs. Standard NAS Controller Here we experimentally compare CLEAS to the standard
implementation of a NAS controller that considers each output of an RNN-based network as a
individual action and it starts with only one initialized state s0, as shown in Fig 8. Therefore, such a
controller considers (s0, a0, 0, s1, a1, 0, . . . , sn−1, an−1, R) as one episode where sj = aj−1, and the
real reward R is given only after all states and actions are played. However, the controller of CLEAS
considers a sequence of candidate task networks as one episode, and each candidate receives a reward
immediately. That is, CLEAS considers (s1

1:n, ā
1
1:n, R

1, s2
1:n, ā

2
1:n, R

2, . . . , sU1:n, ā
U
1:n, R

U , sU+1
1:n) as

one episode (recall this from Section 3.1).

We evaluate these two versions on the same three datasets that were used in Section 4. Fig 9 shows
each task accuracy of the three datasets. We find that the controller implemented in the standard way
achieves inferior model performances, which are 96.0%, 96.7%, 66.4% in average accuracy on the
three datasets respectively. By comparison, CLEAS achieves 96.3%, 97.0%, 66.9%, thus yielding
0.31%, 0.29%, and 0.75% relative improvement.

10−5 10−4 10−3 10−2

α value
1

2

3

4

m
o
d
el
 c
o
m
p
le
x
it
y
 (
x
1
0
5
)

85

90

95

100

a
cc
u
ra
cy
 (
%

)

complexity accuracy

(a) MNIST permutations.

10−4 10−3 10−2 10−1

α value

1

2

3

4

m
o
d
el
 c
o
m
p
le
x
it
y
 (
x
1
0
5
)

40

50

60

70

a
cc
u
ra
cy
 (
%

)

complexity accuracy

(b) CIFAR-100.

Figure 10: Hyperparameter sensitivity.

10 20 40 60
max # of new neurons per layer

90

92

94

96

98

100

a
cc
u
ra
cy
 v
a
lu
e(
%

)

DEN RCL CLEAS

(a) MNIST permulation.

6 8 10 12 14 16 18
max # of new neurons per layer

50

60

70

80

a
cc
u
ra
cy
 v
a
lu
e(
%

)

DEN RCL CLEAS

(b) CIFAR-100

Figure 11: Maximum number of new neurons.

11

Hyperparameter Sensitivity Lastly, Fig. 10 shows the sensitivity of hyperparameter α in (4). We
can see the clear trade-off between model performance and complexity. The best choice of α for
MNIST is between [10−4, 10−3] where the network is simpler but preserves good performance as
well. For CIFAR-100 α should be between [10−3, 10−2]. In Fig. 11 we vary another hyperparameter
that is the maximum number of new neurons that can be allocated per layer to a new task. As
expected, as the maximum number increases the overall model performances raises as well. But we
see that CLEAS always achieves the highest accuracy under different settings.

12

	Introduction
	Related Work
	Methodology
	Neural Architecture Search Model
	Training with REINFORCE

	Experiments
	Datasets and Benchmark Algorithms
	Experimental Results

	Conclusions

