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Abstract

This paper addresses the problem of recognizing structurally composed objects from
uncertain image-derived evidence. The solution is a pair of cooperating networks that
simultaneously segment and recognize the objects in the scene. The segmentation
problem is posed as a problem of labelling a graph that represents object parts and
their relationships at a high level of abstraction. Recognition is achieved by computing
partwise correspondence between object parts in the scene and object model parts
in a model base. The same labelling scheme is used for the recognition network. A
coupled Markov Random Field provides a single unified formal framework f{or both
labelling computations.

In the segmentation network, evidence from the image expressed as likelihoods on
the labels is combined with clique potentials representing both qualitative a priori
constraints and domain dependent knowledge. Clique potentials in the recognition
network represent constraints that enforce pairwise consistency in the matching of
parts, and coupling constraints between the networks ensure that the segmentation
and recognition decisions are in agreement. The domain problem is the recognition
of Tinkertoy objects. Implementation experiments show the framework can interpret
ambiguous scenes with occlusion, accidental alignment, and noise.



1 Introduction

Noise and the projection of a 3D world into two dimensions mean that image data
can provide only uncertain information for use in higher level visual processing, such
as recognition. Visual recognition therefore requires inference and decision making,.

In fact, at least two related decisions are required. First, the true structure of the
world must be inferred. That is, a decision about the physical characteristics of the
world must be made, based on the uncertain input information and prior knowledge.
Objects must be segmented and their physical parameters must be determined. Signal
must be separated from noise, and inferences about what caused the signal must be
made. This decision is a measurement decision.

A second decision, the recognition decision, is required to determine the identily
of the objects in the world. A match must be computed — the models that best
explain the facts of the physical world must be selected. Recognition is achieved only
when the measured world is explained in terms of what was known before. But with
uncertain information, this also requires a decision.

It has long been recognized that these problems are best addressed together. This
paper describes a framework whereby this can be accomplished directly - a single
network is used to pose and make both decisions simultaneously, in a unified and
completely coupled way.

Clearly, the decisions are intimately related. Without some decision about the
world’s physical characteristics, object identities can never be determined. So the
recognition decision depends to some extent upon the measurement or structure
inference decision. But the structure inference decision can also depend upon the
recognition decision. Determining the physical parameters of the world, especially in
the presence of noise, is by itself often an under-determined ill-posed problem. Prior
or high-level knowledge in many forms can play a role in resolving this uncertainty.
In particular, partial information about the recognition decision, such as the sight-
ing of characteristic identifying features, can provide evidence that helps resolve the
uncertainty in the measurement task. Other prior knowledge, such as smoothness
assumptions imbedded in low-level vision operations, or situation context, can also
play a role.

This paper presents a massively parallel network that computes these two deci-
sions together. The domain problem that is addressed is the recognition of Tinkertoy
objects. Both the structure inference decision and the recognition decision for Tin-
kertoy objects are posed as labelling problems. Each of the two labelling problems
is itself represented as a Markov Random Field (MRF), and the two fields (repre-
senting the two labelling problems) are connected together to form a single coupled
Markov Random Field. Prior knowledge about both decisions is represented within
the network as weights between the variables, and uncertain evidence is represented



as likelihoods at the labels. Finally, an estimation algorithm on the network is used
to infer both the true scene structure and an object-model match simultaneously.

The paper first gives some background context and a detailed description of the
network. Following this, some implementation experiments are described. The first
two experiments involve only the segmentation subnet, and demonstrate how the com-
bination of prior knowledge and evidence in a high-level representation can overcome
local ambiguity arising from occlusion and accidental alignment. The last experiment
shows how coupling the recognition and segmentation processes together can yield a
correct interpretation of a scene even when the local evidence favors the incorrect
interpretation.

2 Background

2.1 Recognition from Structure and Structure Inference

The recognition of Tinkertoy objects is the goal of The Tinkertoy Project [Cooper,
1989]. Previous work [Cooper and Swain, 1989; Swain and Cooper, 1988; Cooper,
1988; Cooper and Hollbach, 1987; Cooper and Swain, 1988] has addressed issues in
the parallel recognition of objects from structure, assuming that discrete essentially
error-free descriptions of composed objects can be obtained from images. Recognition
from structure addresses the role of parts and the spatial relations between them in
the recognition process [Witkin and Tenenbaum, 1983; Lowe, 1985; Pentland, 1987;
Pentland, 86; Biederman, 1985; Hoffman and Richards, 1986]. Because their identity
is defined primarily by the spatial relationships between simple parts, Tinkertoys
provide a convenient domain task for examining recognition from structure.

When perfect information assumptions are not made, developing a principled so-
lution to the problem of recognition from structure is considerably more difficult. One
traditional approach is to assume that the descriptions produced by early segmen-
tation processes may contain errors. Structure recognition then requires solving the
inexact matching problem for structures. Even if a reasonable definition for distance
or “best match” can be defined, heuristics of some kind must be adopted to circum-
vent the combinatorial nature of the resulting problem [Shapiro and Haralick, 1981;

Eshera and Fu, 1986].

Inferring the true structure of the physical world subsumes both the problems
of segmentation and reconstruction. Evidential approaches to these problems have
been proposed before [Feldman and Yakimovsky, 1974; Chou, 1988; Sher, 1987], but
usually with a much lower-level visual representation. Regularization methods for
carly vision [Poggio et al., 1985] exploit prior knowledge and can be framed as network
computation, but these methods do not exploit information about the recognition
computation and generally yield lower-level representations as well.



Relaxation and constraint satisfaction have often been used as the basis for the
recognition of objects described discretely [Mackworth, 1977; Hinton, 1977; Kitchen
and Rosenfeld, 1979; Hummel and Zucker, 1983]. Probabilistic frameworks for recog-
nition have also been used in the past [Binford et al., 1987; Bolles, 1977} and high-level
information has been exploited in model-based vision [Brooks, 1986]. Most closely
related to this work is the work of the Yale Stickville project [Mjolsness et al., 1988;
Utans et al., 1989]. In that work, a neural network architecture is described that
recognizes composed objects by the optimization of an objective function encoding
many of the same constraints used here. But no coupled recognition and segmentation
process was proposed.

2.2 Markov Random Fields in Vision

Markov Random Fields (MRFs) have been used as the basis of an evidential
approach to many computer vision tasks in recent years [Geman and Geman, 1984;
Marroquin, 1985; Cross and Jain, 1983; Chou, 1988]. Most of this work has addressed
very low-level representations and processes, and has used MRFs that are essentially
rectangular arrays. In some cases coupled MRFs were used, as in Chou [1988], who
showed how the segmentation and reconstruction processes could be coupled.

The theory of Markov Random Fields extends beyond simple arrays, and can
be applied to arbitrarily structured graphs like the one used later to build a high-
level structure representation. Some of the relevant aspects of MRFE theory and its
application to labelling problems are now very briefly reviewed [Kindermann and
Snell, 1980}.

Consider a set X of discrete-valued random variables X. Associate with the
random variables an undirected graph G defined as a set S of sites (or vertices) and
a neighborhood system (or set of edges) K. The random variables of the ficld arc
indexed by the graph vertices as X,. Variables are neighbors in the MRF when the
associated vertices are adjacent in the graph. In the formulation of a labelling problem

as an MRF, the variables in the labelling problem are the random variables of the
MRF.

The value w, of a random variable may be any member [; of the state space set L.
Because of the application of the field to the labelling problem, the event elenments
of the set L will be called labels. An assignment of values to all the variables in the
field is called a configuration, and is denoted w.

We are interested in the probability distributions P over the random field X.
Markov Random Fields have a locality property:

P(X; = ws| X, =w,,r € S,r # 8) = P(X, = w,| X, =wr,7 €N,) (1)

that says roughly that the state of site is dependent only upon the state of its neigh-
bors (). MRFs can also be characterized in terms of an energy function U with a
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Gibb’s distribution:
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If we are interested only in the prior distribution P(w), the energy function U is

defined as:
Uw) =Y Vi(w) (3)
ceC
where C is the set of cliques defined by the neighborhood graph G, and the V. are
the clique potentials.

Specifying the clique potentials V, provides a convenient way to specify the global
joint prior probability distribution P. The clique potentials can be conveniently
viewed as weights in a connectionist network. They provide a mechanism to express
soft constraints between labels at related variables. Unary clique potentials in ef-
fect express first order priors, while binary clique potentials express the constraints
between pairs of variables in the field.

Suppose we are instead interested in the distribution P(w|O) on the field after
an observation O. An observation constitutes a combination of spatially distinct
observations at each local site. The evidence from an observation at a site is denoted
P(Og|ws) and is called a likelihood. Assuming likelihoods are local and spatially
distinct, it is reasonable to assume that they are conditionally independent. Then,
with Bayes’ Rule we can derive:

Uwl0) = 3 Ve(w) = 3_log P(Osw,) (4)
ceC s€S

To summarize, the MRF represents a labelling problem. Evidence about the
hypotheses is expressed as label likelihoods, and prior knowledge is expressed in terms
of the clique potentials, generalized weights that express soft constraints between
spatially related variables.

Inference on the MRF network can be framed in terms of the energy function.
For example, the maximum a posteriori probability can be computed by finding the
minimum of the non-convex energy function U. Needless to say, this is a non-trivial
problem and not the focus of this work. In the experiments which follow, a determin-
istic approximation algorithm called Highest Confidence First (HCF [Chou, 1988}) is
used to find a good minimum of the energy function. This minimum corresponds to
a particular selection of labels for each variable.

3 Network Description
The design of a coupled MRF network for the segmentation and recognition of

structured objects will now be given. The constraints on the design arose from the net-
work’s two major functions: representing with uncertainty possible Tinkertoy scenes,
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and matching such scenes to object models. An additional design constraint was
minimizing the network’s complexity so that it could actually be realized.

The network description is given in five parts. First, definitions are provided for
the variables, labels and connections that specify the MRF. Then a description of the
network weights, prior knowledge expressed as clique potentials, is given. Finally, the
form of the evidence from the problem instances is described.

3.1 Variables

By far the most important part of the problem is selecting an appropriate set
of variables. The separate task of each subnet in the coupled MRF suggests that
different sets of variables be used in each part. However, the task of coupling the
decisions together is simplified if an analogous set of variables is used in each subnet.

FFor the recognition subnet, past work involving recognition with discrete perfect
data provides one starting point [Cooper and Hollbach, 1987]. A convenient parallel
formulation of the structure matching problem as a labelling problem, based on the
unit/value principle [Barlow, 1972; Feldman and Ballard, 1982; Ballard, 1984], is
to consider all possible object-model part correspondences simultaneously. In this
scheme, the variables are defined to be the object parts, and the possible labels are the
potentially corresponding model parts. This architecture, a cross-product matching
table, is common in many connectionist designs [Mjolsness et al., 1988; Goddard,
1988]. It remains to select part-variables that adequately encode the richness of
the domain. The most obvious choice for parts is the two physical Tinkertoy parts,
the rod and junction disk, but it is difficult to encode junction geometry with this
primitive part selection. Junction geometry is encoded implicitly if the slots on the
disk (discrete junction connection points) are chosen as logical “parts” rather than
the disks themselves.

But recognition is only half the problem. Simply representing with uncertainty
the range of possible Tinkertoy scenes is a difficult problem. As can be seen in
IFigure 1, even images of very simple Tinkertoy scenes contain significant uncertainty.
Part parameters such as rod length are clearly difficult to determine reliably. But
self-occlusion and noise make the geometry of the junctions difficult to determine,
and this might have a profound effect on the task of determining the identity of the
object. In short, in a real image of even a very simple part-and-junction world, the
existence, identity and parameterization of the parts might all be uncertain.

The crucial uncertainty is uncertainty about structure: what is attached to what.
In an arbitrary Tinkertoy scene, any two slots not on the same disk could be con-
nected with a rod. A convenient representation for these possibilities is to define a
set of variables called virtual rod variables, one variable for each possible slot/slot
connection. Whether or not a particular variable will represent an actual rod in the
scene will depend on the scene and the image evidence.



Figure 1: Real Tinkertoy Image

To summarize, the complete MRF will have two analogously defined sets of vari-
ables, one set for the subnet doing recognition, and one set for the subnet doing
structure inference. Variables will also come in two types: slot variables (called sim-
ply slots) and virtual rod variables (or vrods).

Formally, we specify the entire Markov Random Field X consisting of 2 sub-fields,
Xstrue and X,ecoq. Each sub-field has two types of variables, denoted X* and X%,
The variables are most conveniently described in terms of an arbitrary but fixed size
set of disks, and an arbitrary slot labelling on the disk. Thus we define the sets:

DISKS = {0,1,2,...NumDisks} (5)
SLOTS = {0,1,2,...NumSlotsPerDisk} (6)

In the following definitions, the subnet types are defined as {struc,recog}. Entitics
associated with the recognition subnet are often denoted with a primed notation. The
slots are basically defined as an ordered pair describing the disk and slot number on
the disk. The virtual rods are defined in terms of which slots they connect.

Xslot = {(struc,n,m)|n € DISKS,m € SLOTS} (7)
slo ) >
Tectog = {(recog,n’,m')|n’ € DISKS,m' € SLOTS} (8)
Xiivee = A{(struc,a,b)|a,be X5, } (9)
Xys = {(recog,d’,b)|a',b' € X3, (10)
3.2 Labels

The set of labels attached to each variable determines the decision being made in
the labelling problem. In this network there are two labelling problems, each encoded

as a subnet in the MRF. Corresponding to each subnet and decision is a different set
of variables.



Structure Inference Subnet Matching Subnet

Variables Labels Variables Labels

slots doesn’t exist slots’ doesn’t matching anything
exists and empty matches model slot X
exists and full matches model slot Y, etc.

virtual rods | doesn’t exist virtual rods’ | doesn’t match anything
exists and has length L1 matches model rod A
exists and has length L2 matches model rod B, etc.
exists and has length L3

Table 1: Definition of Variables and Labels

For the structure inference decision, the labels correspond to the hypothetical
physical parameters the parts and their composition can actually have in the world.
Thus, the labels for the vrod variables are the possible lengths of the rods, and the
labels for the slot variables describe whether the slot is empty or filled (i.e. has a rod
plugged into it). An important part of the label sets is provision for the possibility
that the parts do not exist. This is necessary to account for the possibility that what
seems to be a part is in fact an artifact of signal noise.

Formally, we can define the label sets for the variables X, .. as follows:

L5 = {doesn’t exist,exists A empty, exists A full} (11)
L% = {doesn’t exist,exists A length L1, exists A length L2, exists A length 1{33)

In the cross-product matching array, the labels of the X,.., variables are the
potentially matching parts of the same type from the model base. The label set
is augmented by the possibility that no corresponding model part can be found to
match an object part. If we call the sets of model parts ModelSlots and ModelRods
respectively, we can define the sets of labels as:

L:Ie"ctog = {{|{ € {doesn’t match anything} U ModelSlots} (13)
Lfgé’ffg = {{|l € {doesn’t match anything} U ModelRods} (14)

The interpretation of a variable in the set Xrecog having a particular label is that the
object part represented by the variable is matched to the model part represented by
the label.

The definitions of the variables and labels for both halves of the field arc summa-
rized in Table 1.

3.3 Connections: The MRF Graph

Connections between associated variables are required to represent the constraints
that can occur between entities in the problem. As in any connectionist design, it is
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Slots Virtual Rods

Figure 2: Fragment of MRF Graph. The shaded objects are the MRF sites (slots
and rods). The solid lines represent edges in the MRF graph. The virtual rods show
all the connections from one slot to slots on one other disk, as well as the dangling
rod possibility. The set of virtual rods is a clique; only some of the connections are
shown.

cstablishing these connections that encodes the essence of the computation. In the
case of the MRF, the connections define the MRF graph, and represent adjacencies
between related variables in the field.

The topology of the overall network consists of the same network replicated twice,
once for each labelling problem, and a set of coupling connections. Within each subnet
there exist the following edges, defined in this case for the structure inference subnet.

Flach slot on a disk is connected to every other slot on the disk.

aslot/slot

oirie = {< (struc,n,m), (struc,n, p) > |n € DISKS,m,p € SLOTS, m # p} (15)

Ilach slot is connected to a set of rods, each of which can connect it to any other slot.

gootlvred - — (< (struc,n,m), (struc, a,b) > |n € DISKS,m € SLOTS, (16)
a,b € X7\, a = (struc,n,m)} (17)

Finally, each set of rods attached to a particular slot forms a completely connected
subgraph.

E:Zﬁc/vmd = {< (struc,a, b), (struc,a,c) > |a,b,c € X b £ ¢} (18)

struc)

A sketch of a fragment of the graph defined by these connections is given in igure 2.
idges in the subnet devoted to the recognition labelling problem are defined exactly
analogously.

The overall structure of the net is loosely suggested in Figure 3. The coupling
connections, which turn out to primarily be connections between the corresponding
variables in the two subfields, are not shown, but are implied by the alignment of



Segmentation MRF

Slots VRods

Slots Primed VRods Primed

Recognition MRF

Figure 3: Recognition and Segmentation MRF's are Structurally Identical



the two subnets. The complete set of coupling connections is given by the following
cquations:

I,o'f(l,ztp/lift’ = {< (struc,n,m),(recog,n,p) > |n € DISKS,m,p € SLOTS} (19)
oo = {< (struc,a,b), (recog,a,5) > la,b € X3} (20)

The constraints implemented along the connections as clique potentials are de-
scribed momentarily. The non-homogeneous, non-isotropic nature of the graph struc-
ture reflects the application of MRF theory to the represention of high-level structure
and recognition, and differs greatly from traditional image-based array MRI applica-
tions. The label sets and their interpretations also differ substantially from previous
MRI" applications, which mainly used binary on/off label sets.

3.4 Network Weights: Prior Knowledge or Clique Poten-
tials

To complete the definition of the MRF, it is necessary to provide data for the
field. The evidence and prior knowledge must be specified.

In any inference problem involving perception, there are only two sources of infor-
mation: sensor evidence for this problem instance, and what was known before. In
probabilistic frameworks including MRFs, previous knowledge is expressed as priors.
The joint prior distribution on an entire MRF is expressed through the clique poten-
tials, or network weights. Domain dependent Tinkertoy knowledge, both qualitative
and quantitative, is represented by clique potentials in the Tinkertoy MRF.

Most of the constraints in the field reflect qualitative facts about Tinkertoys, and
can be considered “hard” constraints. It is convenient to describe three different kinds
of constraints, corresponding to the three kinds of connections in the network: within
the structure inference subnet, within the recognition subnet, and between the two
subnets.

Constraints on Structure Inference

Qualitative Constraints The variables and labels in the structure inference sul)-
net represent possible partwise physical interpretations of the scene. Potentially,
such local partwise interpretations could be physically unrealizable when considered
together. A set of qualitative constraints derived from the nature of Tinkertoys ensure
that the partwise interpretations are physically consistent over all the parts. Table 2
lists the 2-cliques that enforce this consistency.

Consider, for example, two slots on a disk. It is locally possible that one slot
be labelled as doesn’t exist, and the other as exists. But this situation is physically
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Clique Potential
Slot Slot
doesn’t exist doesn’t exist consistent
doesn’t exist exists, full inconsistent
doesn’t exist exists, empty inconsistent
exists, empty exists, empty frequency dependent
exists, empty exists, full frequency dependent
exists, full exists, full frequency dependent
Vrod Vrod
doesn’t exist doesn’t exist consistent
doesn’t exist exists, L1|L2|L3 | consistent
exists, L1|L2|L3 exists, L1|L2|L3 | inconsistent
Slot Vrod
doesn’t exist doesn’t exist consistent
doesn’t exist exists, L1|L2|L3 | inconsistent
exists, empty doesn’t exist consistent
exists, empty exists, L1|L2|L3 | inconsistent
exists, full doesn’t exist inconsistent
exists, full exists, L1|L2|L3 | good

Table 2: 2-Clique Potentials for the Structure Inference Subnet. Constraints enforcing

consistent structure inference
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impossible, a fact known a priori. Furthermore, slots are only connected to other
slots on the same disk, so a 2-clique potential value which discourages the formation
of this pairwise interpretation is built into the network. This constraint is reflected
in lines two and three of the table. It would also be physically inconsistent to have
two rods plugged into the same slot. A vrod/vrod clique potential expresses this fact.
Another inconsistent pairwise interpretation would be if a slot were labelled cmply,
but an adjacent virtual rod variable (representing a rod plugged into that slot) were
labelled ezists.

Quantitative Prior Knowledge While many of the constraints encoded as po-
tentials in the MRE represent hard facts known a priori, clique potentials can also
express softer constraints where it is appropriate — quantitative prior knowledge.
Clique potentials can represent the frequency with which local properties occurred in
past problem instances. For example, unary clique potentials at the labels indicating
rod length can be thought of as encoding first order statistics about the lengths of
rods in previous problem instances. Salient second and higher order features (such as
Junction geometry at a disk) might also be represented in the network. The slot/slot
2-clique potentials might represent, for example, the fact that junctions with two
rods 90 degrees apart occur frequently in Tinkertoy problems, while junctions with
two rods at 180 degrees occur rarely. In this way, statistics based on a domain of
previous problem instances can influence perceptual inference in the current problem
instance. One might think of the domain dependent prior knowledge as “smoothing”
the current evidence to a solution during the inference process on the network. Some
of the power this possibility offers is explored in the first implementation experiment.
[t should also be possible to learn the clique potential values by measuring the
frequencices of local properties over a domain of problem instances. While converting
frequency data to potentials may in general be difficult [Pearl, 1988], approximations
may yield reasonable results [Swain, 1989]. Thus, clique potentials offer a principled
mechanism for exploiting certain kinds of learnable domain dependent knowledge.

Constraints on Recognition

The variables and labels in the recognition subnet represent possible partwise
object/model matches. Again, such local partwise computations could be globally
inconsistent. The constraint in this case enforces consistency between matches of
pairs of parts. In other words, if two object parts are connected in the object, the
two model parts they respectively match must also be connected in the model. This
1s a common constraint in network-based formulations of graph matching [Mjolsness
el al., 1988]. For example, all the slots at an object disk must be matched against all
the slots on a single model disk so that they can align.
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Clique Potential
Slot’ Slot/
matches some model slot X matches a consistent slot Y consistent,
matches some model slot X matches an inconsistent slot Y inconsistent
matches some model slot X  doesn’t match anything inconsistent
Vrod' Vrod’
matches some model rod doesn’t match anything consistent
matches some model rod matches any model rod inconsistent
Slot! Vrod’
matches some model slot A matches a model rod X connected to A consistent
matches some model slot B matches a model rod Y not connected to B | inconsistent

Table 3: 2-Clique Potentials for the Recognition Subnet. Constraints enforcing con-
sistent partwise object/model matching

Note that these constraints are dependent upon the structure of the candidate
model, and are thus derived from the model base. A summary of the the 2-clique
potentials implementing this constraint is given in table 3.

Coupling Constraints

The coupling constraints between the subnets are, of course, crucial to the entire
coupled approach. These constraints reinforce interpretations of the physical world
that are consistent with explaining the world in terms of the model. Consider, for
example, the possibility that object rod “A” matches model rod “2”. Now the length
of model rod “2”7 is known. If the model rod “2” were length L1, there would be
a potential weight encouraging the physical interpretation of rod “A” as length L1.
These coupling constraints are also hard qualitative constraints derived directly from
the model, and are summarized in Table 4.

Clique Potential Values

The tables above specify clique potentials in a qualitative and somewhat vague
way. In actuality, specific numbers were used to express the qualitative constraints.
The numbers themselves are uninteresting, however, for at least two reasons. Iirst.
comparable constraints are implemented by comparable numbers in the network.
Inconsistencies were all treated similarly. Second and more importantly, in practice
once the appropriate order of magnitude was established for the representation of
the clique parameters, variations in the values of the potentials had little effect on
network performance.
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Clique Potential
Slot Slot/
exists filled matches a filled model slot consistent
exists filled matches an empty model slot inconsistent
exists empty matches a filled model slot inconsistent
exists empty matches an empty model slot consistent
Vrod Vrod’
exists, length L1 matches a model rod length L1 consistent
exists, length L1 matches a model rod not length L1 | inconsistent
exists, length L2 matches a model rod length L2 consistent
exists, length L2 matches a model rod not length L2 | inconsistent
exists, length L3 matches a model rod length L3 consistent
exists, length L3 matches a model rod not length L3 | inconsistent

Table 4: Coupling 2-Clique Potentials

3.5 Evidence from the Problem Instance: Likelihoods

To complete the network definition, the image-derivable evidence constituting the
particular problem instance must also be defined. The evidence from the image is

onr n‘f\n\ 7od ac likeli ]’1(\(\(‘](‘ at tha la ]'\c\]c in tha coogmaoantation crihnet p{\1 DV’)\’Y\I’\] tha
\)Jb 1Zed as 11KeilnNoodads at ne 1abeis 1n Ullb Dbslllblluwulull SuksCTu,. 2 UL TAQL .LIJJz, VLI

likelihood that a particular rod has length L1 might be 0.7, and the likelihood that
the rod has length L2 might be 0.1. While the theory of likelihood generation is well-
established for low-level vision [Sher, 1987|, generating fully justified probabilistic
likelihoods at a high level of abstraction requires a complete probabilistic treatment
of intermediate vision. For the experiments, the existence of a likelihood generation
operator that actually gathers evidence from the image was assumed, and evidence
was synthesized artificially. Generally the evidence was constructed from qualitative
criteria, such as “very certain”, “almost no evidence for this”, etc.

The experiments deliberately probed a wide range of input conditions including
worst cases, reflecting possible data that could arise from real images. Furthermore.
the network behavior was extremely robust to variations in the exact values for the
evidential input, reducing the significance of the fact that the data were synthetic.

A schematic overview of the entire system, showing the sources of prior information
and evidence and the relationship between the subnets, is given in Iligure 4.
3.6 Complexity and Correctness

With network algorithms, space complexity is relevant. The basic parameter of
the network is the size of the scene that is representable, in terms of the number of
available slots n. O(n?) virtual rods are required to represent all possible slot/slot
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connections, and connecting the virtual rods together ultimately requires O(n”) 2-
cliques. Some other cubic terms arise from the representation of order 3 cliques, but
the O(n?) factor dominates the space complexity.

With simpler networks, it is sometimes possible to prove correctness of a network
algorithm and to determine time complexities [Cooper, 1988]. But the problem ad-
dressed here is complex enough to require the minimization of a non-convex energy
[unction. Therefore, as is well known and expected with any hard problem, it is diffi-
cult to make substantive general statements about correctness and time complexity.
In general, performance depends upon both the algorithm used to do the minimiza-
tion, and upon the character of the energy space itself, which is defined both by the
architecture of the network and by the data of a problem instance. Minimization
algorithms were not a focus of this research. HCF [Chou, 1988], the minimization
algorithm that was used, is guaranteed to converge, has exponential worst case time
complexity but excellent performance in practice, and has been observed in many
experiments in different domains to find good minima in the energy space. Other
algorithms, such as simulated annealing [Kirkpatrick et al., 1983] or continuation
methods [Blake and Zisserman, 1987] could also have been used.

Of more interest here was the definition of a well-behaved energy space. The net-
work design, incorporating a choice of variables and constraints, is a major determiner
of the quality of the energy space. In the experiments in the next section, the energy
function appeared well-behaved, good minima were detected, and network perfor-
mance was robust with respect to variation in both the potentials and the evidence.
Other network architectures addressing essentially the same problem have reported
difficulties with energy spaces that are not so well-behaved [Utans et al., 1989].

4 Implementation Experiments

This section describes results obtained with an implementation of the MRF net-
work described above. The implementation was built with the Rochester Connec-
tionist Simulator [Goddard et al., 1988].

4.1 Structure Inference Only: Accidental Alignment

The first two experiments were designed to explore and demonstrate the repre-
sentational power of the framework, and to explore tradeoffs between the evidence
and priors in the process. These experiments were thus implemented with only the
structure inference or segmentation subnet of the complete MRF network.

The basic structure of the first experiment is given in Figure 5. The scene shows a
2D Tinkertoy scene with 2 objects, a man and his dog, accidentally aligned so that the
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IMigure 5: A Man and His Dog: schematic of image showing accidental alignment
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hypothesis that there is only one object is reasonable. (Alternative interpretations
that have been suggested include a caterpillar and a molecule with 6 atoms.)

The scene represents a non-trivial problem of representation and inference. Some
interesting features of the experiment are as follows. First, it demonstrates a scene
in which a segmentation ambiguity is present, and shows how the evidence in such a
scene might occur and be represented. Local labelling ambiguity is present and simple
to represent — for example, different rod lengths have different likelihoods. The
experiment also contains non-trivial structural uncertainty — is it one object or two?
Second, it demonstrates the way both priors and evidence combine to yield a decision.
[n this experiment, the evidence about the major segmentation decision is (by design)
inconclusive. The priors must therefore provide the information necessary to achieve
an interpretation. This represents one possible balance that can exist between the
cvidence and the priors. In some cases with ambiguous evidence, prior knowledge
alone is inadequate, and interpretation mistakes are made. Third, it demonstrates
the power of the inference procedure in resolving such an ambiguous decision problem.
The sequential trace of the inference process is particularly impressive in this regard,
because it involves a local decision-reversal. In this case, the global energy of the
later decision is better than the first decision.

The input evidence for the problem instance is presented graphically in Figure 6.
[n the figure, the likelihoods are shown for each label by bar graphs located near the
spatial hypothesis they describe. The lines are scaled to represent likelihoods between
zero and one.

T'he evidence surrounding the connection of the two objects (at point A in the
ligure) is very ambiguous. The ‘connected’ and ‘disconnected’ hypotheses both have
very similar evidence. Note that the hypothetical likelihood generator was fairly
confident about the length of the rod, just not about whether it connected the two
slots or not. (Both hypotheses have about the same likelihoods at each of their
labels.) This is an example of how true structural ambiguity is represented in the
net. Note also that the evidence at the slot hypothesis (B in the figure) is completely
ambiguous. In effect, because of the accidental alignment, the likelihood generator
would find evidence for the full label. On the other hand, a reasonable likelihood
generator would probably have knowledge about slot-rod junctions, and would thus
know that lack of perpendicularity at the junction is evidence for the empty label.

In Figures 7 through 11 the progress of the inference process on the experiment
is shown. Figure 7 shows the first few label commitments that were made: these are
the MRI" sites with the least ambiguous evidence.

Of particular interest is Figure 8 when HCF has incorrectly labelled the scene
as one object. Once the slot (the man’s ‘hip’ joint, designated A in the figure) is
labelled full, excitation energy exists in favor of some rod being attached. Then the
“connecting’ virtual rod (B) is chosen because its local evidence is slightly stronger
than that of the competing ‘dangling’ virtual rod (C.) When the connecting virtual
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Figure 6: Input Evidence from the Image: bar graphs of label likelihoods
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Figure 7: Segmentation Inference on MRF: First Few Committed States
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Iligure 8: Segmentation Inference on MRF: Incorrect vrod hypothesis “B” is choscn
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ing vrod causes change of decision
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vod 1s labelled as existing, the associated unlabelled slot D gets energy encouraging
the full label.

The slot D does not get labelled immediately. Instead, later, the slot designated
Z n ligure 9 gets labelled as full. Once the slot Z is full, if slot D were full as well,
this would commit 4 slots on that disk as full. But the set of priors used for the
cxperiment states that this particular configuration of 4 rods at a disk is unlikely, as
marked in Figure 9. This 4-clique prior inhibits the simultaneous labelling of all 4 of
the slots as full. The inhibition energy is sufficient to commit the fourth slot, slot D,
to the state empty, as shown in Figure 9. Of course, an empty slot is incompatible
with the vrod B hypothesizing connection, so that vrod gets relabelled as not existing,
and the alternative rod C is relabelled as existing and L3.

Other parts of the input evidence are comparatively ambiguous as well. The
man’s right leg, for example, has very uncertain evidence about the correct length.
(An explanatory assumption for the evidence might be that that region of the image
was noisy, so the likelihood generator had difficulty discriminating lengths.) This
uncertainty, purely local, is easily resolved by the network.

Lventually, the whole scene is correctly labelled, as shown in Figure 11.

4.2 Structure Inference Only: Occlusion

A more representative experiment is now given. This experiment demonstrates
the kind of uncertain information that could arise in a typical occlusion, and how it
might be resolved. Compared to the extremely unlikely accidental alignment that was
correctly interpreted in the last experiment, this occlusion is a much simpler problem
for the system to handle. In contrast, most vision systems make no provision for
occlusion at all.

The scene and the input evidence can be seen in Figure 12. Note the evidence
about a variety of structural hypotheses surrounding the location of the occlusion.
In order for there to be any possibility at all of a mistaken interpretation, it is once
again necessary to contrive an accidental alignment of the occluded rod and two
occluding slots. (Otherwise, the likelihood generators would not have ambiguous
local information, and the correct global interpretation would follow simply from the
evidence.)

Let’s examine the evidence relevant to the occlusion. At a high-level of analysis,
there arc two main possible hypotheses: the true hypothesis (dog occluding giralfe)
with a single occluded rod connecting the giraffe’s head to its shoulders, and the
mistaken hypothesis that the giraffe and dog are awkwardly connected. The latter
hypothesis requires two short rod’s connecting the giraffe’s head and shoulders to
the dog, respectively. Note that the local evidence about the vrods representing the
hypotheses is ambiguous; they have exactly the same likelihoods. Consider also the
evidence about the slots. On the dog’s head, the two slots aligned with the occluding
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Figure 12: Dog Occluding Giraffe, Input Evidence: label likelihoods
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rod show better evidence for full than empty. The local evidence is thus actually
ranked in inverse order to the truth.

For this problem, making a segmentation decision based on the usual simple cri-
teria will obviously not suffice. In particular, a threshold will yield the wrong answer,
because of the incorrect ranking of the evidence at the slots.

As can be seen in Figure 13, the Tinkertoy MRF eventually achieves the right
interpretation, correctly segmenting the two overlapping objects. In this problem.,
the statistically derived priors reflecting the frequency of junction-pattern occurrence
play little role. Instead, constraints propagating to the competing rod hypotheses at
the occlusion allow the correct interpretation. Consider the “giraffe neck” hypothesis
versus its competitors. The evidence at the slot at both ends of the neck is strongly
in favor of the slots being labelled exists and full. As a result, HCF commits those
states early. At this point, the connecting “neck” virtual rod is receiving excitation
energy from both slots. The competing (incorrect) hypotheses are each compatible
at one end only. As a result, the “neck” hypothesis commits to existence, winning
the vrod WTA competition, and forcing the competitors to turn off. In short, the
correct global interpretation is more compatible with the evidence, and thus has a
lower energy.

~ Qo
4.3 Coupled Recognition and Seg

The final experiment involves the same scene as the first experiment, but without
a set ol priors that assist in correctly interpreting the scene. Instead, the coupling of
the recognition and segmentation processes will yield a correct interpretation.

The input evidence for the experiment is the same as previously. Now however,
there are additional matching and coupling constraints, as suggested by the presence
of the candidate model in Figure 14.

In Figure 15 through Figure 17 the progress of the inference process on the exper-
iment is shown. Figure 15 shows some of the first label commitments that were made.
The segmentation labelling decisions are again shown by the shading of the parts in
the scene. The recognition or matching decisions are shown by the lines connecting
the model parts to object parts. In the model there is only one rod of length [.2.
As a result, unique labellings can be easily found that map each rod in the image of
length L2 to the dog’s trunk axis.

In Figure 16 the inference procedure has once again incorrectly labelled the scene
as one object, for the same reason. But local partwise matching decisions are be-
ing made in parallel as well. The correspondence labelling has matched the dog’s
shoulders correctly. Eventually (Figure 17) the correspondence of the dog’s trunk
axis propagates to match of the trunk-hip slot (‘A’ in the figure.) As a result of this,
all the slots on the dog’s hip disk become matched. At this point, because of the
correct recognition, a conflict exists. In the model, the crucial slot (‘B¢) is empty. But
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Figure 13: Dog and Giraffe: Final Segmentation Labelling
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Recognition

IYigure 14: Recognition Problem: Can a dog be recognized from the image evidence?
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Figure 15: Coupled Segmentation and Recognition Experiment, 1: some initial scg-
mentation and partwise recognition inferences
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Figure 16: Coupled Experiment, 2: incorrect segmentation decision, and some further
correspondence inferences
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of all slots at that disk, including “B”. The labelling at vrod “C” suggests slot “I3”
should be full, but the correspondence with the model dictates that “B” is labelled
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the segmentation labelling of the connecting man’s leg (‘C’) is reinforcing the full
label at B. The coupling from the recognition field labels slot B as empty, and an
inconsistency between the labelling of B and C exists. Ultimately, the segmentation
labelling is reversed and the objects are correctly segmented.

Simultaneous, truly coupled segmentation and recognition from structure has heen
accomplished for a non-trivial scene. It is worth emphasizing that in this and other
experiments the computation was remarkably insensitive to variations in the exact
values of either the evidence or the prior clique weights. This reflects the fact that
an appropriate selection of variables and labels defines an architecture with a well-
behaved energy function. Other choices may not yield equally robust behavior.

4.4 Multiple Models

The network can also process more complex recognition problems, such as those
with multiple models, and multiple instantiations of a single model. The parallel
framework for partwise matching suggests this possibility, but the coupled interac-
tion of the recognition and segmentation processes pose difficulties. Simulation exper-
iments have shown that in many cases, the network does successfully process multiple
models in parallel [Konopka, 1990]. (These results will be reported more completely
in the future.)

Multiple instantiations of a single model can be recognized in parallel. In onc
experiment, multiple instantiations of a “dog” model were recognized, even though
the scene required segmenting ambiguous evidence into the two objects. The vari-
able/label representation is designed so that each object part in the scene is assigned
a label corresponding to a model part. More than one variable may have the same
label, so more that one instance of a model part may occur in a scene.

Different models can also be matched in parallel to the object parts in the scene.
l'or example, models of both the “dog” and the “man” can be matched simultancously
against the scene of section 4.3. For multiple different models to successfully match,
a recognizable feature must exist on each to differentiate it from the others. Further-
more, the structure inference must infer the feature correctly prior to the recognition
of the object with the feature.

5 Conclusion

This paper has described a coupled network that solves the recognition problem
from uncertain information by inferring the solution to both the segmentation problem
and the matching problem simultaneously. Within a probabilistic network framework,
both the evidence and relevant prior constraints can interact to yield good global
answers to both problems, even when either problem on its own is underdetermined,
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and even when the local evidence is ambiguous or favors the incorrect interpretation.
Visual inference decisions can be computed that would be very difficult to achieve
successfully with traditional vision system architectures.

The work also demonstrates a novel application of Markov Random Fields in a
non-homogeneous, non-isotropic, high-level application. MRFs are convenient for the
representation of labelling problems, and are particularly convenient for the expres-
sion of the arbitrary spatial relationships that arise in the representation of spatially
complex objects. The coupling of two MRF's, each one addressing a different inference
problem, was extremely important to achieving a solution. The basic coupled frame-
work should also be extendible for richer scene domains, so scene parameters other
than structure can be simultaneously computed. Finally, the role of clique potentials
has been viewed as the representation of constraints, both qualitative “hard” « prior
truths and “soft” frequency-related constraints that should be learnable.
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