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ABSTRACT

Intrusion Response via Graph-based Low-level System Event Analysis

Xutong Chen

From cyber theft of personal financial information to Advanced Persistent Threat

(APT) attacks, nowadays endpoint devices suffer from various intrusions which cause

inestimable property and privacy loss. To protect the security on endpoints, endpoint

detection and response (EDR) systems have been developed to serve as the powerful solu-

tion against those intrusions. Among numerous EDR systems, those based on graph-based

low-level system event analysis generally benefit from their higher detection accuracy and

they are also less likely to be compromised or evaded. However, the effectiveness and

efficiency of those systems could vary on different platform/environment/task setups.

This dissertation focuses on exploring how effectiveness and efficiency could be achieved

differently when platform/environment/tasks are changed and it proposes solutions for

specific technical problems in different setups. To elaborate and answer this problem,

two research projects will be introduced, i.e., RATScope for Windows/Operating Sys-

tem/Detection and CLARION Linux/Container/Forensics.
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CHAPTER 1

Introduction

With the rapid growth of the Internet, it has become an indispensable part of our

daily life. As the Internet keeps penetrating every aspect of the normal functioning of the

society, it has been attracting tremendous hackers to launch intrusions from the Internet,

steal valuable resources and cause damages for individuals, enterprises, and governments.

According to an investigation about the distribution of data leakage[29], one of the

most severe but common breaches on today’s network, over 70% of this kind of breach

begins at network endpoints on the Internet, including personal hosts, servers, and cloud

services. This reveals that endpoint security systems are under pressing need on various

network endpoints. Fortunately, endpoint security systems have evolved swiftly over the

last decade. The evolution of endpoint security systems consist of three generations.

The first generation endpoint security system is the anti-virus software. Anti-virus

(AV) software determines that a file represent a malware if this file contains some specific

signatures, i.e., sequences of bytes extracted from malwares. It is a static approach and

performs well in containing known malware outbreaks. However, it heavily relies on

a state-of-the-art signature library to ensure detection capability and suffer from vital

evasion problems caused by code obfuscation.

The second generation endpoint security system is anti-virus plus host-based intrusion

detection system (AV + HIDS). Compared with the first generation endpoint security

system, it incorporates the support from the HIDS which introduces the static scanning,
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sandbox and API hooking/drivers low-level event auditing technique as Figure 1.1 shows.

It is a dynamic approach whose detection is based on heuristic patterns on low-level logs.

This method helps the endpoint security system not only to get rid of a signature library,

but also to receive limited capability of detecting unknown threats.

Figure 1.1. Evolution of Low-level Event Auditing

Though the second generation endpoint security system, to a large extent, improves

endpoint security, low-level logs they use are still too coarse-grained to help to detect many

advanced malicious behaviors. Therefore, AV + HIDS fails to handle some complicated

intrusions. Representative examples include advanced persistent threats (APT) shown

in Figure 1.2. Sophisticated APTs remain concealed for months and they are usually

equipped with progressive evasion techniques, e.g., being file-less and code polymorphic.

Given this situation, a comprehensive upgrade on both low-level event auditing techniques

and detection techniques is required.
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Figure 1.2. The Work Flow of APT attack

The above challenges lead to the third generation endpoint security system, i.e., the

endpoint detection and response (EDR) system, which is based on graph-based low-level

system event analysis. Compared to the second generation endpoint security system, it

emphasizes the understanding of program/system behaviors, attack provenance tracking,

real-time response, and even more capability in detecting unknown threats, facilitating

effective (high accuracy) and efficient (low overhead) intrusion response.

In general, graph-based low-level event analysis tries to describe program/system be-

havior as graphs using data collected by built-in monitoring auditing techniques in Figure

1.1. Then it performs graph analyses which can help detection and forensics in intrusion

response.

When the graph is used for describing program behavior, which is usually the case for

detection, the corresponding graph is behavior graph as shown in Figure 1.3 and it consists

of vertices representing low-level events and edges representing control/data dependency
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Figure 1.3. Behavior Graph Example: Ovals stand for system call vertices and
each edge is marked with the dependent data between two system calls. Rect-
angles are just initialization attributes of system calls, which are neither vertices
nor edges.

between those events. This kind of graph can be used to accurately model semantic

behavior performed by programs/processes.

Figure 1.4. Provenance Graph Example: Ovals are processes, rectangles are files
and diamonds are sockets. Edges are marked with corresponding system calls.
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When the graph is used for describing system behavior, which is usually the case

for forensics, the corresponding graph is provenance graph as shown in Figure 1.4 and it

consists of vertices representing low-level system objects, e.g., processes, files, sockets, and

edges representing control/data dependency carried by corresponding low-level events.

However, applying graph-based low-level event analysis technique in EDR systems

still requires further research because when different platforms/environment/task setups

are used, we encounter specific problems. In this dissertation, we focus on the following

question: How can we effectively and efficiently leverage graph-based low-

level system event analysis to perform intrusion response for different plat-

form/environment/tasks?

This dissertation tackles this question by addressing specific problems that we en-

counter in two projects with different platform/environment/task setups: Windows/operating

system/detection for RATScope project and Linux/container/forensics for CLARION

project. The brief answer can be summarized as follows.

• With the Windows/operating system/detection setup, RATScope uncovers the

problem of missing arguments in Windows low-level events, i.e., ETW events,

which must be addressed so that effectiveness can be achieved. Given a detection

task, a meticulous graph pattern matching algorithm is also needed for providing

efficiency.

• With the Linux/container/forensics setup, CLARION exposes the influence in-

troduced by container virtualization in Linux low-level events, i.e., Linux Audit

events, which usually cannot be realized by people. Given a forensic task, efforts
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on selecting system calls and system implementation optimization must be paid

to reach efficiency.

The dissertation will consist of two above projects in the order of RATScope and

CLARION. The connection between two projects is shown in Figure 1.5 from an archi-

tecture view of an EDR system.

output
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For provenance 
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IoC Scan
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Figure 1.5. An architecture view of RATScope and CLARION

In Chapter 2 and 3, the dissertation will show what we have done to answer the

above-mentioned question, investigating effectiveness and efficiency of graph-based low-

level event analysis in different cases accordingly. At last, Chapter 4 will summarize the

dissertation.
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CHAPTER 2

RATScope: Recording and Reconstructing Missing RAT

Semantic Behaviors for Forensic Analysis on Windows

2.1. Introduction

From cyber theft of personal financial information to Advanced Persistent Threat

(APT) attacks aiming at intellectual properties or critical infrastructures, nowadays RATs

cause a wide range of damage to individual users, corporations, and governments [58, 60,

64]. However, there is still a lack of studies that attempt to understand the landscape of

RATs and a lack of forensic systems targeting RAT attacks.

To understand RAT attacks, we conduct a large-scale study (see Section 2.2) of 53

RAT families starting active from 1999 to 2016 in terms of their workflow, functions

equipped, and how their functions are implemented. To the best of our knowledge, this

is the largest corpus of RAT families ever studied in academia, and we have made our

collected RAT samples public on the GitHub.

Based on our study, we learn that one main difference between other malware and

RATs is their operating mode after gaining a foothold on the target host. A RAT is mainly

working in an interactive mode. Each of its action is synchronously controlled by remote

attackers. For example, a RAT can be activated to start audio recording of the victim’s

surrounding environment or deactivated immediately after the remote attacker switches

the button “Audio Record” on or off on the RAT’s GUI control panel. In addition, unlike
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most other malware, the functionalities of a RAT can be clearly split up into tens of

standalone functions, termed by us as Potential Harmful Functions (PHFs), e.g., Remote

Camera and Audio Record. Each PHF can be triggered at will by the attacker, depending

on his/her intention at that specific time. Furthermore, based on our comprehensive

study, we learn that 90% of RATs only target Windows.

RATs definitely represent a singular category of malware given that they are so signif-

icantly different from most other malware in terms of their operating mode and clear-cut

functionalities. Therefore, it is highly crucial and necessary to have an efficient forensics

system on Windows to help understand the intent and ramification of RAT attacks, and

make a quick incident response.

In this project, we present such a forensic system targeting RATs on Windows which

leverages two categories of audit logs, i.e., system calls and call-stacks, to recover PHFs

performed by remote attackers with high accuracy and reasonable overhead. Note that

the general audit data we use and the way we build the system makes our system quite

easy to be extended to cover other malware. To build such a practical RAT forensic

system on Windows, it should satisfy the following requirements:

R1: Instrumentation-free System. By the term instrumentation-free, we mean

that a system leverages existing built-in event logging systems and does not require extra

instrumentation on the end-user systems. Instrumentation techniques are usually prohib-

itive in the enterprise environment because they can make applications and the operating

system unstable [50, 34, 9]. Furthermore, patching the kernel has never been supported

by Microsoft. Microsoft even integrated Kernel Patch Protection (KPP) into Windows
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to prevent patching the kernel [32]. Thus, the previous instrumentation-based forensic

schemes, like [96, 104, 103], cannot be applied.

R2: Low Recording Overhead. The log recording module always runs on end

hosts, and thus it should not cause high performance overhead. Some existing tech-

niques [63, 67, 49] do not rely on instrumentation, but they introduce an unacceptably

high system overhead at runtime (e.g., memory forensic, sandbox, and taint techniques),

which is not practical and cannot be accepted by users.

Rat Process

(b) RATScope(a) Traditional Forensic Analysis

Config.zip

Config2.zip

Config2.zip Config.zip

RAT Process

Cmd.exe

Y.Y.Y.Y:80X.X.X.X:80
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X.X.X.X:80 Y.Y.Y.Y:80

Figure 2.1. Comparison between traditional forensic systems and our
RATScope on a simplified attack scenario. Rectangles denote processes.
Ovals and diamonds denote files and sockets, respectively.

R3: Accurate Fine-grained Semantic Behaviors Reconstruction. The behav-

iors of RATs are composed of many PHFs (e.g., Key Logging). It is required to identify

those fine-grained semantic behaviors in order to understand the intent and ramification

of RAT attacks [75]. However, most of existing forensic systems [99, 82, 77, 83, 111,

104, 102, 95, 96, 91] rely on audit logs which consist of a limited number of security-

related objects like processes, files, and sockets, to diagnose attacks so that they are blind

to PHFs. Furthermore, identifying PHFs on Windows is challenging due to the serious

Semantic Collision problem (Section 2.3.3.1). The Semantic Collision problem renders
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the state-of-the-art behavior identification approaches [93, 90] cannot work on Windows

directly.

Our solution. Our work aims to take the first step towards building a practical RAT

forensic system on Windows. Specifically, we propose an instrumentation-free RAT foren-

sic system, RATScope, in which an audit logging module is built for efficient audit record-

ing, and a novel program behavior modeling technique is developed to reconstruct fine-

grained semantic behaviors of RATs accurately. To the best of our knowledge, RATScope

is the first RAT forensic system on Windows. Figure 2.1 illustrates how RATScope is

distinguished from traditional forensic systems. Traditional forensic systems typically

provide human users with a list of obscure processes and files/sockets associated with a

malicious process as well as ambiguous speculations about the attack intent and damages

caused. By contrast, RATScope can offer much clearer visibility into the different func-

tions (independent semantic units, such as Key Logging and Audio Record) performed by

the malicious process.

We choose to build the audit logging module upon the Windows built-in instrumentation-

free ETW (R1). We improve the recording efficiency by filtering out application-specific

events, picking up forensic-related fields from the selected events, and creating parsing

shortcuts for the picked fields (R2). We address the Semantic Collision issue by proposing

a novel behavior model which skillfully combines the information from low-level system

calls and higher-level call-stacks to represent RAT behaviors accurately, then generate

behavior models for PHFs of known RAT families, and match generated models against

audit logs at runtime. This allows us to identify PHFs of unknown RAT families whose

PHFs have similar implementations of known RAT families (R3).
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We build a prototype system of RATScope and perform both performance and be-

havior identification accuracy evaluation with 53 RAT families and 90 popular benign

applications. The performance results show that the audit logging module only incurs

3.7% runtime overhead on average. The accuracy evaluation results show that our system

can achieve around 90% TPR in the cross family experiment, around 80% TPR in the

two-year spanning temporal experiment, and near zero FPR.

2.2. Background and A Large-Scale Study of Real-World RATs

Although APT attacks [1, 2, 5, 59, 52] involving RATs have caused tremendous

damage to public and private sectors worldwide, there is still a lack of studies that attempt

to understand the landscape of RATs. In this section, we report a large-scale study of

real-world RATs in terms of their workflow, functions equipped, and how their functions

are implemented. In particular, we describe how we manage to collect a representative

corpus of RAT samples for our study in Section 2.2.2. We report our major findings based

on dynamic and static analysis of those RAT samples in Section 2.2.3. This study not

only fills the gap between attackers and defenders but also motivates our system design

described in section 2.3.

2.2.1. Workflow of RAT Attack

RAT is the abbreviation of Remote Access Trojan. It is a prevailing type of malware

widely used in severe end-host attacks like Advanced Persistent Threat (APT) attack.

A RAT toolkit consists of two main components: a RAT stub and a RAT controller.

After the RAT stub is delivered and executed on victim hosts (e.g., via phishing emails),
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attackers gain full control over the victim hosts. The RAT controller, residing on the

attacker side, has a control panel which provides a graphical user interface (GUI) for

an attacker to perform any attack function (e.g., Key Logging) with simple mouse clicks

and keystrokes. Consequently, the RAT stub on the victim host would perform the

corresponding malicious activities stealthily. Note that, before triggered remotely by RAT

controllers, RAT stubs would remain dormant.

2.2.2. RAT Sample Collection

Since a RAT stub gaining a foothold on a victim host can only be triggered by its

corresponding RAT controller owned by a remote attacker, we have to collect both the

stub and the controller components of a RAT. However, victims usually report only the

RAT stubs installed on their hosts (not the corresponding RAT controller) to public

malware repositories (e.g., VirusTotal) [75]. Therefore, it is possible to collect RAT stubs

for accessible controllers on VirusTotal; it is, however, nearly impossible to find RAT

controller software on VirusTotal.

To address the issue, we spend significant effort searching in underground hacker

forums [25, 27, 48] where RAT controllers are sold or cracked. As a result, we find a

total of 53 well-known and RATs families listed in Table 2.1. Most of them are notorious

and involved in recent famous security incidents. For example, Poison Ivy RAT active

since 2006 was involved in the RSA SecurID attack [54] and the Nitro attacks on chemical

firms [24]; DarkComet active since 2008 was used in the Syrian activists attack [15] and

leveraged in the Charlie Hebdo shooting incident for malware spreading [28]; XtremeRAT

active since 2010 was responsible for the attacks on US, UK, Israel and other Middle
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East governments [46, 39, 69]; Adwind RAT active since 2012 was used in aerospace

enterprises attacks [1] and attacks targeting Danish companies [2].

Furthermore, we identify the debut year of each RAT family using various information

sources including blogs, white papers, and file creation time of each RAT family. A

distribution of RAT families based on the year is shown in Figure 2.2. We provide more

details about the debut year of each RAT family and how we determine it in the appendix

of the TDSC paper of this project.

In short, we collect a large corpus of RAT families active from 1999 to 2016 which we

believe are representative of real-world RATs. We have made them public on the GitHub1,

which will be beneficial to other security researchers.

Table 2.1. Programming language usage of 53 RAT families.

Programming
Language

RAT Families Number

.NET based
(C#.NET and

VB.NET)

Back Connect Mega ctOs

24

BXRAT MLRAT KilerRat
Cloud Net MQ5 L6-RAT
Coringa NanoCore xRAT
Imperium NingaliNET Vantom

Imminent Monitor NjRAT SpyGate
Quasar Proton Revenge

Virus RAT Comet RAT D-RAT

Delphi

Alusinus Greame Pandora

17

CyberGate NovaLite Spycronic
Dark Comet Nuclear Spy-Net
Turkojan Orion Sub-7
Xena Rabbit-Hole Bozok
DHRat Xtreme -

Java
Crimson jSpy Maus

5
Frutas Adwind -

Visual Basic
(Native)

SkyWyder HAKOPS njworm 3

C++ Babylon ucuL - 2

Python pupy - - 1

MASM Poison Ivy - - 1

1https://bit.ly/35Z0ksm
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   1  int main (){
   2       /* register a keyboard hook */
   3      SetWindowsHookEx (WH_KEYBOARD_LL , callback ,...)
   4  }
   5  /* receive and parse user input and  details of keys are stored in lParam*/
   6  void callback (WPARAM wParam , LPARAM lParam){
   7      if (wParam == WM_KEYDOWN){
   8          PressKey()  // press the key
   9      } else if (wParam == WM_KEYUP){
 10           ReleaseKey()  // release the key
 11      }
 12      CallNextHook() // next hook procedure in the hook chain
 13   }  

   1  int main (){
   2      while (true){
   3          /* get the state of each key */
   4          for (each key in the keyboard){
   5              NtUserGetAsyncKeyState (key);
   6              ParseState()  // parse the state
   7          }
   8      Sleep ()
   9      }
 10   }  

   1  LRESULT CALLBACK WndProc(UINT message , ...){
   2      if (message == WM_CREATE){
   3          /* config and register a raw input device */
   4          RAWINPUTDEVICE rid
   5          rid.dwFlags = RIDEV_INPUTSINK 
   6          NtUserRegisterRawInputDevices (rid , ...)
   7      } else if (message == WM_INPUT){
   8          /* receive user inputs into buffer */
   9          RAWINPUT *buffer
 10          NtUserGetRawInputData (... , buffer , ...)
 11          ParseUserInput()  // parse user inputs
 12       }
 13   }  

K1: Key Logging implemented by hooking K2: Key Logging implemented by polling   K3: Key Logging implemented by raw input  

Figure 2.3. Pseudocode of all three implementations of Key Logging.

2.2.3. Key Findings

We perform static and dynamic program analysis on collected RAT samples, which

results in four key findings regarding the characteristics of RATs. Next, we describe how

we derive those findings.

F1: High-level programming languages are preferred by RAT developers

to write RAT stubs We leverage Detect-It-Easy [51], a sophisticated file type detec-

tion tool, to identify the programming languages used by attackers to write RAT stubs.

Specifically, for each RAT family, we generate a RAT stub from its RAT controller and
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feed it to Detect-It-Easy. The tool conducts static analysis of the stub and reports the

programming languages (e.g., C++, Delphi, and Java) used to write the stub.

As shown in Table 2.1, .NET based language (C# and VB.NET) and Delphi are the two

most popular programming languages. This is expected because (1) those programming

languages either require few runtime dependencies (e.g., Delphi requires no dependen-

cies) or are installed on Windows by default (e.g., .NET is installed on most Windows

platforms). In this way, RAT developers ensure that their RAT stubs are executable

on most Windows computers; (2) .NET and Delphi have vast amounts of ready-to-use

libraries available online, which allow RAT developers to develop sophisticated RATs

equipped with tens of rich functions easily and rapidly. For instance, we find that Vantom

and Mega RATs implement the Audio Record function by directly invoking a well-known

third-party library, DirectX.Capture [17]. In contrast, Java, Python, and C++ are rarely

used because they either require heavy runtime dependencies or go against rapid devel-

opment.

F2: RATs are commonly equipped with tens of Potential Harmful Func-

tions (PHFs) In this study, we obtain a list of functions with the occurring frequency

in 53 RAT families. Specifically, as mentioned in Section ??, each RAT family has a GUI

control panel which clearly lists available PHFs. Thus by traversing the control panel

of all 53 RAT families, we collect a complete list of PHFs and calculate the occurring

frequency of each PHF in 53 RAT families. Note that we never find a PHF which can be

invoked without being triggered explicitly on the control panel from white papers, blogs,

and our experience. Thus we believe the result obtained by analyzing RAT control panels

is accurate.
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Table 2.2. Popular RAT potential harmful functions (PHFs).

PHF Description Frequency

Key Logging
log all the keys pressed down
by a victim

81.13%

Remote Shell
remotely open a console and
execute commands

81.13%

Download and
Execute

download a file and execute
it automatically

84.90%

Remote Camera
remotely enable and access
victims’ camera

66.03%

Audio Record
capture audios with victims’
microphone

49.05%

Table 2.2 provides the list of popular PHFs with brief descriptions. A PHF’s occurring

frequency in all RAT families is given in the third column. We can see that most (43% to

84%) RAT families are equipped with those PHFs. A complete list of PHFs is provided

in the appendix of the TDSC paper of this project.

F3: Different RAT families active from 1999 to 2016 implement the same

PHF using similar methods In this study, we identify possible implementation meth-

ods of 5 popular PHFs listed in Table 2.2. Those 5 PHFs are quite representative con-

sidering their prevalence among available RAT samples. Our current system requires us

to manually analyze how a PHF is implemented in a RAT, which is quite labor intensive

given that there are tens of RATs and tens of PHFs. Therefore, we plan to study all

the remaining PHFs in our future work. Specifically, we have full control of a RAT (i.e.,

both of its stub and controller components), and therefore we are able to collect execution

traces (e.g., system calls and Windows APIs) of each PHF by triggering it each time from

the control panel of the RAT controller. We analyze the execution traces and learn what

system calls and Windows APIs are invoked by each PHF. Once new system calls or APIs
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are invoked to perform a PHF, we consider that a new implementation method is prob-

ably identified and then we double check it by referring to the document of new APIs;

otherwise, we attribute the execution trace to an existing method. Once done, we find

that the ways of implementing a PHF are limited, and different families implement the

same PHF quite similarly Take Key Logging as an example. All 53 RAT families imple-

ment the PHF only in 3 different ways, listed in Table 2.3. The third column represents

what percentage of Key Logging-available RAT families takes a specific implementation

way. The implementation methods of other PHFs studied are provided in the appendix

of the TDSC paper of this project. The finding that there only exists quite limited ways

of implementing a PHF makes sense since operating systems do not provide a number of

methods to perform a certain function.

Table 2.3. Implementation methods of Key Logging in RATs.

Method Descriptions & Key
Syscalls

Frequency

K1 RATs invoke
NtUserSetWindowsHookEx

to register a callback
function into a message
hook chain of Windows.
The callback function
will receive a virtual key
code when victims press
the key.

53.65%

K2 RATs invoke
NtUserGetAsyncKeyState

in an endless loop to poll
every key state.

39.02%

K3 RawInput is another
channel to get user
input. RATs invoke
NtUserGetRawInputData

to get input when a
WM INPUT message
occurs.

7.33%
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Understanding how a PHF is implemented is essential for red teams to simulate real-

world RAT attacks. However, due to a lack of study of RATs, even state-of-the-art

red-team tools [6, 8, 53, 40, 20] either cannot simulate RAT attacks or can simulate

only one way of RAT PHF implementation. To fill the gap, we provide an actionable

executable file for each implementation method. Figure 2.3 provides the pseudo code

for all three means of implementing the Key Logging PHF. That intelligence could be

incorporated into existing red-team tools [6] in the future and would thus benefit other

RAT researchers.

F4: Around 90% RATs only target Windows We make this finding based on

the observation that around 90% RAT stubs, produced by compiling the corresponding

RAT controllers, take the file formats exclusive to Windows platforms, such as Windows

PE executable files and Windows batch files. This implies that most RATs can only

compromise Windows platforms, which is reasonable, considering that Windows is still

the most popular operating system, especially in the enterprise environment [16].

2.3. System Design

2.3.1. Threat Model and Design Overview

Threat Model In this project, we consider the OS kernel and auditing system (i.e.,

ETW) as part of the trust computing base (TCB). We assume that OS kernel is well

protected by existing techniques [68, 26]. In our work, we consider a RAT attack that

performs PHFs in a user space process. Our threat model is as reasonable and practical

as the models of previous forensic works [76, 77, 83, 81].
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Figure 2.4. System Architecture.

Design Overview Our goal is to develop a RAT forensic system suitable in an

enterprise environment. Figure 2.4 illustrates our system architecture. The workflow

of our system proceeds in three phases: offline training, online recording, and forensic

analysis. The goal of the offline training phase is to model each RAT PHF based on both

positive data (i.e., execution traces of PHFs) and negative data (i.e., execution traces

corresponding to normal usage of benign applications). Specifically, we first introduce

the Semantic Collision problem to explain why existing works fail, and then propose a

novel behavior graph model, i.e., Aggregated API Tree Record (AATR) Graph (Section

2.3.2). Then we build an enhanced version of ETW (Section 2.3.3) to collect log data,

which is then inputted to the AATR Graph Generator (Section 2.3.4) to generate AATR

graphs, which characterize the internal implementation mechanism of PHFs. In the online
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Figure 2.5. An example of Semantic Collision on system call level data
(shaded boxes). Two different program behaviors trigger exactly the same
system call sequences though different library call-stacks.

recording phase, our system utilizes the enhanced ETW deployed on each Windows host for

audit logging. Audit logs are then transferred to a specialized server. In the final forensic

analysis phase, AATR Graph Matcher (Section 2.3.5) running on the server takes in both

the collected audit logs and AATR graphs obtained in the offline training phase for PHF

identification.

Our approach is able to identify PHFs of unknown RATs as long as corresponding

PHFs with similar implementation is observed in the training phase. We believe this is a

necessary prerequisite for a system that aims to identify behaviors of previously unknown

RATs. Furthermore, our approach is effective in practice because our RAT study (Section

2.2) shows that although RAT families active from 1999 to 2016 were written by different

programming languages and involved in different security incidents, PHFs of such RAT

families have similar implementation methods.

2.3.2. Aggregated API Tree Record Graph

We choose to build RATScope upon ETW, considering ETW is the only instrumentation-

free audit logging framework on Windows. However, unlike native audit systems on other
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platforms (e.g., Linux Audit and DTrace), ETW does not provide input arguments

for any low-level data including system call and API, which would cause a seri-

ous Semantic Collision problem for behavior graph model approaches. To resolve this

problem, we propose a novel behavior model, Aggregated API Tree Record(AATR) Graph.

2.3.2.1. Definitions. We first provide formal definitions of the Semantic Collision prob-

lem and AATR Graph for clarity.

Call Stack. A call stack CSs on a system call s is an API calling stack. The entry

of each call stack is a caller function with its direct lower entry being its callee function.

From top to bottom, a call stack starts at an API in the application binary, then APIs in

system libraries2, and ends at the triggered system call s.

Top-layer API. A Top-layer API TAs on a system call s is the first system library

API invoked by the application binary.

Library call stack and Application call stack. A Library call stack LibCSs on

a system call s is a subsequence of its call stack CSs starting from TAs to the bottom of

CSs while Application call stack AppCSs is a subsequence starting from the top of CSs

to the API directly calling TAs.

Call Stack Tree. A call stack tree CSTreea of an API a is a tree where the root

is the API a and each tree path, starting from the root to a leaf, represents a call stack

starting from the API a.

Figure 2.6 provides a concrete ETW event example to explain the above concepts.

2.3.2.2. Semantic Collision Problem. Semantic Collision refers to the cases that

two different program behaviors end up being represented as the same behavior graph,

2System Library here refers to Windows system libraries, including ntdll.dll, kernel32.dll,
user32.dll and so on.
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Figure 2.6. An example of ETW event generated by our system: (a) sys-
tem call event, (b1) library call-stack, and (b2) application call-stack.
GetSystemInfo is the Top-layer API.

i.e., different program behavior semantics collide on a graph, which would cast doubt on

the accuracy of the detection or forensic systems. Semantic Collision results from the

fact that many program behaviors cannot be exactly reflected in low-level data without

arguments, and hence crucial causality information is missing within the behavior graph

model.

Figure 2.5 presents one practical example of Semantic Collision at the system call

level. Specifically, the top half (enclosed by the red dotted box) represents a call-stack

tree of the Audio Record behavior of a RAT. The bottom half (enclosed by the blue

solid box) represents a call-stack tree of the normal website browsing behavior of Chrome.

Although the two program behaviors are quite different and they trigger different call-

stack data, their triggered system call sequences are exactly the same. Note that Semantic

Collision could happen with any low-level data which lack input arguments, not just at

the system call level. Furthermore, it results in the universal failure of previous works

[88, 90, 93] which heavily rely on input arguments.
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2.3.2.3. Collision Avoidance by AATR Graph. Motivated by the example illus-

trated in Figure 2.5, two different behaviors may look exactly the same on the system call

level but apparently different on the call-stack level, so it could help solve the Semantic

Collision if we model program behaviors on multiple-level of audit logs.

Further, we make three other vital observations:

• System calls and library call-stack are more generic and stable than application

call-stacks which is specific to certain applications.

• Different call-stack trees of an API execution implies the API taking in different

arguments. Conversely, different input arguments of an API typically result in

different call-stack trees.

• System calls and their corresponding library call-stack invoked by a top-layer

API typically present the characteristics of space-time clustering. That is, they

usually appear adjacent in ETW traces.

These observations suggest that i) system calls and library call-stacks are suitable

for general program behavior modeling. ii) call-stack tree could be used as an alterna-

tive to approximate the missing input arguments in differentiating the program behavior

semantics, and iii) attribution of system calls and corresponding library call-stacks trig-

gered by an API are adjacent in ETW traces and thus that the reconstruction of call-stack

trees would be easy. This leads to our core program behavior model design, termed as

Aggregated API Tree Record (AATR) Graph.

AATR. An Aggregated API Tree Record AATRa is a call-stack tree of a top-layer

API a.
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AATR Graph. An Aggregated API Tree Record Graph G=(V,E) is a directed graph

where the vertex set V is a set of AATRs and the edge set E represents the causality

dependency between AATRs. An AATR AATRa is dependent on AATRb if API a must

be invoked after API b.

Compared with traditional behavior graph models, AATR graph adopts an effective

data fusion method and takes advantage of both low-level system calls and higher-level

call-stack trees to establish fine-grained program behavior semantics.

2.3.3. ETW-based Audit Logging System

ETW is a Windows built-in audit logging system. It consists of two components: a

recorder and a parser. The native recorder records low-level data events (e.g., system

calls and call-stacks) and stores them in memory buffers or as log files in binary format.

The native parser [55, 107, 71] parses the binary audit logs into human-understandable

events for further usage. ETW has two intrinsic features: instrumentation-free and low-

overhead, which makes it an ideal audit logging subsystem in our proposed RAT forensic

system RATScope.

2.3.3.1. Limitations with ETW for RAT Forensic Purpose. ETW has been used in

existing forensics and detection works [77, 76, 81] for audit logging. Specifically, ETW

in existing works is used for collecting only the events related to OS-level objects, e.g.,

process creation and file write. However, addressing the Semantic Collision problem

through AATR Graph requires to collect additional levels of events, e.g., system calls and

call-stacks. Native ETW when collecting those extra events suffers from data parsing and
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data quality issues, which have not been reported before. We summarize the limitations

with ETW as follows.

Performance issues with native ETW parser. Native ETW produces a huge amount

of redundant data and would waste system resources when parsing. Furthermore, system

call and call-stack traces are typically much larger than OS-level event traces, which

aggravates the parsing problem.

Flawed ETW data. Crucial fields of ETW events (e.g., process id) are assigned mean-

ingless value -1, which makes it hard to attribute a system call to its belonging process.

More details and examples can be found in Section 2.4.1.2.

2.3.3.2. Our Solutions. Efficient Parsing. We propose a technique to improve the

performance of parsing ETW data by filtering out application-specific events, identifying

and focusing on the fields of the events helpful for forensics, and creating parsing shortcuts

for those fields (described in Section 2.4.1.1).

Semantic Recovering. We propose to address the data quality issue of ETW events

by recovering the missing crucial field value, resolving a system call’s entry-point address

to its name, and resolving the return address of call stack to library functions (see Section

2.4.1.2).

2.3.4. AATR Graph Generator

Our AATR Graph Generator is developed in the offline training phase to produce

AATR graphs, which model the PHF behavior based on ETW logs.

Semantics Redundancy Problem. Typical behavior graph model generation [90,

93] usually involves as much low-level data as possible, which is collected by monitoring
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Figure 2.7. How our audit logging system works on the raw ETW log data.

the targeted hosts for a long time to ensure that the program behaviors would not be cut

off. Based on our observation, low-level traces (e.g., system calls) suffer from tremendous

semantic redundancy, a large portion of which could be represented as loops in a long-time

execution (Section 2.4.2.1).

Redundancy-reduction based method. To generate AATR graph from the low-

level traces with the aforementioned issues, we developed a redundancy-reduction-based

algorithm (Section 2.4.2.2) to extract the essential parts in traces to represent the PHF

semantics. Specifically, we leverage call stack to precisely identify loop bodies and then

select representative loop body to represent the PHF semantics.

2.3.5. AATR Graph Matcher

Our AATR Graph Matcher is developed in the forensic phase to identify PHFs of

RATs from the audit logs.

Noise in low-level data traces. Performing the same program behavior at a differ-

ent time could invoke different low-level data traces, due to the different runtime system

context. We consider such instability within collected low-level traces as the noise. Such

noise could exist in every level of audit log events collected in our system. Since the noise

is irrelevant to the core program behaviors, our AATR graph matcher should be designed
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to be more robust to tolerate the noise when performing graph matching on the collected

data traces.

Optimal partial graph matching method. To tolerate the noise, we propose an

optimal partial graph matching algorithm. The main idea is that different from previ-

ous works that usually perform exact matching between predefined behavior graphs and

collected data traces, we design optimized matching functions to perform the mapping

between the AATR graphs already generated offline and the collected ETW trace to eval-

uate how well the collected traces match against the AATR graphs. We detail how we

implement the AATR Graph matcher in Section 2.4.3.

2.4. Implementation

In this section, we present the details about how we implement the three most im-

portant components of RATScope, which are ETW-based audit logging system, AATR

graph generator, and AATR graph matcher.

2.4.1. ETW-based Audit Logging System

Fig. 2.7 illustrates how our parser works on raw ETW data. In the following, we

present how we perform efficient parsing and semantic recovering in our audit logging

system.

2.4.1.1. Efficient Parsing. This step aims to improve the performance of parsing ETW

data. It consists of three steps: i) Filtering out application-specific events. ETW

provides over one thousand groups of log events. Most of them are specific to certain

applications such as Internet Explorer and Word, while our system depends on general
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events (e.g., system calls and call-stack) to represent malware behaviors. Therefore, we

reduce the audit logs by filtering out application-specific events and also focusing on the

remaining system call and call-stack events. ii) Identifying forensic-related fields

from the selected events. All ETW events share 18 common fields [10]. However,

not all those common fields are useful for forensics. Based on previous works [77, 86]

and our domain knowledge of forensics, we identify 3 fields out of the 18 common ones:

process id, thread id, and time stamp, which are necessary for forensics. iii) Creating

parsing shortcuts for the selected fields. The ETW recorder stores events in binary

format. In order to correctly extract values of fields from binary, complex parsing steps

are necessary, such as checking Windows version, analyzing data structures of event fields,

and locating fields in ETW binary data. We propose an optimized parsing method. The

main idea is to create and cache shortcuts for reusing the results of complex parsing steps.

Specifically, each field is stored in a certain offset of ETW binary data with a certain data

size. In the offline phase, in order to create shortcuts, we perform those complex parsing

steps for each interested field to obtain offset and data size, and store this information

in a cache file. Note that the process of generating shortcuts is automatically performed

without manual intervention. In the online phase, the cache file is loaded into memory.

When a new ETW event occurs, we retrieve the cached offset and data size of a field from

memory, directly jump to the offset of ETW binary data, and extract values of the field

using data size without going through those complex parsing steps.

2.4.1.2. Semantic Recovering. In addition to the parsing performance issues, default

ETW data suffer from data quality issues. Specifically, i) Some crucial fields (e.g., process

id) are assigned with -1, the default missing value. And Microsoft does not provide any
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guidelines on how to address the issue. ii) ETW only provides the memory address of

system call and call-stack rather than their symbolic names which are necessary to our

AATR model.

We address the above two issues in two steps: i) Recovering the missing crucial

field values. We leverage the reverse engineering technique to find a solution successfully.

Specifically, ETW always returns -1 for the thread id field of system calls but returns

meaningful thread id value for the context switch events. Then we analyze the semantics

of the context switch event to determine whether context switch and system calls can be

combined. In particular, an operating system offers time slices of CPU processor to the

threads eligible to run. Once a time slice is completed, a context switch event occurs and

the CPU processor is switched from one thread to another. Thus by tracking context

switch events, we can obtain which thread is running under a certain CPU processor.

At the same time, a system call event provides which CPU processor the system call is

related to. Thus by correlating the CPU processor between context switch events and

system call events, we can map a system call to a thread. With the thread id, we can

easily get the belonging process id. ii) Resolving system call and call-stack. The

process of resolving memory addresses to symbolic names involves two steps. First, our

system locates a module which a memory address belongs to, and converts the raw memory

address to an offset of the module. Note that Windows loads a module (e.g., DLL library)

in a random memory space when operating system restarts. Our system leverages an

ETW event called ImageLoad to obtain dynamic mapping relationships between memory

addresses and modules. Second, our system maps an offset of a module to a symbolic
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name. Mapping relationships between offsets of a module between symbolic names can

be obtained by debugging symbol files [70].

2.4.1.3. AATR-based Log Reducing. To further reduce storage usage without af-

fecting the final forensic analysis, we propose an AATR-based log reducer to 1) eliminate

the application call-stack of every ETW event which is not needed in our system, and 2)

remove redundant data. In particular, our preliminary result shows that a long-running

execution trace only contains around 0.06% unique call stacks in the trace. It indicates

the existence of tremendous duplicated call-stacks. We rearrange ETW audit logs into

AATR format to compress those duplications by folding shared parts.

2.4.2. AATR Graph Generator

2.4.2.1. Semantics Redundancy Problem. Low-level data traces are collected for a

long enough time so that traces can include a complete life cycle for program behavior.

Although the whole execution is long, core parts tend to be short and self-repeated. For

instance, in key logging PHF, RAT stub keeps recording keyboard strokes. The conceptual

ETW trace is shown in Figure 2.8. It clearly shows that a program behavior could be

divided into three parts semantically: initialization, main loop body, and ending. As the

major semantics lies inside the repeated main loop body, semantics redundancy explodes

with the execution and collection time.

2.4.2.2. Redundancy-reduction-based Generation. Enlightened by the example in

Figure 2.8, as long as we extract the representative loop body, we can describe PHFs of

RATs in a compact way. Our redundancy-reduction (Algorithm 1) is to use call-stack on

each system call to conduct the reduction starting from top-level loops in input traces.
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Figure 2.8. A breakdown of the execution traces of the Key Logging PHF:
initialization, loop body, and ending.

The key is that two system call events represent 2 invocations of the same

system call in a loop if and only if their call-stack information is exactly the

same. This helps confirm a revisit of a system call in the loop and mark the correct

border of initialization (Line 2 to Line 3 in Algorithm 1), ending (Line 4 to Line 7 in

Algorithm 1) and main loop body (Line 8 to Line 10 in Algorithm 1). After we get

all loop bodies identified, apply redundancy-reduction recursively to deal with nested

loops, and ultimately incorporate compacted initialization and ending as our redundancy

reduction result (Line 11 to Line 13 in Algorithm 1). With this algorithm, the long-time

execution ETW traces can be reduced to be a compacted behavior sequence representing

essential semantics in loop bodies.

Algorithm 2 is the overall logic of Aggregated API Record graph generation. After we

get a semantics-redundancy-free behavior sequence of long-time execution ETW traces

from Algorithm 1, we first get rid of application call-stack (Line 5 in Algorithm 2) which

can easily cause evasion problem if application authors are malicious, then we add causal-

ity with an existing causality engine [49], which is able to check the causal relationship

between APIs, to turn this AATR sequence into an AATR graph (Line 6 in Algorithm 2)

and filter out every AATR graph which matches a benign or other-PHF trace (Line 7 to
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Line 12 in Algorithm 2). Notice that during the training, we use causality to build the

behavior graph.

In addition, when we perform the matching between AATR behavior graphs and

real-world ETW traces, we cannot get the corresponding causality because ETW cannot

provide that, i.e., the real-world ETW traces cannot be transformed into a corresponding

AATR graph for matching. As a trade-off between slight accuracy loss and excessive

overhead increment, we choose to satisfy the chronological order of those causal related

AATRs in ETW traces when we perform AATR graph matching. Details are provided in

Section 2.4.3.

2.4.2.3. Explanatory Example. In this section, we give an example in Fig. 2.9 to

show the workflow of our redundancy-reduction AATR graph generation algorithm in

which an ETW trace is transformed into an AATR graph. The character sequence in the

figure represents the original ETW trace where each character represents a system call

along with its call-stack. Two same characters mean that those two system calls are the

same and their call-stacks are the same.

Redundancy reduction on the given ETW trace consists of 3 steps. In Step 1a, we

identify the initialization, ending, and main loop bodies of raw ETW trace by locating

loop body separators. Specifically, we scan the trace to locate the loop body starting (lbs)

separator (θlbs = C○) that splits the initialization and the first main loop body, and thus

we identify the initialization (φinit = A○- B○) (Line 2 to 3 in Algorithm 1). Then we scan

the trace again to locate the loop body ending (lbe) separator (θlbe = E○) that splits the

last main loop body and the ending, and thus we identify the ending (φend = F○- G○- H○-

I○) (Line 4 to 7 in Algorithm 1). After that, we just shrink main loop bodies in Step
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1b and the redundancy reduction on the top-level is done (Line 8 to 10 in Algorithm 1).

Then we repeat the above process to recursively handle the nested loops enclosed by a red

dotted box in Step 2 and get a compacted trace (Line 11 to 13 in Algorithm 1). In the final

step 3, we eliminate the application call-stack of each character (e.g., it turns A to A’),

organize the event sequence to be an AATR sequence (Line 5 in Algorithm 2), and then

use an existing causality engine [49] to replace the original temporal relationship between

AATRs with causality dependency indicated by solid arrows (Line 6 in Algorithm 2). For

instance, considering the trace related to file download, the AATR whose Top-layer API

is CreateFile must be invoked to create a file handle before the AATR whose Top-layer

API is WriteFile, and we will create a causality dependency pointing from the former

AATR to the latter AATR. We perform those 3 steps for each trace in the dataset.

A B C D E D E C D E D E F G

Step 1a: Identify the initialization, ending, and main loop bodies. 

A B C D E D E F G

Step 1b: Shrink the main loop. 
A B C D E F G

Step 2: Recursively perform redundancy
reduction on the nested loop body

H I

H I

H I

A' B' C' D' E' F' G'

Step 3: Turn the shrinked sequence into an AATR sequence and add
causality so that it ultimately becomes an AATR graph

H' I'

AATR1 AATR2 AATR3 AATR4

endinginitialization main loop body 1 main loop body 2

Figure 2.9. The workflow of AATR graph generation on a given trace.
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Algorithm 1 Redundancy-reduction Algorithm
Input: An unfolded AATR trace φinput={θj=(syscall, library call-stack, application

call-stack) |j=1 . . .m}
Output: An AATR sequence without causality φreducted ⊆ φinput

Initialize: φreducted ← ∅
1: function Redundancy-Reduction(φinput)
2: scan from θm to θ1, find the last θlbs ∈ φinput where ∃k, θlbs=θk, lbs+ 1 ≤ k ≤ m
3: φinit ← θ1 . . . θlbs−1
4: get all loop body separator αlbs ← {jk|θjk=θlbs}
5: llbs← max(αlbs)
6: scan from θ1 to θm, find the last θlbe ∈ φinput where ∃k, θlbe=θk, lbs ≤ k ≤ llbs
7: φend=θlbe+1 . . . θm
8: αlbs ← αlbs ∪ {lbe+ 1}
9: get the maximum gap index js=arg maxjs js+1 − js

10: get selected loop body φslb=θjs . . . θjs+1

11: get nested loop recursively reduced result φnesrec ← Redundancy-Reduction(φslb)
12: φreducted ← Concatenate(φinit, φnestrec, φend)
13: return φreducted

2.4.3. AATR Graph Matcher

In this section, we explain our design for AATR graph matcher. We formalize the op-

timal partial matching problem and explain the optimal partial graph matching algorithm

we propose to address the noise problem without introducing extra false positives.

2.4.3.1. Optimal Partial Matching Problem.

Definition 2.1 (Optimal Partial Matching Problem). Given an AATR graph (a labelled

DAG) G=(V={vi|1 ≤ i ≤ m},E ⊆ V × V ) and an enhanced ETW trace (a labelled

sequence) φ={θj|1 ≤ j ≤ n}, find a one-to-one mapping f : V ′ ↔ φ′, where V ′ ⊆ V and

φ′ ⊆ φ, so that (1):f can maximize a matching rate function t : ℘(V ×φ)→ [0, 1]; (2) for

∀vx, vy ∈ V ′, let θp=f(vx) and θq=f(vy) if there is a path from vx to vy in G, then p < q

must be satisfied.
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Algorithm 2 Aggregated API Tree Record Graph Generation
Input: (1) n unfolded AATR traces collected by the audit logging system, corresponding to

one selected PHF: Φphf={φi|i=1 . . . n}, where trace φi={θj=(syscall, library call-stack,
application call-stack)|j=1 . . .m}; (2) a causality analysis engine CausalityEngine which take

an AATR sequence to output an AATR graph; (3) traces about all other PHFs: Φother; (4)
traces of benign program normal operation: Φbenign;

Output: n AATR graphs, each represented as direct acyclic graph of AATRs which defines
the PHF semantically: Ψ={ψ}, where ψ=(∪AATR, ∪causality)

Initialize: Ψ ← ∅.
1: procedure Aggregated API Tree Record Graph Generation
2: Preprocess each trace φi ∈ Φphf .
3: for each trace φi ∈ Φphf do:
4: ψi ← REDUNDANCY-REDUCTION(φi)
5: Eliminate application call-stack in ψi and organize ψi to be an AATR behavior se-

quence
6: ψi ← CausalityEngine(ψi)
7: eligible← true
8: for each trace φi2 ∈ (Φother ∪ Φbenign) do
9: if ψi matched φi2 then

10: eligible← false

11: if eligible then
12: Ψ ← Ψ ∪ {ψi}

Here ℘(V × φ) denotes the power set of V × φ and N denotes the set of natural

numbers. Function t is the matching rate function which is designed to reflect how well

the graph is matched, defined in Section 2.4.3.2.

2.4.3.2. Matching Rate Function.

Definition 2.2 (Matching Rate Function). Given a labeled direct acyclic simple graph

G=(V={vi|1 ≤ i ≤ m}, E ⊆ V × V ), a labeled sequence φ={θi|1 ≤ i ≤ n} and a

one-to-one mapping f : V ′ ↔ φ′, where V ′ ⊆ V and φ′ ⊆ φ, a matching rate function

t : P (V × φ) → N is defined as t=
∑

∀(v,θ)∈f bonus(v,θ)∑
∀v∈V bonus(v,v)

, where bonus is a matching score

function, defined as:
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bonus(v, θ) = {
1 +∆(lib stackv, lib stackθ) syscv = syscθ

0 otherwise

Here syscv is the system call of v and lib stackv is the corresponding library call-

stack. ∆(lib stackv, lib stackθ) is the longest common part in library call-stacks of v and

θ starting from the bottom (system call) to top (top-layer API).

The intuitive explanation of matching rate function is that we sum up the similarity

of every matched pair (v, θ) and get the normalized matching rate by computing the ratio

of the sum score to the score of the optimal matching, i.e.,
∑
∀v∈V bonus(v, v). Evidently,

the higher value of the matching rate function indicates a better AATR graph matching.

2.4.3.3. Dynamic Programming based Matching. This section describes how we

build the optimal mapping f . When we map a vertex vi to an event θj, all ancestor vertices

of vi (the vertices that have a path to vi in the DAG G) can only be mapped to events

prior to θj due to the constraint (2) in Definition 2.1, so that the optimal mapping f ′ for

all ancestors of vi must be determined. This observation motivates us that the optimal

partial matching problem has the optimal substructure property so that it can be solved

using a dynamic programming method on the AATR graph. A clearer case is that when G

happens to be a sequence, our matching problem becomes the Maximal Weighted Common

Sequence problem, a generalized version of the Longest Common Sequence problem which

is a matching problem between two sequences. From this perspective, the general case

of our problem is a matching problem between a sequence and a DAG.
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To perform a dynamic programming (DP) based graph matching on the AATR graph,

we define a graph state (Definition 2.3) to represent each matching subproblem.

Definition 2.3 (Graph State). Given a direct acyclic graph G = (V,E), a graph state gs

can be defined as a mapping gs : V → {0, 1} where gs(v) = 0 means that v is not matched

and gs(v)=1 means v is matched.

One DP transition step acts on a graph state gs by selecting the next vertex to

be matched. This also means that the direct descendant graph state gsnew of a graph

state is built by adding only one more matched vertex to gs (Line 5 to Line 13 in

Algorithm 3). A vertex v can be selected if and only for its every direct/indirect ancestor

v′, gs(v′) = 1 so that it does not violate the constraint (2) in Definition 2.1.

The whole matching algorithm consists of two algorithms. Algorithm 3 serves an

important initialization part in the whole behavior graph matching process. It transforms

a direct acyclic graph into a graph state transition graph by simulating the process of a

topological sort on the AATR graph. Algorithm 4 provides the main logic of our AATR

matching algorithm. We follow the problem formalization given in Definition 2.2 and try

to maximize the target function by dynamic programming.

2.4.3.4. Explanatory Example. In this section, we provide examples to show how

AATR graph matcher works. Specifically, the example in Fig. 2.10 shows the input and

output of the matcher from a high-level view. Then examples in Fig. 2.11 and Fig. 2.12

show details how the matcher obtain the output from the input step by step.

In Fig. 2.10, θn represents the nth event in the ETW trace; vm represents a vertex

of the AATR graph; a capital character inside a circle represents a concrete system call
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A

B

C

D

A E B C F A

An unfolded AATR graph

An ETW trace

V1

V2

V3

V4

θ1 θ2 θ3 θ4 θ5 θ6

Figure 2.10. An example of a match mapping between a given AATR graph
and a given ETW trace.

with its call-stack. For ease of explanation, we just assume that each AATR vm only has

one node (i.e., character), and two same characters mean that they have the same system

call and call-stack. That is, if θn and vm have the same character, the matching score

bonus(vm, θn) defined in Definition 2.2 will be 1; otherwise, it will be just 0.

As shown in Fig. 2.10, the matcher receives an ETW trace and an AATR graph

as input and outputs an optimal matching rate (i.e., 0.75) between them. Specifically,

v1, v2, and v4 in the AATR graph are matched with θ1, θ3, and θ4 in the ETW trace

respectively, which means bonus(v1, θ1), bonus(v2, θ3), and bonus(v4, θ4) are 1. Thus, the

optimal matching score is 3 and the matching rate of the AATR graph that has 4 vertices

is 3/4 (i.e., 0.75).

Fig. 2.11 and Fig. 2.12 show how our DP-based algorithm obtains the optimal match

score in Fig. 2.10 in detail. Algorithm 3 first builds a state transition graph (the right

graph in Fig. 2.11) to enumerate all possible graph states of the AATR graph (the left

graph in Fig. 2.11). Specifically, the initial graph state gsinit is an empty set and it means

no vertex in the AATR graph is matched. Because v1 must be matched before any other
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vertices in the graph, the next graph state gs1 = {v1} is generated to represent v1 is

matched in this state. For one further step, based on gs1, once v1 is matched, v2 or v3 can

be selected to be matched. Thus two new graph states gs2 = {v1, v3} and gs3 = {v1, v2}

are added with correspondingly selected vertex matched. This process will be repeated

until all possible graph states are generated.

∅ {v1}

{v1,v2}

{v1,v3} {v1,v2,v3}

{v1,v2,v4}

{v1,v2,v3,v4}
gsinit gs1

gs3

gs2

gs5

gs4

gsfinv1

v2

v3

v4

Figure 2.11. Convert an AATR graph into a graph state transition graph.

Lastly, Algorithm 4 does DP optimization and ultimately find the optimal paths in

the transition graph generated in Fig. 2.11. Fig. 2.12 shows one of the optimal transition

path gsinit→gs1→gs3→gs4→gsfin. For each transition step, score changes are shown in the

figure accordingly. Specifically, considering the transition from gsinit to gs1, the algorithm

ultimately decides to match v1 with θ1 rather than other events in the ETW trace because

this local matching helps to build the overall optimal matching. Importantly, helping to

build the overall matching is the only reason why Algorithm 4 takes those specific steps

on the transition graph. Then the algorithm decides to match v2 with θ3 from gs1 to gs3

and the score becomes 2. From gs3 to gs4, the bonus of v3 with all ETW events θn is 0,

and thus the algorithm skips v3 and the score is still 2. Finally, the algorithm matches v4

with θ4 and the final score is 3. The algorithm eventually gets the score of the optimal

matching got from the above process and then calculates the matching rate as the output

of our AATR graph matcher shown in Fig. 2.10.
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match v1 with θ1; 
score+1∅ {v1}

{v1,v2}

{v1,v3} {v1,v2,v3}

{v1,v2,v4}

{v1,v2,v3,v4}
gsinit gs1

gs3

gs2

gs5

gs4

gsfin

match v2 with θ3;
score+1

skip v3;
score does not change

match v4 with θ4;
score+1

Figure 2.12. One DP transition path for getting the optimal matching.

Algorithm 3 Transition Graph Building
Input: An unfolded AATR graph ψ=(V=∪AATR, E=∪causality);
Output: A graph state transition graph TG=(Vtr={∀graph-state},

Etr={∀graph-state-transition} ⊆ (Vtr × Vtr),label : Etr → V )
Initialize: gsinit ← {gs(v)=1|∀v ∈ V }; addedGs← {gsinit}; TG← ({gsinit}, ∅, ∅);

tpsortQueue← {gsinit};
1: procedure Transition-Graph-Building(ψ)
2: while tpsortQueue 6= ∅ do
3: gshead ← tpsortQueue.pop()
4: Vfrontier ← GetFrontier(gshead, ψ)
5: for each vitr ∈ Vfrontier do
6: gsnew ← gshead
7: gsnew(vitr)← 0
8: Vtr ← Vtr ∪ {gsnew}
9: Etr ← Etr ∪ {(gshead, gsnew)}

10: label((gshead, gsnew))← vitr
11: if gsnew /∈ addedGs then
12: tpsortQueue.push(gsnew)
13: addedGs← addedGs ∪ {gsnew}
14: return TG

2.5. Evaluation

In this section, we evaluate RATScope by answering the following questions.

• Q1. How effective is RATScope in dealing with a real-world RAT attack? (Sec-

tion 2.5.1)

• Q2. How robust is RATScope against different (and new) RAT families? (Sec-

tions 2.5.2 and 2.5.3)
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Algorithm 4 AATR Graph Matching
Input: (1) A unfolded input ETW trace φ={θj=(syscall, library call-stack) |j=1 . . .m}; (2) A

unfolded AATR graph ψ=(V=∪AATR, E=∪causality);
Output: A matching rate ∈ [0, 1]

Initialize: TG=(Vtr,Etr,label)← Transition-Graph-Building(ψ); gsinit ← {gs(v)=1|∀v ∈ V };
gsfin ← {gs(v)=0|∀v ∈ V }; ∀gs ∈ Vtr, score(gs, θ0)← 0, where score : Vtr × φinput → N ;

1: procedure Graph-matching(φinput, ψ)
2: for j = 1→ m do
3: dpQueue← {gsinit}
4: score(gsinit, θj)← 0
5: while dpQueue 6= ∅ do
6: gshead ← dpQueue.pop()
7: score(gshead, θj)← score(gshead, θj−1)
8: for each gspred where e1=(gspred, gshead) ∈ Etr do
9: if score(gspred, θj) > score(gshead, θj) then

10: score(gshead, θj)← score(gspred, θj)

11: delta← score(gspred, θj−1)+bonus(labele1 , θj))
12: if delta > score(gshead, θj) then
13: score(gshead, θj)← delta

14: for each gssucc where e2=(gshead, gssucc ∈ Etr) do
15: if gssucc /∈ dpQueue then
16: dpQueue.push(gssucc)

17: finalScore← score(gsfin, θm)
18: return finalScore/maxScore

• Q3. What is the overhead of RATScope? (Section 2.5.4)

To deploy RATScope in an enterprise environment, each end host is required to enable

the built-in ETW equipped with our own parser for everyday audit logging; a sophisticated

machine is needed to receive audit logging from end hosts, aggregate the log data, and

perform AATR graph matching. In our experiments, each end host has the configuration

of i5-4590 CPU and 8 GB RAM, and the sophisticated machine is configured with Xeon(R)

E5-2650 CPU and 252 GB RAM.
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Table 2.4. Experiment details of our simulation of the Syria RAT attack.

Victim Infection
Vector

RAT Anti-
Detection

PHFs Duration
(H:M:S)

Storage
(MB)

TPR FPR

Alice Phishing
Email
[52] &
File Ex-
tension
Spoofing
[66]

Dark
Comet

UPX
Packer
[61] &
Process
Injection
[65]

Key Log-
ging

8:32:11 184 100% 1.25%

Bob Skype
Message
[61] &
File Ex-
tension
Spoofing
[66]

NjRAT DeepSea
Obfus-
cator
[52] &
Process
Injection
[65]

Key
Logging;
Remote
Camera;
Audio
Record

9:03:25 235 100% 0.5%

Outlook.exe

urgentrcs.jpg

urgentrcs.jpg Skype.exe

proposalrcs.pdf

Photo.exe proposalrcs.pdf

PDFViewer.exeX.X.X.X:80 X.X.X.X:443

(6) (7) (8)

(9)

(9)

（a）Attack Graph of Alice's Computer (b) Attack Graph of Bob's Computer

iexplore.exe

Key Logging

(1)

(2) (3)

(4)

(5)

iexplore.exe

Remote Camera

Audio Record

Key Logging

Figure 2.13. Simplified attack graph generated by RATScope. Rectangles
represent processes; ovals and diamonds denote files and sockets, respec-
tively; Figure (a) shows the graph of Alice’s computer; Figure (b) shows
the graph of Bob’s computer.

2.5.1. Effectiveness of RATScope on Simulated Real-World RAT Attacks

In this experiment, we act as a red team and simulate a real-world RAT attack,

i.e., one of recent RAT attacks related to Syria, described in white papers and reports

[52, 61, 65, 66], by utilizing the same adversarial tactics in terms of infection vectors,

involved RAT families, and anti-detection techniques, to achieve the same attack goals.
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Note that, existing white papers or reports cannot provide fine-grained semantics about

the Syria attacks at the PHF level as we do.

Real-World Syrian RAT Attack. The general goal of recent RAT attacks related

to Syria is to steal the intelligence of Syria activists (e.g., credentials, chat record and

audio). Specifically, attackers leverage sophisticated social engineering techniques (e.g.,

phishing emails [52], and Skype messages sent from trusted people whose credentials have

been stolen [61]) with visual spoofing techniques (e.g., file extension spoofing [66]) to trick

victims into the execution of a malicious file, which is actually a remote access trojan

[61] (e.g., DarkComet, NjRAT, and Xtreme), protected using anti-detection techniques

(e.g., obfuscation [52] and process injection [65]). Attackers then remotely control the

implanted RAT to obtain victims’ intelligence by performing PHFs, such as Audio Record,

Key Logging, and Remote Camera.

Our Simulation of the Syrian RAT Attack. In our simulation, we utilize the

same adversarial tactics as the real-world Syrian RAT attacks and attempt to achieve the

same attack goals. Table 2.4 provides the details of the simulation, including the involved

victims, exploited infection vectors, utilized RATs, anti-detection techniques of RATs,

and the PHFs performed. The table also shows the experiment duration, audit log size,

and the accuracy of identification of PHF-level semantics, which will be discussed soon

later.

Specifically, Alice and Bob are employees of a company. The attacker aims to target

Bob, who owns information of the attacker’s interest, including emails, chats, contacts,

and audios. However, Bob has a strong security awareness. The attacker then launches

the attack in two steps. In step 1, the attacker attempts to compromise Alice’s computer
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and uses it as a stepping stone. The attacker sends a spear phishing email to Alice,

in which the malicious executable attachment urgentgpj.scr is disguised as a JPG file

urgentrcs.jpg using a file extension spoofing technique called Right To Left Override

(RTLO). Alice blindly double clicks the fake JPG file, which invokes the malicious file,

later opens a JPG file in the foreground, and meanwhile releases an obfuscated RAT

DarkComet in the background. The RAT then injects itself into the benign Internet

Explorer process to bypass firewall, and connect to the attacker at X.X.X.X:80, which

allows the attacker to remotely trigger Key Logging of DarkComet and finally to steal the

credentials of Alice’s Skype account. In step 2, the attacker generates a malicious fake

PDF file proposalrcs.pdf using the same technique and sends it to Bob through Alice’s

Skype. Bob opens the fake PDF file without a doubt. Consequently, the RAT NjRAT is

implanted and executed. Later on, the RAT connects to the attacker at X.X.X.X:443.

And the attacker triggers a series of PHFs including Remote Camera, Audio Record and

Key Logging of NjRAT to steal his interested information about Bob. During the whole

attack, Alice and Bob behaves normally, such as visiting web pages with Chrome, send-

ing/receiving emails with Outlook, reading documents with Adobe Reader, and commu-

nicating with Skype.

Attack Investigation with RATScope. Our simulation attack is designed to hap-

pen on a working day. Our ETW-based auditing system deployed on both Alice and

Bob’s machines performed audit logging for about 8.5 hours and 9 hours, respectively,

which resulted in 184 MB and 235 MB logs, respectively. We assume that a third-party

threat intelligence product is also utilized in the company network, and after the attack

happens, the product reports an alarm and correctly labels the IP address X.X.X.X as a
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threat alert. Using the alert as a starting point, existing forensic systems [99, 77, 81]

can only track the files and processes related to the attack. It is hard for them to provide

PHF-level semantics which could be comprehensible to non-expert users like Alice and

Bob. By contrast, RATScope successfully identifies all PHFs performed by attackers with

very low FP rates (1.25% and 0.5%, respectively). We will discuss those FPs in Section

2.5.2.2. Figure 2.13 provides a simplified attack graph generated by RATScope combined

with a causality tracking approach [86]. In addition to the involved processes, files, sock-

ets, and other expert-friendly but obscure information, RATScope provides users extra

PHF-level semantics (highlighted in color), which are necessary to better understand the

attack tactics and intent and make informed remediation decisions. For example, based

on the timestamp and the identified Remote Camera PHF, Alice and Bob could recall

who might be captured via Remote Camera, and such information is quite important to

post-attack response and remediation.

2.5.2. Robustness Across RAT Families

In this experiment, we evaluate how robust RATScope is in identifying the PHFs of

the RAT families whose traces were not involved in training RATScope.

2.5.2.1. Experiment Setup. Family-split PHF Dataset. We first randomly select

one RAT sample for each of the 53 representative RAT families (listed in Table 2.1).

Then, for each of the 53 RAT samples, we execute the 5 popular PHFs (listed in Table

2.2) one by one, including Key Logging, Remote Shell, Download and Execute, Remote

Camera, and Audio Record. We collect traces for every execution using our ETW-based

audit logging system. We then group traces based on the PHF which each execution trace
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Table 2.5. Comparison of identification accuracy.

PHF Model TPR FPR

Key Logging
AATR Graph 87.7% 1.1%
API-only Graph 87.7% 33.3%

Syscall-only Graph 87.7% 34.4%

Remote Shell
AATR Graph 85.7% 0%
API-only Graph 85.7% 6.6%

Syscall-only Graph 85.7% 26.6%

Download & Exec
AATR Graph 92.8% 2.2%
API-only Graph 92.8% 4.4%

Syscall-only Graph 92.8% 40%

Audio Record
AATR Graph 93.7% 2.2%
API-only Graph 93.7% 11.1%

Syscall-only Graph 93.7% 16.6%

Remote Camera
AATR Graph 90.3% 0%
API-only Graph 90.3% 0%

Syscall-only Graph 90.3% 27.7%

invokes, and assign each group a label with the same name as the PHF. In this way, we

collect 5 PHF subdatasets. No two traces in a PHF subdataset are collected from the same

one RAT family.

Benign Dataset. We select 90 benign applications which are widely and daily

used in a typical enterprise environment. By category, the selected applications in-

clude editor software (e.g., Notepad++, GIMP, and Word), communication software (e.g.,

Skype, Foxmail, and Outlook), browsers (e.g., Chrome and IE), file transfer software

(e.g., WinSCP, FileZilla, and FreeFileSync), and long-running system processes (e.g.,

explorer and dllhost), and so on. Besides, we select several benign applications which

had the similar functionality to the 5 PHFs we focused on, such as audio-related applica-

tions (QuicktimePlayer and Audiorecorder), shell-related (CMD), and download-related

(FreeDownloadManager). We install each selected application in normal users’ computers

in which normal users operate those applications (e.g., visiting web pages with Chrome)

during a working day, and collect traces as our benign dataset.
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Evaluation Method. We evaluate RATScope on family-split PHF dataset with

the 10-fold cross-validation method. Specifically, for each tested PHF, we split the benign

dataset and its corresponding family-split PHF dataset into 10 random folds, respectively,

and iteratively select one fold as the testing set and the rest part as the training set for

the accuracy evaluation. Note that in this evaluation, one RAT family would never occur

in both of the training set and the testing set, which avoids the bias [112] introduced by

a completely randomized cross-validation method in which the training set and testing set

might contain samples from the same family. The performance of previous works was

commonly inflated because due to this bias.

Baseline Approach. APIs and system calls represent the two most popular cate-

gories of data used for modeling program behavior. Our AATR model fuses both APIs

and system calls to provide more accurate and fine-grained semantics and addresses the

problems such as Semantic Collision due to limitations with the available ETW log data.

For a comparative evaluation, we generate two baseline models, API-only graph model

and syscall-only graph model to approximate the previous work [90] by replacing AATR

with API and syscall. In our AATR model, each node denotes either a library call API

or a system call, the root node is a top-layer API, and the leaf nodes are system calls.

We replace each node of our generated AATR graph with either the root top-layer API or

the leaf system calls to generate the two baseline graph models, i.e., the API-only graph,

and syscall-only graph models, respectively. Note that those graph models are similar to

the previous model [90] except for lack of arguments.

2.5.2.2. Result Analysis. Table 2.5 details the comparative evaluation results. In the

context of this project, the True Positive (TP) measures the total number of RAT families
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Figure 2.14. Temporal evaluation. For a RAT family Ri listed in the X
axis, we fixed the testing set, which included the RAT families from 2014 to
2016; the training set is dynamic, which included all RAT families occurring
before the RAT family Ri.

whose certain PHF is correctly identified by RATScope, and the False Positive (FP) mea-

sures the total number of benign applications whose behaviors are mistakenly identified

as PHFs by RATScope.

RATScope (or the AATR model) is capable of accurately identifying PHFs

across RAT families, as good as API-only graph model and syscall-only graph model.

We can see in Table 2.5 that for each PHF, AATR model can identify most of the RAT

families that are not presented in the training set (85.7% to 93.7%), which conforms to

one key finding of our RAT study (in Section 2.2) that the implementation methods of

one PHF tend to be quite similar across various RAT families. For example, the AATR

graph generated for the Remote Shell PHF of the SpyNet RAT can match that of 28 other

RAT families.

AATR model causes much fewer false positives than either API-only graph

model or syscall-only Graph model. Table 2.5, shows that AATR model has a much

lower FPR (0% to 2.2%) than the other two models. This is because AATR model is

proposed to address the Semantic Collision problem and precisely capture the PHF se-

mantics and thus could achieve higher identification accuracy, while the other two models
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suffer from the problem and thus could only introduce more identification inaccuracy.

Furthermore, we find that APIs directly invoked by programs contain more semantic in-

formation than system calls, which is why the FPR of API-only graph model is always

less than the syscall-only graph model. We also observe that when identifying the PHF

Remote Camera, the API-only graph model achieves the same accuracy as our AATR

graph model, because the API (e.g., VFW (Video For Windows)) is sufficient to model

the PHF alone even though ETW provides no input arguments.

AATR model introduces very few false positives on benign traces. We also

collect benign traces by performing similar but benign behavior to PHFs, e.g., Audio

Record. Our AATR model introduces few FPs on those benign traces generated by those

“malware-like” benign programs, such as the built-in Windows program Audio Recorder.

Close scrutiny of those slight FPs reveals that in such cases, it is hard to differentiate a

“malware-like” program behavior from a really malicious behavior because the implemen-

tation methods are similar. Also, malware could abuse benign applications to perform

malicious actions [45]. That is the reason why we name RAT functions as Potential Harm-

ful Functions (PHFs). However, in these cases, we believe it is still worth reporting those

FPs by a forensic system in the first place and performing triage with other information

later. Actually, both academia [108, 81] and industry [7] have realized that relying on

a single suspicious behavior to triage an alert is not sufficient in practice. NoDoze [81]

proposes an automatic alert triage approach by leveraging contextual information of the

generated alert, e.g., the chain of events that lead to an alert event and the ramifications

of the alert event. Similarly, in the future, RATScope could take into consideration the

contextual information to automatically triage PHF alerts. For instance, it is hard to
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diagnose the browser iexplorer.exe in Figure 2.13 as malicious only due to accessing

a camera. However, the contextual information of the browser (e.g., it is spawned by a

suspicious process proposalrcs.pdf downloaded from Skype, and it performs other two

PHFs after accessing camera) differentiates its behavior from the normal behavior of a

browser which is spawned by a system process.

2.5.3. Temporal Evaluation

In this evaluation, considering the evolution of RAT over time, RATScope is trained

on RAT samples observed prior to a certain date and tested on newer samples.

2.5.3.1. Experiment Setup. Temporally-sorted PHF Dataset. We follow the

same dataset generation process as the Family-split PHF dataset in Section 2.5.2.1. Then

we sort the traces in every PHF subdataset by the debut year of the corresponding RAT

families (shown in Figure 2.2). In the end, we obtain 5 temporally-sorted PHF subdataset.

Benign Dataset. For benign applications, we reuse 90 applications selected for the

cross-family evaluation in Section 2.5.2. Then we randomly divide those applications into

two sets. For each application in one set, we obtain the old version released between

2012 and 2013. For applications in the other set, we obtain the release versions between

2015 and 2016. Finally, following the same dataset generation process in the cross family

evaluation, we obtain two benign datasets: OLD benign dataset containing execution traces

of benign applications released between 2012 and 2013, and NEW benign dataset containing

execution traces of benign applications released between 2015 and 2016.

Evaluation Method. In this evaluation, our temporal splitting between the training

and testing sets follows the best practices recommended by TESSERACT [112] about
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how to avoid the temporal experimental bias. That is, training on data from the past and

testing on data from the future. Specifically, for tested PHF, we use the traces of RAT

families from 2015 to 2016 (around 27% RAT families) and the NEW benign dataset as a

fixed testing dataset. Then we evaluate how matching accuracy changes with the varying

training set, which gradually involves more and more RAT families starting from 1999 to

2014. The OLD benign dataset is used in training. The result is shown in Figure 2.14. For

a RAT family Ri listed in the X axis, the training set is dynamic, which includes all RAT

families occurring before the RAT family Ri; the testing set is fixed, which includes the

RAT families from 2014 to 2016. The debut year of RAT families are given on top of the

figure.

2.5.3.2. Result Analysis. Figure 2.14 shows that RATScope has the capability of iden-

tifying new RAT samples although we use old samples in the training set. For most of

PHFs, the AATR model trained using 8 RAT samples which appear before 2010 can

identify over 50% RATs from 2015 to 2016 with slight FPs (lower than 3%). When the

training set includes RAT families from 2012 to 2014, the TPR goes up to more than

80%. To further understand the result, we manually analyze those RATs by reverse

engineering. We find that i) RAT developers tend to reuse other RAT families’

codebase which was leaked or cracked [47]. For instance, NjRAT is one of far-reaching

RATs whose source code was leaked in 2013 [31]. We found that the code architecture

of Kiler RAT appearing in 2015 is highly similar to NjRAT, and the format of configura-

tion files of Coringa RAT appearing in 2015 is also the same as NjRAT. Other RATs such

as CyberGate and NanoCore are also found to be sharing codes. ii) RAT developers

implement PHFs based on public libraries. For instance, we find that ctOS and



65

Imminent Monitor RATs implement the Remote Camera by directly invoking a well-

known third-party library AForge [3], Crimson and jSpy implement Key Logging using a

Java library JNativeHook [22], and Quasar implements Key Logging using a C# library

GlobalMouseKeyHook [21]. This is reasonable because developing a stable and complete

PHF from scratch is nontrivial. Furthermore, the implementation methods of different

libraries are also similar, e.g., JNativeHook and GlobalMouseKeyHook implement Key

Logging using the K1 method mentioned in Figure 2.3.

2.5.4. Performance and Storage Overhead

Runtime Overhead. To evaluate runtime overhead of our ETW-based auditing

system, we measure the overhead under different workloads. Specifically, we conduct two

experiments to evaluate the performance of ETW.

First, we build a benchmark to generate diversified types of ETW events and control

the speed of event generation (number per second), and then perform measurement upon

it. As Figure 2.15(a) depicted, the overhead stays around 7% when generating 20,000

events per second while it can go up to 83.72% when generating 229,475 events per second,

the maximal event generation speed that our test machine can afford. This indicates that

the runtime overhead hinges on the speed of event generation.

Second, we test how RATScope performs for applications under heavy workload and

under real-world scenarios. We first test applications under heavy workload. Specifically,

we select 12 popular applications including browsers, messaging applications, editors,

media players, server-side software, and development tools. We then leverage a GUI

testing tool to automatically trigger the typical functions of those applications repeatedly,
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such as opening webpages, sending emails, editing documents, playing videos, online voice

chatting, and compressing files. Meanwhile, we repeatedly collect traces of them and

calculated the average number of events generated per second. The results are shown in

Figure 2.15(b). Provided the average number of events generated per second is smaller

than 20,000 for most applications, the runtime overhead under heavy workload would be

lower than 7% according to Figure 2.15(a). Then we test how RATScope performs under

real-world scenarios where real-world users usually operate the applications and then stop

to read contents displayed in the GUI without any operations. Thus we simulate real-

world user behaviors on these applications by sleeping 5 seconds before performing the

next mouse click using the same GUI testing tool. The simulation experiment lasts 30

minutes and the average runtime overhead is 3.7%.

ETW Parsing Overhead. To evaluate the efficiency of our proposed parsing tech-

niques, we conduct a comparative experiment between our system and other built-in

parsing libraries mentioned in Section 2.4.1. Specifically, we parse the same set of raw

ETW data using each parsing tool on the same Windows machine. The results are listed

in Table 2.6 and it shows that RATScope achieves much faster parsing speed than the

state-of-the-art libraries, that is, nearly 6 times faster than TDH and 2 times faster than

TraceEvent. Faster parsing speed enables our system to surpass other systems by saving

system resources and responding to attackers more quickly.

Table 2.6. Comparison of parsing speed.

# of Parsed Event / Sec

TDH [55] 93,254

TraceEvent [71] 242,716

RATScope 552,090



67

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

# of events per second 10
5

10

20

30

40

50

60

70

80

90

100

R
u
n
ti

m
e 

O
v
er

h
ea

d
 (

%
)

(a)

(b)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

# of events per second 10
5

Chrome
Winscp

Git
Word

PowerPoint
Media Player

Apache Server
Adobe Reader

Notepad++
Outlook

Skype
7-zip

Figure 2.15. Figure (a) shows the runtime overhead with different numbers
of events per second. Figure (b) shows the number of events per second
generated by different programs.

Storage Overhead. We deploy our system on two machines (i.e., Alice and Bob)

under the typical real-world scenario mentioned in Section 2.5.1 and collect data for one

day on each machine. Table 2.7 lists compressed storage sizes before and after applying

our AATR-based log reducing technique. It shows that our technique could reduce original

logs by 97.61%, which confirms that there indeed exists tremendous semantic redundancy

issue with the log data. Furthermore, we manually check the data after reduction to ensure

that data related to RAT attacks is not removed. Overall, RATScope generates 0.2 GB
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log data per day. Considering an enterprise environment with 30 machines, RATScope

would generate around 2TB log data per year. With the market price for a 2TB hard drive

being around 60 US dollars, we believe that the storage cost is reasonable and affordable.

Table 2.7. Storage overhead of running RATScope for 1 day.

Alice Bob Average

Before Reduction 7.5 G 9.4 G 8.4 G

After Reduction 0.18 G 0.23 G 0.2 G

Reduction Ratio 2.4% 2.44% 2.38%

2.6. Related Works

Attack Causality Analysis plays a vital role in today’s forensics area. The basic

idea is to build causal graphs by connecting system objects like processes, files, and

registries using low-level events like file IO and network operations [86, 88]. Given a

detected attack point, forward and backward tracking along causal graphs will be used to

find attack-related events so that it can extract a blueprint of the attack from tremendous

system data [86, 88]. Many works have been proposed aiming at improving the causality

graph framework. Some works [93, 104, 102, 96, 91] mitigated the dependency explosion

problem by fine-grained causality tracking to reduce more unrelated data. Meanwhile,

some other works [99, 82, 77, 83] focus on real-time and scalability by prioritizing the

tracking process and proposing efficient data storage model. Those works can capture

enough semantics of the attack in some cases. For example, in a drive-by download

attack [83], it is sufficient to understand the attack by knowing what file was downloaded

from what IP address. However, when it comes to RAT attacks [75], they cannot identify

fine-grained behaviors (i.e., PHFs) of RATs when performing forensic analyses so that

their result is too coarse-grained to be used for understanding RAT attacks.



69

Malware behavior modeling is a mature security research topic where researchers

propose behavior models [90, 74, 93] to describe the semantics of malware behavior rather

than easily changed artifacts. However, those models rely heavily on input arguments of

system call which is not provided on Windows without instrumentation, it leads to the

Semantic Collision problem and the failure for previous works. proposes a novel AATR

model to solve this problem.

Remote Access Trojan. The increasingly prevalent RAT attacks draw more atten-

tion. A few previous works focus on RAT detection [84, 72]. They rely on network-based

features to detect RATs in the early stage. However, network-based methods cannot

identify fine-grained semantic behaviors of RATs. Farinholt et al. [75] and Rezaeirad et

al. [113] tries to understand the motivations, intentions, and behaviors of RAT. How-

ever, they only focus on two RAT families (DarkComet and NjRAT) and do not propose

any approach to identify RAT behaviors. Our project conducts a large-scale study of 53

real-world RAT families active from 1999 to 2016 and proposes a system to accurately

identify RAT semantic behaviors.
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CHAPTER 3

CLARION: Sound and Clear ProvenanceTracking for

Microservice Deployments

3.1. Introduction

Linux container technology has seen a rapid rise in adoption due to the miniaturized

application footprints and improved resource utilization that are crucial in contemporary

microservice architectures[41] and serverless computing environments[57]. The perfor-

mance boost realized in containerized environments stems from their use of light-weight

virtualization techniques whereby a single Linux operating system (OS) kernel is used to

manage an array of virtualized containers. However, a side effect of this design choice

is that an attack initiated inside a container may affect the shared host Linux OS ker-

nel. Compared to the traditional virtual machine (VM) model, in which the guest VM

OS is completely isolated from the host, this provides a much greater target surface to

the attacker. Hence, comprehensive security tracking and analysis are vital in container

networks.

The application of data provenance analysis techniques[87, 79, 85, 89, 92, 110,

73, 100, 97, 105] for host and enterprise security monitoring has been well studied.

However, extending such capabilities to container-based microservice environments raises

some unique research challenges. At a cursory glance, the shared-host OS kernel substrate
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provides a centralized monitoring platform for observing events across containers and im-

plementing security policy. In fact, the use of Linux namespaces introduces fragmentation

and ambiguities in data streams used by provenance tracking systems, such as those based

on the Linux Audit subsystem. Here, fragmentation refers to abnormal vertex splitting

leading to false disconnections in the provenance graph. Conversely, ambiguity refers to

vertex merging where a single vertex incorrectly represents multiple distinct objects in

the correct provenance graph. Both fragmentation and ambiguities lead to false or miss-

ing dependencies. We refer to these as soundness challenges for container provenance

analysis.

Namespaces [36] are a fundamental feature in the Linux kernel that facilitate efficient

partitioning of kernel resources across process groups. This is the key feature exploited

by popular containerization technologies such as Docker [18]. While processes within the

same namespaces will share OS resources, those in different namespaces have isolated

instances of corresponding operating system resources. For example, files in the same

mount namespace have the same root directory so they must have different path names.

Conversely, two files in different mount namespaces can appear to have exactly the same

path names within but can still be distinguished by the root directory of their respective

mount namespaces – i.e., their path names are virtualized (containerized) by the mount

namespace. Unfortunately, it is the virtualized path names that will be recorded and

reported by the kernel’s audit subsystems, making those two files indistinguishable, which

leads to falsely conflated elements in inferred provenance graphs.

Furthermore, mishandling the effect of namespaces can prevent a provenance tracking

system from correctly characterizing essential aspects, such as the boundary of containers.



72

Here the boundary of containers refer to the delineation of a provenance subgraph that

represents the behavior within a container. It includes the processes running inside the

container, the files manipulated by them, the sockets they create, etc. Without a proper

understanding of container semantics (i.e., ability to define boundary of containers and

activity patterns of container engines corresponding to initialization, termination etc.), it

will be impossible for security analysts to reason about how, when, and what containers

are affected by attacks. We refer to these as clarity challenges for container provenance

analysis.

CLARION Solution. To resolve the aforementioned soundness and clarity challenges,

we propose CLARION, a namespace- and container-aware provenance tracking solution

for Linux microservice environments. For soundness, we first provide an in-depth analy-

sis of how the virtualization provided by each relevant namespace causes fragmentation

and ambiguity in the inferred provenance. For each relevant namespace, we then propose

a corresponding technical solution to resolve both issues. To improve clarity, we first

define essential container-specific semantics including boundary of containers and initial-

ization of containers. Next, we propose summarization techniques for each semantics to

automatically mark the corresponding provenance subgraphs.

We show that soundness and clarity challenges are not specific – i.e., they exist in a

range of monitoring approaches, including Linux Audit[56], Sysdig[62] and LTTng[37].

We describe a prototype implementation based on SPADE[78], an open source state-

of-the-art provenance tracking system and comprehensively evaluate the effectiveness,

efficiency, and generality of our solution. We studied the effectiveness and utility of our

system using container-specific attacks. We also empirically evaluated system efficiency
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by running our solution on desktop computers as well as in an enterprise-level microservice

environment. To assess generality, we collected provenance graphs for various state-of-

the-art container engines including Docker, rkt[11], LXC[38] and Mesos [4]. These results

show our solution works across container engines and outperforms the traditional prove-

nance tracking technique by producing superior provenance graphs with an acceptable

increase in system overhead (smaller than 5%).

Contributions. In summary, our project makes the following contributions:

• We thoroughly analyze the ways namespace virtualization can affect provenance

tracking. To the best of our knowledge, this is the first in-depth analysis of the

implications of namespaces on microservice provenance tracking.

• Based on these insights, we designed and implemented a namespace- and container-

aware provenance tracking solution – i.e., CLARION – that holistically addresses

the soundness and clarity challenges.

• We conducted a comprehensive evaluation of the effectiveness, efficiency, and

generality of our solution. The results show our solution produces sound and

clear provenance in container-based microservice environments with low system

overhead.

3.2. Background

3.2.1. Linux Namespace

Linux Namespaces[36] provide a foundational mechanism leveraged by container-

ization technologies to enable system-level virtualization. They are advertised as a Linux
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Table 3.1. Supported Linux Namespaces
Namespace Isolated System Resource

Cgroup Cgroup root directory
IPC System V IPC, POSIX message queues

Network Network devices, stacks, ports, etc.
Mount Mount points
PID Process IDs
Time Boot and monotonic clocks
User User and group IDs
UTS Hostname and NIS domain name

kernel feature that supports isolating instances of critical operating system resources in-

cluding process identifiers, filesystem, and network stack across groups of processes. Inter-

nally, namespaces are implemented as an attribute of each process, such that only those

processes with the same namespaces attribute value can access corresponding instances of

containerized system resources. Currently, eight namespaces are supported by the Linux

kernel as listed in Table 3.1.

Consider the mount namespace as an example. On a Linux operating system that

has just been booted, every process runs in an initial mount namespace, accesses the

same set of mount points, and has the same view of the filesystem. Once a new mount

namespace is created, the processes inside the new mount namespace can mount and

alter the filesystems on its mount points without affecting the filesystem in other mount

namespaces.

3.2.2. Linux Container

Linux Containers may be viewed as a set of running processes that collectively

share common namespaces and system setup. In practice, containers are usually created

by a container engine using its container runtime. The container runtime will specify the

namespace to be shared among processes running inside the container. As a concrete
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example, the Docker container engine specifies five namespaces (PID, Mount, Network,

IPC and UTS) to be shared, initializes several system components including rootfs /,

hostname, /proc pseudo-filesystem, and finally executes the target application as the

first process inside the container.

3.3. Motivation and Threat Model

3.3.1. Motivating Example

We motivate our solution by investigating the performance of three classes of state-

of-the-art provenance tracking solutions against a trivial credential theft insider attack1.

Notably, during this attack, the attacker touches the /etc/passwd file in both a container

and the host system.

First, as shown in Figure 3.1(a), traditional solutions that lack both container and

namespace awareness, e.g., SPADE, are unable to deliver a sound and clear illustration

of this attack step. To illustrate soundness challenges, we explain how fragmentation

and ambiguity occur in the figure. For fragmentation, when bash (2976) forks a child

process bash (10) with the global PID 3030 to execute the cat command, the virtualized

PID 10 will be reported and used in building this process creation provenance so bash

(3030) splits into two vertices, bash (10) and cat (3030), which build incorrect fork

and execve edges correspondingly. For ambiguity, consider the file /etc/passwd. Since

the file path is virtualized, ambiguity occurs on the vertex representing two /etc/passwd

files (inside and outside the container respectively) simultaneously. The correct graph

should contain two separate /etc/passwd file artifact vertices. With respect to clarity, it

1A complete attack description can be found in the Appendix, but is not required to illustrate the
challenges faced by container provenance systems.
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(a) Provenance Tracking without Container Awareness or
Namespace Awareness

Red labels represent the errors caused by this solution.
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Figure 3.1. Comparison between different provenance tracking solutions.
The traditional provenance solution graph illustrated in (a) lacks names-
pace awareness and container awareness. The container-aware graph shown
in (b), produced by systems such as Winnower, performs slightly better
because it can distinguish processes from different containers, but lacks
namespace awareness, leading to disconnected intra-container provenance
graphs. The namespace-aware graph, illustrated in (c), produced by Cam-
Flow lacks container-awareness. While this graph does not suffer from the
soundness issue, it cannot effectively capture essential container semantics
(e.g., the boundary of containers).
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is not intuitive which processes are inside the container because container boundaries are

not marked in the graph.

Second, solutions that only provide container awareness, e.g., Winnower, also suffer

from the soundness challenge. Though they can distinguish the processes inside the

container in Figure 3.1(b), the ambiguity and graph fragmentation issues persist. This is

also the case for other simple container labeling solutions, e.g., using a cgroup prefix or a

SELinux label for every provenance artifact.

Third, solutions that only provide namespace awareness, e.g., CamFlow, still suffer

from the clarity challenge. As we can see in Figure 3.1(c), they do not capture essential

container semantics, such as the boundary of containers, complicating security analysis.

As CamFlow provides a more fine-grained and complex provenance graph2, non-trivial

additional graph analysis will be required to design and apply similar semantic patterns

in CamFlow to provide clarity. For instance, to support the boundary of containers, it

is necessary in CamFlow to (1) put the PID namespace identifier on every task vertex

to group processes inside a container by aggregating PID namespace information; (2)

get the namespace-virtualized pathname and the mount namespace identifier for each

file to reveal whether the file is inside a container by complementing mount namespace

information.

For (1), we need to find the process memory vertex assigned to each task vertex and use

its PID namespace identifier. Figure 3.1(c) illustrates a simple case. In practice, the graph

analysis required is more complex. Because CamFlow uses versions to avoid cycles or to

record any object state change for a provenance artifact, a path traversal is needed to find

2The provenance graph of CamFlow is framed over fine-grained kernel objects, e.g., task, process memory,
inode, path, packet.
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the correct version of the task vertex, i.e., where a clone tries to assign the process memory.

For (2), CamFlow does not provide virtualized paths and mount namespace identifier

for file vertices natively. The same state management implemented on CLARION (See

Section 3.5.1.2) to track pivot root and chroot calls and path traversal analogous to

what was described above for (1) will need to be implemented within CamFlow.

3.3.2. Threat Model

We consider the OS kernel and audit subsystem, i.e., Linux Audit, to be part of the

trust computing base (TCB). We assume that the OS kernel is well protected by existing

kernel-protection techniques[109, 33]. The integrity of Linux Audit assures the ability to

observe all system calls associated with malicious activity in user space. If the attackers

succeed in compromising the kernel, they can disrupt the normal operation of Linux Audit

and the kernel module used by CLARION. To address such attacks, the security of the

TCB can be bolstered using TPM-based approaches as used by prior provenance-tracking

systems[73, 101].

We further assume adversaries can only have limited or no a priori privileges. Thus,

we only consider a threat model where attacks are launched from user space. This threat

model is based on what was used in prior provenance tracking systems, and it is reasonable

because the container virtualization does not mitigate the effort required for attackers to

compromise the kernel. Implementing provenance tracking for containers and addressing

namespace virtualization problems shown in Section 3.4 do not require additional infor-

mation beyond what is provided in the kernel, as described in Section 3.5. Finally, the
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system may be subject to resource exhaustion attacks, leading to missed events. We

believe that the defense against such attacks is outside the scope of this paper.

3.4. Container Provenance Challenges

type=SYSCALL msg=audit(1567029444.851:431219): arch=c000003e syscall=56
success=yes exit=2 a0=3d0f00 a1=7f81aa8f8fb0 a2=7f81aa8f99d0
a3=7f81aa8f99d0 items=0 ppid=5880 pid=5903 auid=4294967295 uid=0 gid=0
euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295
comm="runc:[2:INIT]" exe="/" key=(null)

Figure 3.2. Problematic Linux Audit Record (PID)

Host 1
Container 1

bash
pid=2976 fork bash

pid=10

cat
pid=3030 execve cat

pid=3030

Host 1

bash
pid=2976
ctr_pid=1

fork
cat

pid=3030
ctr_pid=10

bash
pid=3030
ctr_pid=10

execve

(a) PID namespace failure

(b) PID namespace success

Figure 3.3. PID Namespace: Failure and Success

type=SYSCALL msg=audit(1573775822.523:18757): arch=c000003e syscall=257
success=yes exit=3 a0=ffffff9c a1=7fff09576970 a2=0 a3=0 items=1 ppid=22352
pid=22422 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0
fsgid=0 tty=pts0 ses=4294967295 comm="cat" exe="/bin/cat" key=(null)
type=CWD msg=audit(1573775822.523:18757): cwd="/"
type=PATH msg=audit(1573775822.523:18757): item=0 name="/etc/passwd"
inode=67535 dev=00:2e mode=0100644 ouid=0 ogid=0 rdev=00:00
nametype=NORMAL cap_fp=0000000000000000 cap_fi=0000000000000000
cap_fe=0 cap_fver=0

Figure 3.4. Problematic Linux Audit Record (Mount)
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readcat
pid=3030

subtype:file
path:

/etc/passwd
cat

pid=4146

(a)Mount namespace failure

Host 1

cat
pid=3030
ctr_pid=10

subtype:file
path: /var/lib/docker/overlay2

/container_hash/merged/etc/passwd
ctr_path: /etc/passwd

read
cat

pid=4146
ctr_pid=4146

(b)Mount namespace success

Container 1
Host 1

subtype:file
path: /etc/passwd

ctr_path:/etc/passwd

read

read

Figure 3.5. Mount Namespace: Failure and Success

We elaborate on the soundness and clarity challenges introduced by mishandling the

effect of container virtualization in each namespace. Through the analysis in this sec-

tion, we also ensure that the technique we propose in Section 3.5 covers all the needed

namespace interactions.

3.4.1. Soundness: Namespace Virtualization

As illustrated in the motivating example, fragmentation and ambiguity are soundness

issues caused by namespace virtualization in provenance tracking. However, not every

namespace triggers either or both issues. In Table 3.2, we provide a deeper analysis about

how each namespace impacts provenance tracking and what events will be affected. In

addition, we use audit records from Linux Audit to demonstrate the problem and show

how the soundness challenge can extend to other monitoring techniques such as Sysdig

and LTTng.



81

(a)Network namespace failure
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rport: 4000

ctr_laddr:10.0.2.15
ctr_lport: 3884

host_laddr:10.0.2.15
host_lport: 3884
raddr: 10.0.2.5
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Host 1 (10.0.2.5)
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pid=3043
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pid=4149

accept

Host 2 (10.0.2.15)
nc

pid=3212

connect
connect

laddr: 0.0.0.0
lport: 4000

raddr: 10.0.2.15
report: 3884

accept

laddr:10.0.2.15
lport:3884

raddr:10.0.2.5
rport:4000

Connected

laddr:10.0.2.15
lport: 3884

raddr: 10.0.2.5
rport: 8000

(b)Network namespace success

ctr_laddr: 0.0.0.0
ctr_lport: 4000

host_laddr: 10.0.2.5
host_lport: 4000
raddr: 10.0.2.15

rport: 3884

ConnectedConnected

Figure 3.6. Network Namespace: Failure and Success

3.4.1.1. PID Namespace. Figure 3.2 shows a problematic audit record. It is created by

a runC container runtime process inside a container and trying to finish the initialization.

Syscall value 56 means that it is a clone system call, and its return value is the PID

of the cloned child process. Here, we can see that exit value is 2, but the process 2 is

usually a kernel-related process generated when the system is booted. It suggests process

2 cannot be the cloned child process of this runC runtime process, which is confirmed by

our further investigation. So 2 cannot be the global PID for the cloned child process. It

can only be a virtualized PID.
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Figure 3.3 illustrates the subgraph exposing the fragmentation caused by PID names-

pace virtualization in the motivating example. The bash process 2976 expects that it

created child process 10 which is actually process 3030.

3.4.1.2. Mount Namespace. Figure 3.4 shows a problematic audit record. A system

call openat (inferred by syscall=257) is invoked by a process trying to read /etc/passwd

in the container. As we can see, the CWD is / and the PATH is /etc/passwd. In fact, all

files inside the container are stored under some directory specific to this container. This

specific directory may vary due to different container engine choices. Taking Docker as an

example, the specific directory is usually /var/lib/docker/overlay2/container hash/merged/

where container hash is a hash string related to this container. So to get the global paths

of the CWD / and the PATH /etc/passwd, the path of the specific directory needs to be

added to them as the prefix.

Figure 3.5 illustrates the subgraph exposing the mount namespace virtualization prob-

lem described in the motivation example. Two cat processes (with PIDs 3030 and 4146),

are attempting to read the /etc/passwd file, and the two files are confused with each

other without mount-namespace awareness. CLARION’s host-container mapping enables

us to easily distinguish between them.

3.4.1.3. Network Namespace. Figure 3.6 illustrates the subgraph exposing the net-

work namespace virtualization problem in the motivation example. Two nc processes

(PID 3043 and 4149) are listening on socket (0.0.0.0/4000) within their respective con-

tainers, and one of them accepts a connection from (10.0.2.15/3884). Since the local

IP addresses/ports are virtualized and remote IP addresses/ports are the same, the two

sockets can be confused with each other without network-namespace awareness. Without
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establishing the host-container mapping of sockets inside the container, we are unable to

attribute the connection to a socket inside the container, as illustrated in Figure 3.6.

3.4.1.4. Soundness Challenge on Other Audit Subsystems. We further investi-

gated the impact of container virtualization on two alternative Linux audit subsystems,

specifically Sysdig[62] and LTTng[37], to assess whether soundness challenge impacts

other systems besides Linux Audit. We summarize our findings in Table 3.3. We find

that Sysdig suffers from the same soundness challenges confronted by Linux Audit. LTTng

provides host-container ID mappings using more low-level events3 but the soundness chal-

lenge in mount namespace still persists. Our investigation shows that soundness challenge

is not specific to Linux Audit.

3.4.1.5. Soundness Challenge on Rootless Containers. Rootless containers refer

to the containers that can be created, run, and managed by unprivileged users. They

differ from traditional containers in which they have a new unprivileged user namespace.

In this user namespace, all UIDs and GIDs are mapped from the global user namespace,

including a pseudo-root user. This core difference causes further effects in filesystem and

networking in the rootless container. For filesystem, many Linux distributions do not

allow mounting overlay filesystems in user namespaces. This limitation makes rootless

containers inefficient. For networking, virtual Ethernet (veth) devices4 cannot be created

as only real root users have the privileges to do so.

3For example, the sched process fork event.
4Veth devices are a special type of Linux interface used in virtual networking. They are always created
in pairs and usually serve as local Ethernet tunnel between namespaces in container networks.
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As summarized in Table 3.2, the user namespace does not affect the soundness of

provenance analysis. Further, although rootless containers have slightly different imple-

mentations for filesystem and networking (mentioned above), to support unprivileged root

users, they do not affect provenance. Thus, we claim that rootless containers share the

same soundness challenges faced by traditional containers.

3.4.1.6. Soundness Challenge on Other OS Platforms. We also investigated two

alternative resource isolation techniques, specifically FreeBSD Jails and Solaris Zones,

to see whether soundness challenge can also occur in other platforms. We summarize

our findings in Table 3.4. Our key finding is that if semantics inconsistency exists in

the low-level audit events related to virtualized system resources (e.g., PIDs, file paths,

network addresses/ports), the resource-isolation technology will suffer from the soundness

challenge. We assume this finding also extends to other OS platforms like Windows

and MacOS. Semantic inconsistencies are at the core of the soundness challenge so the

key to make CLARION feasible on those platforms is to systematically address such

inconsistencies.

3.4.2. Clarity: Essential Container Semantics

We describe the challenges involved in automating the comprehension of essential con-

tainer semantics. This is a feature that is unique to our provenance tracking system, and

we believe it can greatly simplify the understanding and analysis of dataflow provenance

in container-based microservice environments.

An important aspect of forensic analysis is accurately knowing what subgraphs cor-

respond to which container so that we can effectively track the origins of a container
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microservice attack as well as assess the forensic impact of such attacks. For example,

was the effect of the attack limited to the specific container or was it used as a step-

ping stone to other container targets? To effectively answer such questions, we need to

demystify the boundary of containers in the provenance graph.

Initialization of containers is another frequent activity that explodes provenance graphs

and may be abstracted to simplify analysis. Thus, if we can accurately identify subgraphs

corresponding to initialization of each containers, we can produce simplified provenance

graphs, effectively reducing the effort for forensic analysts by automatically annotating

abnormal cross-container activity. Specifically, we investigate the container initialization

regulation of several representative container engines, including Docker, rkt and LXC,

and summarize the patterns observed in each of them.

3.5. System Design and Implementation

In this section, we provide a detailed description of the CLARION prototype design

and the implementation that extends the SPADE provenance tracking system with addi-

tional container-specific extensions. Our design goal is to propose a solution for addressing

soundness and clarity challenges by only using trusted information from the kernel while

limiting extra instrumentation.

We claim that our solution is complete in handling all aliasing introduced by names-

paces. First, we cover all system calls that can be used to manipulate namespaces gen-

erally, i.e., clone, unshare and setns. We investigate their semantics and provide as-

sociated provenance data models with consideration to different argument combinations

as shown in Section 3.5.2. Second, we analyze all existing namespaces and understand
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what information will be aliased in the low-level audit and cause problems to provenance

tracking as shown in Section 3.4.1. Our solution is designed to address all introduced

problems below in Section 3.5.1.

3.5.1. Mapping Virtualized Namespaces

We summarize our virtualized namespace-mapping strategies in Table 3.5. For the

soundness challenge, we establish a host-container mapping view on provenance graph

artifacts that are impacted by most Linux namespaces because we believe this will pro-

vide the most clear view for users to understand the provenance. However, for the IPC

namespace, the host view of an IPC object does not actually exist. Hence, we adopt a

namespace-labeling approach.

3.5.1.1. PID Namespace. We considered multiple options to tackle the PID host-

container mapping problem including: (i) directly using PPID (parent PID) to connect

processes; (ii) using timestamps to map cloned child processes to its parent; (iii) using

/proc/PID/status for mapping information; and (iv) using kernel module injection to

get the PID mapping from kernel data structures.

We ultimately eliminated other options and chose to implement a kernel module for

several reasons. We found that directly using PPID was infeasible because it some-

times points to the parent of the the process creating it. For the timestamp option,

the granularity provided by audit record cannot guarantee that the order of process cre-

ation matches the order corresponding system call events. We also decided against using

/proc/PID/status information as the /proc filesystem does not support asynchronous

callbacks and the overhead of polling is prohibitive.
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We implement our PID namespace host-container mapping solution as a kernel module

that intercepts process-manipulation-related system calls, e.g., clone, fork, and vfork.

Once those system calls are invoked by a process, we do not directly use the return value to

determine the PID of its child process because it can be virtualized. Instead, we input this

return value to a kernel helper function pid nr() in /include/linux/pid.h to generate the

global PID. Ultimately, we use the global PID to generate the sound provenance graph.

However, we still capture both the global PID and virtualized PID for every process vertex

such that a complete view can be provided.

3.5.1.2. Mount Namespace. To obtain the host-container mapping for file paths vir-

tualized by containers, we leverage an empirically derived design principle about the

mount namespace, that is consistent across state-of-the-art container engines, to develop

an instrumentation-free solution.

This empirical design principle is that the newly created mount namespace needs the

init process, i.e., the process with virtual PID 1, to provide a new filesystem view different

from that in the parent mount namespace. It is achieved by using root directory change

system calls, i.e., pivot root and chroot, where new root directories are provided in their

arguments. Specifically, state-of-the-art container engines make the init process move

CWD to the root directory of a new container by using chdir(container root path)

and then invoke a pivot root(‘.’,‘.’) or a chroot(‘.’) to wrap up the root directory

change.

Therefore, if we monitor those root directory change system calls, we can use the CWD

record associated with the chdir to find the host path of the container root directory,

and then we attach this host path to every virtualized path as a prefix to establish the



88

host-container mapping on file paths. Given the annotation in Table 3.6, the algorithm

is described as four steps.

Step 1. Handle chdir. (input: PID ‘p1’, CWD ‘cwd1’; operation: put((p1,cwd1),

LastCWD)). We do this to record the last working directory for every process. With this

information we can know what is the last CWD of the first process inside a new container,

which will be the prefix for every virtualized path.

Step 2. Handle pivot root or chroot. (input: PID ‘p1’; operation: put((p1, get(p1,

LastCWD)), Prefix)). When a root directory changing system call occurs, we label the

corresponding process with the last CWD as the prefix.

Step 3. Handle virtualized PATH records, CWD records and arguments related to

file operation system calls with path prefix. (input: PID ‘p1’, syscall ‘s1’, operation:

if ‘s1’ is ‘open’,‘read’,‘write’ etc. Use get(p1, Prefix) to add a new annotation ‘nsroot’

representing the host prefix in the corresponding artifacts). This helps propagate the

prefix from processes to file artifacts.

Step 4. Handle (clone, fork, vfork). (input: Parent PID ‘p1’, Child PID ‘p2’;

operation: put((p2, get(p1, Prefix)), Prefix)). The prefix (root directory) information

will be propagated through process creation as kernel does.

We consider our mount namespace mapping solution to be robust because it relies on

a standardized implementation technique for filesystem isolation and empirically validate

its adoption across representative container engines including Docker, rkt and LXC.

For other cases where directories are shared between host and container than chroot-

like cases, we claim that our solution still works well. Taking bind mount as an example,

the key components in the bind mount provenance graph will be one process vertex
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which executes a mount system call along with two file artifacts representing the bound

directories and two file artifacts are connected by an edge representing that mount system

call. In this case, only the file path of the file artifact inside the container will be affected

and our solution can still provide the host view of this file.

3.5.1.3. Network Namespace. For accurate provenance tracking of container network

activity, CLARION needs to establish the host-container mapping for virtualized local IP

addresses and ports. To this end, we design a Netfilter-based solution for tracking the

host-container IP/port mapping and use the network namespace ID as a distinguisher.

Netfilter is a Linux-kernel framework that provides hooks to monitor every ingress and

egress packet, including packets from or to containers, on the host network stack [44].

The host network stack will do a source NAT for container egress packets and a des-

tination NAT for container ingress packets before correctly forwarding those packets.

Therefore, by monitoring the IP/port NAT about container ingress/egress packets on the

host network stack, we can build the host-container mapping of local IP addresses and

ports for sockets inside containers. We annotate each network socket artifact with the

corresponding network namespace identifier, so sockets from different containers can be

reliably distinguished.

The CLARION prototype implementation for the network namespace consists of two

parts: network namespace identification and netfilter-based address mapping. For net-

work namespace identification, we modify SPADE’s kernel module to intercept network-

related system calls and put the network namespace identifier of the calling process

on the generated network socket. For netfilter-based mapping, we register kernel mod-

ules at the beginning and the end of netfilter hooks corresponding to NAT. Specifically,



90

POST ROUTING and LOCAL INPUT are used for source NAT, while PRE ROUTING

and LOCAL OUTPUT are used for destination NAT. The former two hooks provide the

mapping for egress connections from container and the latter two provide the mapping

for ingress connections.

Whenever a new mapping is added, we will search for the network device having the

virtualized local IP address in the new mapping, by iterating through network namespaces

using the function ip dev find(struct net *net, be32 addr). Through this, we find

the container related to this virtualized local IP address and put the mapped global local

IP address/port on the socket artifact that has the virtualized local IP address/port in the

new mapping. As a special case, a socket may listen on 0.0.0.0 (IN ADDR ANY), i.e.,

it can accept connection on any local IP address. Hence, when we match socket artifacts

with the virtualized local IP address/port in the container, we always treat 0.0.0.0 as a

matched local IP and only check the local port.

3.5.1.4. IPC Namespace. The issue in the IPC namespace is that two different IPC

objects from different IPC namespaces may have the same ID/name. Unlike other names-

paces, the host-container mapping strategy for disambiguation does not extend to IPC

object artifacts, because there is no corresponding host IPC object for virtualized IPC

objects. Our design involves adding an IPC namespace ID to every IPC object artifact

so that IPC objects from different containers can be uniquely distinguished.

The implementation of the IPC namespace solution was effected by adding IPC names-

pace IDs to IPC objects affected by namespace virtualization. Those objects consist of

the POSIX message queue and all System V IPC objects, i.e., message queue, semaphore,
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ns_pid: A0
ns_pid_for_children: A0

ns_mnt: C0
ns_net: D0
ns_ipc: E0

pid: F0

clone
flag: CLONE_NEWPID |

CLONE_NEWNS |
CLONE_NEWNET |
CLONE_NEWIPC

ns_pid: A1
ns_pid_for_children: A1

ns_mnt: C1
ns_net: D1
ns_ipc: E1

pid: F1

Figure 3.7. Handling the clone system call: a process vertex representing
the child will be created with the new namespace label.

ns_pid: A0
ns_pid_for_children: A0

ns_mnt: C0
ns_net: D0
ns_ipc: E0

pid: F0

unshare | setns
flag: CLONE_NEWPID

ns_pid: A0
ns_pid_for_children: B0

ns_mnt: C0
ns_net: D0
ns_ipc: E0

pid: F0

Figure 3.8. Handling the unshare and setns system calls on NEWPID: a
process vertex representing the calling process itself will be created with
the new assigned pid for children label.

ns_pid: A0
ns_pid_for_children: A0

ns_mnt: C0
ns_net: D0
ns_ipc: E0

pid: F0

unshare | setns
flag: CLONE_NEWNS |

CLONE_NEWNET |
CLONE_NEWIPC

ns_pid: A0
ns_pid_for_children: A0

ns_mnt: C1
ns_net: D1
ns_ipc: E1

pid: F0

Figure 3.9. Handling unshare and setns system calls with other flags: a
process vertex representing the calling process itself will be created with
the new assigned namespace label.

and shared memory. We assign and propagate IPC namespace ids by carefully interpret-

ing process management system calls, e.g., clone, and IPC object management system

calls, e.g., msgget and msgsnd.

3.5.2. Essential Container Semantic Patterns

To address the clarity challenge, we propose two essential container semantics which

can significantly improve the quality of provenance graph. In addition, we design the

semantic patterns for summarizing them during provenance tracking.
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Figure 3.10. CVE 2019-5736: Provenance graph for 1st start without (top)
and with (bottom) namespace/container awareness

3.5.2.1. Boundary of Containers. We begin by first providing a practical definition

for a container at runtime. A container at runtime is a set of processes that share the

same PID namespace. Usually processes inside a container can share multiple names-

paces but, most critically, they at least have to share the PID namespace. In fact, while

container runtimes often provide support for sharing other namespaces, e.g., mount, IPC,

and network, between containers, none of them allow for sharing the PID namespace.
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Next, we define the relationship between an artifact, e.g., file and network, and a

container. An artifact relates to a container if and only if it can be accessed by a process

inside that container. Here, ”accessed” may refer to any type of read-write operation. An

artifact may relate to several containers and thus may be used to infer the relationship

between specific containers. An important challenge is labeling each process with the

correct namespace identifier. We address this by carefully designing a new provenance

data model for system calls related to namespace operations. There are three essential

system calls for tracking the boundary of containers, i.e., clone, unshare and setns.

Clone and unshare system calls are used for creating new namespaces; thus, they signal

the process of creating a container boundary. Setns is used for aggregating two namespace

together or making another process join a namespace.

We designed five different namespace labels (corresponding to PID, mount, network,

IPC, and pid for children) and handle them when three essential namespace-related sys-

tem calls (i.e., clone, unshare, and setns) occur, as shown in Figure 3.7, 3.8 and 3.9.

All figures are illustrated in the OPM provenance data model format. The red areas

highlight the changes between before and after. The implementation follows the Linux

Kernel semantics for each system call and each namespace. The special case here is that

if CLONE NEWPID flag is specified for unshare or setns process, this only affects the

child process generated by the calling process but does not affect the calling process itself.

By adding namespace labels and handling namespace-related system calls, CLARION is

able to capture the namespace information for every single process and leverage the PID

namespace label to certify the boundary of each container.
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3.5.2.2. Initialization of Containers. By analyzing several state-of-the-art container

engines, we find that specific common pattern exist across containers that may be lever-

aged to identify the initialization of containers. In a nutshell, this pattern can be sum-

marized as follows: start with an unshare/clone with new namespace flag specified, and

end with an execve so that a new application can be launched inside the container. Slight

differences exist across different container engines as described in Section 3.5. Identifying

these patterns facilitates abstracting subgraphs in the provenance graph that corresponds

to container spawning and initialization activity.

Here, we explain the container initialization patterns for Docker and rkt. For Docker,

the initialization pattern is as follows:

• After receiving gRPC connection from dockerd, containerd will start a containerd

-shim, which is responsible for starting a new container.

• This containerd-shim process will invoke several runC processes for initializa-

tion.

• One of those runC processes will invoke the unshare system call and this marks

the beginning of the actual container initialization.

• The runC process calling unshare will clone several child processes to finish

several initialization tasks including setting up /proc, /rootfs, and the network

stack.

• Finally, it will clone a child process and make it execute the default container

application, e.g., bash and apache.
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Unlike centralized container engines like Docker, rkt does not have a daemon process

that is responsible for starting a container. It has a more complex three-stage initialization

pattern that begins once rkt is started with specified parameters to create a rkt container.

• Stage 0: It will use several instances of the systemd process to set up different

namespaces including PID, Mount, Network, IPC and UTS.

• Stage 1: It will generate process inside the container with namespace restriction

set up and call chroot to create a filesystem jail for this container.

• Stage 2: Finally, it will run the default application on this process.

We implement those patterns as a SPADE filter, and it automatically finds the starting

point of those initialization patterns and attempts to do a backward traversal so the

subgraph corresponding to initialization will be marked.

3.6. System Evaluation

In this section, we evaluate CLARION by answering the following questions.

• Q1. Usefulness: How effective is CLARION in dealing with real-world con-

tainer microservice attacks?

• Q2. Generality: Are namespace disambiguation strategies implemented by

CLARION for performing provenance tracking generally applicable across differ-

ent container engines?

• Q3. Performance: Does CLARION provide an efficient provenance monitoring

solution for real-world microservice deployments?
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Figure 3.11. CVE 2019-5736: Provenance graph for 2nd start without (top)
and with (bottom) namespace/container awareness

3.6.1. Effectiveness Evaluation

To illustrate the effectiveness of CLARION for container-based provenance and foren-

sic analysis, we evaluate against exploits of three recent CVEs affecting Docker. Specif-

ically, we generate the provenance graphs with and without namespace and container

awareness to show the capability of our solution. Then, we compare between the original

provenance graphs generated by SPADE and CLARION.

The CVEs that we selected include CVE 2019-5736 (runC), CVE 2019-14271 (docker-tar)

and CVE 2018-15664 (docker-cp). The first two exploits are particularly detrimen-

tal because they can lead to privilege escalation in the host machine. The third is a
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Figure 3.12. CVE 2019-14271: Provenance graph for the docker-tar ex-
ploit without (top) and with (bottom) namespace/container awareness

race-condition (time-dependent) which requires multiple tries and some serendipity for

successful exploitation.

3.6.1.1. CVE 2019-5736: runC Exploit. runC through 1.0-rc6 (as used in Docker

before 18.09.2 and other platforms like LXC), allows attackers to overwrite the host runC

binary (and consequently obtain host root access) by leveraging the ability to execute a

command as root within one of these containers: (1) a new container with an attacker-

controlled image, or (2) an existing container, to which the attacker previously had write

access, that can be attached with docker exec. This occurs because of file-descriptor

mishandling, related to /proc/self/exe [14]. Overwriting runC can lead to a privilege

escalation attack by replacing runC binary with a backdoor program. The following four

steps are used to demonstrate a successful exploitation using this vulnerability:
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(1) Create a container where we have gcc installed.

(2) Create three files in this container with the docker cp command. Those files are

(1) a script (bad init.sh) that overwrites the executable (/proc/self/exe) of

the process running this script; (2) a C program file (bad libseccomp.c) that in-

vokes bad init.sh; and (3) a shell script (make.sh) for compiling bad libseccomp.c

and setting up the bait for runC.

(3) Start this container and execute make.sh that accomplishes two goals: (1) re-

places the seccomp module with bad libseccomp.c. Here seccomp module is

a regular library which will be automatically loaded when an Ubuntu container

starts; (2) replaces the default start-up process, i.e., the bash shell in Ubuntu

containers, with /proc/self/exe.

(4) If and when this container is restarted, runC on the host loads the malicious

seccomp module leading to execution of the malicious script (bad init.sh),

which overwrites the parent process, i.e., runC will be overwritten with the con-

tents of bad init.sh.

We illustrate the provenance graphs associated with this exploit in Figures 3.10, 3.11.

This exploit consists of two starts of a malicious container. Figure 3.10 corresponds to

the first start and Figure 3.11 corresponds to the second start.

We see that in the graphs without namespace awareness, the provenance graph frac-

tures completely. Specifically, subgraphs corresponding to essential exploit steps are frac-

tured, making it challenging for analysts to do backward and forward tracking given

the attack points on make.sh and bash. Furthermore, ambiguity exists everywhere in
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Figure 3.13. CVE2018-15664: docker cp race condition exploit without
and with namespace/container awareness. Steps 1 and 2 are attempts to
establish the symlink between the stash path inside the container and the
root path on the host. Steps 3 and 4 represent the renaming exchange
between the symlinked stach path and the path of the file to be copied.
Steps 5-7 show that dockerd didn’t resolve the correct path and ultimately
copies the incorrect file.

those namespace-unaware graphs. Among many points exposing ambiguity, the ambi-

guity between two /lib/x86 64-linux-gnu/libseccmp.so.2.4.1 file artifacts in the

second start is significant. If we cannot distinguish between them, we will not be able

to understand that a malicious GNU library inside the container is linked with the runC

instance (/proc/self/exe).

CLARION can successfully restore the connection between essential exploit steps in

the namespace-aware provenance graphs and also resolve the associated ambiguity issues,

making it very clear that a malicious container library is linked by the runC instance

(which is anomalous).
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3.6.1.2. CVE 2019-14271: docker-tar Exploit. Docker 19.03.x (prior to 19.03.1)

linked against the GNU C Library (glibc) is vulnerable to code injection attacks, that

may occur when the nsswitch facility dynamically loads a library inside the container

using chroot 5 [13]. This code injection can affect the library files on the host and may

be used to trigger privilege-escalation attacks.

We exploit this privilege-escalation vulnerability using docker-tar, a helper process

spawned by the Docker engine that obviates the need to manually resolve symlinks in

the container filesystem. First, docker-tar uses the chroot command to change its

root to the container’s root. This is done so that all symlinks are resolved relative to

the container’s root, preventing any ambiguities. After running chroot, docker-tar

attempts to link with several standard glibc libraries, which induces the vulnerability.

When docker-tar attempts to link with these libraries, it will instead link the library files

inside the container. However, a malicious image could inject code inside those library

files, such that the malicious code executes as part of the docker-tar process since they

are linked by docker-tar. Specifically, two steps are required to demonstrate exploitation

of this vulnerability:

(1) We modify libnss files.so in the container image by a malicious script modify.sh,

an example library linked with docker-tar, using a code injection attack such

that it includes additional code to execute a malicious script, called breakout.sh,

that sets up a backdoor on the host using netcat.

5The assumption here is that libraries within the containers are untrusted from the perspective of the
host.
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(2) When we then run the docker-tar command from a container using this image,

the docker cp command is executed within the container that copies the library

file to the host, leading to an open backdoor on the host.

Provenance graphs for comparison are shown in Figure 3.12. Similar to the first ex-

ploit, the namespace-unaware provenance graph is fractured. We see that bash process

2098 forked a child process but does nothing due to PID namespace fracturing. In addi-

tion, this graph implies that the libnss library on the host was compromised, which is

incorrect. In contrast, CLARION eliminates graph fracturing and provides a sound and

clear understanding of how this attack is initiated from inside the container. Specifically,

(1) CLARION marks the boundary of containers so we know the starting malicious script

modify.sh is run inside the container; and (2) CLARION provides the mapped path for

the library file so we know the compromised libnss files.so is inside the container.

3.6.1.3. CVE 2018-15664: Symlink TOCTOU Exploit. In Docker (versions inclu-

sively before 18.06.1-ce-rc2), API endpoints behind the docker cp command are vulnera-

ble to a symlink-exchange attack with Directory Traversal. This gives attackers arbitrary

read-write access to the host filesystem with root privileges, because daemon/archive.go

does not do archive operations on a frozen filesystem (or from within a chroot) [12].

When docker cp attempts to use a symlink from the container directory, it must

find the absolute pathname file or directory in the context of the container filesystem.

Failing to do so causes the symlink to be resolved in the host’s filesystem, which al-

lows symlinks created inside the container to affect files outside the container. When

a user executes docker cp on a container filesystem, the Docker daemon process first

executes a FollowSymlinkInScope() function, which returns the non-symlink path to



102

the file/directory. Only after finding the actual path for both source and destination

filenames does docker cp start copying files. One problem that arises from this pro-

cess is that there is no guarantee that the filesystem won’t change between running

FollowSymlinkInScope() and copying the files. Here, a possible attack utilizing a Time-

of-Check to Time-of-Use (TOCTOU) race condition is to have a process inside the con-

tainer apply a symlink right after Docker verifies the symlink path, and right before docker

begins writing the file. When docker uses the filename it resolved earlier, it will traverse

the symlink to a file on the host machine.

Through this exploit, a container process could potentially overwrite any file in the

container when the host tries to copy a file into that container. This includes crucial

system files such as password and user records. In our example, we use the four steps

shown below in the order when attackers win the race condition to reproduce the exploit:

(1) Host tries to copy a file w00t w00t im a flag from the container’s filesystem to

the host system by running docker cp.

(2) Docker engine resolves both source and destination filenames, traversing any

necessary symlinks.

(3) Malicious process inside the container creates another directory (stash path),

applies a symlink to /, and performs a rename exchange of the original directory

containing w00t w00t im a flag, i.e., totally safe path, with stash path.

(4) Docker engine, uses the filename resolved at Step 2, and performs a read of the

container filename, and writes the data to the host filesystem.

Once the malicious process wins the race condition (Step 3), the symlink will be

resolved in the host’s filesystem and docker cp ends up copying the w00t w00t im a flag
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in the host, rather than the one inside the container. For this exploit, the provenance

generated by CLARION graph shown in Figure 3.13 does not show significant difference

from the namespace-unaware graph, because there is only one malicious process which

will be run from at container start. Yet, without namespace awareness, the analyst will

not be able to know that the key malicious process, i.e., symlink swap, is running inside

a container.

3.6.2. Cross-container Evaluation

To demonstrate that our solution is generic to several popular container engines to-

gether with deeper insights about provenance graph statistics, we select LXC (a classical

container engine), rkt (a container engine with the second highest market share), Mesos

and Docker for evaluation.

3.6.2.1. Initialization Graphs. We show the provenance graphs for the initialization

of a hello-world container within each container engine in Figures 3.14, 3.15, and 3.16.

We find the initialization provenance graphs for the three different container engines

to be clear and intuitive. They show that even when varying initialization routines are

employed by different container engines, (e.g., rkt doesn’t start the container before it

finishes changing root path, while the other two use the first process inside the con-

tainer), our initialization patterns always detect them accurately. Moreover, CLARION

successfully summarizes the container boundary for all three container engines.

3.6.2.2. Quantitative Provenance Graph Results. We measured the impact of CLAR-

ION on provenance graph statistics to quantitatively assess the implications of namespace

awareness with various container engines. We selected five popular Docker images that
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Figure 3.14. Initialization of a hello-world rkt container
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Figure 3.15. Initialization of a hello-world Docker container

cover typical use cases in microservices including the base OS (ubuntu), a popular data-

base (redis), a continuous integration server (jenkins) and a web server (nginx). We ran

those images on three popular container engines: Docker, rkt and Mesos. The results are



105

1.clone
new_pid|
new_mnt

lxd
pid=29746
ns_pid:a0
ns_pid_for_

cdr:a0
ns_mnt:c0
ns_net:d0

2.unshare
new_net

lxd
pid=29484
ctr_pid=1
ns_pid:a1
ns_pid_for
_cdr:a1

ns_mnt:c1

3.clone

lxd
pid=29484
ctr_pid=1
ns_net=d1

(call
pivot_root)

4.execve
lxd

pid=29496
ctr_pid=2

hello
pid=29496
ctr_pid=2

Container

Host

Container Initialization 

Figure 3.16. Initialization of a hello-world LXC container

reported in Tables 3.7, 3.8, and 3.9, respectively. For each image, we collected the behav-

ior from container initialization to stable operation. In addition, we used two advanced

configurations for nginx to highlight the effect of namespace awareness. MT-4 indicates

that we ran the nginx server with worker process=4, while MC-4 means we ran four nginx

containers concurrently.

We see that in most cases, the total count of vertices and edges are not significantly

impacted by the addition of namespace awareness. This is because it is possible for

namespace unawareness to add or reduce vertices/edges, depending on the workload. For

example, process cloning leads to more spurious vertices while false dependencies due to

shared filenames in the mount namespace results in fewer vertices. Generally speaking,

fewer vertices and more edges will be a better result because the provenance graph suffers

from less fracturing. Hence, we count the (lost/extra) error vertices/edges in two com-

mon cases, i.e., process creation and file access, causing fragmentation and ambiguities.

Though this may not cover all cases causing error vertices/edges, we believe it provides a

useful lower bound to illustrate the severity of the soundness issue. Finally, in the case of
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components, we can observe significant differences when namespace awareness is turned

on. Specifically, in nginx(MC-4 ) for rkt, we can see the components of SPADE are dou-

bled in comparison to CLARION, meaning the corresponding provenance graph fractures

significantly. This is because the four-container setting has more workload inside the

containers and so the subgraph inside the container is much larger. Since the namespace-

unaware system will fail to infer correct provenance inside containers, the whole graph

becomes more fractured as well. These results underscore how, especially in microservice

scenarios, namespace-unawareness can lead to significant errors due to both fragmentation

and ambiguities.

3.6.3. Efficiency Evaluation

Our efficiency evaluation consists of two parts: runtime overhead evaluation and stor-

age overhead evaluation. We deployed a microservice benchmark and conducted a per-

formance comparison between SPADE and CLARION.

3.6.3.1. Experiment Setup. The server machine we used has a configuration of Xeon(R)

E5-4669 CPU and 256 GB memory. The microservice benchmark we selected a very

popular microservice demo, Online Boutique[42], provided by Google. It contains 10

representative microservices and a web-based e-commerce app in which users can browse

items, add them to the cart, and purchase them (i.e., a typical use-case for modern mi-

croservices).
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3.6.3.2. Runtime Overhead. To compute the runtime overhead, we started every mi-

croservice independently 100 times and recorded the cumulative time for those 100 mi-

croservice containers to be initialized. First, we performed this process for each mi-

croservice without any audit subsystem enabled to get a baseline. Next, we repeated

this evaluation with Linux Audit, SPADE, CLARION, CamFlow, and Linux Audit with

SE-Linux labeling 6.

We summarize the detailed results in Table 3.10. The incremental overhead is calcu-

lated by comparing CLARION’s overhead with that of SPADE. The “overall overheads”

are based on comparison against the performance of the Base system. We find that the

additional runtime overhead on SPADE imposed by CLARION is under 5% which we

consider to be acceptable.

The overall overhead of CLARION consists of SPADE overhead and CLARION’s

(PID namespace, Netfilter) kernel module overhead. By comparing values in the Base

column with CLARION’s overhead columns, we see that the major overhead originates

from Linux Audit as opposed to extra modules introduced by CLARION.

3.6.3.3. Storage Overhead. We compare the size of raw logs collected by SPADE and

CLARION in the aforementioned microservice environment with all 10 microservices. We

collected logs for 24 hours and the results are shown in Table 3.11. We see that the

additional storage overhead for CLARION is modest (under 5%) and much lower than

CamFlow.

6Our objective is to obtain an estimate for Winnower’s computational overhead. Unfortunately, because
we do not have access to the Winnower system, we use Linux Audit with namespace-aware audit rules and
SE-Linux-enabled Docker to obtain the results shown under SEL-Audit. We believe SEL-Audit results
can serve as a lower-bound estimate of Winnower’s computational overhead as Winnower uses Linux
Audit and relies on SE-Linux labels. This does not measure the cost associated with Winnower’s graph
reduction or anomaly detection functionality.
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3.7. Related Work

Container Security. With the growing popularity of container-based virtualization,

numerous security issues have been identified in container orchestration systems [43, 35,

19, 23]. The reasons for these security issues may be attributed to a diverse set of flaws

in design assumptions. For instance, to simplify support for file-system features like “bind

mount”, container engines, such as Docker do not enable the user namespace by default

because this leads to file access privilege problems. But disabling the user namespace

also implies that the root user inside the container also becomes the root user outside

the container. In several aforementioned security issues, attackers simply leverage this

general vulnerability to achieve privilege escalation on the host OS. Given the prevalence

of such security issues, developing defensive technology that supports security analysis

in container environments is crucial. This paper describes a first step toward a robust

forensics analysis framework for containerized application deployments.

Container Vulnerability Analysis. Many existing efforts [106] have focused on the

problem of container system vulnerability analysis. One line of work leverages traditional

static analysis techniques to perform compliance checking on container images, such as

those built with Docker. However, they do not protect the integrity of container in-

stances at runtime [115, 98]. Thus, contemporary container vulnerability analysis tools

are limited in their ability to conduct long-term forensic analysis. Our study complements

current container vulnerability analytics by providing a dynamic analysis view that lever-

ages semantics-aware comprehension of attacks targeting running containers.

Provenance Tracking and Causality Analysis. Provenance tracking and causality

analysis have played a vital role in system forensics [97, 105, 100, 94]. These tools build
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provenance/causal graphs by connecting system objects like processes, files, and sockets

by using low-level events, such as system calls. When an attack entry point is identified,

forward and backward tracking along graphs can then be performed to find the attack-

related subgraphs. These allow analysts to get a clear understanding of the attack origin

and its impact on the system. Several prior efforts have proposed mechanisms that seek

to improve the quality of generated provenance/causal graphs [97, 105, 94] in different

ways. While some of these attempt to mitigate the dependency explosion problem and

eliminate unrelated data[116], others focus on real-time and scalable graph generation

[100]. As described in Section 3.3, systems such as Winnower[80] and CamFlow[110] also

have limitations. CamFlow has namespace awareness but not container awareness (i.e.,

it only extracts namespace identifiers, but does nothing to deal with container semantics

or container boundaries.) In contrast, Winnower is container-aware but not namespace-

aware. Although it uses SELinux label information to assign docker container IDs for

process, file, and socket objects, those labels are not sufficient to fully disambiguate the

effect of important syscalls like clone, fork. However, since both Winnower and run on

SPADE, the two systems are complementary and could potentially be integrated. Our

work is also more general and agnostic to specific container-management frameworks.

Alternative OS-level Virtualization Techniques. Multiple OS-level virtualization

techniques exist on other operating system platforms. Among all those techniques, So-

laris zones [30] and FreeBSD jails [114] show considerable similarity to Linux names-

paces because both of them seek to provide isolation of system resources virtualized by

Linux namespaces, e.g., process identifiers, filesystem and network stack, while sharing

the same underlying kernel. Although conceptually similar, provenance effects from these
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techniques depend on multiple factors including virtualized resources, OS platforms, audit

frameworks, etc. We provide a summary of our investigation into BSD Jail and Solaris

Zones in Section 3.4.1.
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Table 3.2. Namespace Virtualization: What / How Provenance?

Name-
space

What events will be affected? How each namespace impacts prove-
nance tracking?

PID Audit records related to process manipula-
tion system calls (e.g., clone, fork) will be
affected. In those records, the argument fields
and return value field with PID semantics are
virtualized but the PID fields themselves are
virtualized. This leads to a semantic incon-
sistency.

The aforementioned inconsistency leads to
fragmentation in the provenance graph when
process creation happens, so the provenance
tracking system fails to produce sound prove-
nance information.

Mount Audit records related to file operation sys-
tem calls, e.g., open, close and read, will be
affected. Just like the PID namespace, ar-
gument fields with file path semantics will be
virtualized. In addition, the file path in CWD
and PATH records will also be virtualized.

Two different files, accessed within two dif-
ferent containers, may have the same name
which leads to ambiguity. Thus the prove-
nance tracking system fails to produce sound
provenance information.

Network Audit records containing local IP addresses
and local ports of a socket will be affected.
Examples include the bind system call, which
is the only system call directly providing lo-
cal IP and local ports of a socket in its argu-
ments, and other system calls like the listen
system call providing socket file descriptors
where local IP addresses and ports can be in-
directly extracted.

Two sockets in two containers can have the
same local IP address and local port lead-
ing to ambiguity. Furthermore, sockets in-
side the container are connected to a host
port through port-mapping rules. Without
explicit understanding of this mapping infor-
mation, the provenance system fails to con-
nect the incoming connection to the correct
sockets, leading to fragmentation.

IPC Audit records related to system calls han-
dling SYSV IPC objects, i.e., message queue,
semaphore and shared memory segmentation,
and the POSIX message queue will be af-
fected, e.g., msgget, mq open, shm open. The
effect is that argument fields with the seman-
tics of the ID/name of a SYSV IPC object or
a POSIX message queue are virtualized.

Two IPC objects of the same type can have
the same ID/name, and this will lead to am-
biguity in the provenance graph.

User The only affected data elements are UIDs and
GIDs. They do not lead to fragmentation
in the provenance graph. As for ambiguity,
Linux Audit records can report the host view
of UID and GID in the corresponding fields
of every audit record so that ambiguity will
also be resolved.

Since there is no impact, user namespace au-
diting is unchanged. Furthermore, most con-
tainer engines do not use the user names-
pace in their default container initialization
because it breaks access permission to criti-
cal libraries on the host and storage features
like bind mount may be automatically dis-
abled if the user namespace is enabled in the
container.

Time,
UTS
and
Cgroup

These namespaces do not affect dataflow in
practice and thus do not directly impact
provenance.

N/A
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Table 3.3. Provenance Soundness on Sysdig and LTTng

Name-
space

Sysdig LTTng

PID Soundness challenge persists because the re-
turn values and the arguments providing PID
semantics will be virtualized in the audit
records corresponding to process manipula-
tion system calls, e.g., clone, fork.

Soundness challenge persists if only system
call events are used in provenance tracking
system because the return values and the
arguments providing PID semantics will be
virtualized. However, LTTng can provide
the host-container PID mapping which elim-
inates the PID namespace soundness chal-
lenge.

Mount Soundness challenge persists because the data
fields providing file path semantics, e.g., name
and filename, will be virtualized in the audit
records corresponding to file operation sys-
tem calls, e.g., open, close, and read.

Soundness challenge persists because the data
fields providing file path semantics, e.g.,
filename, will be virtualized.

Network Soundness challenge persists. The data fields
having local IP addresses/ports will be vir-
tualized. Examples include the argument
(addr) of a bind system call and the trans-
lation of the argument (fd) being the socket
file descriptor of a listen system call.

Local IP addresses and ports are still affected.
However, since LTTng does not explicitly
transform the addr argument in the bind sys-
tem call to a socket address, the soundness
challenge in network namespace is less severe.

IPC Soundness challenge persists. Names/IDs of a
SYSV IPC object or a POSIX message queue
will be virtuailzed.

Soundness challenge persists. Names/IDs of a
SYSV IPC object or a POSIX message queue
virtualized by IPC namespace will be virtu-
ailzed.

User The return values and arguments of UID-
manipulation system calls will be virtualized
but soundness is not affected.

Soundness is not affected. Furthermore, clar-
ity can be achieved since the UID/GID host-
container mapping is provided.

Time,
UTS
and
Cgroup

These do not affect dataflow in practice and
thus do not directly impact provenance.

These do not affect dataflow in practice and
thus do not directly impact provenance.
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Table 3.4. Provenance Soundness in BSD Jails and Solaris Zones

ResourceBSD Jail Solaris Zone
Process BSD Jails use JID (Jail ID) to mark the pro-

cesses inside a jail. Thus no virtualized PID
is used and no soundness challenge will be
introduced.

Zone ID is used to isolate the processes. Thus
no virtualized PID is used and no soundness
challenge will be introduced.

File-
system

Ambiguity exists because filesystem isolation
is also achieved by chroot-like operation and
file path will be virtualized while the root di-
rectory path is specified by jail system call.

Ambiguity exists because a Zone needs a new
root directory to be specified.

Network This depends on what network isolation
method is applied. If bind-filtering is applied,
sockets are actually created under host net-
work stack so that no soundness challenge
would occur. Otherwise, if epair of VNET
is used for network isolation, each jail would
have a completely separate network stack just
like what happens in Linux network names-
pace. Then both fragmentation and ambigu-
ity can exist.

Both fragmentation and ambiguity can exist.
When the default exclusive-IP setting is ap-
plied, Data-link acts just like veth pairs in
Ubuntu and epair in BSD to provide the iso-
lated network stack where sockets are virtu-
alized.

IPC Ambiguity exists. POSIX IPC objects are
naturally isolated and System V IPC objects
can be isolated with specific parameters so
two IPC objects can have the same ID/name.

Ambiguity exists. System V IPC objects are
naturally isolated and two System V IPC ob-
jects can have the same ID/name.

User The same provenance effect as that in Table
3.2 will occur for jails.

The same provenance effect as that in Table
3.2 will occur for zones.

Time,
UTS
and
Cgroup

These do not affect dataflow in practice and
thus do not directly impact provenance.

These do not affect dataflow in practice and
thus do not directly impact provenance.

Table 3.5. Namespace Provenance Mapping Strategies

Namespace Affected Provenance Data Strategy
PID Process IDs Host-container mapping

Mount File paths Host-container mapping
Network Local IP addresses and ports Host-container mapping

IPC IPC Obejct IDs and names Namespace labeling

Table 3.6. Operator Annotation

Annotation Explanation
put((key,value), X) put a pair (key,value) in a mapping X

get(key, X) get the value from a mapping Y given the key
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Table 3.7. Provenance Graph Statistics Comparison (Docker)

Ser-
vice

Error
Vertices
(lost/extra)

Error
Edges

Vertices
SPADE/

CLARION

Edges
SPADE/

CLARION

Components
SPADE/

CLARION

ubuntu58 (8/50) 900 4236 / 4152 19056 / 19066 22 / 22
redis 78 (18/60) 1612 4759 / 4677 22856 / 22871 23 / 22
jenkins 55 (2/53) 133 4673 / 4581 21024 / 21026 28 / 25
node 72 (9/63) 919 4473 / 4387 19371 / 19376 24 / 21
nginx 72 (18/54) 1558 4737 / 4637 20780 / 20841 26 / 21
nginx
MT-
4

73 (19/54) 1662 7467 / 7345 40711 / 40781 32 / 26

nginx
MC-
4

376
(135/241)

7492 23875 / 23233 119128 /
119372

49 / 31

Table 3.8. Provenance Graph Statistics Comparison (rkt)

Ser-
vice

Error
Vertices
(lost/extra)

Error
Edges

Vertices
SPADE/

CLARION

Edges
SPADE/

CLARION

Components
SPADE/

CLARION

ubuntu80 (59/21) 10076 19047 / 19031 88022 / 88114 28 / 27
redis 171

(145/26)
12540 19348 / 19330 90471 / 90573 26 / 26

jenkins 99 (84/15) 10749 19441 / 19420 90798 / 90893 28 / 28
node 138

(103/35)
13334 19600 / 19575 90029 / 90125 27 / 25

nginx 85 (69/16) 10671 19666 / 19617 90885 / 91063 34 / 28
nginx
MT-
4

101
(70/31)

15272 23761 / 23721 106599 /
106754

40 / 33

nginx
MC-
4

828
(726/102)

65022 92962 / 93158 425550 /
426194

66 / 36
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Table 3.9. Provenance Graph Statistics Comparison (Mesos)

Ser-
vice

Error
Vertices
(lost/extra)

Error
Edges

Vertices
SPADE/

CLARION

Edges
SPADE/

CLARION

Components
SPADE/

CLARION

ubuntu10 (5/5) 241 28019 / 27932 76555 / 76561 18 / 17
redis 30 (18/12) 3149 19667 / 19574 59504 / 59507 17 / 17
jenkins 267

(210/57)
25453 34664 / 34560 141381 /

141387
26 / 24

node 21 (9/12) 1106 4960 / 4864 15492 / 15495 16 / 15
nginx 23 (20/3) 2389 5159 / 5067 17580 / 17582 20 / 17
nginx
MT-
4

23 (20/3) 2418 5185 / 5093 22545 / 22547 17 / 16

nginx
MC-
4

1402
(1383/19)

30304 19606 / 18817 66972 / 66982 30 / 22
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Table 3.10. Runtime Overhead Comparison of Container Provenance Systems

Service Base
(secs)

Linux
Audit
(secs)

SPADE
(secs)

CLAR-
ION
(secs)

Increme-
ntal
Over-
head
(CLAR-
ION)

Overall
Over-
head
(Au-
dit +
SPADE
+
CLAR-
ION)

Overall
Over-
head
(Cam-
Flow)

Overall
Over-
head
(SEL-
Audit)

frontend 1503 s 1550 s 1558 s 1578 s 1.3% 3.7% 4.8% 32.4%
productca-
talog
service

668 s 679 s 681 s 691 s 1.5% 3.4% 9.1% 25.0%

currency
service

1104 s 1139 s 1153 s 1169 s 1.4% 5.9% 12.9% 8.5%

payment
service

1082 s 1123 s 1126 s 1143 s 1.5% 5.6% 11.5% 9.7%

shipping
service

434 s 446 s 449 s 451 s 0.4% 3.9% 22.5% 25.8%

email
service

929 s 960 s 1028 s 1068 s 3.9% 15.0% 1.2% 17.6%

checkout
service

682 s 719 s 714 s 734 s 2.8% 7.6% 3.2% 13.9%

recommen-
dation
service

8726 s 9418 s 9337 s 9729 s 4.2% 11.5% 9.5% 19.5%

adservice 4438 s 4454 s 4518 s 4571 s 1.2% 3.0% 5.3% 8.5%
loadgene-
rator

200 s 208 s 212 s 215 s 1.4% 7.5% 20.4% 29.4%

Table 3.11. Storage Overhead Comparison

SEL-Audit CamFlow SPADE CLARION Incremental
Overhead

168.79 GB 312.56 GB 174.68 GB 181.75 GB 4.05%
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CHAPTER 4

Conclusion

In this dissertation, I elaborate a research problem in applying graph-based low-level

event analysis on endpoint detection and response system: how can we effectively and

efficiently leverage graph-based low-level system event analysis to perform intrusion re-

sponse for different platform/environment/tasks? Then I investigate this problem in two

projects, i.e., RATScope with Windows/operating system/detection setup and CLARION

with Linux/container/forensics setup.

The brief conclusion is shown as follows.

• With the Windows/operating system/detection setup, RATScope uncovers the

problem of missing arguments in Windows low-level events, i.e., ETW events,

which must be addressed so that effectiveness can be achieved. Given a detection

task, a meticulous graph pattern matching algorithm is also needed for providing

efficiency.

• With the Linux/container/forensics setup, CLARION exposes the influence in-

troduced by container virtualization in Linux low-level events, i.e., Linux Audit

events, which usually cannot be realized by people. Given a forensic task, efforts

on selecting system calls and system implementation optimization must be paid

to reach efficiency.

Some further insights can be extracted here.
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• For platforms, different systems usually have unique technical challenges related

to its native low-level auditing system, e.g., missing argument problem in ETW.

Specific technical solutions must be provided to achieve effectiveness. When

multiple native low-level auditing systems exist, we should select the one with

the best performance to get efficiency.

• For environments, different environments can introduce neglected problems when

environments are theoretically similar, e.g., OSes and containers. Those problems

could lead to severe effectiveness problems if not handled properly.

• For tasks, detection systems usually emphasize more on runtime efficiency since

response delay is an important criterion for detection systems. In contrast, foren-

sic systems pay more attention on storage efficiency because they store massive

data on disks.

Finally, my publications are listed as follows.

• *Runqing Yang, Xutong Chen, Haitao Xu, Yueqiang Cheng, Chunlin Xiong,

Linqi Ruan, Mohammad Kavousi, Zhenyuan Li, Liheng Xu, and Yan Chen,

“RATScope: Recording and Reconstructing Missing RAT Attacks for Forensic

Analysis with Semantics on Windows”, in the IEEE Transactions on Dependable

and Secure Computing, Oct. 2020, doi: 10.1109/TDSC.2020.3032570.

• Chunlin Xiong, Tiantian Zhu, Weihao Dong, Linqi Ruan, Runqing Yang, Yue-

qiang Cheng, Yan Chen, Shuai Cheng, and Xutong Chen, “CONAN: A Prac-

tical Real-time APT Detection System with High Accuracy and Efficiency”, in

the IEEE Transactions on Dependable and Secure Computing, Feb. 2020, doi:

10.1109/TDSC.2020.2971484.
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• Xutong Chen, Hassaan Irshad, Yan Chen, Ashish Gehani, and Vinod Yegneswaran,

“CLARION: Sound and Clear Provenance Tracking for Microservice Deploy-

ments”, in the Proc. of USENIX Security 2021.
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