Northwestern University

The Institute for the Learning Sciences

LEARNING FROM STORIES:

INDEXING AND REMINDING IN A SOCRATIC
CASE-BASED TEACHING SYSTEM FOR
ELEMENTARY SCHOOL BIOLOGY

Technical Report # 43 - July 1993

Daniel Choy Edelson

Established in 1989 with the support of Andersen Consulting

NORTHWESTERN UNIVERSITY

Learning from Stories:
Indexing and Reminding in a Socratic Case-Based Teaching
System for Elementary School Biology

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
for the degree

DOCTOR OF PHILOSOPHY
Field of Computer Science

By
Daniel Choy Edelson

EVANSTON, ILLINOIS

June 1993

This work was supported in part by a grant from the IBM Program for Innovative Uses of
Information Technology in K-12 education and by the Defense Advanced Research Projects
Agency monitored by the Office of Naval Research under contract N00014-91-J4092. The
Institute for the Learning Sciences was established in 1989 with the support of Andersen

Consulting. It receives additional support from Ameritech and North West Water, Institute
partners.

© Copyright by Daniel Choy Edelson 1993
All Rights Reserved

ii

Abstract

Learning from Stories: Indexing and Reminding in a Socratic Case-Based Teaching
System for Elementary School Biology

Daniel Choy Edelson

Good teachers teach with stories. To reproduce this effective teaching technique in a
computer-based learning environment, we have developed the case-based teaching
architecture. A case-based teaching system uses artificial intelligence techniques adapted
from case-based reasoning research to teach by presenting stories in context. That context is
established by a task environment which provides a student with a naturally motivating task
and an engaging environment for pursuing that task. A storyteller monitors the student’s
interactions with the task environment, looking for opportunities to present stories that will
help the student to learn from his or her situation. Learning from stories provides students
with cases that support the natural process of case-based reasoning.

The challenge of constructing a case-based teaching system lies in developing a scheme
for indexing the stories in the storyteller’s library and in implementing algorithms that will
allow the storyteller to identify appropriate stories when they are relevant. To retrieve
these stories, a case-based teaching system employs reminding strategies. Reminding
strategies enable a storyteller to identify and retrieve stories to serve specific goals.
Reminding strategies rely on a sufficiently expressive indexing scheme for labeling the stories
in a story library.

In this dissertation, I present the case-based teaching architecture and propose several
general reminding strategies. These have been used in the development of Creanimate, a case-
based teaching system that teaches animal adaptation to elementary school students . Its
task environment invites a student to create a new animal and engages the student in a
discussion of how his or her invented animal might survive. Its storyteller possesses a library
of dramatic video clips showing actual animals in the wild. These video stories are presented
as illustrations of the principles that arise in the discussion of the student’s animal.
Creanimate uses thought-provoking questions called explanation questions as the basis for
dialogues that establish a context for learning from stories. Creanimate employs three
general reminding strategies: example reminding, similarity-based reminding, and
expectation-violation reminding. Its story library is indexed according to the principles of
animal adaptation that the stories illustrate.

Acknowledgements

I've always considered the acknowledgements to be the most interesting part of any
dissertation. It is the one part of the dissertation where you get a feeling for the writer as a
person with a life, family, and friends, and an academic environment as being a community of
individuals with personalities. So, I hope you will indulge me if I go on longer than I probably
should.

[wrote the first draft for this acknowledgement in October 1988 in my second month in
graduate school. Ihave that draft in front of me now as I write this. At that time, I did not
know what my research was going to be or even who my advisor would be, but I had already
started to think about the support that had been necessary to get me to that point. That
acknowledgement went on at great length about the excellent teachers I have had at every
level and how they shaped me and my research interests. I had the good fortune to attend one
of the best public school systems in the country, and my experience left me a strong believer in
the potential of public schools. I realize my experience is the exception not the rule, but it is
an important part of the reason I am committed to a career of research in improving education.

The Institute for the Learning Sciences has been a terrific environment in which to be a
grad student. It is an exciting place, full of bright people who care deeply about their work.
The credit for creating this environment goes entirely to Roger Schank. An effective
organization requires a strong vision, which ILS gets from Roger’s bold theories, philosophies,
and personality. They provide ILS with its life and its liveliness.

Roger’s role in my time here has gone far beyond simply establishing an environment for
me to work in. He is a wonderful teacher who knows how to set a balance between giving a
student space to explore and a structure to hang on to. He takes the advising part of the
advisor role extremely seriously. In fact, advising is the point where his academic interest in
stories and his natural gift for storytelling come together. He gives great advice, and it
invariably comes in the form of a story. Iintend to continue to rely on him for advice for as long
as he’ll tolerate me.

Other faculty members have also played significant roles in my academic and personal
development. It appears that no dissertation written in our lab in the last decade fails to
mention Larry Birnbaum as a key influence in the writer’s experience. Iam no exception. 1 owe
my interest in Al to Larry who gave me my first taste for it while I was an undergraduate at
Yale. He has an enthusiasm for the issues of Al that is irresistible and infectious. In the same
way that Larry gave me my grounding in the issues of A, Allan Collins introduced me to the
issues of education. He has been a valuable supporter of mine over the past three years and
has been there when I needed him for insight and guidance. Bill Purves, professor of biology
and consultant on matters biological, deserves much credit for shaping this research early in
its history and for helping me keep perspective through his sociological insights from afar.
Two faculty members that served as lab heads for the Creanimate project also gave me
valuable input and support. They are Chris Riesbeck and Ray Bareiss. Alex Kass, though he
never played any official role in my education or research has been a constant source of ideas
and advice.

Faculty members play an important role in the life of a grad student, but it’s the other
grad students who are down in the trenches with you who carry you through. I've had a string
of great officemates who were all able to guide me through the strange culture which I have
joined. Chris Owens, Bill Ferguson, the Erics Jones and Domeshek, and Dick Osgood are all
older and wiser than I, and helped me through various mine fields.

I believe the members of my entering class share a particularly strong bond because, in
addition to the usual trials of classes and quals that we endured together, we were the
adventurous first-years who pulled up our newly planted roots from New Haven and made the

iv

trek to Evanston. Ours are the first Ph.D.’s to be granted at ILS, and we have had the
opportunity to set precedents, rather than follow those set by others. I think Matt Brand,
Michael Freed, Kemi Jona, Enio Ohmaye, Dick Osgood, Louise Pryor, and I will always think
of ourselves as the trailblazers.

I have made friends and established important professional relationships with dozens
of grad students and staff members at ILS, as well as their spouses. Some of the people I feel
most indebted to are Andy Fano, Rebecca Handel-Fano, Diane Schwartz, Liz Gearen, Laura
Reichert, Tracey McCurrach, Doug MacFarlane, Judith Fraivillig, and Ben Bell. In addition, I
would like to thank the non-academic members of the ILS community who have played
central roles in getting me through my years here: Michelle Suran, Elizabeth Brown, Teri
Lehmann, Celia McNaughton, Grant Beadle and Heidi Levin. In the last six months, [have
split my time between finishing this thesis and managing a new project. I appreciate the
assistance and understanding of Roy Pea and the rest of the CoVis team during this time.

My family also deserves acknowledgement. I've been very fortunate in my life, but with
the few obstacles I have had to face, I've had tremendous, loving support from my them. My
parents laid the groundwork, but it is my wife Vivian who has been there with me through
each and every day of getting a Ph.D. Vivian has been a constant source of strength and has
made even the hardest stages of this process a joy. In the years that I've been in graduate
school, my family has doubled in size. In addition to the brothers that I started out with, I
now have sisters-in-law and parents-in-law. My brothers, their wives, and my in-laws have
all helped me to get through in ways big and small.

My final (non-financial) acknowledgement goes to the other people who worked on
Creanimate. One of the great things about ILS is the opportunity, as a grad student, to work
with a team of skilled and dedicated professionals. They are the ones who did the real work
described in this research. I mainly got it started and tried to keep it all together. The lead
programmer on Creanimate over the years has been Riad Mohammed, who proved able to do
anything I could do, only better. Diane Schwartz was responsible for the interface design and
the artwork. Other programmers who worked on the user interface at various stages include
Charles Earl, David Newton, and Ken Greenlee. Bob Kaeding was the indexer who put the
knowledge in Creanimate. He was the final link that enabled us to put the whole thing
together. Several other grad students worked on Creanimate in various capacities. Ben Bell
wrote Creanimate’s first parser. Will Fitzgerald wrote its current parser. Ian Underwood
gathered and partially indexed the first set of video clips. John Cleave wrote the code for one
of the most important dialogue plans.

Finally, research does not happen without funding. In my case, I received personal
support from Defense Advanced Research Projects Agency monitored by the Office of Naval
Research under contracts N00014-91-J4092 and N00014-90-]-4117. The Creanimate project
itself was funded by a grant from IBM through their Program for Innovative Uses of
Information Technology in K-12 Education. I think their willingness to fund experimental
educational systems shows an authentic concern for the future of education in our country
beyond their own business interests. 1am also very grateful to the National Geographic
Society and the Encyclopaedia Britannica Educational Corporation for allowing us to use their
footage in Creanimate. The Institute for the Learning Sciences was established in 1989 with
the support of Andersen Consulting. It receives additional support from Ameritech and North
West Water, Institute Partners.

Table of Contents

ADSITACE ettt ettt et et et e e et e iii
ACKNOWIEAGEMENLS ..ottt sttt ee e e e et e e e iv
List Of TIIUSETAtioNScveviiiiiitiiicic ettt ettt e enes ix
List Of TabIeS.c..ccooiiiiiiiiicc ettt et e xi
Chapter
1 INErOAUCHON ..ottt et et s e 1
LT GOAIS .ottt ettt e eane et sraeeraeens 2
1.2 The CreANIMate SYStem..........coceceeverrurnnrcrieeuninenneneesiestesseessessessessnesseas 4
1.3 The Case-based Teaching Architecture...........cc.ceceeuererenresrenrereerresnereenen. 27
1.4 About this Dissertation..........coeeveeeremieieeeseneneesensensesssssessessre e esesnens 30
2. Teaching with Stories and QUESHONScvveeeeerreeeeeereeeesrerreeeeessrresseseseesssssssseeeses 32
2.1 Teaching with SOTIeSs.........ccceeiriiverierirerinireieet et 32
2.1.1 Teaching with Stories: The Role of Context............cccververnennnene. 33
2.1.2 Learning from Stories: Case-Based Reasoning...........ccccoueuvnunannn 36
2.1.3 The Computer: A Platform for Teaching with Stories................ 39
2.14 A Definition of StOry.......cccccviiiviinvcrinineceereceee e 40
2.2 Teaching with QUESHONS.........coceeriirniiniieiieerienreere e 43
2.2.1 Questioning and Understanding............cccceeveveueeeerernnernensesenne. 43
2.2.2 Questioning in an Instructional Interaction...........cceecovvveuinennee. 45
2.3 SUMIMATYoovvirinrineiririsiiieeeseteesretesesessessesebesessesessensssessessassensoneenesns 46
3. The Case-Based Teaching Architecture...........ccccevvevrvieenenrinricreicreeeeeeecreene e 48
3.1 Active Learning: The Task ENVIrONMENtc.ccovevecereererverenirieneeresnrnnsennane 48
3.1.1 Forming and Exploring Hypotheses............cccevuevurrerurienrnnrennnns 49
3.1.2 Opportunities for Learning.........cccoeceeveervrsrnrrrerresseseseeernsenensens 50
3.1.3 Authenticity......ccccoiiiieiiiniiniiiiniceee e 52
3.1.4 Student CoNtrolc.oeviiiiiiiiiiiecie e ste e see e e sereenr e 54
3.1.5 Student Motivationccccviiiiierinieniiiciececsee e seiecsneeas 55
3.1.6 Some Designs for Effective Task Environments............ccccceeeurenn. 58
3.2 Learning from Stories: The Storytellerccccoeveverienierenrennresrennennn. 59
3.2.1 Story Selection..........couceiviiiincneierentnieeceene st 60
3.2.2 Communication with the Task Environment..........ccccorsurrerrnen. 65
3.23 Indexing Vocabulary.........cineecrencsenereneneneneesenn. 66
3.24 Reminding Strategiesccoccevievcrinicricneeniinnireieneeceennn, 68
3.2.5 Presentation of Stories: Bridgingc..cccceverercuccennenneevcnnnnn 70
3.3 Combining a Task Environment with a Storyteller........cccccceeeerevereureevrennne 71
3.4 SUMIMATY ...oooiiiiiiiieiiiiii ittt et et e e st e ssteestae st seesaesnsnaesssesnsesens 72
4. Reminding Srategies............ccoviiviiiciiiiieiienenente ettt et 73
4.1 Example Remindings.........cccoovuiviiviiiiiicvinniniecine st seeneeveseesessas e 74
4.1.1 Correct Answer Remindings........coeevvvuriererivescreenenmencneeceeeernenens 76
4.1.2 Incorrect Answer Remindings........c.cccouevececrererccrnmunrnencncrceennenen. 77
4.1.3 Suggestion Remindings.........cccoeeueverrueicrieescnennnieneenenreesvoens 79
4.1.4 Identical Example Remindings..........cccouvveuiviuereerirmrmnecineecnnnneee 80
4.1.5 Bridges for Example Remindings............cccoevvveivniriiniiniccnnnnn 81
4.1.6 The Role of Example Remindingsccoecerriruerisieeecrcnnnnnns 83
4.2 Similarity-Based Remindings............cccceeuiviieicinienineiiireniceesencessneene 83
4.3 Expectation-Violation Remindings..........c.ccoeeeveevenienneinsensiennnnneesenennin 85
4.3.1 Only-Rule and No-Rule Remindings.........c.cecourmiverereureererrennnnees 86

vi

4.3.2 All-Rule Remindingscccoovvvviiiiiiniieiiiiece e 87

4.3.3 Standard Expectations...........ccccceeiveerrerseesinnsrereeeesnsennennenans 88
4.4 SUMMATY...cotiiimiiiiiniicectccetese et ee st e e s e sanssesesre s enseseessssenne 89
5. Reminding AlGOrithms............cociiiiiiiiiiiiciicne e 91
5.1 The Indexing Vocabulary: An Overviewcccccceervuervvirnieninnnnnenninennnd 91
5.2 Example Remindingsceoveeniiiiiiiiiiniiiiiicicccnee e 93
5.2.1 Indexing Information for Example Remindings...........cccoceveueencns 93
5.2.2 The Example Reminding Algorithm...........ccccccevinencnnnencnnns. 94
5.3 Similarity-Based Remindings..........ccccecerirvemvueneeviinvenieniinieesrineeienseanns 98
5.3.1 The Original Similarity-Based Reminding Algorithm............... 99
5.3.2 The Improved Similarity-Based Reminding Algorithm............. 105
5.4 Expectation-Violation Remindingscccovviriiriiiiiiiecninecesnnnenneenns 109
5.4.1 Only-Rule and No-Rule Remindings..........ccccceeeccniinrnseereennnneee. 109
5.4.2 All-Rule Remindingsccccevvviiiiiiiiiiiiiiiiiccneciieeec e 112
5.5 Precedence of Reminding Strategies..........cococvveuvevremineneeeesinnecscscnseuennnes 114
5.6 SUMMATY....ccuiiiriiiiiriiiinictctitees ettt sessassee e sseseassesaesseeseenssssessenes 115
6. The Socratic Dialogue Manager.............cccccoviiieniieenecnnneienrenenieseesseessesesssess e e enns 117
6.1 The Dialogue Cycle........cccoiviiiviniiieniiniereniecene et 117
6.1.1 The Origin of the Dialogue Cycle..........cccvivveeerenenecrereneenns 117
6.1.2 The Steps in the Dialogue Cycle.......cooivievmrenerevcerrnemerecnene. 118
6.1.3 Variations from the Basic Dialogue Cycle.........ccccevvvurrrueenns 122
6.14 Scriptedness Versus Disorientation in the Dialogue Cycle.......... 122
6.2 The Creanimate Dialogue Plans.........ccccovviiennnnnrienicreeecneneneenenenenes 124
6.2.1 Why Feature Dialoguecccoovueriiiiieiceniiirceeeeiesneee e 124
6.2.2 How Action Dialogue..........cocvviiinuininriiiiinenicnieecceneeneeeneens 127
6.2.3 Check Action Dialoguececuiiiiiiiiiniinnccienieeecinecie e 129
6.2.4 Why Action Dialogue.......c.ccoeeveiiiiiiiiiiiiiiiiiciniiccnnnccecene 133
6.2.5 How Behavior Dialogue............coceviiniininmieninenieneeeinneeneennens 135
6.2.6 Why Behavior Dialogue...........ccccevvniiciiiienininniiicniiinseceniens 140
6.3 Implementing the Dialogue Managercccooviiiiniiiiineinnneeenns 141
6.3.1 Initiating Dialogues: Selecting Explanation Questions.............. 141
6.3.2 Asking and Answering QUEStONScccccereirieriiiecreenreenneeneenne 143
6.4 SUMMATY....cciietiiiiiciri e e e st ae st ae s 147
7. The Indexing VoOCabUIATY......ccococimiriiiveiintintiinesrsesteseesentessese et eassseensesessnsssnnes 149
7.1 Design Considerations for the Indexing Vocabularycccccvvverniinnnenn. 149
7.1.1 Minimal Representationcccovveeviiriuniinncecnennneecncenneeene 150
7.1.2 Primacy of Pedagogy...........cceruveririnirririmnminininienisnssssssisssssienees 151
7.2 The Creanimate Knowledge Representation: An Overviewc......... 151
7.3 Representation Issues in Creanimateocceevviiiviiiiinenncincneneseeeeeeneens 154
7.3.1 Expressing the Requirements of Objectscccvervneiinecnnennnenne 154
7.3.2 Expressing Specific Aspects Of Similarity...........cocccecvniininncnne. 159
7.3.3 Relationships Involving More Than Two Objects..........cccceeuveeeee. 161
7.3.4 Recording Subjective Impressions...........cccevueeviinirineincnnnneinnnn 163
7.3.5 Controlling Search........ccooviniiininininininiiic e, 165
7.3.6 Generating and Understanding Natural Language...................... 167
7.3.7 Minimal Representation Revisited.........cocovvrrrervvviiiininiennnne. 170
7.4 Unresolved Representation ISSues..........cccooviniiiinininiiniicccnenivcncnnccnnes 171
7.5 SUMIMATY..coiiviiiirieiriniietineiiiit sttt e esaest st e sesbe s e e e emeenes 171
8. Indices and the Indexing TOOL.......ccocouriomirremeieiniitiriiic e 173
8.1 The Structure and Use of INdices..........coouvviiviiinininininnncccnnccienne. 173

8.1.1 The Primary Slots in Indicescccccvvvrivnvvenvieciiieeeeeeceee e 174

8.1.2 The Secondary Slots in INAiCeSc.covveeeirrerenereeririereeceeeeeenees 175

8.1.3 The Indices in Creanimate...........cccooueuevieeeriereeiiieiee e 176

8.2 The Role of the INAeXerccocoueeeurueeriniirieieieese ettt 177

8.3 The Creanimate Indexing TOOL..........ccccovevrerererererernirirsisie s 179

8.4 SUMINATY ...oonriiteiitiiicirctcte ettt st s et st eesne e 189

9. Perspectives on Creanimate and Case-Based Teaching...........coevvueururverevererrnnnnen. 191

9.1 Related WOTK......couiiiuiiiiiiiiiiniiiecccntnierini ettt 191

9.1.1 The Case Methodooieveviiminienenenirni et 191

9.1.2 Case-Based Reasoning............cc.ccvueviimiruniiencceenienieneenneneennnnneas 192

9.1.3 Computer and Multimedia Learning Environments..................... 194

9.2 Future DIrections..........cocvciiiienceencrenteninnnresiniereeressessesssesesssseesssessessones 199

9.2.1 Extending Creanimatecooeivueeceenneeenniennnnnneesiesnreesnnnens 199

9.2.2 Beyond Creanimate.............occeevverieeneenernrerinereesesnseenseesssenseenns 203

9.3 CONCIUSION vttt ettt 205
Appendix

A. The Components of the Indexing Vocabulary............c..ccceooveerirevrrerrieeeererereeennn. 207

1. The Creanimate OBJECSc...cevvveereercnreriniiniirinieieeneereeseteneesressereseseeeeesae 207

1.1 ANImalS...iiccicc s 207

1.2 FEature......coovvviiiiiiiiiiictc et e 207

1.3 ACHOM ..ttt e 208

1.4 Behavior......cooviiiiiiiiiiiiiiccee s 208

1.5 PhyS-Objuccuiiciiiiiiiiiiccirictniennctnestsssse et 209

2. The Creanimate Relationships.............cccoevevveeerrerenncrnennieereiee e, 209

2.1 Feafun ...c.oviiiiiiiiiiici et 209

2.2 PlaNuccccieee e et 209

23 BPIaN ceciircrc e et e 209

24 AllFRule....oii et 210

25 Only-Rule.....uiieiiniiiiiirccieitccnte ettt ene e 210

2.6 NO-Rulen......oiiiiircrctcctecnnr ettt ae e e 210

B. Sample Creanimate Object Definitionsccueeeeerierereiereereesrereeeneecereseeseseenne 211

Lo ANIMALS o et 211

2. FALUIES ..cvviiiieiiciei ittt et e n 215

B ACHONS ettt sttt et eneene 217

4. BeRAVIOTS ...cooiiiiiiiriici ettt ettt er e 218

C. Sample Creanimate Index Definitionscccccuvueerureressereeeeereereres et eeeaeas 221

1. Tiger Captures Deer.........cocociiieiiiiiiiicieniieseeeiestesce e e et r e 221

2. Tapir SMEIIS.....coiinriiiiiictititiii et sb et esnens 222

3. Cranes DANCE........cceeviiiuiiiiiiitit ettt ettt e st a e nr s 223

4. Jaja Billabong Shades its EGES.........cccueermieneeeninricenieietnnserseriesneeeneeeenneees 224

5. SalmON JUMP....ocuiiiiiiiiiiciiii ettt e 225

D. User Control Buttons in Creanimate............ouccueereeeueriirierecnsieensinescresseneeennsensns 227

E. Transcripts from the Pre-Creanimate THalsccceovervivvenrerinerenreesensneeeesresrneneens 230

1. The Experimental Settingcccoevveeuieiinieniiniccneeneneennenseenrssneseennns 230

2. TranSCriPt oottt 230

3. TranSCriPt 2 cccevininieiin ettt s s 236

4. Transcript 3 ..ot 240

REETEINCES ..cceeiiiiiiiite ettt bt v se s e e e e 246

viii

List of Illustrations

Figure 1. A sample screen from the Creanimate programi..........cccceceveveererresvsneevesesesererseenns 7
Figure 2. The title SCTeeN........cc.ciiiiiiiiiiiiicieincecte ettt et et v v 8
Figure 3. The introduCton SCIEEN.......c..cccccrmrirriniririrnenninrereeie st esesesessssesssesesssssssasasnns 8
Figure 4. Choosing an animalccceuiuceeeireceniininnneen e s esere e eeessss e snene s 9
Figure 5. The "Before” PiCtUIe...........cocieviviieriiiiiininiccnteeet et se et eve et 10
Figure 6. POSING @ QUESHON.........cceiiiiiiieiiiciciieestrtcieeetstsae sttt en s s 11
Figure 7. Typing in an answer t0 @ qUESHON..........ccceecereererrerrieenreeseeeeree st eeeseresseaeseeeas 12
Figure 8. Introducing @ VIOcooeiiiiiiiniiiiciicccntnene ettt 13
Figure 9. Seeing a video StOTY.........ocuiiiiiiciiiiiniiiicene ettt s 14
Figure 10. An additional @Xample.............ccvuvmeuiniriruercntnrienieieninnsnteresis e ssesnesesseressesennes 15
Figure 11. A commitment POINtcccuiuiiiiimiieeininiencntereictetete st eae e e ne s s enseaeea 16
Figure 12. A S€CONA UESHON....c.u.cvcteiiescicicicice ettt et ses s sssn st sbestns 17
Figure 13. An example fOr an inCOITECt ANSWETcc.ccervereirrrrrrenreeereeeressesseseseeseserenneneneas 18
Figure 14. A menu of VIAEOSciuiriiiiiiiiiiiiiciiieceneet sttt 19
Figure 15. AdVertising a STyc.coiiiiniiiiiiiiiiiceniceectereseit it v v e e 20
Figure 16. Choosing Where t0 80 NEXt........ccoevurecrermeemrermeuersesssssssssessesssessssssesssessenssesens 21
Figure 17. Another story about JUMPINGcceueuereermmmierrenieiei e ere st eseeeses e 21
Figure 18. Suggesting an anSwerccouceruereeeninienirinnietisteee et see e seeseeesneeneeane 22
Figure 19. A commitment point for the second qUESHONccccevuervierirrirrreireeee e 23
Figure 20. A NeW qUESHOMcviriiuiiiiiiciitiiici ettt ettt ete s ese e sa e e esae v e e essens 23
Figure 21. The Creanimate User Control button pad..........ccceceeeeereeenreneneesueneneerieneasaeennns 24
Figure 22. SKip thiS OPHONS.......cceciiiiiiiiiiiiicie sttt sre e s e e e e sraeas 24
Figure 23. An "after” PICHUTEcviueeiiiiiicicetct ettt ettt 25
Figure 24. The button palette from the Creanimate user interface showing the User

CONTOL BULLONS ...ttt et ea e st s s s et sa b aeereseenennen 55
Figure 25. A portion of the Creanimate screen showing a bridge to a correct answer and

the accompanying picture of the animal in the StOrY.......ccocoreereerervesereecineinneeernsssnesrenns 82
Figure 26. The abstraction hierarchy of features beneath the feature wings............ccceceeuen... 96
Figure 27. Hlustration of the search order in cousin SEarch.......ccccceeeveervrenrirrreeerennreeeeeseeneenns 103
Figure 28. The hierarchy of features beneath the feature color pattern...........ccccevververreennn.. 104
Figure 29. The hierarchy rooted at the feature mouth...........cccccereeviiieiiinniiiinneennne e, 107
Figure 30. The abstraction hierarchy beneath the action tear..........c.cocveniriineencrninrescecnnnn 108
Figure 31. The hierarchy of animals that are abstractions of the animal white

breasted S€a @ale.........ucuicuieiiiiiiiiiiiii ettt srae e e srae s anbeas 113
Figure 32. A flowchart of the basic Dialogue Cycle in Creanimate........ccoccoeeeeecrrecmrcerennenne 121
Figure 33. The abstractions of the behavior avoid prey detection.........c..ccouvvereveereenieennncns 133
Figure 34. The hierarchy of behaviors that comprise hunt..........ccccceciviriinvincnienecnenins 136
Figure 35. The behavior tree for fight..........coiimiiiecincinicncnennnenicneseesesieiseieesnanns 140
Figure 36. The hierarchy showing the parents and children of primate.cccccooerreeenrnn. 153
Figure 37. The behavior hierarchy beneath hunt..........cccocuivvieiiinieiniiniiininnieciinieeiencne 158

Figure 38. A screendump showing a hierarchy browser at the lower left and a frame

ix

EAIEOT ADOVE Th...eeiiiiiiiiirieeereiiiiissctie ettt eeveseeseserereessassneessesssssssnen s e eees s se e eeeeeeeeee e oo 180

Figure 39. A browser window for the feature horns..........cocecuevevveiineeieieeececee e, 181
Figure 40. An editor window showing some of the slots in the frame representing the

ANIMAL AT ...ttt st et e s sae e 181
Figure 41. An indexer adding a value to the behaviors slot of the animal bear..................... 182
Figure 42. An index for a story about octopi fighting over territoryc.ccovvvvevevrvenennse. 183
Figure 43. Creanimate being tested by an indeXer..........cocoveruevereereriieriieree e 186
Figure 44. The tool for testing the natural language generator................cooouvveveveverrruenenenn. 187
Figure 45. The tool for testing the Parserccecveerrseminnrssesnesesecee e sssesenns 188
Figure 46. The Creanimate clip editor..........oovivuiuereeecrinieirisereten e 189
Figure 47. The button palette from the Creanimate user interface showing the User

COMETOl BULLONS ...c..ocuvtitiniiicite ettt a ettt sttt s eneneneenenees 227

List of Tables

Table 1.-A list of videos that could appear in a discussion of a frog with a beak................... 64
Table 2.-Some of the questions and answers that a story about a woodpecker pecking

could be used to IHUSEAtecuvviiiiiiiii 68
Table 3.-The Reminding Strategies in Creanimate.............coccevenivniiiinoniniciinciiinieiens 74
Table 4.-The constraints that apply to correct answer, incorrect answer, and suggestion

example remiNdingSc.ooeviviiiiiiiiiii e s e en 97
Table 5.-The two step process of the similarity-based reminding algorithm.........ccccccevuuunnes 101
Table 6.-The target concepts for weak and strong similarity remindings to follow the
“See-Through Shrimp” SOTY........ccovuiiiuiiiiiiiinieiiiii e s 102
Table 7.-The identification of explanation questions that apply to a student’s animal 142
Table 8.-The average number of values in each of the primary slots in the 206

Creanimate indicesccouiiiiiiiiniiniinini s 177
Table 9.-The number of objects of each type that appear in indices.........c.coovvivivnriiniiriinnennn. 177
Table 10.~The results of adding the feafun raptor's beak in order to tear meat to a story

about an eagle eating a fish.........ccciiviiiiiiniiii 185
Table 11.-Similarities between the processes of case-based reasoning and case-based

EEACRINE coiiiice e 193

xi

[This page intentionally left blank]

xii

Chapter 1

Introduction

Suppose you could create a new animal by taking an existing animal and
changing it some way. What would you make?

This invitation is offered to children by Creanimate, the computer-based learning
environment which is the subject of this dissertation. The student's response to this question
forms the starting point for a discussion between child and computer in which they collaborate
on a design for a new animal. Their dialogue is accompanied by dramatic video clips of real
animals in the wild that illustrate the principles of animal adaptation. To set the stage for
the discussion of Creanimate, I would like you to consider the following question.

Suppose you could create a new computer-based learning environment by
taking emerging technologies and applying them in new ways. What
would you make?

If you were an educator, you might say:

It should be responsive.

It should help children to learn to ask questions.

It should get children interested in new subjects.

It should help children to learn from their mistakes.
It should challenge children to think for themselves.
It should let children explore at their own pace.

It should encourage creativity.

If you were a researcher in computer science, you might say:

It should have data structures for encoding the subject matter.

It should have algorithms that implement effective teaching strategies.

It should have a clear, easy to use interface.

It should take advantage of a computer’s graphical and multimedia capabilities.

If you were a parent you might say:

It should help my child develop self-confidence.
It should encourage my child to be him or herself.

It should help my child to develop skills that will enable him or her to be
successful in life.

If you were a researcher in education you might say:

It should operate according to an underlying theory of instruction.
It should have empirically demonstrable results.

If you were a child you might say:

It should be fun.

It should be easy to use.

It should let me be in charge.

It should have flashy graphics and video.

It should teach me things I am really interested in.
It should be fun.

In developing the Creanimate system, we have taken into account the perspectives of all
the constituencies above: educators, parents, computer scientists, educational researchers, and
children. The task we have set for ourselves is to create a learning environment that satisfies
all their requirements, especially those of the child. For if children don't like it, a learning
environment should not be considered successful.

1.1 Goals

The requirements for effective teaching can be summed as three criteria: correspondence,
engagement, and responsiveness. These criteria express the fundamental goals of this
research.

Correspondence. Teaching methods must correspond to the natural learning
mechanisms of the student.

Engagement. In the course of learning, a student must be involved in the pursuit of
personally meaningful goals. Engagement provides a student with a framework
for integrating knowledge and a motivation to learn. The direct result of
engagement is empowerment.

Responsiveness. Instruction must respond immediately to the actions, interests,
and concerns of each student.

Admittedly, this is an ambitious task. Most researchers concern themselves with only
one of the constituencies listed above, and many do not achieve even one of these criteria for
effective teaching. However, the future of education is a serious concern, and it deserves
ambitious efforts.

Before we go any further, there is an important question that must be answered. The
goals of correspondence, engagement, and responsiveness may be important, but why would we
use the computer to reach them? The answer is that computer technologies, specifically
artificial intelligence and multimedia, offer a unique opportunity to improve on current
educational practice. Current practice has fallen short of these goals either because of the
limitations of technology and resources or because of misplaced priorities.

Correspondence. Achieving correspondence requires that educators have a model of the
way a student learns and that material be presented in a manner that is consistent with the
model. Many current practices came from theories of learning based on outmoded
psychological ideas; other, better theories have not made it into classroom practice as much as
they deserve. Teachers and curriculum designers facing economic and political pressure often
lack the resources and expertise to develop theoretically sound educational materials.

Engagement. To achieve engagement, each student must be allowed to pursue personally

3

meaningful goals and exposed to subject matter in the pursuit of those goals. If you capture the
interest of a student through goals that engage him, then he is motivated to learn the
material that will help him to achieve those goals. Engagement is difficult to achieve in the
context of current, highly structured curricula whose relevance to students' lives is difficult to
ascertain. Too often the goals that students are presented with in order to motivate their
learning are not meaningful to the student. The worst motivational goal is, of course, good
grades, but even educational designers who appreciate, in principle, the importance of
engagement have produced silly games in which the student must do things like solve
arithmetic problems in order to slay a giant. In these contrived games, solving the problem is
irrelevant to any personally meaningful goal of the student's. The goal a student pursues in
learning must be both intrinsically motivating to the student and be sensible within the
context of the subject matter.

Responsiveness. To achieve responsiveness, the presentation of material must be
flexible enough to respond to the specific interests of any individual student. The ability to
achieve responsiveness is severely limited in the traditional classroom setting. In a classroom
with more than a handful of students it is impossible for a teacher to respond to the interests
of an individual student when it might conflict with the interests of the class as a whole.
Although teachers today have enormous resources including photographs, films, and videos
available to them, they must determine in advance what materials will be available on any
given day and are thus constrained by the available materials as to how responsive they can
be. If they do not have the right materials at hand, they cannot effectively pursue a student's
query no matter how compelling it might be.

On the other hand, carefully designed computer-based educational systems offer the
promise of fulfilling these goals. First, computer-based system can be carefully crafted around
a theory of learning in order to capitalize on natural learning processes. Insights from research
in artificial intelligence and cognitive science have provided us with unique views of the way
people reason and learn. These theories of learning emerging from Al can form the basis for
system design that achieves correspondence. Second, by taking advantage of the computer's
ability to support sophisticated interactions and simulate complex domains, computer-based
systems can engage students. New technologies can offer students the ability to pursue
meaningful goals in complex, computer-based environments. Finally, computers have an
enormous ability to be responsive. Because interactions with computer-based systems are
individualized, computers can respond to the needs and interests of each student at his or her
own level and pace. In addition, with the ability to search large data bases of information
rapidly, a computerized educational system, can provide a student with instant access to
information that he expresses an interest in. Furthermore, using new presentation
technologies, a computer can convey information through a variety of formats including text,
video, computer-generated animation, and graphics. Imagine a teacher who, when asked
about the Vietnam era, could immediately call up images from the news coverage of the war to
stimulate a discussion of the effect of television coverage on the political system. A computer-
based educational system with interactive, multimedia technology can do just that.

In this research we are committed not just to computer-based learning environments
however. We are also committed to using artificial intelligence. The idea of using artificial
intelligence in educational systems is not new. In fact, as early as 1970 (Carbonell 1970b)
attempts were being made to build intelligent teaching systems. Yet the history of Al in
education, like so much of Al, has been one of great promises and unimpressive results. If you
were committed to building effective educational systems, it would seem foolhardy to argue
for the use of Al in the face of so many disappointing previous attempts. However, there are
reasons that the attempts to apply Al have not yet borne fruit in many effective educational
systems, and these can be avoided. First, a great deal of Al in education research is motivated

4

by the issues of Al first and by education second. The resulting systems often ignore critical
pedagogical issues such as student motivation and appropriate curricula. Second, most
strategies for building Al-based educational systems rely on constructing a truly intelligent
teaching system, one that not only understands the material being taught but is also able to
monitor a student, determine the state of his understanding, and intervene appropriately. In
other words, the system must be an expert in the domain, in student psychology, and in
teaching strategies. Each one of these expertises is mostly beyond the capability of current
artificial intelligence technology. Combining all three definitely is. The way researchers
have responded to this problem is to select a portion of this ideal system that appears
tractable and to focus on building it. The idea is that eventually all of these individual pieces
can be put together in a complete, intelligent teaching system. However, it is not clear from
the history of Al that piecemeal solutions like this ever can or do get integrated. More
important, this research is doing nothing to benefit education during the time that it is
focusing on these difficult issues in Al

In spite of these problems, there are still good reasons to build computer-based learning
environments that rely on artificial intelligence. However, doing so requires an approach
that avoids the pitfalls described above. The key to avoiding these pitfalls in this research
is an architecture for teaching systems we call case-based teaching. This architecture,
described in detail in Chapter 3, is inspired by the recognition that good teachers are good
storytellers, and that they convey a great deal of the content that they teach in the form of
stories. Taking this idea to heart, we have developed a teaching architecture for a computer
that packages most of its content knowledge in prerecorded stories. Instead of being an expert
in the domain, in diagnosing student states, and in appropriate teaching strategies, a case-
based teaching system only needs to be an expert in one thing: recognizing the right time to tell
a story to a student.

A second reason to use Al today in building effective computer-based learning
environments is that theories from Al can provide useful models of the way students learn.
While the ostensible aim of artificial intelligence has always been to build intelligent
machines, an important result of Al research has been new theories of human learning and
understanding. One such theory is the theory of case-based reasoning (Kolodner, Simpson, and
Sycara-Cyranski 1985; Riesbeck and Schank 1989; Schank 1982). The reason good teachers
and parents all teach with stories is that it corresponds to the natural way people learn.
When people learn either from firsthand experience or from stories, they encode these
experiences in cases which they retain in their memories. When they find themselves in
similar situations later on, they recall these cases and decide how to act based on their
conclusions about them.

The goal of this research, therefore, has been to develop a system that uses Al
technology not to produce the ultimate expert in content, teaching, and learning, but to produce
a system that knows enough to present stories to students that support their natural process of
learning from cases. The resulting architecture is pedagogically sound in that its methods
correspond to the natural learning processes of students, it engages students by capitalizing on
their own meaningful goals, and it responds promptly to their needs and interests. We have
implemented this architecture in the form of a system called Creanimate that teaches
students in 4-7th grades about animal adaptation.

1.2 The CreANIMate System

Children are fascinated by animals, yet they overwhelmingly find school biology
boring and dry. How do schools turn fascination into distaste so effectively? The answer is
that when they teach science they leave out all of the elements that make science compelling,

5

and they replace them with the memorization of disconnected facts. The Creanimate project
is designed to put the enjoyment that accompanies real scientific inquiry into an effective
educational experience. What makes real science exciting is that it allows you to be creative.
A scientist thinks about difficult, unresolved questions, develops possible explanations, tries
to make the explanations fit the data, and revises his or her explanations accordingly. At any
point, a scientist may discover something entirely new. Creanimate gives elementary school
children the opportunity to engage in these same activities on a level that fits their
understanding and connects with their natural fascination with animals. In the course of a
session with the Creanimate program, students have the opportunity to generate creative
hypotheses, consider the ramifications of their hypotheses through the exploration of open-
ended questions, and practice the vital skill of reasoning from cases.

Generating a creative hypothesis

Creanimate invites a student to create his or her own animal by taking an existing
animal and changing it some way. For example, a student might ask for a fish with wings or a
bear that can dance. In response, Creanimate engages the student in a dialogue in which he
considers the ramifications of his changes. It might ask how the student's fish will use its
wings or what good it might do a bear to dance. Creating a new animal is a tremendously
inviting task for children because it offers them the opportunity to be whimsical and
imaginative. Unlike most school activities it rewards rather than punishes their natural
inclination to push beyond the limits that are constantly being imposed on them. However, as
odd as it might sound, creating their own animal is a way of bringing authentic scientific
practice to a level that connects with children’s natures. When a scientist studies a
phenomenon, one of the first things he does is perturb the system under study from its natural
state and observe the effects of the perturbation. The effects of modifications on a natural
system can reveal a great deal about that system in its natural state. Thus, a metallurgist
studies a material by applying heat or current, bending it, stretching, and squeezing it.
Creating a new animal performs the same function for a student using Creanimate. It provides
him with an opportunity to learn both about the animal before it was modified and about the
modification itself.

Open-ended guestions

In schools, science is typically taught through the memorization of answers. Science is
presented as a set of proven facts, not as the inquiry into unanswered puzzles that it really is.
Following in a tradition dating back to Socrates, Creanimate helps students learn from their
animals by posing thought-provoking questions. It raises open-ended questions and discusses
possible answers with students. For example, suppose a student asked for a bee with a big
nose. The program might respond by asking how the student’s bee will use its big nose. In the
ensuing discussion, the student could propose answers, e.g. to suck up honey, or ask the program
to suggest answers. After discussing each possible answer, the student has the opportunity to
commit to the answer for his animal. Because the answers to Creanimate’s questions usually
entail making additional changes to a student’s animal, they frequently give rise to new
questions. As a result, the student and the computer pursue an ongoing dialogue in which the
student proposes changes, Creanimate raises questions, the student resolves those questions by
making new changes, and the system raises new questions about the new changes. For example,
suppose a student asked for a fish with wings. Creanimate would by responding why they
want their fish to have wings. After considering several possibilities, the student decides his
fish should use its wings to help it fly. The addition of flying raises more questions, and the

6

student now needs to consider what else his fish will need in order to fly, as well as how flying
will help his fish to survive. While the student is considering answers to its questions,
Creanimate presents video clips of animals in the wild that serve as examples.

Teaching with cases

People are natural case-based reasoners. When confronted with a problem, they
develop a solution by considering similar problems they’ve seen before. In other words, they
reason from cases. In scientific inquiry, reasoning from cases is an essential skill. Therefore,
Creanimate incorporates the use of cases into its dialogues with students. In doing so, it
capitalizes on the powerful impact of video. The animal kingdom is overflowing with
dramatic and surprising phenomena, and no medium captures this better than film. In the
course of answering questions about their animals, students see video clips that show concrete
examples of the answers in the form of animals in the wild. For every answer discussed,
Creanimate attempts to locate a relevant video clip in its library. For example, in one session,
a student who asked for a bee with a big nose answered the question “What will it use its big
nose for?” with, “so it can suck up honey.” Creanimate responded:

I think that might work. Elephants use their big noses to
suck up liquids. I have an interesting video about that. If
you like baby elephants, then you’ll love this video. Would
you like to see that?”

In other words, Creanimate confirms appropriate with examples from its video library.
On the other hand, if a student proposes an answer that Creanimate does not believe to be
correct, it will respond with a video clip that shows a situation in which the answer would be
correct. For example, if a student said he wanted a fish with wings to use them to dig holes,
the program would respond:

I don‘t know any animals that use their wings to dig holes.
However, I can show you some things that animals use to dig
holes.

For example, meerkats use their paws to dig holes. Would you
like to see that?

Creanimate helps students to resolve questions about animal adaptations by presenting
them with vivid cases. These cases are used to help resolve students’ questions in the same
way that scientists use them to resolve the questions that arise in their work.

Creanimate in Action

The best way to describe Creanimate system is to show it. Therefore, this section
contains an extended transcript showing the system in action. Creanimate has an appealing
interface that allows students to express themselves through a combination of pointing and
clicking with a mouse and typing. Figure 1 shows a sample screen from the program.

OK, fet's ind a reason for your gertnb o huve claws ts there
o 1euson you wanl your gurbs to huve cluws?

A

Gerbd

Figure 1. A sample screen from the Creanimate program

The top portion of the screen contains the program’s output. The text in this section may
include explanations, invitations to view video clips, or questions posed to the student. The
middle section of the screen is for student input. Options are displayed in this area that
students select with the mouse. If a student selects a phrase that contains an ellipsis then he
or she can complete the sentence by typing in free text. At the bottom of the screen are “user
control “ buttons (Schank and Jona 1991), that allow the student ask for various forms of
assistance (What's the point?, Big Picture) or exert control over the interaction (Back up, Skip
this, Change Animal, Start over).

The following pages contain a recreation of a transcript recorded during the session of a

fourth grade boyl.

Introducing the Program

When students approach Creanimate, they see a bright title screen offering two options.
They can choose to see instructions that help with the mechanics of using the program or they
can start right in.

1 Nearly all of the examples in this dissertation are taken from transcripts of actual
students using Creanimate. Transcripts from students can be identified by the presence of a
transcript number. This extended example is from transcript number m2-4-10-11.56e.

Figure 2. The title screen

The first screen students see once they start the program tells them what to expect when
they use the program. The important elements are: 1) Choosing an animal; 2) Discussing the
new animal; 3) Viewing videos that relate to the animal.

own animal.
Once you choose your animal, we'll answer some questions about
how it will get along | can show you some great videos about real

ammals to help you make your decisions

Alter you figure vul how you want your ammal o get alung, I'H
show you a picture of your new ammal

Click here to start.

Figure 3. The introduction screen: "Welcome to Creanimate. "

Choosing an animal

The first step in Creanimate is proposing a new animal. The program presents a student
with a set of options to choose from. The lists contain animals and ways to modify those
animals. A student can add a physical feature to an animal or change its actions or behaviors.
The animals and modifications that appear on this screen were selected based on surveys of
children and availability of video.

Tkt b e

B AN } § AV aVer oy A B 3 9 U

It you could create a new ammal, what would you make?

{Choose ane ammal from the st on the teft and one change trom the nght)

@A Fish (pike) NI
AFrog B [‘
jA Beor JERRENERE T With wings. i
xa
A Butterfi R

M Something else.

vd obin) IR .. on o R

Figure 4. Choosing an animal: "If you could create a new animal, what would you make?"

By clicking first on "A Frog" and then "That can fight", the student chooses to create a
frog that can fight.

STUDENT: A frog that can €£fight.

Ideally there would be many more choices of animals and modifications available, or
there would be no choices at all, and students would just type whatever they wanted.
However, the range of choices is currently limited by the size of the program’s video library.
As technology that supports random-access to larger libraries of video becomes available, the
number of choices will be increased. Students are able to type in the name of any animal or
any modification for their animal by clicking on "A ..." from the righthand column or
"Something else" from the lefthand column respectively. However, since the video in the
current version of Creanimate has been optimized for the choices on this screen, the discussions
that result from typing in something different may not be as rich.

10

The Student's Animal

Before beginning the dialogue about his animal, the student gets to see a picture of it
without any modifications. The animal is labeled "Before" and is accompanied by a question
mark labeled "After." The "After" box represents the animal once the student has finished
designing it. This screen helps establish a direction for the dialogue. The student is working
toward a frog that can actually fight. When a student chooses to add one of the physical

teatures from the first screen to his animal, he gets to see a picture of his modified animal at
the end of his discussion.

Figure 5. The "Before" picture

Posing a Question

Creanimate responds to a student’s proposed animal by asking a question about it.

That's a goodadea. is there a reason why you want your frog o

Lk L b the
LI

¥ LLL” " LKL SRR LU ™~ Uk~ IO ™~ WAL ¥~

Figure 6. Posing a question: "That's a good idea, is there a reason why you want your frog to
fight?"

In this case, the program asks the question, “Why fight?” after determining that its
video library includes clips showing reasons that animals fight. The questions that the
system asks are designed to teach the basic relationships that underlie animal adaptations.
This particular question emphasizes the fact that animals do not engage in behaviors unless
they help the animal to survive.

STUDENT: So it can ...

11

12

Proposing an answer to a question
When a student selects an answer containing an ellipsis, he is prompted to type in his

own response in place of the ellipsis. The original options are replaced by a type-in window
showing the partial sentence he selected and a blank for him to fill in.

Theot'n i weud mioe. 10 thews @ ot Wiy wou womt your oG 1
Sult?

Type in your answer below
Press <Enter> when you are done.
Press <Ctrl-b> to go back to the last screen.

Figure 7. Typing in an answer to a question: "So it can protect its self."

STUDENT: So it can protect its self.

The ability to enter their own answers gives students an opportunity to generate their
own hypotheses. While understanding free text is still an unsolved problem in artificial
intelligence, we have reduced the problem to a manageable level by providing students with
partial sentences to complete. In this case, the student's input contains a misspelling, "protect
its self.” The Creanimate parser is able to accommodate some misspellings and errors in
grammar.

Example Cases

Creanimate recognizes that protecting oneself is a reason that animals fight.
Furthermore, it has video clips that show animals fighting to protect themselves. The
student is offered the opportunity to see a video clip about bees that confirms his answer.
Whenever Creanimate offers a video clip, it displays a picture of the animal from the video
in the lower righthand portion of the screen.

Would you like to see that?

That's o guod dea Beus protect themselves by fighting unemies.

el e

£

Figure 8. Introducing a video: "That's a good idea. Bees protect themselves by fighting
enemies. Would you like to see that?"

STUDENT:

Yes.

13

14

Seeing A Story

Displayed directly on his
computer screen, the student sees
a video about bees fighting a
marauding wasp.

Action: A wasp is seen in the hive
surrounded by bees. The bees swarm
all over the wasp, stinging it
repeatedly. Eventually, they drag
the wasp out of the hive. It is left

struggling to move.

Narration: Not infrequently
wasps invade the hive...

Figure 9. Seeing a video story

15

Additional Examples

After showing the preceding story about bees, Creanimate suggests a second one about a
very different animal doing the same thing. This story also shows an animal fighting to
defend itself. However, this one shows one jawfish defending itself against another. A
jawfish is a fierce looking fish that hides in holes on the sea floor and darts out to catch prey

in its oversized mouth. The diverse examples help to show students commonalities across the
wide spectrum of animals.

Bees are not the anly anunals thal hght enemies For example,
tawhshes hight enemies,

thave a good video aboutthat. Fhis has batttes it

Would you hike to see a video about that?

3t b peunt

Figure 10. An additional example

STUDENT: Yes.

16

Committing to an answer

Once the student has seen examples of animals fighting to protect themselves, he has
the opportunity to commit to that answer. If he commits, he goes on to other questions about
his frog. Otherwise, he can consider additional answers to the current question.

S0 your frog can fight to protect itself.

You can commit to that now, or we can look at some other reasons
why amimals hght and you can decide Inter
Why would yuu like your frog o hght?

ITo protect itself .
Show me more reasons.

. el g b whal e pond e Lt up
AL v v e e L VL AL e G L R e g e Sy o

Figure 11. A commitment point: "So your frog can fight to protect itself. You can commit to that
now, or we can look at some other reasons why animals fight and you can decide later."

STUDENT: To protect itself.

17

A Second Question

Now that the student has decided why his frog will fight, the program raises a new
question: How will it fight? This new question emphasizes the fact that there are many
different strategies pursued by animals in the course of achieving the same goal. In this
particular case, there are several ways animals can fight.

[To Y
A SN B "R W W VLYY A “‘“\

How would you hke your frog to fight?

Figure 12. A second question: "How would you like your frog to fight?"

STUDENT: By Jjumping up on him.

The student selects the partial sentence, “By...” and types “jumping up on him.”
Creanimate does not have the action “jumping on an animal” in its knowledge base, so it reads
the student’s input simply as “jumping”. The partial sentence “By ...” helps the student to
understand what type of answer the system is looking for. In this instance, the student can tell
that an action is an appropriate answer, but a physical feature is not. Within that
constraint, the student has the full range to express himself.

18

Cases for Incorrect Answers

Creanimate does not know of any animals that jump in order to fight. In the absence of
this knowledge, it takes the opportunity to show the student some reasons it knows for why
animals do jump. In this way, students learn from incorrect answers as well as correct ones.

tdon't know any ammals that jump to fight, but [do know why
some ununals jurap

Salmon jump. Do you knuw why salmon jump?

(1 think this video is funny.)

Salmon

fngrnn ot
Figure 13. An example for an incorrect answer: "I don't know any animals that jump to fight,
but I do know why some animals jump. Salmon jump. Do you know why salmon jump?"

Creanimate introduces the story about salmon with a question. This is a strategy to
make students active viewers of stories. As a result of the question, students watch the video

clip looking for the answer. It also helps to focus students on the aspects of the video that are
relevant to the question under consideration.

STUDENT: What other videos can I see?

19

Choosing a story from a menu

Instead of watching the salmon video, the student asks what other videos he can see. In
response, Creanimate displays pictures of four animals labeled with the animals' names.

Each of these corresponds to a story that shows a reason that animals jump. The student
selects a video clip by clicking on a picture.

el [
L MANTL "ANWY FLrsy 4 v
Which video?

Figure 14. A menu of videos: "Which video?"

The student selects the picture of the whooping crane.

STUDENT: Whooping c¢rane.

20

Advertising a story
To help "advertise" them, stories are labeled in the system’s memory with information

about what makes the particular video appealing. In the case of the whooping crane video,
the story has been labeled with the attribute, "frantic dancing”.

A B B Ml W VLAY S AN WY WW
Whooping cranes jump to attract
] their motes

I have an mteresting video about that | s video s tor people
whu like frantic dancing.

is that something you would like to see?

g

Whaonping Crane

Figure 15. Advertising a story: "Whooping cranes jump to attract their mates. I have an
interesting video about that. This video is for people who like frantic dancing."

STUDENT: Yes.
This video clip shows cranes dancing to attract their mates. The dance is an elaborate
ritual consisting of jumping, flapping wings, and stretching necks.

21

Choosing where to go next

After seeing one reason for jumping, the student is given the choice between returning to
the main issue, how his frog will fight, or learning more about jumping. Creanimate gives the
student as much control as possible over his interaction. In this case, he gets to choose where
the discussion will go next. He also may use the control buttons at the bottom of the screen at
any time to back up, skip ahead, get some assistance, or change to a new animal.

[Stick with jumping i .
Go back to fightin K

Figure 16. Choosing where to go next: "Would you like to see some more reasons to jump or
would you like to talk about how you want your frog to fight?"

STUDENT: Stick with Jjumping.

W W L/ S aw W W W W
T

Squitrels Jump. Squrels jump o oo

Fhave o oonobwvideo abiout that hes vinden s nent becouse o
was tlmed in the ttee tops

Do you wantto see that ?

Figure 17. Another story about jumping: "Squirrels jump. Squirrels jump to flee predators."
The word “predator” appears in yellow on this screen to indicate that it has a definition
associated with it. If a student clicks on a yellow word, the program displays its definition.

STUDENT: Yes.

22

Suggesting an Answer with a Story

The student sees several more videos showing reasons animals jump before Creanimate
runs out of them. It then returns to the main question: How will his frog fight? Creanimate
suggests a way to fight using a story about bears fighting each other as an example case.

MVNIV. "MW wW Fusy v ww

Poan' sk of uny more ammals that jump
Let’s gu buck o how you wanl yuur {rog Lo fight

Bears bite ather animals 10 that they can ight for thewr
mates Fhis halps tham ta tight

Lhave a pretty gond video about that Thes video also has tlerocious
anmmnls in it

Would you like to see that?

Y .
“maxumelﬁdeogcunlsae?

Bear

Figure 18. Suggesting an answer: "Bears bite so that they can fight for their mates. This
helps them to fight."

STUDENT: Yes.
This video shows two male bears fighting each other. They growl ferociously, rear up on
their hind legs, bite at each other, and slash with their giant paws. Accompanied by
dramatic music, this is a riveting video.

23

Resolving the Question

At this point the student has discussed two ways for his frog to fight. He suggested
jumping on other animals, but Creanimate did not know of any animals that fight that way.
Instead, it suggested biting. So as not to inhibit creativity, the program will still allow him
to commit to jumping if he prefers. He can also see more ways to fight before he commits.

vl o b e e
‘ Hontat et ot K o P vt gt}

o your feag could bite other ammals i order (o help at to ight

How would you bk your Irog 1o ight?

".
P Dikbigh b -4
il

4—--‘|
By Biting ctheranmais—]
i

Show me more ways. |

Figure 19. A commitment point for the second question: "So your frog could bite other animals
in order to fight. How would you like your frog to fight?"

STUDENT : By biting other animalg.

Examining Ramifications of an Answer

The student’s resolution of the question how to fight raises a new question. What will
his frog need to enable it to bite at another animal? By pursuing these chains of questions,
students learn to analyze the ramifications of decisions beyond their immediate impact.

IR ’n.-."lll--‘--‘

P P Ve T e el
R ”.’MMDM-%"—INRO’QWU&V‘“" J

Figure 20. A new question: "How do you want to change your frog so it can bite other animals?

STUDENT: Skip this.

24

Student Control

At this stage, the student chooses not to pursue this issue. Instead of using one of the
options provided to answer the question, he clicks on the "Skip this" button from the button
pad at the bottom of the screen.

HETIRRE hateps aran sl IR

Figure 21. The Creanimate User Control button pad.

In response to this directive, the student is given several choices of what to do next.

Cfeean e
A_ S0 B "SAEWW FLiry A E W UW

We can do any of the things listed below. Which would you hke
to do next?

Figure 22. Skip this options. Depending on the context, the options that the student sees for
"skip this" vary.

STUDENT: Add something else to my frog.

25

The "After" Picture

The student in this transcript chose to go on to make his frog hunt. However, if he had
stuck with the current question he might have chosen to give it a beak to help it bite other
animals. For a limited number of physical modifications, Creanimate can show the student a
picture of his modified animal. It does so, only if the student has committed to both a new
feature and a reason for the new feature. The student can reach this point by selecting a
feature and answering the question about how the animal will use that feature or by selecting
an action and adding the feature to enable his animal to perform that action. In the current
transcript, the student had already selected the action bite other animals and the next step
would have been to commit to a feature to enable it to bite other animals.

Figure 23. An "after" picture. A frog with a beak.

The "after” screen resembles the "before" screen only the picture of the unmodified
animal has been shrunk and the question mark in the after box has been replaced with the
student’s new animal.

As the preceding transcript shows, the student takes the initiative in the learning
interaction. A student initiates the dialogue with a proposal for a new animal. Creanimate
responds to this proposal with an open-ended question which the student can either answer or
ask for suggestions. When he is ready, he can commit to an answer. The questions that they
consider teach students the important relationships that underlie the study of animal
adaptation, and the video clips provide concrete examples. The structure provided by the
questions and the cases provided by the video reinforce each other in the students’ growing
understanding of the domain.

What transcripts and descriptions can never convey, of course, is the drama of the stories
that Creanimate presents. The videos of animals in the wild in Creanimate are a prime

26

example of the superiority of video over less dynamic media. Children and adults alike find
these video clips riveting. The challenge of constructing multimedia systems like Creanimate
is placing this powerful medium in a meaningful context for learning. Anyone can collect
exciting video and display it on demand. The real challenge is presenting it in a context that
helps students to learn valuable and lasting lessons from it. In Creanimate, the questions
concerning students’ animals establish this context for learning. With Creanimate, students do
not receive information in the predetermined, inflexible order of traditional, linear video, nor
do they see it in a detached context in which they have no motivation for learning from it.
Instead, they see it in the context of a discussion in which they are invested, in response to
questions that encourage them to construct and explore their own hypotheses. The discussions
that students have with Creanimate provide them with both a motivation to acquire new
knowledge and perspective from which to integrate it. The vividness of the medium helps
them to retain it.

Creanimate teaches Questions and Cases

Expertise is often viewed as the possession of a large body of knowledge. However,
knowledge of facts is only one component of expertise. What sets an expert apart from a novice
is the ability to deal effectively with new situations within his realm of expertise. When
confronted with a novel situation, an expert knows the right questions to ask and how to go
about answering them. The cases and facts that the expert commands help him or her to
resolve the questions, but the questions come first. The basic questions that an expert uses to
explain phenomena in a domain are called explanation questions (Schank 1986). Creanimate
provides students with the tools for expertise in the domain of animal adaptation. It teaches
the questions to ask when confronted with new situations, and it provides students with the
cases that go along with these explanation questions. It helps students develop the skills
necessary for case-based reasoning in a scientific discipline.

Status and Evaluation of Creanimate

Creanimate is a working program that has been successfully tested in a variety of
environments. The most recent version contains 140 indexed video clips totaling 60 minutes. It
conducts dialogues about six different questions, each focusing on a different relationship
between the physical features, actions, and behaviors of animals. The knowledge base
includes over 200 animals and over 1000 different characteristics of animals. Included in this
knowledge base is information that allows Creanimate to construct natural English sentences
using the concepts in its memory and to understand typed input by students. Our experience
with the program indicates that students can use the current prototype for at least three hours
without exhausting its capabilities.

The principal tests have been in two Chicago-area public schools. In the first test site,
Creanimate was tested with 24 fourth graders and in the second, it was tested with 15 students
in fifth through seventh grades. In both cases, the testing had several objectives. The
primary objective was to evaluate student response to the program. In both schools, students
responded enthusiastically. Each student used the program for three sessions of
approximately 45 minutes. In surveys, students rated the system highly. Specifically, they
indicated a preference for Creanimate over both ordinary science learning and watching nature
shows on TV. However, since students knew their surveys were going to be read by the system'’s
developers, we felt it was necessary to look for more accurate reflections of how they felt.
These indications came both from direct observation and feedback from their teachers. For
example, in nearly every case, students had to be told several times that their session was

27

over and that it was time to leave. "Just one more minute?" was a common response. In
addition, students were always asked whether they wanted to return for the next session, and
none ever said no. Teachers at the first site reported that their students were upset when they
found out they would not be able to continue to use the program when they returned for fifth
grade in the fall. In addition to gauging student response, we also developed assessments
designed to measure learning. Specifically, we were looking for changes in students' question-
asking and explanation generation as a result of using Creanimate. In the pre- and post-tests
we designed, students were given pictures of exotic animals and asked to either generate
questions about the unfamiliar animals or answer questions about them. These tasks were
chosen for assessment because they correspond to the authentic practice of naturalists and
biologists. The results of these evaluations are reported in Cleave, Edelson, and Beckwith
(1993).

The conclusions from our experiences with Creanimate in the schools have been positive.
Students remained focussed on the program throughout their sessions. Their overt reactions to
the video clips ranged from laughter to admiration to revulsion. They could be seen thinking
carefully about the animals they created and seriously deliberating over their answers to the
program’s open-ended questions.

Creanimate provides an opportunity for students to engage in the creative and
imaginative practice of science that is missing from most current education. It does so by
bringing these processes to a level that connects with children’s fascination with both animals
and fantasy. Starting from this point it takes them through a scientific inquiry that exposes
them to the important relationships that underlie the study of animals in the wild, and to
vivid cases that demonstrate those relationships.

1.3 The Case-based Teaching Architecture

Creanimate is a prototype for a new class of learning environments called case-based
teaching systems. The case-based teaching architecture is designed around two basic
principles: active learning and learning from stories. Active learning demands that a student
be actively engaged in a meaningful task in the course of learning. A meaningful task provides
both the motivation and context for learning. The principle of learning from stories
acknowledges that a great deal of learning, both formal and informal, comes from hearing
stories. Good parents and teachers all tell stories at opportune moments to teach important
lessons. Teaching with stories is a natural way to support the important process of case-based
reasoning. Teaching with stories relies on the possession of two critical skills: the ability to
recognize an opportunity to teach with a story and the ability to identify the right story to
tell in a particular situation. Thus, to teach with stories one must know how to tell the right
story at the right time.

A case-based teaching system supports active learning and learning from stories through
two interdependent components, the task environment and the storyteller. The task
environment provides a student with an engaging, motivating task. The storyteller monitors
the task environment looking for opportunities to tell stories that will help the student to
learn from his interactions with the task environment. In Creanimate, the task environment
consists of a question-and-answer dialogue, and the storyteller uses a video library of animals
in the wild. A task environment must be constructed so that it exposes students to an
appropriate variety of situations. These situations must give them sufficient experience of the
domain. In his interactions with the task environment, whenever a student is in a situation
that constitutes an opportunity for learning, the storyteller must be able to intervene with a
story that will help the student learn from that situation. Therefore, the storyteller must
have a sufficiently wide range of stories to cover the situations for learning that may arise in

28

the task environment. In addition, these stories must be indexed in such a way that based on
its observations of the task environment, the storyteller can locate appropriate stories for the
situations that arise. In this architecture, the task environment teaches a student the
underlying structure of the domain and the storyteller provides him with cases to support that
structure. In practice, the construction of case-based teaching systems is both an art and a
science. Creating engaging task environments that are motivating, challenging, and
interesting is very much an art, while indexing stories so they can be retrieved at the right
time is a science.

Indexing and Reminding in Case-based Teaching

When a person thinks of a story to tell, we say that he or she is reminded of a story. We
usually think of reminding as a passive process, something that happens to someone, not
something a person does. Upon examination of the process though, we find a set of processes
and representations devoted to actively extracting features from the world and using those
features as cues for the retrieval of useful cases or stories (Schank et al. 1990a; Schank et al.
1990b). The processes are called reminding strategies and the representations are called
indices. An index is a label for a case that allows a reminding strategy to recognize situations
in which the case is relevant. Since teaching is an expertise, teachers have a particular set of
strategies that enable them to observe their students and retrieve appropriate cases. Two core
issues for the development of effective case-based teaching systems are 1) the identification of
strategies for reminding to achieve educational goals and 2) the development of algorithms
and indexing schemes to implement these reminding strategies. Creanimate employs several
reminding strategies that each enable the system to achieve specific pedagogical objectives.
Each strategy places particular demands on the information available in the indices that
label stories in the program’s memory. Creanimate’s reminding strategies are example
remindings, similarity-based remindings and expectation-violation remindings.

Example Remindings. The bread and butter reminding for the CreANIMate system, just
as it is for any teacher, is the example. For instance, in a dialogue in which the student asked
for a tortoise that could run fast, Creanimate posed the question, **What should we give your
tortoise so it can run fast?” When the student asked for suggestions, the program responded:

Cheetahs run fast. Do you know what cheetahs have to help
them run fast? (I have an awesome video about that.)

Student: They have long legs.

That's right. Cheetahs have long, muscular legs to help them
to run fast. Would you like to see that?

Performing example remindings requires that specific information be available in an
index. Anindex must describe the questions and answers for which the story can be used as an
example. The relationship between physical features and the functions they support is one of
the central lessons of the system. Therefore, part of an index may indicate that the story
demonstrates the use of a particular physical feature, e.g., long, muscular legs, for a particular
reason, to run fast. For every feature/function pair that appears in a video clip, there is a
corresponding entry in the index indicating the presence of that pair in the story. The same is
true for actions that are used to achieve a survival behavior, for instance, to run fast to pursue
prey. Each one of these pairs can be used to answer two questions. The story in the example
above could be used to illustrate either, "Why have long legs?" or "How to make an animal
run fast?"

29

Similarity-based Remindings. One of the risks of teaching with examples is that
students may draw overly specific conclusions from the examples that they see. Therefore, one
objective of a case-based teacher is to assist the student in making generalizations. The
strategy that Creanimate uses to help the student form appropriate generalizations is called
similarity-based reminding. In similarity-based reminding, the system retrieves a story that
illustrates the same basic principle as a previous example, but is sufficiently different to
allow the student to form a generalization at an appropriate level of abstraction. The
following example of a similarity-based reminding was initiated by a student's request for a
tortoise that could run fast:

Cheetahs run fast. Do you know why cheetahs run fast? (I
have an impressive video about that.)
Student: So they can catch other animals.
That is right. Would you like to see that?
Student: yves
[VIDEO: Cheetah Pursuing Prey]

Similarity-based reminding:
That reminds me of a cool video. Fishing bats also move fast
in order to get food. Only, instead of running fast to
pursue their prey, they fly to pounce on their prey. Would
you like to see that?
STUDENT:yes
[VIDEO: Fishing Bat]

In this example, the program presented a video of a cheetah that runs fast to pursue its
prey. The cheetah story was produced as an example of a reason that animals run fast.
However, to ward off the possibility of the student drawing an overly-specific conclusion, the
program presents a similar story about an animal that moves fast to get its food, but instead of
running fast, it flies. In order to perform similarity-based reminding, the system must be able
to identify stories that are similar, but not identical, to the given example. This is done by
searching through its knowledge base looking for videos that share an abstraction. In this
case, both stories share the abstraction: move fast to hunt. Similarity-based remindings also
serve the important purpose of exposing students to things they might not see otherwise, thus
broadening their awareness and increasing their curiosity.

Expectation-violation Remindings. Surprise is a great motivator for learning. When
some expectation that you have is violated by an experience or observation, you become
surprised and are motivated to understand why your expectation was not met. This is what
Schank (1982) calls failure-driven learning. In this case, failure refers to the failure of an
expectation to explain an observation, not the failure of an individual to achieve a goal.
Expectation failures do not just promote learning they provoke interest. The reminding
strategy called expectation-violation reminding capitalizes on surprise to provoke interest on
the part of a student and broaden his exposure. To present videos that violate a student’s
expectations, the system must have knowledge of what sorts of things students are likely to
believe. This information is added to the knowledge base when stories are entered.
Expectations take the form of rules, such as “Mammals do not fly.” An expectation of this form
leads to the following expectation-violation reminding:

If you could create a new animal by taking an existing animal

30

and changing it some way, what would you make?

Student: A dog that can fly

Actually some mammals do fly. For example, fishing bats fly.
I have a cool video about that. Would you like to see that?
Student: yes

[VIDEO: Fishing Bat]

Part of the index for the fishing bat story contains the information that it violates the
expectation that mammals do not fly. When the student asks for a mammal that flies (in this
case, a dog), this matches the expectation-violation in the story and the program gets
reminded of that story.

All three reminding strategies capitalize on a student’s current context to present a story
that is directly relevant at that moment. The cases that a student sees are in response to an
action or answer that he has made in the course of his session. The responsiveness of this
approach helps maximize students’ abilities to be active learners and to learn from stories.
The stories retrieved by the reminding strategies provide concrete cases to illustrate the
current discussion, promote appropriate generalizations, and widen a student’s exposure. Each
of these, in turn, promotes curiosity and additional inquiry.

1.4 About this Dissertation

In the first section of this chapter, I described an intentionally ambitious research
program. It is important to distinguish between the portion of that research program
described in this dissertation and the research program as a whole. This dissertation covers
one step of that program. In particular, the research described here was devoted to the
development of a theory of indexing and reminding for teaching and the implementation of
that theory in an Al system. The theory is expressed in the form of the case-based teaching
architecture and in the set of reminding strategies described here. It extends theories
developed by Schank (1990; 1991) from an abstract characterization of the role stories and
cases can play in teaching to a specific architecture and a set of reminding strategies for
teaching with stories. The specific contributions of this work are:

¢ Identifying a Socratic-style dialogue as a means for establishing a context for
teaching with stories.

* Developing and implementing an architecture for a computer-based dialogue
manager that conducts a question-and-answer dialogue that establishes a
context for learning from stories.

¢ Identifying specific reminding strategies that capitalize on opportunities to
teach with stories in the course of a Socratic-style dialogue.

* Developing an indexing scheme for a story library and appropriate algorithms
for implementing these reminding strategies.

The role of the Creanimate system in this research is to explore the technical issues
involved in this new architecture, to demonstrate the ability to construct such a system, and to
provide an initial platform for investigating its educational effectiveness. Creanimate is not
yet a complete system, nor has it satisfied all of its goals. However, it does have important
value as a demonstration of an architecture for teaching with stories in the context of a
Socratic dialogue. Any faults in Creanimate’s particular design or educational effectiveness
must be considered separately from the value of its architecture as a generally effective
teaching architecture.

Creanimate is the first step in this research program. It is the embodiment of an Al

31

theory of indexing and reminding in the service of teaching. The essential next step in this
research program will be to evaluate the educational effectiveness of that architecture. This
dissertation outlines a theory of of learning that explains why this architecture would be
effective (Chapters 2 and 3), but this theory has yet to be empirically verified. Creanimate
by itself will be insufficient for evaluating the effectiveness of this architecture. Separating
the strengths and weaknesses of Creanimate from the strengths and weaknesses of the
architecture itself will require systems in different domains aimed at students at different
levels. The evaluations of Creanimate that I described above and in Chapter 9 should be
viewed as preliminary, intended only to gain early experience that can inform future
development and testing.

This dissertation is divided between a discussion of the educational objectives and
theories that underlie the teaching architecture described here and a description of the
architecture itself. The architecture has been investigated through the development of the
Creanimate system, but the two should not be confused. Creanimate is one of many possible
implementations of that architecture.

In the next two chapters, I cover the educational aspects of the Socratic case-based
teaching architecture. In Chapter 2, I present a theory that justifies teaching with stories and
questions. This theory of teaching and learning is grounded in the theory of case-based
reasoning. In Chapter 3, I describe the case-based teaching architecture in detail. In that
discussion, I present factors for effective case-based teaching system, and I describe how they
apply to Creanimate.

Chapters 4 through 8 are devoted to the implementation of case-based teaching from an
Al standpoint. Because the reminding process is central to case-based teaching, it is the subject
of Chapters 4 and 5. In Chapter 4 I describe the reminding strategies that Creanimate
employs, and in Chapter 5 I present the algorithms that were used to implement them. Ina
case-based teaching system, the reminding strategies take advantage of the context for
learning established by the task environment. In the Socratic case-based teaching
architecture, the task environment is managed by a dialogue manager that engages the student
in a question-and-answer dialogue. This Socratic dialogue manager is described in Chapter 6.

Supporting both the reminding strategies and the dialogue manager in Creanimate is an
elaborate knowledge base that encodes domain-specific information about animals and their
adaptations. In Creanimate, the knowledge base provides both a vocabulary for indexing
stories and an information source for drawing the inferences required by the dialogue manager.
I describe this knowledge representation in Chapter 7.

In Chapter 8, I describe the way the knowledge representation that is presented in
Chapter 7 is used to construct the indices that label stories. These indices enable the
storyteller to retrieve the right story at the right time. Chapter 8 describes the indices
themselves, the role of the human indexer in constructing these indices, and the Creanimate
Indexing Tool, a software environment that we developed to assist the indexer with this

rocess.
P In the final chapter I provide two additional perspectives on the research described
here. First, I discuss some related work in both education and artificial intelligence, and then
I describe ways to extend this research program beyond its current state.

Chapter 2

Teaching with Stories and Questions

If you reflect back on the best teachers you've known, you will often find that they
possess two qualities that make them exceptional. They ask good questions, and they tell
good stories. The aim of this research is to develop an architecture that makes use of these
two educational techniques in the same effective way that a talented human teacher does.
Before moving on to an examination of how to construct a system that teaches with stories and

questions, it is important to understand how they can be used in teaching, and why they are
effective.

2.1 Teaching with Stories

Good parents and good teachers all use stories to convey lessons. Teaching with stories
comes as naturally and unconsciously as learning from them. Many institutions of formal

instruction, such as business schools, law schools, and medical schools, have been teaching
with stories for decades although they call it teaching with cases, not stories. In fact, storie

Q
ALl ALY, OVWUILILS

and cases are intimately related!. Traditionally, stories have been conveyed orally or in
writing, but new technologies allow us to convey stories through film, graphics, and
animation. In 1977, James V. McConnell was awarded the American Psychological
Association’s Distinguished Contribution to Education in Psychology Award for his extremely
successful introductory college psychology textbook, Understanding Human Behavior
(McConnell 1977). In his acceptance address, “Confessions of a Textbook Writer” (McConnell
1978), McConnell attributes the success of his textbook, in large part, to his use of stories. In
this address he quotes the advice of his mentor, “If you want to capture the imaginations of
young people, you have to tell them stories!” (McConnell 1978, 160) Never has that counsel
been truer than in the modern world with dramatic, engaging media vying for students’
attention. The key to capturing the imaginations of young people is telling stories that exploit
the powerful storytelling media now available.

In this section, I deal with stories in teaching from four different perspectives. First,
how are stories used in teaching? They are used either to establish an educational context or
to provide a lesson in some context. Second, why is storytelling an effective method for
teaching? The theory of case-based reasoning argues that people solve problems, construct

1 In the terminology used here, a case is the form in which an experience is stored in a

person’s memory. A story is the form in which a case is communicated from one individual to
another.

32

33

plans, and understand new situations by making reference to similar previous experiences,
called cases. Hearing stories is one way that people enlarge their personal case libraries.
Third, what makes the computer particularly well-suited to teaching with stories? The
computer provides the capability to establish meaningful contexts for teaching with stories.
In addition, computers offer the ability to store and present large libraries of stories that use
vivid multimedia. Finally, what exactly constitutes a story, and how can a story be
distinguished from other forms of teaching? Stories are specific depictions of characters and
events that are conveyed as a form of communication.

2.1.1 Teaching with Stories: The Role of Context

Stories are employed two different ways in teaching, to create context and to respond to
context. The former is the technique employed by the well-known case method of business and
law schools, while the latter is what we refer to as case-based teaching. In storytelling to
establish context, a story is presented that poses a problem or describes an important situation.
Learning takes place through the exploration of the issues provided by the story. In
storytelling that responds to context, stories are presented in the course of solving a problem or
discussing issues. Stories that respond to context are presented at the moment that they are
relevant to the instructional setting and they help a student to learn from this context.

Storytelling that Establishes Context

Consider the following story taken from Psychology Today—An Introduction, a
psychology textbook for college students that James McConnell edited in 1969. The story
introduces a chapter on physiological psychology :

You are a 30-year-old housewife with a husband, two children and a fairly
happy life. But about five years ago you began having severe headaches. The
headaches turned into epileptic seizures, and eventually the seizures became so
frequent that they were occurring a dozen times or more each day. You felt so bad
that you wanted to die. Then one day the doctors told you about a new operation
that might help. The surgery involved separating one half of your brain from the
other. The doctors warned you that, even if the operation was successful, there
might be rather peculiar side-effects. You were so desperate that you told them
to go ahead. After the surgery, the epileptic seizures stopped almost
entirely....You felt good for the first time in years. But then you noticed that your
lefthand had started doing some very strange things...(McConnell 1978, 164)

This story establishes a context for the technical material that follows it. It provides a
framework that the author uses to discuss the physiology of the brain and some specific split-
brain research. The context that this story establishes is one for dealing with the issues
concerning the locations of different functions in the various parts of the brain. The author has
the following to say about his reasons for introducing the chapter with this story:

---As you can see, I was trying to present some fairly complex brain research
from a point of view the introductory student could understand and identify with.
I assumed that once the student got interested in the housewife, the student might
be motivated to master the technicalities of the brain well enough to comprehend
why the woman’s lefthand was doing all those crazy things. (McConnell, 1978
#14, 164)
McConnell uses this story to provide a context for some highly technical material. He
recognizes the usefulness of a concrete story that the students can relate to because the story

34

gives the students a touchstone. As he says, the story gives the students something to
“identify” with; it also gives them a concrete frame of reference they can return to as they
digest the difficult material in the chapter.

The case method employed in law, business, and medical schools uses stories to establish
context in a similar way. In graduate schools of business, for example, a case is distributed to
the students that describes a problem situation for a real or hypothetical business. The
students prepare solutions to the problem posed by the case. In class, the instructor conducts a
discussion over the various solutions to the problem. In cases that are drawn from real events,
the solution that was tried and its result will often be discussed too. In this teaching

technique, the cases are in essence stories that establish a context for a discussion of important
educational issues.

Storytelling that Responds to Context

Storytelling that responds to context is really the opposite of storytelling to establish
context. Instead of providing a context for learning, this form of storytelling takes advantage
of a context for learning as an opportunity to convey a lesson with a story. When someone uses
a story to respond to context, he tells the story in response to a situation in which the story’s
lesson applies. The context influences both the telling and the understanding of the story.
When a storyteller tells a story in a context, he relies on that context to help the hearer draw
the appropriate lesson from the story. For example, consider the following story:

When I was in 4th grade, there was a time when the top students would all
rush to be the first one to finish a test. So, the teacher told us the following story:

Today on the way to work, the traffic was moving slowly. There
was one guy who kept weaving in and out to try and beat the traffic.
Finally, about ten minutes later, I looked over and noticed that he
was right next to me even though he had been rushing as fast as he
could.

She told us that story so that we would realize that the most important thing

was reaching our goal, not how quickly we did it.2

The story told by the teacher responds directly to the situation in the classroom. She
told it at the moment the story would have maximum impact—when the hearers, like the
story’s protagonist, were rushing for no good purpose. She chose to tell it in a context in which
the hearers were acting in a way that is opposite to the lesson of the story.

The preceding story, like a fable, carries a lesson that gives the listener guidance on how
to behave. Stories told in context can also clarify an abstract technical point. For example,
the following hypothetical story is used by Richard Feynman, the renowned physicist, to
help clarify his discussion of a complicated issue in relativity. The story responds to its
context by making an abstract idea concrete.

2 This story and the subsequent one about flies and honey were collected by asking
volunteers for examples of incidents in which they had been taught something with a story or
had taught someone else something with a story.

35

To continue our discussion of the Lorentz transformation and relativistic
effects, we consider a famous so-called “paradox” of Peter and Paul, who are
supposed to be twins, born at the same time. When they are old enough to drive a
space ship, Paul flies away at very high speed. Because Peter, who is left on the
ground, sees Paul going so fast, all of Paul’s clocks appear to go slower, his heart
beats go slower, his thoughts go slower, everything goes slower, from Peter’s point
of view. Of course, Paul notices nothing unusual, but if he travels around and
about for a while and then comes back, he will be younger than Peter, the man on
the ground! (Feynman, Leighton, and Sands 1963, 16-3)
Context does not just determine when a storyteller chooses to tell a story, it also
influences how he or she may tell it. In the following story, a father tells his son a story in a
context in which the child was acting unpleasant in order to get his way.

Mark [our six year old son] has been demanding things and ordering other
people around. He seems to be trying to discover if it's better to act this way, or to
be pleasant. Of course, we prefer it when he's pleasant! So I told him a story
based on the proverb “You catch more flies with honey than with vinegar.” It
went something like this:

Once there was a man who wanted to catch some flies. First, he
poured out some stinky vinegar on the sidewalk and waited to see if
any flies would come. He waited and waited, but none came. Then,
he put some honey down instead. Suddenly, he had lots of flies! He
realized that you can catch more flies with honey than with
vinegar.

Mark, when you demand things and shout at people to get
things done, it's a lot like vinegar, kind of stinky. But when
you're pleasant and cooperative, it's just like honey. It's
very sweet, and we usually want to give you what you're
asking for.

This has been an effective story: we can say, “Mark, could you give us a little
honey instead of vinegar?” and he usually stops and thinks about what he's
doing, and often chooses to be pleasant.

The context in which the father tells this story to his son influences his telling of the
story. He draws explicit links between the honey in the story and pleasant behavior on the
son’s part and between vinegar in the story and unpleasant behavior. These “bridging”
comments are very important for helping the hearer to understand the lesson of a story and its
relevance to the current setting.

The influence of context is not limited to the storyteller. Context also influences a
hearer’s interpretation of a story. A single story can convey several different lessons and can
be told in different contexts to take advantage of those lessons. Schank (1990) describes an
experiment in which graduate students were told stories out of context and then asked to
respond to them the way they would if they heard them in a conversation. The subjects’
responses were analyzed to see what points they extracted from the story they heard. The
responses reveal a very wide range of interpretations that were influenced in large part by the
individual’s personal experiences and current concerns. The telling of stories in context allows
the hearer’s concerns in that context to influence his understanding of the story. For example,
told in a completely different context, the story of the man who learned to catch flies with
honey not vinegar could be interpreted as a story about how to trap animals successfully. In

36

this case, the lesson of the story would be “If you want to catch animals, it is important to
have the right sort of bait.” However, in the context of a child behaving unpleasantly in
order to get his way, the lesson of the story is allegorical. Honey represents pleasant
behavior and vinegar represents unpleasant behavior. Thus, context can change the lesson of a
story entirely. The appropriate context can help the hearer to understand the lesson that the
teller intends.

In addition to influencing how the hearer understands the story, the context also
influences how he remembers it. A hearer can store a story in his memory with respect to the
context in which he heard that story. When he finds himself in a similar situation in the
future, he can then recall the story and apply its lesson to the new situation. (This is an
example of using stories to support case-based reasoning which I discuss in more detail later in
this chapter.) So when people teach with stories, they take advantage of the role that
context plays in helping a hearer to retrain the story.

The difference between telling stories to establish context and telling stories in response
to context is the difference between the case method and case-based teaching. Case-based
teaching is much less common in formal instruction because it requires a gifted teacher, one who
can not only think of the right story or case to tell on the spot but who can present it
effectively. Teaching with the case method is easier because cases can be selected and
prepared in advance. However, as we shall see later in this chapter, the computer is
especially well-suited to case-based teaching.

2.1.2 Learning from Stories: Case-Based Reasoning

When a person confronts a situation that he has never seen before, he will often refer
back to some similar situation he has seen in the past, and decide how to behave based on the
earlier experience. This process of learning from prior experiences is called case-based
reasoning. The theory of case-based reasoning (Kolodner, Simpson, and Sycara-Cyranski
1985; Riesbeck and Schank 1989; Schank 1982) argues that many situations are too complex for
people to deal with by reasoning from first principles. Instead, they reason using previously
stored cases. The theory of case-based reasoning was proposed as an alternative to the style of
reasoning employed by rule-based expert systems (e.g., DENDRAL (Lindsay et al. 1980), PUFF
(Feigenbaum 1977), MYCIN (Shortliffe 1976)). In this earlier model of cognition, knowledge is
expressed in the form of simple rules, such as the following from MYCIN, an expert system for
medical diagnosis:

If (1) The infection which requires therapy is meningitis,
(2) Organisms were not seen in the stain of the culture,
(3) The type of infection is bacterial,
(4) The patient does not have a head injury defect, and
(5) The age of the patient is between 15 years and 55

yvears

Then: The organisms that might be causing the infection are
diplococcus-pneumoniae (.75) and neisseria-meningitidis
(.74). (Clancy, Shortliffe, and Buchanan 1984)

In a rule-based understander, when its observations match the if clause of a rule, “the
lefthand side,” then the “righthand side,” the then clause gets asserted. This new belief is

37

added to the knowledge of the system in hopes of triggering another rule. The system reasons
by building up long chains of beliefs constructed from the application of these rules.

However, even common, everyday problems can contain a multitude of factors with
messy interrelationships. In many of the spheres in which people operate, there is no strong
theory that neatly connects antecedents and consequents. Therefore, rules can not be constructed
that will make the explanations and predictions necessary to understand the domain. For
example, the social world that we inhabit is too complicated to reduce to rules, yet teenagers
are able to predict reasonably accurately how their father will react to news of a smashed up
car and adults can explain why their boss did not promote a colleague. In complex domains
like these, reasoning from first principles in the style of a rule-driven expert system becomes
either impossible or impractical. Instead, in these situations people reason from cases. They
use similar situations from the past to deal with the current situation. Therefore, in a
complicated decision such as whether or not to send U.S. troops to Kuwait, one naturally
considers previous cases like the U.S. involvement in Vietnam and Panama. Researchers have
uncovered extensive psychological evidence to demonstrate the pervasiveness of case-based
reasoning. In domains as varied as car mechanics (Ross 1989), medicine, catering (Kolodner
1991), and architecture (Klein 1988), researchers have shown people solving problems and
making decisions by reference to previous cases.

This process of case-based reasoning has three steps:

1) Extract key features of the current situation;

2) Use those features to retrieve similar cases from memory;

3) Use the similarities of and differences between the current situation and the
retrieved case to determine an appropriate action in the current situation.

If people reasoned from first principles most of the time, then you would naturally teach
them by presenting them with the sorts of rules they could use to construct large chains of
connected inferences. However, since most subjects worth teaching are too complex for a rule-
based approach and case-based reasoning is an important part of the way people deal with
these subjects, it is important to teach them in a way that will assist the natural process of
case-based reasoning. While the prevalence of the case method in professional education
reflects this recognition, much of K-12 and college education does not. In fact, those subjects
that are taught in a rule-driven fashion are the subjects in which students most rarely achieve
any deep understanding. In most public schools, math and science are still taught as the
memorization of formulas and algorithms, and our failure to compete with the rest of the
world in these areas is now considered a national crisis.

Therefore, a central goal of teaching must be to support case-based reasoning by giving
students cases they can reason with. Students can effectively gather cases through either first
or secondhand experience. In schools, firsthand experience has traditionally been provided by
laboratories, demonstrations, role-playing, simulations, and other hands-on activities. These
experiences are important for helping students to build up personal case libraries. However,
firsthand experience is not always feasible or even advisable, so cases can be provided
secondhand through stories. Because stories resemble firsthand experience, they enable
students to build personal cases libraries using the same natural learning process that they do
when learning from experience.

While experience and stories are both effective for providing cases, combining firsthand
experience with stories can improve on either experience or stories by themselves. An
advantage of the case-based teaching architecture described in Chapter 3 is that it provides
students with an opportunity to mix experience with stories. In a learning situation in which
students receive both experience and stories, stories can provide them with cases that go
beyond what they can experience firsthand. Stories can reinforce students' experiences, and
they can help students to explain their experiences. In combination with experience or alone,

38

stories can provide students with cases to reason with, without it being necessary for them to
gain firsthand experience of everything they learn. However, effective teaching must be

more than just giving students large numbers of cases. It must assist students to organize their
memories appropriately.

Teaching Toward Case-Based Reasoning: Cases Plus Indices

In order to perform case-based reasoning effectively, a person must have a large library
of cases that covers an adequate variety of situations. The accumulation of such a library is
one of the goals of human learning in natural settings. For example, one of the things that
people do when they start a new job is to observe their boss as much as possible. They do so in
order to build a case library of situations in which their boss has acted, so that they will be
able to predict in future situations how the boss will act. However, having a large library
with wide coverage in and of itself is not sufficient. It is also necessary to have the case
library organized, or indexed, so that appropriate cases can be retrieved at the moment when
they are most useful. For example, an employee who organizes his observations of his boss
according to the phase of the moon is less likely to have a usefully indexed case library of the
boss's behavior than an employee who indexes his observations of the boss according to the
latest sales reports. In a case-based memory, cases are organized according to features that
describe situations in which the case may be useful. The collection of features that label a
particular case are called an index. As the example above shows, a case library is only as
useful as the indices that organize the cases. If cases are stored under irrelevant or incorrect

features, then the reasoner will not be able to retrieve those cases when they might be useful
in the future.

Therefore, an important objective of teaching with stories must be to help the student

(L) 9

develop appropriate indices for the cases in his memory. When people learn from experience,
they pay attention to the circumstances in which an experience occurs. This context helps an
individual to store an experience as a case in his memory. The context provides the learner
with features that he can use to index the case. When he finds himself in a situation that has
features that match the context of the earlier experience, he is able to retrieve the earlier
case to help him to decide how to act in the new situation. When teaching with stories, the
context in which a story is told can help provide features to index with, in the same way that
the context does when someone learns from experience. Effective teaching with stories takes
advantage of context to help the student index cases effectively in his or her own memory. For
example, if a student makes a mistake in solving a problem, that mistake establishes an
important context for the student to hear a story that will help him to avoid that mistake in
the future. The features that characterize his current situation, the problem he's working on,
the mistake he made, form the basis for indices to that story. If the student indexes that story
in his memory based on this context, then he will be able to retrieve that story when he finds
himself in the same situation in the future. Having retrieved it, he will be able to avoid
making the same mistake or to recover from that mistake if he repeats it. Thus, the context in
which he hears the story provides features that help a student to index that story

effectively. A well indexed story can be retrieved when it becomes useful for dealing with
novel situations.

To summarize, one of the most compelling reasons to teach with stories is the role that
these stories can play in supporting case-based reasoning. Stories are second only to firsthand
experience in providing people with cases for reasoning with, especially when firsthand
experience is impossible or impractical. Effective story-based teaching is more than just
presenting an arbitrary collection of stories. The stories must cover a wide enough range of

39

situations and they must be presented in a way that helps the student to index them
appropriately for future use.

2.1.3 The Computer: A Platform for Teaching with Stories

While teaching with stories is natural and effective for human teachers, modern
computer technology offers several qualities for teaching with stories that improve on the
capabilities of any individual person. The first advantage of the computer for teaching with
stories is its capacity for multimedia story presentation. A computer can employ graphics,
animation, sound, and on-screen video, as well as ordinary text, for the vivid presentation of
stories. More important, a computer has instant access to its library in a “random access”
fashion. This means that a computer can locate and present a particular story at the instant
that it determines the story is valuable for the student. Human teachers can draw on all of
these media for story presentation, too, but they can not instantly retrieve the film, filmstrip,
or graphic that they need. Typically, teachers need to prepare days or weeks ahead in order
to have the equipment and material available to make a media presentation. Teachers cannot
take advantage of unanticipated opportunities for teaching with these sorts of media. In the
current environment, they can teach with audiovisual stories, but they cannot do the sort of
instant-access, opportunistic teaching with stories case-based teaching requires and that is
native to a multimedia computer system.

Along with a wide range of dramatic presentation media and instant access, computers
have the advantage of large storage capacity. With mass media storage devices and
networking, computers now have huge libraries of information available to them. Storage
capacity that was either impossible or unaffordable a few years ago is commonplace today,
and the trend gives every indication of continuing for the foreseeable future. The implication
of this technology for teaching with stories is that a computer can have many more stories at
its disposal than a teacher ever could. When a story gets indexed in a computer system that
teaches with stories, the story is permanent, regardless of the other stories entered into the
system. By necessity, humans do not operate that way. They forget. New knowledge crowds
out old knowledge, stories get confused with each other, and little-used information
eventually gets lost. Computers do not have the intelligence for dealing with knowledge that
humans have, but on the other hand, their memories are insensitive to the size of their
knowledge base. They do not forget old stories when new ones are added.

With the computer’s unique ability to store large amounts of data comes an opportunity
to increase the number of perspectives that can be taught. Humans are generally unable to
maintain conflicting perspectives in their minds, but teaching systems can be built that
incorporate the experiences and stories of many individuals regardless of conflicts in
perspectives. Once they are stored in the computer they can be widely distributed at little
additional cost. Often computers are advertised as being an improvement in education because
a student using a computer can receive individualized instruction. This, advocates claim, is
like a one-on-one situation and, therefore, better than the one-to-many teacher-to-student
ratio that is the rule in modern education. However, when a system can include the stories of
many individuals, it improves the teacher-student ratio to many-to-one, so a single student is
now able to benefit rom the experiences and expertise of many teachers. Since the stories
collected would be the best available, the student will have the benefit of a large number of
the best possible teachers. Expertise and experience are generally scarce resources. A primary
advantage of computer-based teaching with stories is that stories can be collected once and
then widely distributed. This makes access to these sources of expertise and experience

feasible and affordable for large numbers of people who wouldn’t ordinarily have any access
to them at all.

40

The computer is still a long way from approaching human intelligence. It will not be a
replacement for human teachers for a long time. However, it does have certain capabilities
that are ideally suited for teaching, and teaching with stories takes advantage of these
capabilities in ways that other attempts at computer learning environments have failed. For
example, researchers in artificial intelligence have worked on intelligent tutoring systems
(ITS’s) for over two decades (Sleeman and Brown 1982; Wenger 1987). The objectives of these
systems are to instruct students in subject areas by maintaining a model of what the student
ought to know and contrasting it with what it believes the student does know. This strategy is
based on observations of human tutors. As a strategy for tutoring it makes sense, and it may be
effective across a large range of subjects some day. However, it is restricted by the computer’s
knowledge, ability to interpret the student’s actions and its ability to react flexibly. An ITS
must really be an expert in the field that it is teaching, as well as an expert teacher. For most
fields (with the possible exception of algebra and computer programming), this is beyond the
current capabilities of artificial intelligence. In order to teach with stories, however, a
computer program does not need to be nearly so intelligent. A great deal of the teaching and
the expertise can be encoded in the stories, and the system need not be able to understand the
stories themselves. Unlike an ITS, a system that teaches with stories does not need to be
expert enough to understand everything it is teaching. It does not need to understand its
stories; it only needs to know when to tell each story. In this way, the computer becomes less of
a tutor and more of a librarian. By observing the student it gains an idea of what knowledge
would be useful at the moment, and it presents the most appropriate story or stories from its
library.

On the other end of the spectrum of computers in education is Computer-Assisted
Instruction (CAI). These systems guide students through a series of exercises and instructional
materials. Often practice is mixed with presentation of material, and the student progresses
or receives remediation depending on how well he or she performs. These systems are
effective and improve on workbooks or other more traditional materials to the extent that
they respond dynamically to the student and provide immediate feedback. However, they
miss the opportunity to take advantage of the computer’s full range of capabilities. Because
they typically present lessons in the form of rules and generalizations, they do not capitalize
on the learning that can take place when a system has a large body of stories and cases to draw
on for teaching. They take advantage of the computer’s responsiveness, but the teaching they
do tends toward teaching through abstractions not cases and they lack the large libraries
necessary to support case-based reasoning effectively.

2.1.4 A Definition of Story

Because this research looks at stories in a new light, it is important to explain what
constitutes a story for the purposes of this research. Stories are studied and discussed in many
academic disciplines from literature to psychology to drama. In fact, the last few years have
produced a resurgence of interest in stories in many forms. The ancient art of storytelling,
practiced since before the days of written language, has grown in popularity lately, especially
among those unhappy with the increasing isolation from personal contact and live
performance in the modern world of TVs, radios, telephones, and facsimile machines.
Professional storytellers are becoming increasingly popular, and storytelling festivals are
held throughout the United States. In addition, in academic circles there has been an
outpouring of works that use the story as an unit for gaining insight into human nature for
various purposes. In the field of psychology, for example, Robert Coles (1989) has used the
stories told by the mentally ill to help in psychotherapy. Vivian Gussin Paley (1990) has
focused on the stories told and acted out by young children as an integral part of her teaching,

41

arguing that they provide a window into the mental processes and social development of
children. Thorndyke (1975) has studied human understanding of stories and the impact of
story structure on comprehension. In Tell Me A Story (Schank 1990), the basis for the research
described in this dissertation, Roger Schank presents a theory of human intelligence in which
stories play a fundamental role in organizing human memory, and in determining human
behavior. In the social sciences, researchers have studied stories and the role they play in
forming, delineating, and preserving cultures. The art of telling stories is taught in schools of
performance, and of course the analysis of stories lies at the heart of the study of literature
and of writing. In the field of literature, volumes have been written on the nature of stories,
how to write them, what constitutes an effective story, and how to read and analyze them
according to various doctrines including Freudianism, Marxism, feminism, and
deconstructionism.

Even within the field of education, stories have received a great deal of attention.
Much has been written on the use of stories in the classroom, but the focus has primarily been
on the traditional “story hour”, a time that is set aside for the telling and discussion of a
story. This form of teaching with stories is a longstanding practice and an effective one.
Indeed, listening to a teacher read or tell a story in an elementary school classroom is one of
the strongest and warmest memories of this period for many people. An extensive literature
advises teachers on how to select, tell, and adapt stories to be told during the story hour (e.g.,
Bryant (1905), Fitz-Gerald (1971), De Wit (1979), Jones (1970)). However, as Paley (1990)
argues,the division between “story hour” and the rest of the day is artificial. In her view, the
school day consists of the successive telling, revising, and retelling of stories by both students
and teachers. An examination of teaching practices reveals, teachers use stories as teaching
aids not just during “story hour” but throughout their day, across all subject areas and all
levels of instruction.

Since stories are not just told during story hour but are thoroughly integrated into
ordinary teaching, the term story can no longer be defined in education as “what gets told
during story hour.” It must be defined in a way that enables one to distinguish teaching with
stories from other forms of teaching. Through the following criteria, I develop a definition of
a story and I show how the definition can be used to differentiate teaching with stories from
other teaching.

Criterion 1: A story must have characters, real or fictitious.

As an example of how characters distinguish between stories and non-stories, consider a
chemistry lesson on the nature of volatile substances. In both cases, the teacher presents an
example of the same phenomenon to show the force of an explosion that can arise when some
volatile gas is exposed to oxygen at room temperature. In the non-story example, the teacher
says, “For example, if one liter of this gas were mixed with oxygen at room temperature, there
would be an explosion with the force of four sticks of dynamite.” In the story example, the
teacher says, “For example, when I was in college, a careless graduate student allowed just a
fraction of a liter to come into contact with the air in his laboratory, and there was an
explosion that destroyed all the furniture in the room and blew out part of the nearest wall. I
don’t think the grad student survived.” Even though both are examples that describe the
same phenomenon, the story has a character in it, the graduate student, while the non-story
example has no identifiable character. The distinction between stories and non-stories is
important in cases like these because teaching with examples is not necessarily a form of
teaching with stories. The presence of characters is important for learning from stories because
identification with a character in a story enables the hearer to use the same natural process of
learning that he would use when learning from firsthand experience. Identification with
characters allows for egocentric understanding of stories. A character can be any creature, real

42

or fictitious, that acts with intention. Thus, an extraterrestrial, an animated teapot, or a
housecat can all be characters.
Criterion 2: A story must have an identifiable incident.

This may be the most obvious criterion for a story, but it cannot be overlooked. The
characters in a story must be involved in some event. Thus, saying your uncle was the stingiest
man alive is not telling a story, but describing an incident in which he drove sixty miles to
save money on toilet paper is. Again, the importance of identifiable incidents is that it makes
stories resemble actual experience. The similarity to experience enables someone to learn from
stories in the same way that he or she would build a case library from firsthand experience.

Criterion 3: A story must deal in specifics. It is not a story if it is couched in
abstractions.

This criterion may be subtle, but it is important because it distinguishes between
generalizations or rules and stories. For example, in the domain of animal adaptation, a
teacher could say, “Pikes have nostrils that sense pressure changes in the water and enable
them to detect possible prey.” This has characters, pikes, and it has an identifiable incident,
sensing pressure changes to detect prey. However, because it describes pikes in general, not any
specific pike, it is not a story; it is a generalization. The reason that the videos in Creanimate
qualify as stories is that they depict specific animals in the midst of specific events. This
requirement of specificity does not exclude stories that use specifics to represent abstractions.
Stories that use symbolism and metaphor, such as fables and allegories, are both common and
effective. In these stories, specific characters or events represent a class of individuals or
events, and the storyteller expects the hearer to understand the allusion. So, a story must be
expressed in terms of specific characters and events, but its intended meaning may be abstract.
Aesop’s fables, for example, are stories about animals, but their intended meaning is always to
teach a general lesson about human nature and appropriate activity.

Criterion 4: A story must have a point.

It is possible to tell a narrative that describes specific individuals in the midst of
specific incidents, but has no point. A story must contain some lesson for the hearer. The hearer
must be able to glean some useful information from the story. The criterion of usefulness is
important, for it distinguishes a non-story that contains information the hearer does not know
but does not need to know from a story that contains information that the hearer does not know
but has a need to know. For example, I could describe for you, all of the events that occurred to
me between the time I awoke this morning and the time I left my apartment. This would meet
criteria 1-3 for a story, it would even include new information for you, however, except in truly
extraordinary circumstances, you would have no use for this information. To you, the story
would have no point. The points of stories can vary widely, from the lessons on how to behave
of fables to the specific principles that videos of animals illustrate.

Criterion 5: Stories can be told or observed but not experienced.

This criterion serves two important functions. It expands the traditional definition of
stories beyond the spoken or written word, and it excludes any firsthand experience. First, a
story can be told or observed. In other words, a story can be presented as a narrative in which
one person conveys it to another through text or speech, it can be dramatized as in a play or
animation, or it can be reproduced from reality as in a captioned photograph, a film, or a
videotape. However, a story must be communicated not experienced. For example, if I walk
down the street and get mugged, that is an experience. If I come home and describe it to my
wife, that is a story. If a camera crew happens to be there and captures it on videotape, then
they had an experience, but if the district attorney presents the videotape to a jury as
evidence, then he is presenting a story.

In order to evaluate the effectiveness of teaching with stories accurately, it will be
important to distinguish between teaching with stories and other forms of teaching. The

43

criteria above serve to differentiate stories from experience on one end, and from other forms of
communication on the other. Stories are more effective than other forms of communication to
the extent that they enable the hearer to build a case library for case-based reasoning in the
same way as he would from firsthand experience.

2.2 Teaching with Questions

While stories can play an important role in effective instruction, they are but one of the
tools at a good teacher's disposal. Because case-based teaching uses stories to respond to
context, establishing the appropriate context for storytelling is crucial. The Creanimate
system uses questions to help establish this context. Therefore, in this section I provide a
rationale for the use of questions in teaching.

The reasons for asking questions in the course of teaching fall into two categories. First,
the ability to ask good questions is essential to learning and understanding. Teaching with
questions is a way of modeling a behavior for a student to learn. Second, asking questions is a
valuable device for increasing the effectiveness of a learning interaction. In the next two
sections, I explore these reasons for using questions in teaching.

2.2.1 Questioning and Understanding

The ability to ask good questions is fundamental to the processes of learning and
understanding. For example, Chi et al. (1989) have observed students in the course of teaching
themselves from textbooks and has identified questioning as a skill that distinguishes
between good and poor learners in such self-teaching situations. An important aim of the
Creanimate system is to help students learn to ask good questions by modeling the behavior for
them. Recent educational research (Collins, Brown, and Newman 1989) has advocated
modeling as a way of helping students to develop desired behaviors. Modeling consists simply
of performing a behavior for a student, so the student can internalize that behavior. This has
been identified as an integral step in apprenticeship learning (Collins, Brown, and Newman
1989). Collins and Stevens (1982) and Brown and Palincsar (1989) have described the
effective use of modeling to teach questioning in inquiry teaching and reciprocal teaching
respectively. Admittedly, the cognitive apprenticeship approach advocated by Collins,
Brown & Newman (1989) includes, in addition to modelling, coaching, scaffolding,
articulation, reflection, and exploration. Therefore, one of the issues to be addressed in the
empirical research on Creanimate is: Can modeling be effective to teach good questioning
behaviors in the absence of the other elements of apprenticeship learning?

The primary reason to teach students to ask good questions is the role they play in
understanding and expertise. An expert is someone with a good understanding of a topic.
While we usually think of an expert as knowing the answers in his field, the ability to ask
good questions is at least as important for expertise. Knowing the right questions to ask is an
important element of expertise because it is critical for dealing with unfamiliar situations.
What differentiates an expert from a novice in any field is knowing the questions to ask to
begin to understand novel phenomena (Schank 1986). For example, if you present a geologist
with a land formation that he has never seen before, he or she will know the right questions to
ask to start constructing an explanation for how that land formation came about. Explanation,
the central process of understanding, alternates between asking questions and constructing
plausible answers. But, where do those questions come from? The questions that one asks in
the process of explanation in any domain derive from knowledge of the basic relationships
that underlie that domain. These questions, called explanation questions in the terminology
of Schank (1986), connect the concepts in the domain together.

44

As an example, consider a naturalist exploring the Amazon jungle who comes across a
lizard with bright red streaks on his back and stomach and suction-cups on his tail. Never
having seen anything like it, he starts to ask himself some questions

“Why does the lizard have those red streaks on his back? What do they help it to do?”
he asks. “Maybe they are for camouflage,” he thinks, and he starts to look around for similar
colors. “But, if they’re for camouflage, why would they be on both his stomach and back?”
Just over his head, he notices a tree with unusual vegetation. It has long, thin red leaves
hanging down. The leaves are exactly the same color as the lizard’s streaks. “That explains
the suction-cups,” he thinks, “They allow him to hold onto those smooth branches and hang
down like those leaves. But why would he hang down like that?” Just then, a small insect
flutters by and disappears in front of his eyes. When he moves closer to see what happened,
he discovers a similar lizard hanging down where the naturalist had previously seen only red
leaves. It was this lizard that had caused the insect to disappear; he had grabbed it out of
the air with his tongue.

This example highlights the role of explanation questions in understanding. The
naturalist asks two of them, “Why does the lizard have those red streaks on his back?” and,
“Why would he hang down like that?” These are explanation questions because they get at
the basic relationships that underlie animal adaptation, the relationships among physical
features and their functions and the relationships among animal actions and their survival
goals. Thus, explanation questions exist on two levels:

Explanation question instance. An explanation question instance is a specific
question. An explanation question instance can be generated by applying an
explanation question category to specific concepts. For example, the
explanation question category “Why does an animal have a physical feature?”
applied to a lizard with red sireaks produces the instance, “Why does that
lizard have those red streaks?”

Explanation question category. The question category describes the basic
relationship that an explanation question refers to without mentioning any
specific concepts. For example, an explanation question category might be,
“Why does an animal have a physical feature?”

Explanation question categories are important because they coincide with the important
relationships in a domain. Someone who understands the explanation questions for that
domain will organize his knowledge around those relationships. For example, a naturalist’s
knowledge would likely be organized around the relationships between physical features and
their uses and between animal actions and their goals. Therefore, teaching a student the
explanation questions in a domain is the same thing as teaching him the important
relationships that underlie that domain. Furthermore, once a student learns these questions,
he can teach himself about new things by asking those questions and organizing his
observations according to the relationships that the explanation questions express. Knowing
the explanation questions for a subject is more important than possessing a large body of facts
about that subject, because explanation questions provide the ability to extend one’s knowledge
at will.

Teaching the explanation questions underlying animal adaptation is the central
pedagogical goal of Creanimate. While an individual can understand the relationships
within this subject area at ever-increasing levels of sophistication, we have identified five
initial explanation question categories to teach students. As we will see in later chapters,
these explanation question categories shaped the knowledge base of the Creanimate system,
as well as its reminding strategies and dialogue management techniques. These explanation
question categories are:

45

Why feature? The Why feature? explanation question attempts to connect an animal’s
physical feature with some action that the feature supports. For example, “Why do cheetahs
have long legs?”

How Action? The How action? explanation question explores the same relationship as
Why feature? However, How action? starts with an action performed by an animal and looks
for the features that are necessary to perform that action. For example, “What does an eagle
have to help it to fly?”

Why action? The Why action? explanation question attempts to connect a action
performed by an animal with some survival behavior. It assumes that the actions that
animals perform enable them to survive in some way. For example, “Why do female
alligators dig holes?”

How behavior? The How behavior? explanation question is the reverse of Why action?
It starts with a survival behavior and seeks actions that enable an animal to achieve that
behavior. For example, “How do chimpanzees get food?”

Why behavior? Behaviors can be performed for more than one reason. For instance,
finding shelter can be in the service of both keeping warm and avoiding danger. Therefore,
the final category of explanation question is Why behavior? For example, “Why do bears
fight?”

These five explanation question categories correspond to the relationships among three
different types of concepts: features, actions, and behaviors. These basic concepts and the
relationships can provide a student with a solid groundwork for the understanding of animal
adaptation. The goal of Creanimate is to ask questions in a way that will help students to
develop an understanding of adaptation according to these relationships and to learn to ask
the questions themselves as they continue to learn on their own.

2.2.2 Questioning in an Instructional Interaction

The second reason for asking questions in teaching is that it helps make the student an
active participant in a learning interaction. Responding to a question provides a student with
an opportunity to think independently and creatively, in contrast to situations in which the
student passively absorbs information transmitted at him. A great deal of research has
examined the use of questions in classroom settings and found surprising limitations in their
effectiveness (e.g., Dillon (1985); Winne (1979)). Many of these limitations, however, can be
directly attributed to the social context of a classroom. In a classroom, only one or a few
students actually have the opportunity to express their answers to a question. The remaining
passive observers are not likely to expend much effort on generating answers that will not be
pursued. In addition, when a student does answer a question in a class, he or she does so in a
social environment in which failure may lead to embarrassment or humiliation. The
classroom environment often produces a fear of incorrect answers that discourages creative
thinking and causes questioning to be more destructive than helpful. However, in an
individualized interaction the student can actively respond to questions free from the
intimidating social pressures of a classroom situation. Therefore, thought-provoking questions
can prove particularly effective in a computer-based learning environment. Questions activate
students in two important ways. They provide students with opportunities to form their own
hypotheses, and they evoke curiosity. Both of these sources of activation are especially
effective in combination with the use of stories.

A thought-provoking question gives a student the opportunity to construct his or her own
hypotheses. Forming one’s own hypotheses is important because of the investment and
perspective that they give the learner. First, a hypothesis increases a student’s interest in
any subsequent information that relates to the hypothesis. Commitment to a hypothesis

46

provides a student with the motivation to attend to and consider relevant information Second,
a hypothesis gives the learner a frame of reference for evaluating additional information.
Instead of considering new information from an uncommitted perspective, a hypothesis gives a
learner the ability to evaluate information with respect to the ways it supports or conflicts
with his hypothesis. Finally, a hypothesis provides a student with a framework for
integrating new knowledge into his existing knowledge. To the extent that new information
agrees with his hypothesis, the student can integrate the information with his hypothesis in
his memory structures. To the extent that new information conflicts with the hypothesis, he
can refine or modify his memory structures appropriately. Thus, regardless of the correctness
of a student’s initial answer to a question, it provides an important context for subsequent
learning. An educational system that asks questions can encourage students to explore the
hypotheses they construct and to learn from the successes or failures of their hypotheses.
Exploring their own hypotheses provides students with an unequalled opportunity for learning
from information they encounter. In case-based teaching systems, such as Creanimate, this
information can be provided through stories.

In addition to providing opportunities to construct hypotheses, good questions evoke
curiosity. Curiosity, in turn, is a dramatic motivator for learning. Therefore, a well-formed,
well-timed question can motivate a student to be an active learner. Specifically, an effective
question can evoke the sort of curiosity that establishes a context for storytelling. A student
who sees a story in the context of an unanswered question that is meaningful to the student’s
concerns will become an active viewer of that story. He will focus on the story as an
opportunity to satisfy his curiosity and he will view it as a source of an answer to his current
question. This active viewing contrasts sharply with the way the same student might attend
to the same story in the absence of a question. However, the effectiveness of questions to evoke
curiosity is not limited to storytelling situations. A weli-timed question can help a student to
make new connections using his previous knowledge, or to conduct his own inquiry.

2.3 Summary

The use of stories to teach is common among both parents and formal educators. Teaching
with stories generally falls into two categories, stories that are used to establish a context and
stories that teach lessons within a context. The former is the technique of the case method
commonly used in professional training, and the latter is the technique of case-based teaching.

Teaching with stories is effective because it supports the natural process of case-based
reasoning. In order to perform case-based reasoning, it is important to have a large library of
cases that cover an adequate variety of situations. One of the goals of natural human learning
is to accumulate such a library. However, having a large library with wide coverage, in and
of itself, is not sufficient. It is also necessary to have the case library organized, or indexed, so
that appropriate cases can be retrieved at the moment when they will be useful.

Teaching with stories is ideally suited to the computer. Computers offer an unequalled
opportunity to build large libraries of stories that can be accessed instantly. They can present
stories in a wide variety of vivid fashions that take advantage of advances in graphics,
animation, audio and video. Through their ability to store large libraries, they offer students
exposure to the experience of many individuals, broadening their perspectives beyond what
they can get in a normal classroom, a one-on-one teaching situation, or even a more traditional
computer-based learning environment.

Good teachers also ask questions. Teaching with questions is important because questions
can provide a student with the structure of a subject matter. In particular, explanation
questions teach the basic relationships that are important for constructing explanations of

47

phenomena in a domain. In addition, questioning is an important part of the self-teaching
process. Students who learn to ask the right questions are able to learn from new experiences.
Questioning can also have an important impact on a learning interaction. Questions help
to activate the learner to construct his own hypotheses and learn from them. In addition,
thought-provoking questions raise curiosity which is a powerful motivator of learning.

Chapter 3

The Case-Based Teaching Architecture

Two basic pedagogical principles underlie case-based teaching. They are:

Active Learning. Effective learning takes place when a student is engaged in the
active pursuit of tasks that provide him with motivation and opportunities for
learning.

Learning from stories. When opportunities for learning arise, a student should be
provided with stories that will help him to learn from his situation.

The case-based teaching architecture consists of two components, the task environment
and the storyteller, each of which embodies one of these principles. In a case-based teaching
system, a task environment engages the student in active learning, while a storyteller monitors
the student’s actions looking for opportunities to present stories. The stories that the
storyteller presents help the student learn from the situations he encounters. In combination,
the task environment and storyteller provide forms of knowledge that complement each other.
The task environment helps a student to understand the structure of the domain under study,
while the storyteller provides cases that support that structure. Taken together, the
framework that the student learns from the task environment and the cases that he gains from
the storyteller are mutually reinforcing.

In this chapter I present principles for the design of effective task environments and
storytellers. In Section 3.1, I discuss the design of task environments that support active
learning, and in Section 3.2, I discuss the design of storytellers that support learning from
stories. In these sections, [present specific issues for the construction of effective case-based
teaching systems. The discussions of these issues are accompanied by descriptions of how they
have been resolved in Creanimate. In the final section, I bring the two components back
together with a discussion of the learning that results when an effective task environment is
combined with an effective storyteller.

49

3.1 Active Learning: The Task Environment
The principle of active learning is supported by theories of constructivist learning which

argue that a student learns best when he is constructing understanding as a result of activity.l
In active learning, a student generates his own hypotheses, explores them, evaluates and
revises them as a result of self-generated actions. Active learning contrasts sharply with the
kind of passive learning that we see in most traditional educational settings. In a lecture
setting, students are not given the opportunity to generate their own hypotheses; they are
presented with a description of someone else’s hypotheses and how they were evaluated.
Worse, students often are not exposed to hypotheses at all but only to conclusions. In this
situation, students do not learn about the processes that lead to understanding. They learn
facts dissociated from the processes that uncovered them. While drills and exercises make a
student active, they rarely provide the valuable opportunities for learning that characterize
effective active learning. In traditional exercises and drills, students lack the ability to
control their own learning or to learn from timely feedback.

Active learning demands that the case-based teaching architecture provide an
environment in which students can formulate, explore, and revise hypotheses at their own
initiative. In the course of exploring these hypotheses, students must encounter valuable
opportunities for learning. In addition, a task environment must be authentic to both the
concerns and interests of the student and the real world application of the material being
taught. To effectively engage a student in active learning, a task environment must also
provide a student with control of his interaction, and with sufficient motivation.

3.1.1 Forming and Exploring Hypotheses

Historically, educators have used manipulatives, laboratories, thought experiments,
essays, and open-ended discussions in order to provide students with settings in which they can
perform active learning. All of these devices enable students to actively explore ideas. They
provide a student with the means to express hypotheses, investigate their implications, and
revise their hypotheses. An effective task environment provides these same capabilities.

In order to explore hypotheses, a student must be able to obtain feedback about them. An
effective task environment provides a student with feedback that will enable him to observe
the strengths and weaknesses of his hypotheses. The computer presents a unique opportunity
for providing students with feedback in two respects. First, the computer can provide feedback
in a wide variety of meaningful forms. Computers are uniquely suited to allow a student to
manipulate objects and observe consequences. Valuable tools such as microworld simulations
and visualization environments have been developed to take advantage of the computer’s
ability to provide rapid, appropriately formatted feedback. Computers can draw on a large
variety of media for presenting meaningful feedback including audio, graphics, animations,
and video. Second, the computer gives the software designer the ability to control the
feedback that a student receives. With physical manipulatives and labs, feedback to the
student is determined by the laws of nature. This limits the range of hypotheses a student can
explore. In a laboratory, for instance, students cannot view the effects of microgravity. In
addition, the laws of nature can make observation of interesting phenomena difficult. For
example, chemistry experiments often go awry for reasons that are beyond the control of the

1 While he apparently never used the expression constructivism , Piaget is generally credited
with developing the theory of constructivist learning. (See, for example, Piaget 1954) For a
discussion of constructivism and computer environments, see Forman and Pufall (1988).

50

student. When they do, students receive feedback that they cannot understand or use.
Likewise, some natural processes, geological transformations, for example, proceed too slowly
to even be observed naturally. However, a computer can provide an environment in which the
results are tightly controlled, or in which the passage of time is accelerated or decelerated to
match the processes under study to the attention span of the student. Not only can a computer
environment make feedback easier to observe than in the natural world, it can generate
outcomes that are incompatible with the natural world. This enables the student to explore
all manner of hypothetical situations that will help him to understand naturally occurring
situations better. Finally, the computer’s feedback can be varied to suit pedagogical aims.
The effects that a student observes as a result of his actions can be controlled in order to
provide him with specific lessons.

Thus, the capabilities of a computer enable the task environment of a case-based
teaching system to improve on traditional settings for active learning. An effective task
environment gives the student tools to manipulate objects and observe results. It uses the
computer’s abilities to present information in a variety of formats in order to provide the
student with feedback about the effects of his actions. It includes pedagogically sound
techniques for controlling the feedback that the student receives in order to present the student
with appropriate opportunities for learning.

Forming and Exploring Hypotheses in Creanimate

The Creanimate task environment gives students opportunities to form and explore
hypotheses in two ways. The primary hypothesis, of course, is embodied in the animal that
the student creates. This animal becomes the subject for an inquiry in which the student
considers different aspects of its survival in the wild. In the course of a dialogue, a student
examines his hypothesis through the consideration of questions about his animal like the one
in the following excerpt from a transcript. The student has just decided to give his frog wings
to help it fly, and the computer responds:

Having wings is not enough for your frog to keep itself up
in the air. It needs more.

How else do you want to change your frog so it can keep
itself up in the air? (transcript no. m1-4-29-1541)

The thought-provoking questions that the program poses provide important feedback to
the student. They ask students to consider the survival issues raised by their animals.

A student’s formation and exploration of hypotheses continue as he proposes answers to
the questions raised by the computer or considers answers suggested by the computer. When a
student proposes an answer to an explanation question, he formulates a second hypothesis. For
example, in response to the question above students have responded with both “make it
smaller” and “make it larger.” Creanimate provides positive or negative feedback to
students’ answers by either confirming that the answer is consistent with its knowledge or by
telling the student that it does not know of any examples that support his answer. Both
reactions provide opportunities for the storyteller to present stories.

In these ways, the Creanimate dialogue manager gives students the opportunity to
generate creative hypotheses, and receive valuable feedback on those hypotheses. Students
receive this feedback in two ways. They receive it through questions that ask them to explore
their hypotheses further and through evaluations of their answers to these questions.

51

3.1.2 Opportunities for Learning

Before we can talk about establishing opportunities for students to learn, we must
understand what triggers learning. People understand the world around them by maintaining
a set of expectations and comparing these expectations with their observations (Schank 1982;
Schank and Abelson 1977). At any moment in time, a person has a set of active expectations
that are appropriate to the situation he is in. These expectations vary from the general, “I
expect rooms to have doors,” to the specific, “Rebecca orders chocolate and peanut butter ice
cream at Baskin & Robbins.” Through accumulated experience, people develop sets of
expectations that are appropriate for particular situations. Schank (1982) divides these
expectations into classes he calls scripts, scenes, and MOPs. When an individual enters a new
situation, he looks for cues that tell him what kind of situation it is. When his expectations
are confirmed by his observations, he moves smoothly though the world. When his
expectations are violated, he becomes surprised, confused, or curious, all of which motivate
him to learn. The result of such learning is a new or better refined set of expectations. Thus,
people are prompted to learn when an expectation that they have is violated in some way.

These violations are called expectation failures and they trigger failure-driven learning2
(Schank 1982). Opportunities for learning occur at the moment that students experience
expectation failures.

To promote active learning, a task environment should help students to develop
increasingly sophisticated expectations, test them out, experience expectation failures, and
revise their expectations accordingly. In other words, an effective task environment is one that
provides students with opportunities to experience expectation failures. An implication of
this theory of learning from expectation-failures is that students must feel comfortable
making mistakes and must have opportunities to learn from their mistakes. A mistake is the
manifestation of an expectation-failure and should be positively valued as an opportunity for
learning. The task environment of a case-based teaching system should be sufficiently
challenging and broad to enable the student to test his hypotheses and experience expectation
failures. Once the student has experienced an expectation failure, then the storyteller can
capitalize on this opportunity for learning by presenting a story that will help the student to
learn from this failure. An advantage of computer-based learning environments is that
students can feel free to make mistakes without the embarrassment or even humiliation that
attends mistakes in a classroom. It is the rare teacher who is skilled enough to build a
classroom culture in which students recognize the value of errors for learning and treat them as
opportunities not embarrassments. However, a well-designed task environment can encourage
students to take risks and be creative, observe the effects, and learn from their experiences.
Students interacting with a computer can feel comfortable experimenting, free from the social
pressures of a traditional classroom setting.

Opportunities for Learning in Creanimate

Opportunities for learning arise when a student has a misconception or is lacking some
necessary knowledge. The result is an expectation failure. The Creanimate task environment
gives students opportunities to form and express expectations in the form of both their invented
animals and their answers to the program’s explanation questions. They can then view stories
that either confirm or violate their expectations. These expectations represent opportunities

2t is important to emphasize that the word failure in failure-driven learning refers to the
failure of one’s expectations not one’s failure to achieve a goal.

52

for learning that the storyteller capitalizes upon. In the following example, a girl asks for a
frog that can dance. The dialogue manager asks her,

We need a reason for your frog to dance. Is there a reason
you want your frog to dance?

The student chooses to ask for suggestions.

Student: Give me some suggestions.
Bees dance. Do you know why bees dance?
(I think this video is amazing.)
Student: sShow me a video

[VIDEO: "BEE DANCES"]

Now, do you know why bees dance?
Student: Show me the video again
(VIDEO: "BEE DANCES"] (Transcript no. 5-8-13.59)

It is reasonable, without reading too much into this transcript, to conclude that the
questions in this transcript exposed gaps in the student’s understanding. Because the student
asked for suggestions, we can surmise that she does not know, or is at least uncertain of, reasons
that animals dance. The question exposed a gap in her understanding and established a
context in which she would be motivated to learn reasons that animals dance. This
opportunity for learning is exploited by the storyteller which prepares to present a story that
shows why bees dance. This reason is presented in the form of a suggestion of why her frog
might dance. In the course of introducing this story, the storyteller may have induced another
expectation failure, this one more specific. It asked the student if she knew why bees dance. It
is likely that she did not even know that bees dance, much less why they dance. This
combination of expectation failures serves to raise the student’s level of interest in the story.
In fact, the complete transcript shows that she chose to view the video twice.

Opportunities for learning in Creanimate multiply as a student resolves the issues raised
by the dialogue manager. Whenever a student settles an issue by answering an explanation
question, he effectively refines the design for his animal. Each refinement in turn raises new
issues for the well-adaptedness of the animal, presenting new opportunities for learning. The
pursuit of these new issues will lead to further refinements, further new issues, and, of course,
more opportunities to learn from stories.

3.1.3 Authenticity

Authenticity is increasingly being recognized as an important factor in an effective
educational interaction (Brown, Collins, and Duguid 1989; Collins, Brown, and Newman 1989;
Leinhardt 1987; Schoenfeld 1992). There are two issues for authenticity in a task
environment: authenticity of the task to the student and authenticity of the task to the world.
Authenticity to the student requires that the task relate to meaningful goals and interests of
the student. Meaningful goals are vital because they allow the natural inclination that a
student has to achieve some goal to carry over into motivation to accomplish the instructional
task. As a result, authenticity leads to better understanding and retention of the material
encountered. If the task is one that the student has both authentic interest and goals in, then
the student will attend to the task more. In addition, a student’s interest indicates that he

53

has a better developed set of knowledge structures to which he can connect new knowledge.
His goals mean that he will work harder to make these connections. Thus, to provide
authenticity to the student, a task environment should connect with the natural goals and
interests the student brings to the interaction.

The other side of authenticity is authenticity to the world. Authenticity to the world
occurs when knowledge or skills are taught in a context that is consistent with the way they
will be encountered and employed in the real world. Research has exposed the difficulty that
people have applying the knowledge learned in one context in a different context. For
example, studies have shown students’ inability to transfer the physics they learn in schools
to natural settings in which the knowledge applies (Halloun and Hestenes 1985; McCloskey,
Caramazza, and Green 1980). This research is evidence for what Whitehead (1929) called
inert knowledge. Inert knowledge results from artificial learning situations, because these
settings do not help learners to understand the usefulness of their knowledge in natural
settings. As a result, they are unable to recognize opportunities to apply their knowledge
when it would be useful. The solution proposed by many current researchers is authentic
learning situations, situations that are true to the settings in which practitioners actually
employ the knowledge (Brown, Collins, and Duguid 1989; Collins, Brown, and Newman 1989;
Leinhardt 1987; Schoenfeld 1992). This contrasts with the way subjects like mathematics are
typically taught in our schools, in which basic skills are taught completely divorced from any
context that indicates how the skills might be used. The result is that students learn the
skills, but because they don’t know how or when to apply them, they fail to use them in
situations when they should.

One particularly effective example of an authentic learning activity is the Jasper
project (Cognition and Technology Group at Vanderbilt 1990) which happens to also
incorporate the use of stories. The jasper project presents complex probliems in mathematics to
elementary and middle school students through an extended video story. At the conclusion of
the video, the protagonist, an adolescent himself, is faced with a problem that can only be
solved through a multi-step mathematical solution. The students work through the problem
step by step, developing and using skills in context. The video story provides a context that is
both authentic to the students because they identify with the protagonist, his goals, and his
problem and is authentic to the world because the mathematical skills and knowledge are
employed in a context that is faithful to the way those abilities would be called for in the
real world.

To summarize, effective task environments must be authentic to both the student and the
world. Authenticity to the student requires that a task connects with a student’s own goals,
interests, and concerns. Authenticity to the world requires that learning takes place in a
context that is faithful to the way in which the knowledge will be encountered and used in the
real world.

Authenticity in Creanimate

The task of creating a new animal is a natural one for children. As a natural part of
their play, children invent new worlds and populate them with creatures of their own
invention. Often when left to their own devices, children will draw pictures of their invented
animals. Therefore, Creanimate is an authentic activity for them. The authenticity of
Creanimate to the world is not as readily apparent, however. In fact, the Creanimate task
environment is modeled very closely on the authentic practice of science. The practice of
science consists of proposing creative hypotheses and exploring them. As we’ve already seen
in this chapter, Creanimate provides the student with that opportunity. In addition, the
practice of science in general and the study of animals in particular center on the activity of

54

questioning. When presented with a novel phenomena, scientists rely on the explanation
questions that define their discipline to construct plausible explanations. Creanimate leads
students through the same process, using the same types of explanation questions that a
naturalist would ask if he discovered a new animal somewhere in the wild.

Finally, the design of a new animal adheres to a basic process of experimental science.
When a metallurgist wants to understand the properties of a material, he perturbs it from its
natural state in various ways. He bends it to measure its rigidity, he stretches it to measure its
ductility, he applies a current to measure its conductivity. In an analogous process,
Creanimate gives children the opportunity to learn about animals by perturbing them from
their natural state. Students learn about an animal by changing it from its natural state, and
they learn about the features and activities of animals by giving them to animals that do not
normally possess them. In response to their creating, the Creanimate dialogue manager leads
students through an inquiry process that is faithful to the authentic practice of science.

In evaluating the authenticity of Creanimate, it is important to look past the fantastic
nature of a task in which a child creates his or her own animal to see the scientific structure
that underlies the interaction. Creanimate uses the natural interests and inclinations of
children to draw them into an activity that allows them to practice scientific inquiry while
they have fun. In the process, students engage and take pleasure in the creative thought that
accompanies all real science.

3.1.4 Student Control

Active learning demands that a student be able to form, evaluate, and revise his own
hypotheses. In other words, the student must control his own learning. This belief is the
keystone of the discovery learning paradigm (Bassett 1970; Foster 1972; Shuiman and Keisler
1966). The goal of discovery learning is for the student to direct his learning guided by his own
natural interests and motivations. However, in practice discovery learning has two problems.
First, with no knowledge of the subject to be “discovered” a student does not know which paths
to pursue and which to ignore. Second, with little knowledge of the subject and no personal
goals with respect to the subject, a student has no motivation to explore. Thus, the two
challenges of active learning with respect to the student are:

* How to give the student control without dooming him to explore aimlessly.
* How to motivate the student to be an active learner.

The first challenge of active learning is a true dilemma. We want the student to control
his own learning, but we don’t want him to wander in the aimless style of unguided discovery
learning. The solution lies in a cleverly engineered task environment that allows the student
to control his interactions within the environment yet ensures that he will encounter
appropriate opportunities for learning. One way to ensure this is to build the lessons of the
system into every possible path that a student might choose. Thus, the student is given the
opportunity to form his own hypotheses and control his interaction by choosing the actions he
wants to take, but regardless of the hypotheses he forms and the choices that he makes, he
should encounter situations that expose him to the important lessons the system is designed to
teach. In Creanimate, the primary educational goal is to teach the student the important
relationships that describe the makeup of all animals, i.e., physical features support actions
and those actions contribute to survival behaviors. The student is given extensive control over
his interaction, and yet, whichever animal he chooses to construct, or however he answers the
questions posed by the system, he will be exposed to these same relationships.

A second approach to student control is to give the student a sufficient degree of control
without giving him the freedom to wander aimlessly. For example, a student may be given a
range of options at any point that is broad enough to impart a strong sense of freedom.

55

However those options may be selected to ensure that the student will still experience
appropriate opportunities for learning. In this approach, the module that manages the task
environment carefully selects options for the student based on pedagogical goals. In such a task
environment, a student can exert a great deal of control over his interaction without being
aware that the task environment is constructed to prevent his wandering in the aimless style
associated with attempts at discovery learning.

Student Control in Creanimate

Creanimate gives the student an enormous amount of control of his or her learning
interaction. Student control was a central concern in the design of the task environment. Asa
result, the initiative lies entirely with the student. The student determines the initial
direction of the dialogue by choosing an animal to create. The ensuing dialogue responds
directly to that choice and any subsequent choices made by the student. In the course of each
dialogue, the student is encouraged to test his or her own ideas, however, students are also free
to seek suggestions from the dialogue manager. In the course of any dialogue, several answers
to an explanation question may be considered. After discussing each answer, the student has
the opportunity to commit to any of the answers he has seen so far or he may choose to see
more. Through the decisions the student makes in shaping his animal, he controls his own
learning interaction.

In addition, the user-interface of the task environment is designed to give the student
additional ways to exert control. The bottom of the Creanimate screen is devoted to a set of six
“User Control Buttons.” These buttons are shown in figure 24.

Figure 24. The button palette from the Creanimate user interface showing the User Control
Buttons. The buttons are labeled, from left to right, start over, change animal, big picture,
what’s the point?, back up, and skip this.

The User Control Buttons in Creanimate are drawn from a set of sixteen buttons proposed
by Jona et al. (1991). These buttons provide a student with an ability to express himself and
control his learning interaction. They allow a student to request more information (big picture,
what’s the point?), change his mind (back up), jump ahead, (skip this) and change the topic
(change animal, start over). Through these buttons, the student is able to convey information
about his feelings that a human teacher can often read directly from a student’s face or actions
(and that intelligent tutoring systems devote enormous resources to inferring). In addition,
they encourage the student to become more aware of his own learning processes and to act on

this awareness. For more detail on the User Control Buttons in Creanimate and what they do,
see Appendix D.

3.1.5 Student Motivation

The second challenge in encouraging a student to be an active learner is motivation.
Unfortunately, motivation is the factor that is most commonly overlooked by artificial

56

intelligence researchers in their attempts to build effective educational systems. A great deal
of research has been conducted on student motivation (e.g., Deci 1975; Lepper 1978; Malone
1981; Keller 1983). This research indicates that for most purposes, motivation ought to be
intrinsic. That is, the reward for accomplishing a task should derive from the nature of the
task and the authentic results of executing that task, rather than from some external source.
When the motivation is extrinsic, e.g., grades or compensation, Lepper et al. (1973) have found
that it can reduce an individual’s natural inclination to perform the task. In one study, they
found that drawing, a task that pre-school children performed willingly in the absence of any
reward, became unattractive after an intervention in which they were given an extrinsic
reward for drawing. There is even evidence that suggests that the effects of extrinsic
motivations are cumulative. Harter (1981) found that as students progressed from third
through ninth grade in our current school system they reported behaviors that indicate
progressively decreasing response to intrinsic motivation and increasing response to extrinsic
rewards.

Fortunately, computer environments offer a new opportunity to provide intrinsically
motivating, authentic tasks. Drawing from two strands of research in motivation, we have
identified six critical factors for the design of a motivating task environment. The first four
factors are taken from research reported in Malone (1981; 1980), Malone and Lepper (1987) and
Lepper and Hodell (1989).

Challenge. A task environment should challenge students to work at the limits of their
abilities. A challenging task is difficult enough that its accomplishment gives the student a
sense of satisfaction but is not so difficult that it frustrates him or her. Ideally, the program
that manages a task environment is able to vary the difficulty of the tasks in response to both
differences in abilities between students and changes in the competence and confidence of an
individual student.

Curiosity. According to Lepper and Hodell (1989) curiosity is elicited “by activities
that provide students with information or ideas that are surprising, incongruous, or discrepant
from their existing beliefs and ideas. “(91) Their characterization of curiosity agrees with
the earlier discussion of the role of expectation-failures in triggering opportunities for
learning. Once elicited, curiosity is a powerful intrinsic motivator of learning.

Control. Student control has already been described as being important for the actual
learning process. However, control is also important for motivating a learner. As Deci (1975)
argues, control increases a student’s sense of self-determination which is intrinsically
motivating.

Fantasy. The role of fantasy in motivation was first described by Malone (1981) as a
result of his investigations of computer games and what makes them motivating. Fantasy, in
and of itself however, is not sufficient for motivation. Malone distinguishes between extrinsic
and intrinsic fantasy. A game in which a student moves a car around a track by answering
arithmetic questions contains extrinsic fantasy because the skill of answering arithmetic
questions has nothing to do with moving a car. On the other hand, a game in which students
explore a cave by typing in instructions is an intrinsic fantasy for the skill of writing. Lepper
and Hodell (1989) claim support for the motivation of fantasy from psychodynamic literature
that discusses the emotional needs that fantasy fulfill and from Piaget who discussed the way
fantasy adds cognitive structure to less engaging tasks.

In addition to the four factors described above, we have also adopted two from the work
of Keller (1983) for the construction of motivating task environments.

Satisfaction. A task environment should provide results that are consistent with the
student’s effort, degree of success, and expectations. The combination of extrinsic and intrinsic
rewards for performing a task must satisfy the student and live up to his or her expectations.

57

Relevance. Like curiosity, relevance is a characteristic of the task environment that is
important both for the actual learning process and for motivation. Relevance is authenticity
to a student’s goals and interests. It requires that an active learning task connect to the goals
and interests of the student. When a task is relevant to a student’s personal goals and
interests, these goals and interests will motivate the learning process.

These six factors provide guidelines for constructing a task environment that will
provide a student with the motivation to be an active learner.

Motivation in Creanimate

The Creanimate task environment was designed from the ground up with the issues of
motivation in mind. It provides challenge, curiosity, control, fantasy, relevance, and
satisfaction in the following ways.

Challenge. The questions that the program poses were carefully examined to ensure an
appropriate level of challenge for the target population. As part of this evaluation, students
were observed using the program and interviewed to see how challenging they found the
questions at several stages in the program's development. The questions were selected to raise
issues that were appropriate for students in the target age group to learn. While some students
were familiar with the answers to specific questions that the program posed, they were, by
and large, still in the process of learning the importance of the underlying basic relationships.

Fantasy. The "create your own animal" task lends an ideal sense of fantasy to
Creanimate. Unlike the overwhelming majority of science instruction in school settings, it
encourages students to deal in a world of "What if..." Creanimate invites them to indulge in a
fantasy, and it uses that fantasy as a point of departure for teaching important relations. The
success of commercial games like Designasaurus (Patterson 1990) is testimony to the natural
inclination of children toward this task.

Relevance. Relevance requires that the task connect to the interests and goals of the
student. A great motivational force in Creanimate’s favor is the natural affinity that
children have for animals. Of the 21 fourth graders we surveyed, 100% said they “like to
learn about animals” and 81% said they visit zoos often. In addition, 57% said that they like
to watch nature shows on TV. Clearly these students already possess the interest in and goal
of learning about animals. The interests of these particular students were typical of the other
age groups we have worked with.

In addition, Creanimate uses the student's investment in his animal to bring more
meaningfulness to the task. The advantage for a learning environment of a task in which a
student creates something is that the act of creation generates a personal investment in the
invention. Once a student has been given an opportunity to create his own design, his
ownership of the creation becomes a powerful motivator for the student to learn about the
issues that effect his creation.

Curiosity. The student’s investment in his animal helps to motivate a student not just
through meaningfulness, but also through curiosity. The student’s interest in the adaptability
of his animal carries over into curiosity about the factors that determine its adaptability.
This curiosity, in turn, leads to interest in the survival of similar animals and the basic
underlying principles that determine adaptability. As I described in Chapter 2, the thought-
provoking questions posed by the dialogue manager evoke and focus this curiosity. In addition,
the stories themselves elicit curiosity. While the videos in Creanimate provide a great deal
of information, they have an important secondary effect of raising new unanswered questions.
These questions that children generate themselves serve as powerful motivators for learning,.

Control. As I described earlier in the chapter, Creanimate gives the student the ability
to control his own learning interaction in several different ways. In addition to enhancing

58

learning, the empowerment that comes from a sense of control increases a student’s motivation
to pursue the learning task.

Satisfaction. The Creanimate task environment offers two sources of satisfaction to help
maintain student's motivation. The first source is provided by the physical transformation of
the student’s animal. When the student selects an animal to change, he gets to see a picture of
the animal as it looks in nature. As he resolves questions that modify the physical structure of

his animal, he gets to see a picture of his new, modified animal.3 The second source of
satisfaction in Creanimate is the stories themselves. Videos of animals in the wild are vivid
and absorbing. Children frequently reacted openly and loudly to the videos. Their reactions
range from laughing at surprises, to recoiling from fright, to squeamish squeals, to cheering
over battling rivals. Frequently, students use the “replay” button to watch the same video two
or three times. While the concrete satisfaction of seeing their own animal transformed is an
important part of the interaction, we have found that a student’s focus usually shifts after a
short period of time such that they begin to see the videos as the real reward of using the
program. The satisfaction of "discovering" a good story motivates students to explore creative
ideas that will enable them to see interesting and unusual stories.

3.1.6 Some Designs for Effective Task Environments

After considering the features that make a task environment effective, it might be
helpful to examine some designs for effective task environments. As I stated above, an
effective task environment should provide a student with an engaging task that offers the
opportunity to form and explore hypotheses as well as experience expectation failures. Some
architectures for task environments that offer these capabilities include:

* simulations

* problem-solving environments
¢ design environments

¢ diagnosis environment

Led by the flight simulator, simulation environments have become extremely popular.
Originally conceived to provide training for situations that are too costly or hazardous to
allow a student to learn through actual experience, simulations have spread to every sort of
situation imaginable. While simulations make ideal task environments for case-based
teaching, problem-solving, design, and diagnosis environments share many of the same
advantages. Problem-solving, design, and diagnosis environments all provide the user with a
set of computer-based tools and an environment for accomplishing the particular type of task
associated with the environment. For example, a problem-solving environment to teach
finance might allow the student to create balance sheets for hypothetical companies. The
tools in this environment would include a spreadsheet and a database for managing financial
data. A design environment might allow a student to design bridges or buildings. This
environment would include appropriate computer-aided design (CAD) tools. A diagnosis
system might allow a student to troubleshoot a power generation facility by providing him
with data analysis software and diagnostic routines.

3The ability to show the student an image of his animal is an important area for future
improvement. The current implementation uses pre-drawn artist’s renderings of the modified
animals. Plans are underway to give future versions of Creanimate the ability to generate
images dynamically in response to students' actions or to provide students with a graphics
tools that will allow them to create their own images of their animals.

59

Simulations, problem-solving, design, and diagnosis environments all make effective
task environments because they provide the means to express and explore hypotheses and the
feedback necessary to evaluate and revise hypotheses. Furthermore, they provide the student
with goals within the environment that enhance his learning. These goals serve as
motivators, and they provide a meaningful context for learning. All of these environments put
the student in control because they respond to the student’s initiative. Finally, each of these
types of environments is authentic both to the student and to the world. They allow students
to learn a skill or accumulate knowledge through the natural application of that skill or

knowledge, and they provide environments for learning that are true to the way that the
material used in the real world.

3.2 Learning from Stories: The Storyteller

In the case-based teaching architecture, the storyteller provides learning from stories.
The artful combination of task environment and storyteller enables a student to benefit from
stories in context. The particular strength of the case-based teaching architecture is the way
the task environment provides context for learning from stories. As I discussed in the previous
chapter, the context in which a story is presented has an important impact on learning.
Context affects both the way the hearer understands a story and the way he retains it. In a
case-based teaching system, the task environment supplies a meaningful context for hearing
stories. This context helps the student to index that story in his memory as a case for future
use.

In addition, a storyteller presents stories at the moment a student can use them. In this
respect, a storyteller lives up to Papert’s (1980) power principle. The power principle states
that the material being taught “...must empower the learner to perform personally meaningful
projects that could not be done without it.” (Papert 1980, 54) Told at any other time, a student
may not understand the value of the information in a story and he will not be motivated to
retain it. However, when you tell a student a story at a moment when he can use it to
accomplish a meaningful task, he will be motivated to learn from it, the context will help
him to understand it, and the experience of using the information will help him to retain it
better. How to construct a storyteller that is able to present stories in this way is the subject of
this section.

As I argued in Chapter 2, teaching with stories supports case-based reasoning. In order
to teach with stories effectively, a storyteller must be able to respond to opportunities for
learning with stories that provide useful cases. Toward that end, a storyteller in a case-based
teaching system must have the following three attributes: 1) stories that cover a broad range
of educationally significant situations, 2) an organization for those stories to enable the
storyteller to recognize when a story is appropriate for the student's situation, and 3) a story
presentation style to help the student to index those stories properly in his own memory.
These requirements raise the following major issues for the construction of a storyteller:

* Story selection.

¢ Communication with the task environment.
¢ Indexing vocabulary.

¢ Reminding strategies.

* Presentation of stories.

Before a storyteller can teach, it must have a library of stories. The selection of stories
for an effective storyteller is a complex task. In order to recognize opportunities for learning
and intervene with stories, the storyteller must be able to communicate with the task
environment. To identify and retrieve appropriate stories requires a library of stories with an
appropriate organizational scheme. This in turn requires an appropriate indexing vocabulary.

60

However, a well-organized library of stories is not enough; the storyteller must have
strategies for finding stories when they are relevant. It must be able to translate a description
of a situation in the task environment into a retrieval cue for a story from its library. This
translation and retrieval process is called a reminding strategy. Finally, the storyteller must
present a story in a way that helps the student to understand how the story is relevant to him
and assist him in making the connection between the story and the context in which it is
presented. This "bridging" process helps the student to index the story as a case in his own
memory. In the remainder of this section, I discuss each of these issues for the construction of
an effective storyteller.

3.2.1 Story Selection

The first issue for a storyteller is story selection—how to collect a corpus of stories that
teach effectively and cover a sufficient range of storytelling situations. The factors that
influence the story selection process come from both the nature of the the task environment and
the availability of useful stories. The objective of story selection is to provide stories that
cover as many opportunities for learning that arise in the task environment as possible.
Therefore, the primary concern of story selection is coverage.

Coverage

When selecting stories, it is necessary to take into account the frequency of occurrence and
importance of a particular learning opportunity. Learning opportunities that arise most often
and that are crucial for subsequent learning have a more urgent need for stories than
opportunities that arise less often or are peripheral to the educational priorities of the
system. The reason that learning opportunities must be ranked is that there are always
resource limitations restricting the number of stories that can be included in a particular case-
based teaching system. These limitations can include the capacity of the storage media
allocated for stories, the cost of acquiring, producing, indexing, and integrating stories, time
constraints on system development, and limited availability of stories. Because they can vary
enormously, cost and availability place an important constraint on the selection of stories.

The range of costs and availability for stories can be demonstrated by considering some
systems developed at the Institute for the Learning Sciences that teach with stories. Some
systems use first person narratives told by experts (e.g., GuSS (Burke and Kass 1992; Kass et al.
1992), TaxOps (Schank 1991), Trans-ASK (Bareiss and Osgood 1993)). Producing these systems
typically requires that a team interview an expert record his or stories. Depending on the
availability of the expert and his receptiveness to interviewing, this can be an expensive and
difficult process. Other systems use stories that can be drawn from already existing archives.
The footage used in the Creanimate system is taken from such film libraries. Advise the
President, an ILS system that teaches political science, uses footage from old television news
shows and presidential press conferences. While hundreds of thousands of hours of footage lie
untapped in archives, they are often poorly catalogued if at all, and gaining rights to the use
of this footage can be prohibitively expensive. Lastly, some systems—Dustin (Ohmaye 1992)
and Sickle Cell (Bell and Bareiss 1993)—have videotaped their own dramatizations in order
to give students the feel of firsthand experiences. In all of these approaches, the cost of
acquiring stories is significant, and the process can be time-consuming and difficult.

Adding to the cost of initial acquisition is the cost of transferring a story to a medium
that affords a computer instant, random-access to individual stories. These media, in turn,
place a limit on the amount of video that can be stored. The popular laserdisc format places 60
minutes of analog video footage on one side of a disk. This is the format used by Creanimate.

61

Digital video compression formats, in contrast, allow one to place video directly on a mass-
storage device connected to the computer. Current compression algorithms, such as the MPEG1
standard, achieve compression rates of up to 50:1, a reduction from 27 megabytes of storage per
second to 33 megabytes per minute (Cole 1993). Digital video compression promises to make
significantly larger quantities of video available to computer-based learning environments at
lower prices, but they will not entirely remove the cost or memory limitation considerations
from the selection of stories for case-based teaching systems.

The costs and difficulties of acquiring stories and the limitations of storage media
require that needs for stories be prioritized. The opportunities for learning that can arise in a
task environment should be surveyed and ranked for educational importance. Once these
priorities have been established, it is necessary to develop a strategy for collecting stories.

Story Selection Strategies

There are two approaches to the selection of stories for a storyteller, a top-down and a
bottom-up approach. Generally, a mixture of the two is necessary for successful story
collection. The top-down approach starts with an analysis of the learning opportunities in
the task environment and a specification of the stories that suit those opportunities. The
collection process then tries to meet those story specifications by drawing from a story source.
The bottom-up approach starts with the story source and, after identifying good stories, finds
or creates opportunities in the task environment to take advantage of those stories. In the
extreme, the top-down approach consists of identifying every possible opportunity to tell a
story in the task environment, creating a specification for a story to be told in that situation,
and then going out and collecting all of the stories that meet one or more of those

specifications. The bottom-up approach in the extreme consists of going to the story sources,
collecting as many good stories as can be afforded and then either fitting them into the task
environment or designing the task environment around them.

For a system of significant size, generating a complete top-down plan is too costly, but
collecting stories bottom-up runs the risk of a story library that does not provide appropriate
coverage. Therefore, a mixed approach is usually best. A mixed approach starts with a
partial top-down plan that ensures adequate coverage of the task environment but allows for
enough flexibility to take advantage of good stories that are not included in the top-down
plan.

Depending on the source of stories, the amount of control the developers have over the
availability of stories can vary greatly. A system in which stories are collected by
interviewing experts lends itself better to the top-down approach then a situation in which
the stories are collected from a library. In an interviewing approach, interviews can be
structured to “go after” the desired stories, whereas in a system in which stories are drawn
from a preexisting archive, stories specified by a top-down plan may not be available at any
cost. However, as with other forms of knowledge acquisition, interviewing for story collection
is an unpredictable process and does not necessarily produce the anticipated results. Thus, a
top-down approach is more effective in situations in which the developers have control over
the story creation process. On the other hand, in searching a large archive, as was done in
Creanimate, a top-down plan can help to direct the search through the library and can
provide a partial criterion for story selection. In both cases, the top-down plan should not
unnecessarily exclude the selection of unanticipated but valuable stories.

Criteria for Effective Stories

When selecting stories for a storyteller it is important to insure adequate coverage, but it
is also necessary to make sure the stories that are selected will be effective. Several stories

62

may convey the same lesson but differ greatly in their effectiveness. Therefore, an important
consideration for story selection is effectiveness. The three critical determinants of
effectiveness are relevance, clarity, and memorability. The first is relevance:
Relevance. A story should relate closely to the opportunities for learning that
arise in the task environment.

Stories can vary in their applicability to the situations that arise in the course of using
a task environment. The more directly a story applies to an opportunity for learning that
arises in the task environment the better. In addition, a story that contains lessons that apply
across a range of opportunities for learning can be more valuable than one that has only a
single application. It is important to recognize that relevance does not require that a story be
about the particular situation in the task environment in which the story will be presented.
The story need not be about that situation; it should simply be about a situation in which the
same lesson applies. In fact, a system that tries to include stories that are about actual
situations that arise in the task environment—as opposed to stories that are relevant to
situations that arise—loses the efficiency of teaching with stories. Teaching with stories is
designed to capitalize on the ability of people to reason from similar cases. This native
ability enables us to build case-based teaching systems in which stories cover the domain by
having relevance to a class of situations that arise in the system, not just one situation. If one
were to try to get stories that are actually about all the situations that arise in the task
environment, then he would end up with a one-to-one ratio between opportunities for learning
and stories. This sort of design will not scale-up past a small library of stories, and will
require either limiting the range of the task environment or only capitalizing on a small subset
of the opportunities to present stories.

So, to be relevant a story does not need to be about particular situations that arise in the
task environment. it need not even be about a situation within the domain being taught. The
sole important criterion for relevance is: Does the lesson of the story apply to the context in
which it will be used in the task environment? For example, one of the most common dialogues
that students engage in with Creanimate is a discussion of how to make some non-flying
animal (e.g., a fish) able to fly. The first step is almost invariably adding wings, but then
students must consider how else to change their animal so it will actually be able to stay aloft.
In this situation, a relevant story is one that shows the relationship between wing size and
body weight in determining flight worthiness. To meet this need, a story should not be about
this particular situation, i.e., someone trying to make a fish able to fly. It need not even be
within the domain, i.e., about how birds in the wild fly. It simply needs to demonstrate the
lesson that a certain ratio between wing-size and weight must be maintained in order to
generate sufficient lift. Thus, a story about a B-52 bomber may be just as relevant to this
situation as a story about an albatross.

The second criterion for effectiveness is clarity.

Clarity. The lesson conveyed by a story should be expressed clearly.

The importance of clarity cannot be overemphasized. There are three factors that
determine the overall clarity of a story. First, the details of the story must be clear. The
important characters, locations, and events must be clearly depicted. Second, the lesson of the
story must be clear. Relevant outcomes should be clearly associated with the factors that
induced them. One of the keys to clarity is conciseness. Extraneous or ambiguous details in a
story can be confusing and even misleading. Finally, stories should be relatively self-
contained. They should not require a significant amount of background knowledge to
understand. A student should be able to comprehend the story with only the minimal
knowledge that he brings to the interaction and his understanding of his current situation in
the task environment. In short, stories should be sought that are unambiguous and not overly
embroidered with details that will distract from the relevant lesson.

63

The third criterion for story effectiveness is by the student
Memorability. A story should contain features that lead to retention.

As I argued in the last chapter, the details in stories cause them to be better integrated
and retained by learners than other forms of instruction. However, other attributes of stories
can also contribute to better retention. Stories that appeal to emotions and aesthetics have
more impact and are more likely to be retained. The reactions that stories can engender
include surprise, humor, fear, revulsion, excitement, and sorrow. Any one of these elements can
increase the impact of a story. When a story elicits one of these responses, that triggers
several processes. First of all, the presence of an emotional impact leads to increased attention
to the story. This can motivate students to pay attention to material that they would find
dull or uninteresting otherwise. Second, an emotional impact can increase the extent to which
a hearer identifies with the story. Emotional content induces a student to project himself into
the story more. Third, it adds an additional set of memory structures, those dealing with
emotions, to which the hearer can connect the story in his memory. All three of these
processes may lead to stronger and more numerous connections between the information in the
story and the other knowledge structures in the learner’'s memory. This, in turn, results in
better retention of the story and a greater likelihood that the learner will be able to access it
in situations when it will be useful in the future. Therefore, it is important to get stories that
are vivid, dramatic or emotionally charged, because these elements increase students’ interest
in, attention to, and retention of the information in stories.

When selecting stories, each one should be evaluated according to its relevance, clarity,
and memorability. These attributes can be weighed against each other so that, for example, a
story that is clear but not terribly memorable may be selected over one that is unclear but
extremely memorable. Since the unclear story may mislead the student, it is better to risk
weaker retention of a clear story then to include a story that may not only mislead the student,
but may do so in an extremely memorable fashion.

To summarize the issues of story selection—the primary objective is to establish
sufficient coverage of the opportunities for storytelling that arise in the task environment.
Because there is always an issue of cost and availability in collecting stories, it is necessary to
develop an appropriate strategy for acquiring stories. Typically, a compromise must be
reached between a top-down plan that specifies desirable stories in advance, and a bottom-up
approach that enables you to identify valuable stories opportunistically. Finally, stories
must be selected based on their effectiveness.

Story Selection in Creanimate

Stories selected for use in Creanimate must cover the range of issues that come up in the
course of designing animals in the task environment. This range of stories is determined by the
range of animals that students may choose to modify and the modifications that students may
select for those animals. The limitation of 60 minutes for Creanimate's video library forced a
compromise in the system's design. While the idea of Creanimate would allow students to
enter any animal and any change they wanted, with only 60 minutes of video footage
available, we could not have guaranteed relevant video for arbitrary combinations of animals
and modifications. Therefore, we chose to present students with an initial list of animals and
modifications. Selecting from these lists insures a student a dialogue illustrated with ample
and interesting stories. Students were still permitted to type in an arbitrary animal and
modification; however, the result of doing so could be “hit or miss.”

Story collection in Creanimate combined top-down and bottom-up approaches. The lists
of available animals and modifications provided the starting point for the top-down portion
of the story selection process. These lists partially determine the range of situations a student

64

might encounter. In generating the list of animals to modify, we were influenced by two
factors: goals for breadth of coverage of the animal kingdom and input from surveys of
children we conducted. For example, it was important to include an animal from each of the
classes of birds, reptiles, mammals, fish, and insects, but within those classes the choices were
influenced by the animals that students expressed interest in. The list of modifications for
animals was developed in a similar fashion. It was important that the list of modifications
include an appropriate variety of physical features, actions, and behaviors. However, the
list was also influenced by the sorts of modifications that students discussed in surveys. These
lists provided guidelines that allowed us to specify videos that would be useful in discussions
of these animals and modifications. To see how these specifications were generated, consider
one animal, a frog, and one modification, a beak, taken from the list of animals and
modifications presented to students in the current version of Creanimate. The specification of
videos that cover a frog with a beak are displayed in table 1.

Table 1.-A list of videos that could appear in a discussion of a frog with a beak. These
specifications derive from the dialogue cycle of the dialogue manager and from the reminding
strategies. The dialogue cycle and reminding strategeies are described in Chapters 6 and 4
respectively.

Stories that show...
Uses for beaks:
pecking with a beak
grasping with a beak
probing with a beak

Other ways animals do the things that beaks are used for:
pecking with something other than a beak
grasping with something other than a beak
probing with something other than a beak

Different types of beaks
long, thin beaks
bills
beaks

What frogs do with the mouths they currently have.
grasping prey
carrying eggs

Stories were collected from the film libraries of both the National Geographic Society
and the Encyclopaedia Britannica Educational Corporation. Neither of these film libraries
was designed to be an encyclopedic archive of animal adaptations. Instead, their contents
have been determined by the productions that happened to have been made or purchased by
these organizations. For that reason, during actual story collection, we were often unable to
find videos that met the top-down specifications provided by the lists of animals and
modifications. In cases where there were too many gaps in the available footage to cover a
particular animal or a particular modification, items had to be dropped from the lists and
replaced with new items for which there was adequate footage. On the other hand, we
frequently came across videos that were relevant to an item on our lists that we had not

65

anticipated in our story specifications. In addition, we encountered many videos that were so
dramatic or startling that we felt they had to be included simply on the basis of their
memorability. Because of the flexibility of the reminding strategies in Creanimate, these
“must-see” stories were almost always worth including. One “must-see” story that was not
accounted for by our initial plan showed a cheetah in slow-motion pursuing and catching a
gazelle. While we had no idea how this video would ever come up in our existing plan, we
could not resist the desire to include it. In fact, this cheetah story came up quite frequently in
discussions of dancing, which is one of the most popular modifications for animals. This story
is retrieved by the Similarity-Based reminding strategy which is described in Chapter 4:

That reminds me of another video. Cheetahs also have long
legs, but instead of having long legs to dance, they have
long, muscular legs to run fast.

(I have an awesome video about that.)

Would you like to see that?

The story selection in Creanimate was conducted in parallel with the development of
the task environment. The options available in the task environment were determined
through a combination of top-down planning and the bottom-up influence of story
availability. The range of both the task environment and the storyteller were determined by
the instructional objectives of the system, by surveys of children’s preferences, and by the
availability of good stories. While insuring that the educational goals were properly
covered, the selection of stories was flexible enough to accommodate the failure to locate

v Ancivnd ctaming A A comnmdiemt bntte (3 ommrrary VI T ST AP P S
certain desired stories and the ser c:udxpxtuua discovery of other unanticipatea stories.

3.2.2 Communication with the Task Environment

While the selection of effective stories is critical for a storyteller, these stories are
wasted if the storyteller is not able to locate stories when they are relevant to the students’
situation in the task environment. To locate stories, a storyteller must be able to keep track of
the students’ interactions in the task environment, it must have a well-organized library of
stories, and it must have strategies for locating stories when they are relevant. These goals
are accomplished through a communication pathway between storyteller and task
environment, an appropriate indexing vocabulary for the library of stories, and reminding
strategies for retrieving stories. These three issues are the subject of this and the following
two sections,

Even though the storyteller and task environment are independently functioning
modules, it is important that they be designed to work together effectively. The storyteller
must be able to monitor the task environment for opportunities to present stories, and it must be
able to intervene at those moments when it has a story to present. This requires effective
communication between the two components. At regular intervals during an interaction, the
task environment must provide the storyteller with a description of the student’s current
situation. This description must be expressed in a format that the storyteller can use to search
its library for a story that will assist that student. This communication requires a language in
which the task environment can describe the current state of the interaction and which the
storyteller can use to search for appropriate stories from its storybase. Therefore, the
communication language between the task environment and the storyteller is constrained on
the one hand by the nature of the task and the possible student states and on the other hand by
the story library and the vocabulary in which it is indexed.

66

Communication with the Task Environment in Creanimate

Communication between the task environment and the storyteller is essential for the
storyteller to identify and capitalize on opportunities for learning. The following describe
circumstances in which the Creanimate task environment and storyteller communicate to
allow the storyteller to present stories when they are relevant.

Responding to student answers with examples: When a student answers a
question in the course of a dialogue, the dialogue manager communicates to the
storyteller the question asked, the student's answer, and an evaluation of how
appropriate the student's answer is to the particular question. Depending on
whether the student's answer is correct, incorrect, or partially correct, and on
whether the storyteller has an appropriate story for that condition, the
storyteller intervenes with a relevant story.

Responding to student requests for suggestions: When a student asks the computer
to suggest answers to a question, the storyteller responds with a story that
suggests an appropriate answer. In order to do this, the dialogue manager must
communicate to the storyteller what the current question is and the fact that
the student has requested a suggestion.

Incidental remindings. At certain points in a dialogue, the storyteller may
intervene with an "incidental" reminding. Incidental remindings do not
directly relate to the current dialogue, but they provide students with
opportunities to observe valuable, related phenomena. Incidental remindings
rely on the storyteller’s ability to monitor the interaction for factors such as a
student's recent choices, the dialogue's current topic, and recently told stories.

Dialogue Planning: When the dialogue manager is preparing to initiate a
dialogue, it must verify with the storyteller that the storyteller has
applicable stories. If the storyteller has no relevant stories for a dialogue, the
dialogue manager will not initiate that dialogue. This communication takes
the form of a request for remindings relevant to the animal and the topic of the
candidate dialogue.

The key to this communication between storyteller and task environment in Creanimate
is that both components share a single knowledge representation. The Creanimate system
contains a single knowledge base that describes animals and their attributes, and both the
task environment and the storyteller draw on that knowledge base. The dialogue manager
uses the knowledge base to help determine which dialogues to conduct, to draw inferences
about the characteristics of animals, to ask questions and to evaluate students' answers to
those questions. The storyteller uses the knowledge base as its vocabulary for indexing stories,
enabling the reminding strategies of the storyteller to take advantage of the same ability to
make inferences about animals in searching for stories that the dialogue manager uses in the
course of conducting dialogues. The communication between the task environment and the
storyteller is accomplished using the concepts from the knowledge base. They communicate
with each other by passing data structures representing these concepts back and forth. This
shared representation enables the dialogue manager to describe the current situation in the
same vocabulary that the storyteller uses to index its stories.

3.2.3 Indexing Vocabulary

Once the stories for a storyteller have been collected, they must be organized and
labeled in a fashion that will allow the storyteller to find them when they are relevant. In
accordance with the terminology of case-based reasoning, the labels that organize stories are
called indices. An index must capture enough information about a story that the storyteller

67

can identify situations to which the story applies. An index is not a complete representation
of a story, nor is it necessarily the summary of a story. The role of an index is to describe when
and how a story should be told. Therefore, an index may make no reference to the contents of
the story but may instead describe the sorts of settings in which the story is appropriate. For
example, a case-based teaching system that uses a simulation to teach firefighters might
contain a story about a fire that climbed up through the walls of a building without any
visible flames and burst out three floors above firefighters. The index for that story would not
necessarily describe anything about the contents of the story. Instead the index might describe
situations in which the story is relevant. In that case, the index would indicate that the story
applies to situations in which a student acts as if a fire is under control without checking the
walls. Through its communication with the task environment, the storyteller would be able to
identify when the student firefighter is in the situation described by the index, and the
reminding strategies would find and present this story.

As this example shows, the indices in a case-based teaching system should be sparse in
their representation. This sparseness represents a significant advantage for case-based
teaching systems over other intelligent tutoring strategies. It enables a computer to teach
with stories without requiring that it be able to represent or reason about their contents
completely. In the traditional Intelligent Tutoring Systems paradigm (Sleeman and Brown
1982; Wenger 1987), the teaching system must be able to reason within the domain of study at
the level of a student who has successfully mastered the domain. Instead, it is sufficient for
the storyteller in a case-based teaching system to be able to represent the opportunities for
presenting stories that arise in the task environment. The stories can convey the complex
knowledge to the student without the storyteller needing to represent or understand it. Since
an index describes the situations for which a story is appropriate, the elements that make up
an index should describe these situations. Some of the elements that can be included in indices
are:

» Misconceptions the story corrects

e Advice the story conveys

¢ Principles illustrated by the story

e Situations the story contains warnings about

Each of these categories describes a set of situations in which a story would be relevant.
The indexing vocabulary must provide a language that is capable of describing these
situations. Developing an indexing vocabulary is the sort of knowledge representation effort
that is at the heart of any artificial intelligence system. As with other knowledge
representation tasks, the situations to be represented must be analyzed to identify important
features and relationships. In the case of a storyteller for a case-based teaching system, the
domain to be represented may include the subject area being taught, the structure that
underlies the task environment, and the pedagogical goals of the teaching system. The
indexing vocabulary must be expressive enough about each of these three areas to relate
together the material being taught, the situations that arise in the task environment, and the
instructional goals of the system in a way that tells the storyteller which situations are right
to present a particular story. As a student interacts with the task environment, the
information that is encoded in indices gets examined by the storyteller in the course of pursuing
its reminding strategies.

The Indexing Vocabulary in Creanimate

Because the indexing vocabulary is a central focus of this research, it is the subject of
Chapter 7. The indexing vocabulary was determined primarily by the instructional objectives
of the system. The most important of these objectives was to help students learn the basic

68

relationships that underlie animal adaptation, and to provide them with cases that they can
use to reason about these relationships. These relationships are expressed in the questions
that Creanimate dialogues focus on, such as:
Why have a physical feature?
What features are necessary to support an action?
What survival behaviors does an action support?
The indexing vocabulary describes stories with respect to the questions they illustrate.

For example, a story that shows a woodpecker using its beak to peck would be indexed to
indicate that it illustrates the questions in table 2.

Table 2.-Some of the questions and answers that a story about a woodpecker pecking could be
used to illustrate.

Q: What can a beak be used for? A: To peck wood.

Q: What features can be used to peck? A: A beak.

Q: Why do animals peck? A: To probe for insects.
Q: What is one way animals get their food? A: Probing for insects.

To construct indices that describe these relationships, Creanimate draws from
taxonomies of animals, physical features, actions, and behaviors. The elements of these
taxonomies are associated with each other in indices according to the relationships in which
they occur in nature. Thus, physical features are associated with the actions they support and
actions are associated with the survival behaviors they support. For instance, the index for
the woodpecker story described above would include the relationship a beak in order to peck
wood, where a beak is drawn from a taxonomy of physical features, and peck wood is drawn
from a taxonomy of actions, and the relationship that connects them is one between a physical
feature and an action for which it is used.

3.24 Reminding Strategies

A reminding strategy is a procedure for identifying a story to tell in a particular context.
While we usually think of being reminded as a passive event, i.e., something that happens to
you, a reminding is actually the result of active processes monitoring the observations coming
in from the outside world and matching those observations against stories in memory (Schank
et al. 1990a; Schank et al. 1990b). Teaching requires a special set of procedures for retrieving
relevant stories that serve specific pedagogical goals. The reminding strategies in a case-
based teaching storyteller serve this function. They monitor the progress of a student in the
task environment and use features that describe his or her situation to identify stories that can
help the student to learn from that situation. Different case-based teaching systems will
have different reminding strategies that suit the subject being taught, the nature of the task
environment, and the educational goals of the system.

Just as with the indexing vocabulary, the reminding strategies for any particular task
environment must correspond to the types of opportunities for learning that arise in the task
environment. Reminding strategies should be able to retrieve stories that correct
misconceptions, give advice or warnings, or provide examples at the moment that the student
can profit from them. While there are many reminding strategies that are useful across a
wide range of teaching settings, certain settings and pedagogical goals necessitate special-
purpose reminding strategies. Therefore, specific teaching systems may require specialized
reminding strategies. For example, Burke and Kass (1992) describe a system that uses a social

69

simulation to teach the skills necessary to sell management consulting services. This system
uses the following six reminding strategies:

¢ Demonstrate alternative plan.

* Explain other’s plan.

* Reinforce plan.

* Warn about plan.

* Demonstrate alternative result.

* Warn about perception [expectation].

These strategies are clearly specialized for a system that teaches how to construct and
execute plans. They focus on the process of developing a plan. These strategies differ
significantly from those in the Creanimate system which center on the presentation of
examples of animal design principles. Burke and Kass (1992) point out that their strategies
differ from the reminding strategies in Creanimate because the reminding strategies in
Creanimate focus on the result of constructing a design whereas those in GuSS focus on the
process itself. From this example, we can see that reminding strategies differ with the subject
matter and structure of the task environment. As case-based teaching systems are developed
for new domains, new reminding strategies suited to those subjects and tasks will be developed
in order to respond effectively to the opportunities for learning from stories that arise in those
systems. Once a significant body of case-based teaching systems are available, it will become
clearer which reminding strategies are general-purpose and which are restricted to particular
settings.

Reminding Strategies in Creanimate

The reminding strategies in Creanimate are suited for a task environment that conducts a
design discussion. They identify and present stories that illustrate design combinations that
work. Since the domain of Creanimate is animal adaptation, Creanimate’s remindings show
combinations of physical features, actions, and behaviors that existing animals use to help
them survive in their niches in the wild. The Creanimate storyteller relies on three primary
reminding strategies:

Example reminding. The example reminding strategy retrieves stories that show
example cases of the principle under discussion. In a discussion of how animals
swim, an example reminding might show the use of webbed feet.

Similarity-based reminding. The similarity-based reminding strategy retrieves
stories that help students to make generalizations. By presenting a story that
shows something that is “similar but different” to a preceding story, the
storyteller helps the student to generalize the information shown in the first
story to an appropriate level of abstraction. Similarity-based remindings also
generate curiosity by exposing students to new things. After showing webbed
feet being used to help a duck swim, a similarity-based reminding might show
a Malaysian flying frog using webbed feet to help it glide through the air.

Expectation-violation reminding. The expectation-violation reminding strategy
capitalizes on stories that violate common expectations in order to widen
students’ exposure and and generate interest. In a discussion of how animals
swim, an expectation-violation reminding might show a fish that can move
around without swimming by flapping across mud flats.

These reminding strategies are discussed in detail in Chapter 4. They each serve the
pedagogical goals of the system by retrieving stories that will help the student to learn from
his situation in the Creanimate task environment. The reminding strategies take into account
the design being worked on, the design question under discussion, the current step in the

70

discussion, and the stories that the student has already seen. These characteristics of a
student’s current situation are used by the reminding strategies which examine the information
recorded in indices in order to identify stories that are appropriate for that moment.

3.2.5 Presentation of Stories: Bridging

Once a storyteller has located a story that responds to a situation in the task
environment, it must present the story in a way that will maximize the student’s ability to
learn fromit. In particular, the storyteller should help the student to make the connection
between the contents of the story and his current situation in the task environment. By
connecting the contents of a story to the context in which the story is being presented, the
storyteller can help the student to understand the point of the story. Drawing explicit
connections between the story and the features of the context that make the story relevant can
also help the student to index the story as a case in his own memory. Since stories in a case-
based teaching system are currently stored in an unmodifiable state, the storyteller cannot
change the way it tells a story for particular contexts. However, it can precede and follow a
story with information that will help the student to understand the story’s connections to the
storytelling context.

The conversational device used by a storyteller to make these connections is called a
bridge (Burke and Kass 1992; Schank et al. 1992). A bridge is an introduction to a story that
highlights the features of the current situation that have led to the telling of the story. For
example, a bridge to the story about the boy who cried wolf might say, “I know a story about a
boy who called for help when he didn’t really need it. Wait until you hear what happened to
him.” This bridge both draws the child’s attention to the features of the surrounding context
that led to the telling of the story, and it raises the child’s curiosity about the outcome.
Bridges can be used not only to introduce a story but also following a story.4 Bridges help a
student to understand the connection between the point of a story and the features that make
the story relevant to the current circumstances. This information enables the hearer to index
the story in his own memory so that he can use the lesson it contains to help him understand
similar situations in the future.

Bridging in Creanimate

In Creanimate, bridges serve three goals: they relate stories to the contexts in which
they are presented, they help students to use context to index stories, and they advertise
stories to students giving them information to decide whether or not to see a story. Asan
example, consider the following bridge:

Let’s look at some things that other animals use to dance.
Maybe you’ll want one of them for your bear.

Gulls dance. Gulls use their legs to help them dance.
This is a funny video.

Do you want to see that? (Transcript no. m2-4-28-11.54)

4For an example of how bridges can be used following a story, see the discussion of codas in
Burke and Kass (1992)

71

This bridge is composed of two different parts. The first part makes the connection to
context. It tells the student what the story has to do with the current discussion. In this
example, the bridge says that the storyteller has found a video that shows a physical feature
that animals use to dance. The second part advertises the video. It tells the student what the
story is about, i.e., a gull using its legs to dance. The bridge also gives the student a subjective
evaluation of the story. In this case it is funny; other stories are scary, gruesome, surprising,
etc. Finally, the bridge shows the student a preview picture of the animal in the story. This
picture is displayed in the lower righthand corner of the screen. In the event that the student
is unfamiliar with the animal’s name, this helps the student to know what he or she is being
offered. In this way, bridges in Creanimate relate the story to the ongoing discussion, preview
the relevant action in the story, and give the student some idea of the story’s nature.

An important device that Creanimate uses in bridges is a question. Instead of telling the
student what the story shows, as in the bridge above, Creanimate introduces a video with a
question. So, instead of saying, “Gulls dance. Gulls use their legs to dance,” it might say,
“Gulls dance. Do you know what gulls use to help them dance?” The student has the chance to
try to answer the question or watch the video to find the answer. If the student decides to
watch the video, Creanimate follows up by repeating the question. Using a question as a
bridge helps to make students more active viewers of stories. Rather than knowing in advance
what they are going to see, they watch the story looking for the answer to a question. This not
only increases their interest in the story, it helps them to focus on the aspects of the story that
are relevant for the current discussion. Questions as bridges help to make the student a more
active viewer and to focus on the relevant issues for his own animal.

ini 3 ithh ~ Q1 111
3.3 Combining a Task Environment with a Storyteller

While each of the two components that make up the case-based teaching architecture
has value on its own, together they provide a learning environment that is greater than the
sum of its parts. The task environment and the storyteller in combination provide mutual
support for the knowledge structures the student constructs in his memory. The task
environment offers the student the opportunity to learn through direct experience. The
storyteller provides the student with secondhand experiences. Each module is able to provide
a form of learning that the other cannot. Because the task environment is an active learning
environment, a student is able to learn skills and processes by doing them. These forms of
expertise can only be properly learned by executing them. They can not be learned simply by
having someone tell you how to do them, no matter how good a storyteller or explainer the
instructor is. On the other hand, while skills and processes can only be learned effectively
from experience, it can be frustratingly difficult if not impossible to discover the explanations
and principles that accompany skills and processes in true expertise. One role of a storyteller
is to provide this nonprocedural knowledge. A few words of explanation at the right moment
can be worth more than hours and hours of personal experience for developing an understanding
of causes and relationships. In addition, unguided learning-by-doing can be aimless and
inefficient, even completely unproductive. The guidance that comes from hearing a story in
the right context can prevent a student from wasting unnecessary effort in order to learn from
experience. Experiencing all the situations necessary to learn a subject effectively can be
frustrating and terribly inefficient. Therefore, a storyteller can greatly increase the breadth
of learning that a student can receive from a small number of experiences.

The requirement of authenticity means that the structure of the task environment will
reflect the structure of the subject matter being taught. The result is that a student's
interactions with the task environment will help him to discover the underlying structure of
the domain under study. This structure or framework, in turn, provides an organization that

72

the student can use to store his new knowledge in his memory. Thus, the task environment
helps the student to develop a framework for his new knowledge. When the storyteller
recognizes an opportunity to present the student with a story, it intervenes with a case that
will help the student learn from his situation. In this way, the storyteller provides the
student with additional cases that increase his understanding of the subject matter. The
student is able to use the framework that he learns from experience with the task environment
to organize his memory of the cases that he learns from the storyteller. The framework helps
the student to organize his new knowledge, and the cases act to strengthen and refine that
framework. The organizational structure from the task environment provides structure for the
cases from the storyteller. Likewise, the cases elaborate and support the structure from the
task environment. The two elements combine to give the student a fuller understanding than
he could get from a storyteller and a task environment independently.

To summarize, the task environment and storyteller are able to teach in combination
what neither can teach independently. The task environment teaches skills and processes
through activity. The storyteller provides explanations and relationships to support those
skills and processes. The storyteller also gives a breadth of experience, albeit secondhand,
that would be beyond the capabilities of a reasonable task environment. Finally, the task
environment and storyteller help the student develop mutually supporting knowledge
structures in his memory. The task environment provides structure and the storyteller provides
cases. The structure serves to organize the student's understanding of the cases while the cases
support and elaborate the knowledge encoded in the structure.

3.4 Summary

In this Chapter [have presented the case-based teaching architecture. Based on the
principles of active learning and learning from stories, the case-based teaching architecture
consists of two interdependent components. The task environment provides the student with an
engaging interaction rich with opportunities for learning. The storyteller responds to
opportunities in the task environment with stories that help a student to learn from his
situation. The storyteller presents stories to students at the best possible moment, when they
can understand and use the information contained within them. This supports Papert’s (1980)
power principle which states that information should be provided to a student in order to
empower him or her to achieve a personally meaningful goal.

The task environment must be designed to allow a student to be an active learner. The
student must be able to form and explore hypotheses in the context of a task that is both
meaningful and relevant to the student’s interests. In the course of interacting with that
environment, the student must be able to experience interesting expectation failures that allow
him to learn from his experiences. An effective task environment will provide a motivating
interaction that includes appropriate quantities of challenge, relevance, control, curiosity,
fantasy, and satisfaction. Finally, the task environment must be authentic to both the
interests and goals of the student and to the legitimate use of the lessons learned in the real
world.

The storyteller must be able to respond to opportunities for learning that arise in the
task environment. It should be able to find and present stories to the student when they are
relevant to his situation in the task environment. This requires that the storyteller have a
sufficiently broad story library, indexed in a way that enables it to locate stories when they
are appropriate, and it must have strategies for finding and presenting these stories. These
requirements present five issues for a storyteller: story selection, communication with the task
environment, indexing vocabulary, reminding strategies, and bridging.

73

Case-based teaching draws an important part of its effectiveness from the mutually
supporting combination of task environment and storyteller. The task environment helps a
student to understand the structure of a domain while the storyteller provides him with cases
that go in that structure. Thus, the structure from the task environment and the cases from the
storyteller support each other in the student’s understanding of the domain.

Chapter 4

Reminding Strategies

As we go about our daily routines, we are constantly reminded of things that help us to
accomplish our goals. In the course of solving problems, we get reminded of solutions to similar
problems we’ve encountered in the past. We use these previous cases to help us solve our
current problems. Similarly, in conversation we get reminded of experiences that bear on the
current topic. When this happens, we usually find ourselves telling stories about those
experiences (Schank 1990). Teachers in the classroom are no different. They also get reminded
in ways that help them to accomplish their goals. They are frequently reminded of stories and
examples that help them to convey their lessons. While we usually think of being reminded
as an unplanned, inadvertent act, it is actually the result of active processes continually
scouring memory for prior experiences that will shed light on a current situation (Schank et al.
1990a; Schank et al. 1990b; Schank 1982). In other words, remindings are an important
outcome of the case-based reasoning process. The goal of this research is to harness the
reminding process in order to teach with stories.

Different sorts of remindings are appropriate for different contexts. For instance,
confirmation remindings are common in conversation. In a confirmation reminding a person
demonstrates that he has understood a point that has just been made by telling a story of his
own with the same point. Another type of reminding, counter-example reminding, is useful in
an argument. Similarly, remindings that illustrate opportunities or warnings are valuable
when developing plans. Each type of reminding requires a different strategy for retrieving
relevant structures from memory. The reminding strategies that are useful for teaching are the
subject of this chapter.

While individual teachers undoubtedly have their own idiosyncratic reminding
strategies, general-purpose strategies are likely to be shared widely by teachers. The
situations in which teachers use remindings and the categories of remindings that they
employ constitute an important area for study. In the approach advocated by Braitenburg's
(1984) “law of uphill analysis and downhill development,” systems such as Creanimate and
GuSS (Burke and Kass 1992; Kass et al. 1992) are exploring reminding strategies through the
construction of systems that use them to achieve their goals. Braitenburg argues that it is
easier and more productive to investigate a mechanism by attempting to build it rather than
by analyzing it. He argues,

A psychological consequence of this [law] is the following: when we analyze
a mechanism, we tend to overestimate its complexity. In the uphill process of
analysis, a given degree of complexity offers more resistance to the workings of
our mind than it would if we encounter it downhill, in the process of invention.
(Braitenberg 1984, 20-21)

In accordance with this philosophy, we are investigating reminding strategies for
educational purposes by starting with educational goals and developing strategies to retrieve

73

74

stories that achieve those goals. Empirical research will show whether these remindings are
consistent with the strategies employed by human teachers.

Creanimate’s reminding strategies fall into two categories, example remindings and
incidental remindings. (The variety of example and incidental remindings employed by the
Creanimate storyteller are displayed in table 3.) Example remindings display examples of
the issues that arise in the course of a discussion. Example stories provide students with cases
for their personal case libraries of animal adaptations. The cases provided by example
remindings reinforce the framework of the domain that students learn from the explanation
questions asked by the dialogue manager. There are three types of example remindings, each
of which corresponds to one type of response a student might give to an explanation question.
Specifically, students can give correct answers or incorrect answers, or they can request that
the computer suggest an answer.

Table 3.-The Reminding Strategies in Creanimate

Example Remindings Incidental Remindings

Correct Answer Remindings Similarity-based Remindings
Suggestion Remindings Expectation-violation Remindings:
Identical Remindings Only-rule Remindings

No-rule Remindings
All-rule Remindings

In addition to example remindings, there are two types of incidental remindings. They
are called “incidental” because they digress briefly from the central point of the discussion in
order to present interesting sidelights. These sorts of digressions are, in fact, characteristic of
good teachers. Good teachers are able to broaden students’ exposure and excite them without
sacrificing the main point of a discussion. The two types of incidental remindings generated by
the Creanimate storyteller are similarity-based remindings and expectation-violation
remindings. The similarity-based reminding strategy is designed to retrieve a story that is
similar to an immediately preceding story but is also different from it in an interesting way.
Similarity-based remindings help students to draw appropriate generalizations, and they
introduce them to things they might not see in other contexts. The second form of incidental
reminding, the expectation-violation reminding, retrieves stories that violate students’ likely
expectations. This reminding strategy uses the element of surprise to introduce students to
uncommon phenomena. While the example reminding strategies provide the foundation for
the discussion of explanation questions, the incidental reminding strategies pepper the
discussion with relevant, interesting digressions. Together they provide the student with a
dialogue that resembles a natural human discussion.

4.1 Example Remindings

The bread and butter reminding for Creanimate, just as it is for any human teacher, is the
example reminding. The idea behind example remindings is simple. Instead of discussing an
issue in the abstract, it is always better to discuss it in the context of a concrete example.
Concrete examples are not only clearer and less ambiguous than abstractions, they support the
natural process of case-based reasoning by providing cases. Consider the following transcript
that has had the example remindings removed:

Suppose you could create a new animal by taking an existing
animal and changing it some way. What would you make?

75

Student: A frog that can fight.

That's a good idea, is there a reason why you want your frog
to fight?

Student: So it can defend itgelf

That's a good idea. Many animals fight to defend themselves.
So your frog can fight to defend itself.

You can commit to that now, or we can look at some other
reasons why animals fight and you can decide later.

Contrast that transcript with an actual student interaction with Creanimate:

Suppose you could create a new animal by taking an existing
animal and changing it some way. What would you make?

Student: A frog that can fight.
That's a good idea, is there a reason why you want your frog
to fight?

Student: So it can defend itself

That's a good idea. Bees fight enemies.

Would you like to see that?

Student: Yes

[VIDEO: “BEES EXPEL WASP”]

Bees are not the only animals that fight enemies. For
example, jawfish fight enemies.

I have a good videoc about that. This has battles in it.
Would you like to see a video about that?

Student: Yes.

[VIDEO: "JAWFISH DEFENDS TURF"]

So your frog can fight to defend itself.

You can commit to that now, or we can look at some other
reascons why animals fight and you can decide later.
(Transcript no. m4-5-11-11.01)

Even though a transcript cannot convey the true impact of the two dramatic videos that
the student saw in this interaction, the difference between the two transcripts is striking. The
first never departs from the abstract. It contains no concrete details which the student can
connect to his personal or observed experience. The discussion is couched in terms of “fighting”,
“defending oneself”, and “animals.” It does not refer to any particular form of fighting, reason
for defending oneself, or specific animals. In contrast, the transcript from the actual
Creanimate system uses vivid examples to put concrete meaning behind the abstract
relationship fight to defend oneself. The specific videos show the student two cases, each of
which contains a very different technique for fighting. In the first video bees fight a wasp
that had invaded their hive by swarming over it in large numbers and stinging it to death. In
the second, a jawfish attacks another in an effort to steal its hole. (Jawfish conceal
themselves in holes on the sea floor while they wait for prey to swim by.) In this particular

76

video, the defending jawfish successfully fights off the invader through a series of aggressive,
biting lunges. Both videos are extremely compelling.

These stories provide valuable cases for a student’s personal case library because they
show two very different fighting techniques. However, they are also valuable for the
similarities that they convey. In both cases, animals defend themselves and their home
territory against an incursion. This commonality is in itself an important lesson for students
because it emphasizes the relationship between the action fighting and an important survival
goal for many animals, maintaining a home and territory.

As this transcript illustrates, example remindings illustrate answers to the explanation
questions that Creanimate poses. The type of example the storyteller presents depends on a
student’s response to the explanation question. If a student answers correctly, the storyteller
will present examples that confirm the answer. If a student answers incorrectly, the
storyteller will show an example in which the student’s answer appears. Finally, if a student
chooses not to try to answer the explanation question but asks the computer to suggest answers
instead, the storyteller will present example stories that suggest correct answers. These three
types of example remindings are called correct answer remindings, incorrect answer
remindings, and suggestion remindings respectively. There is, in addition to these three
primary forms of example reminding, a fourth form called identical reminding which presents
follow-up examples to accompany those produced by the primary example reminding
strategies.

4.1.1 Correct Answer Remindings

A correct answer reminding is a story that reinforces a student’s correct answer! to an
explanation question. It confirms the hypothesis presented by the student with a concrete
example. In the following transcript, the dialogue manager asks the student an explanation
question of the category Why feature? in response to his request for a bear with a big nose.

. ..What would you make?

Student: A bear with a big nose.

If your bear is going to have a big nose, that should help it
to do something. Why would you like your bear to have a big
nose?

Student: So it can smell good

! The use of the terms correct and incorrect is not really appropriate here for two reasons, one
theoretical and one pragmatic. First, because Creanimate deals with a hypothetical world,
there is really no such thing as an incorrect answer. Second, Creanimate’s knowledge base is
not capable of representing negative information. Creanimate is not capable of determining
that an assertion is untrue, simply that there is no evidence that it is true. Therefore,
verifiable and unverifiable are more appropriate descriptions of Creanimate’s ability to
evaluate students’ answers. In Creanimate a “correct answer” is one for which the system is
able to find an example in its knowledge base. Any other answer is unverifiable. The
program'’s response to unverifiable answers, “I don’t know any animals that...”, is intended to
communicate this fact. The terms correct and incorrect are used rather than verifiable and
_unverifiable for simplicity.

77

That might work. Tapirs have big noses to help them to
smell.

This next video is really hilarious. I like this one because

it has strange animals in it. Is that something you would
like to see?

Student: yes
[VIDEO: “TAPIR SMELLS”"] (Transcript no. Pal-m1-6-22-10.32)

In this case, the student proposes that his bear have a big nose in order to “smell good.”
Since the knowledge base does not contain a concept for either “smell good” or “smell well”
(which is what I assume the student meant), the parser interprets the student’s answer as the
action smell. After parsing the student’s input, the next step is the evaluation of the student’s
answer by the dialogue manager. (This evaluation is described in Chapter 6, The Dialogue
Manager). Once the dialogue manager ascertains that the student’s answer is correct, that is,
that there are animals that use big noses in order to smell, the storyteller initiates the correct
answer reminding algorithm. This algorithm, described in the next chapter, identifies stories
that contain examples of animals using big noses to smell, i.e., the “Tapir Smells” story.
Correct answer remindings like the one above both reward students for correct answers and
provide them with cases that support their hypotheses.

4.1.2 Incorrect Answer Remindings

The second example reminding strategy is the incorrect answer reminding strategy.
Incorrect answer remindings are generated when students propose answers to questions that the
dialogue manager is unable to verify. Incorrect answer remindings follow both explanation
questions and bridging questionsz. An incorrect answer reminding shows the student a story in
which his answer does appear. In fact, an incorrect answer reminding always shows a question
for which the student’s answer would be correct. Consider the following transcript:

OK, Let’s find a reason for your bear to have a beak. Is
there a reason yocu want your bear to have a beak?

Student: So it can smell bettar

I.lve never heard of anv animals that have beaks to smell. but
there are some other wayvs that animals smell.

a e i S i use thej ostri to he
them to smell,
I have an interesting video about that. I like this one

because it has mean fish in it.

Would you like to see a video about that?
Student: vyes

[VIDEO: *~Pikes smell*] (Transcriptno. m4-5-8-11.37)

2Bridging questions are described in Section 7.3.4.

78

In this transcript, the dialogue manager asks the student for a way to use a beak. The
student proposes smelling. Since the dialogue manager is unable to find evidence that animals
use beaks to smell, it considers the student’s answer unverifiable. In response, the incorrect
answer reminding strategy retrieves a story that shows one way that animals do smell. It
retrieves a story that shows pikes using their nostrils in order to smell. In other words, it finds
an example of a question for which the student’s answer would be correct response, i.e., “Why
have nostrils?”

The goal of the incorrect answer reminding strategy is to provide students with stories
that enable them to learn from expectation failures. In answering questions, students propose
hypotheses. When a hypothesis proves incorrect, the student has an opportunity for learning.
In fact, the student is in a position to learn two things. In the transcript above, the student can
learn 1) correct reasons that animals have beaks and 2) actual ways that animals smell. The
student will have the opportunity to learn the former, the correct reasons, later in his
dialogue as he continues with the discussion of why his bear should have a beak. The second
opportunity for learning, actual ways that animals do smell, is exploited at the moment the
student gives the unverifiable answer, by the incorrect answer reminding strategy. In this
way, the incorrect answer reminding strategy capitalizes on incorrect answers as an
opportunity for students to learn from the failure of their expectations.

The following transcript shows another example of an incorrect answer reminding. In
this transcript, the girl has created a mouse with wings so that it can fly. The next question is
how it will keep itself up in the air, and she suggests that the mouse be larger.

Ok, your mouse will have wings so that it can fly.

In order to fly, animals must be able to keep themselves in
the air. Let's talk about how your mouse will keep itself up
in the air.

Having wings is not enough for your mouse to keep itself up
in the air. It needs more.

How else do you want to change your mouse sc it can keep
itself up in the air?

Student: Give it a larger body or large wings or
gsomething that will keep up in the air

I did not understand that. How do you want to change your
animal?

Student: Give it a larger body than it already has

I don't know of any animals that have large so they can keep
themselves in the air. But, I do know some other things that
large are used for.3

For example, lions use their large size to help them threaten
other animals.

Would you like to see that?

Student: Yes

3 This output from an early version of Creanimate contains grammar mistakes that were
subsequently corrected.

79

[VIDEO: "HYENAS AND LION"]

That's the only thing that I know of that large are used for.
Let's return to the task of getting your animal to keep
itself up in the air. (Transcriptno. m3-5-11-15.~34)

The student's request for a larger body will not help her mouse to fly. In fact, it will
make it harder. However, since the student has raised the topic of large body size, the
storyteller capitalizes on this as an opportunity to show an interesting story that shows
something that large size is good for. The assumption behind incorrect answer remindings is
that at the moment a student suggests an answer to a question, the student will be interested in
learning something about the answer regardless of its correctness. The incorrect answer
reminding strategy gives a student the opportunity to observe and learn something about the
answer that he provided even when it is incorrect for the question at hand. The incorrect
answer reminding strategy promotes the idea that incorrect answers should not be treated as
embarrassments to be punished, but as what they are, opportunities for learning. Correct or
incorrect, a student has an investment in his or her answer and will be motivated to see it in a
story and learn more about it.

4.1.3 Suggestion Remindings

The third form of example reminding is the suggestion reminding. These remindings use
stories to suggest answers to explanation questions. In Creanimate, students always have at
least two options for responding to an explanation question. A student may offer an answer or
he may ask the program to suggest answers. If a student asks for suggestions, the computer
presents them in the form of example remindings. In the following transcript, the student
asked for a dog with wings in order to fly. After making his dog smaller so it can keep itself up
in the air, the dialogue manager raises the question, “Why fly?”

We need a reascon for your dog to fly. Is there a reason you
want your dog to fly?

Student: Give me some suggestions

Canada geese fly. Do you know why canada geese fly?

(This next video is really good.)

Student: Show me a video

[VIDEO: "GEESE MIGRATE"]

Now, do you know why canada geese fly?

Student: So they can migrate

Yes, that 1s right. Canada geese fly to migrate from cold.
So, a dog might fly to migrate from cold. Why would you like
your dog to fly?

Student: Migrate from c¢old

OK, your dog will fly in order to migrate from cold.
(Transcript no. Pal-m1-6-3-12.57)

The Canada geese story is used to suggest an answer to the student. Like the other
example reminding strategies, the suggestion reminding strategy helps the student to learn
from concrete cases. In this transcript, the story suggests migration as a reason for flying. The

80

program could have simply said, “One reason to fly is to migrate from cold,” but suggesting
answers through examples allows students to learn through the more natural process of
learning from cases. Like incorrect answer remindings, suggestion remindings capitalize on the
opportunities for learning that arise when a student becomes aware of a gap in his knowledge.
In this case, the student may have asked for suggestions because he did not know any reasons
for flying. Suggestion remindings respond to students’ requests for information with concrete
cases that fill gaps in their understanding.

4.1.4 Identical Example Remindings

In most situations, Creanimate will present more than one example reminding if it can
find them. When the storyteller identifies more than one example reminding, it ranks them
according to a rating of intrinsic appeal provided by the indexer, and it presents the highest
rated reminding as the example reminding. If the student elects to watch the proposed
example story, the storyteller will follow it with the other examples that it had identified
for the current context. All the stories that are appropriate examples for a given context are
called identical remindings. In the following transcript, a story about a katydid is followed
by an identical reminding about a caterpillar:

We need a reason for your frog to hide. Is there a reason you
want your frog tc hide?

Student: So it can not get eaten

That might work. Katydids hide to avoid detection by
predators.

I have a cool video about that. This video is for people who
like surprises.

Would you like to see that?

Student: Yes.

[VIDEO: "KATYDID MIMICS"]

Katydids are not the only animals that look like parts of

: . : 4 g o] : :]
1 hid 4 4 on | :

This is a surprising video.

Would you like to see a video about that?
(transcript no. Pal-m2-6-13-10.15)

The katydid story is presented as a correct answer reminding to confirm that the
student’s reason for hiding, to avoid being eaten, is a good reason for hiding. The storyteller
follows this with a second reminding about an animal that hides in order to avoid getting
eaten. This caterpillar story is called an identical reminding. In any particular dialogue, the
student can see as many identical remindings as the storyteller can find. The name identical
reminding can be misleading; two identical remindings do not necessarily depict identical
events. For example, if a student answers the question “Why do you want your animal to fly?”
with “so it can hunt,” two identical remindings might be

1) an eagle flying to search for its prey and
2) a hawk flying in pursuit of its prey.

81

Even though searching for prey and pursuing prey are not identical behaviors, these are
considered identical remindings because both searching for prey and pursuing prey are part of
hunting. Both are examples of flying in order to hunt. Since an example may be more specific
than the thing it exemplifies, two identical remindings may be examples of the same concept
without being identical to each other.

Identical remindings are also offered when a student chooses not to see a story proposed
by the storyteller. When Creanimate retrieves an example reminding, it introduces the story
with a bridge and asks the student if he wants to see it. If the storyteller retrieved other,
identical remindings, then the student is also given the option to see one of them. This option
appears to the student as the choice, “What other videos can I see?” when he is deciding
whether to see the suggested video or not. For example, in the transcript above, when the
storyteller proposed the story about the katydids, the student saw the following:

That might work. Katydids hide to avoid detection by
predators.
I have a cool video about that. This video is for people who
like surprises.
Would you like to see that?

Yes.

What other videos can I see?

No.

Following the principles established in Chapter 3, the student is given as much control
over his learning interaction as possible. Whenever possible, Creanimate allows the student
to select an alternative over the story proposed by the storyteller. In addition, through
bridges, it gives the student as much information as possible to make the decision whether or
not to see a particular story.

4.1.5 Bridges for Example Remindings

Once the example reminding algorithm has identified appropriate stories, it selects the
story with the highest rating to present as the example reminding. To introduce the story, the
storyteller constructs a bridge that tells the student how the story relates to the current
discussion. In the transcript below, the storyteller introduces a correct answer reminding by
telling the student what the story shows.

OK, let’'s find a reason for your frog to have wings. Is
there a reason you want your frog to have wings?
Student: So it can fly

) s 1 id hi]] hei

Wi to

Would vou like to see that?

Student: Yes

[VIDEO: “Sea Eagle Catches Fish”] (Transcriptno.m2-4-27-14.35).

This bridge describes the specific type of wings that are used to fly in the story. The
bridge is intended to give the student enough information to decide whether or not he wants to

82

see this story, and to relate the story to the ongoing dialogue. In addition, the student sees a
still picture taken from the story that shows the animal in the story. Figure 25 shows this.

That's a good idea. White breasled sea eagles hove wings to
help them to fhy.

| have a greet videe about that

‘Would you like to see n video about that?

Figure 25. A portion of the Creanimate screen showing a bridge to a correct answer and the
accompanying picture of the animal in the story.

Correct answer remindings are always introduced with statements that explain how the
story is an example of the concept under discussion. However, the bridges for incorrect answer
remindings and suggestion remindings often take the form of questions. The following
transcript which also deals with an animal with wings shows a question used as a bridge:

If your bear is going to have wings, that should help it to
do something. Why would you like your bear to have wings?

STUDENT: Give me some suggestions
Sage grouses have wings. They have feathered wings. Do vou
w what sage cuse e eir wi ?

(I think this video is hilariocus.)

STUDENT: Show me a video

[VIDEO: "GROUSE DANCES"]

Now, do you know what sage grouses use their wings for?
STUDENT: So they can dance around

Yes, that is right. Sage grouses have wings to help them to
dance. (Transcript no. Pal-m1-6-2-16.48)

83

The sage grouse story is introduced with the question, “Do you know what sage grouses
use their wings for?” By introducing stories with questions, Creanimate helps make students
active viewers. When a student is looking at a video with a question in mind, he will focus on
the video more closely because he is looking for an answer to the question. This helps activate
the student, and encourages him to attend to the aspects of the video that are relevant to the
current discussion. Videos such as those of animals in the wild contain a great deal of
information and can convey many lessons. By asking a question as an introduction, Creanimate
provides a context that assists the student to focus on the particular elements of a story that
apply to his animal. If the student attempts to answer the question before seeing the story,
the dialogue manager will evaluate his response. If he is correct, he will get confirmation and
then be offered the opportunity to see the story. If his answer is unverifiable, he will be
offered an incorrect answer reminding before having the opportunity to return and view the
current story. However, if the student chooses to see the story without trying to answer the
question, as the student in the transcript above did, then the question will be repeated
following the story. After the story, the student has the opportunity to try an answer, review
the story, or ask the system to tell him the answer. In the example above, the student asked to
be told the answer. Which stories should be introduced with questions is a decision made by
an indexer as he adds information to indices.

Questions serving as bridges, like the one above, are an important element of
Creanimate’s strategy for providing stories in meaningful contexts. These contexts assist
students to understand stories, retain them as cases, and index them appropriately in their
own memories.

4.1.6 The Role of Example Remindings

Each type of example reminding is designed to help a student learn from the context
provided by the discussion of his animal. AsI stated in Chapter 3, the task environment in a
case-based teaching system has two important goals: 1) help the student develop an
understanding of the structure of the domain under study and 2) provide him with valuable
opportunities to learn from stories . In the Creanimate system, explanation questions provide
the structure of the domain for the student. Questions such as, “What physical features are
necessary to fly?” or “What survival behavior can flying enable an animal to achieve?”
communicate the basic underlying relationships of animal morphology to a student. These
questions help the student to understand the relationships that connect an animal's physical
features, actions and behaviors. These relationships provide the student with a structure to
organize his knowledge about animal adaptation.

However, people rely on cases for reasoning about complex domains. Thus, structure is
not enough; students also need cases. The purpose of example remindings is to provide students
with concrete cases that reinforce the structure provided by explanation questions. These cases
supply material for the natural process of case-based reasoning. The structure provided by the
questions can be used by the student to index the cases that come from example remindings. The
structure and cases therefore work together as the student constructs an understanding of the
domain.

4.2 Similarity-Based Remindings

The following transcript shows a similarity-based reminding. In this transcript, the
student has just decided to give a bear wings so it can fan itself with them.

84

Let’'s see if we can find a reason for your bear to fan
itself. Can you think of a reason for your bear to fan
itself?

Student: So it can stay cool in summer

That might work elephants fan themselves to keep cool.
I have an interesting video about that. This has baby
elephants in it.

Is that something you would like to see?

Student: Yes.

[VIDEO: *ELEPHANTS AT WATERHOLE”"]

]] 14 ! ninl :] hi .

is S _new ways t e cool in it

Meerkats also keep cool. Onlvy, instead of fanning

]]] 3 hi Jiff]

sand.

Do you want to see that? (Transcript no. Pal-m1-6-3-22.42)

In the first part of this transcript, the storyteller shows a correct answer reminding in
response to the student’s suggestion that his bear fan itself in order to keep cool. This
particular example story shows elephants flapping their ears as a way of cooling off. The
telling of this elephant story triggers a similarity-based reminding of a similar, but different
story about keeping cool. Rather than showing an animal fanning itself to keep cool, the
similar reminding shows meerkats digging down to a cooler layer of sand to keep cool in the
hot desert. (Meerkats, relatives of the mongoose, are small desert animals that resemble
prairie dogs in their social behavior.) While this meerkat story is not strictly on point for the
student’s discussion of why his bear will fan itself, it reflects a common strategy employed by
human teachers. The reminding constitutes a digression brought about by the new topic of
keeping cool. The storyteller, like a good teacher, recognizes the introduction of a new topic as
an opportunity to introduce the student to an interesting variation on the current theme that
will broaden his exposure and help him to generalize his understanding beyond the specific
examples he may have been exposed to before.

Similarity-based remindings are incidental remindings because they digress slightly
from direct consideration of the student’s animal. Digressions like these are inspired by the
way human teachers take advantage of situations that arise in the course of teaching in order
to bring in new ideas. In contrast to example remindings that capitalize on the opportunities

for learning that arise from explanation questions, similarity-based remindings4 exploit the
opportunities that arise from telling other stories. After seeing an example reminding, a
student can be expected to start making generalizations that will help him relate the new
information in the story to his existing knowledge. By intervening at that moment with
stories that are similar but not identical, the similarity-based reminding strategy is intended
to assist the student in making those generalizations. Thus, the timing of similarity-based
remindings is critical. A similar reminding follows directly on the heels of an example

4 For brevity, similarity-based remindings are also called similar remindings. The terms are
interchangeable.

85

reminding but before any identical remindings. Below is another example of a similarity-
based reminding. This one appears in a discussion of why a student’s butterfly might fight:

Thomsons gazelles fight for their mates.

I have pretty good video about that. This has fast action in
it.

Would you like to see a video about that?

Student: Yes.

[Video: Gazelles Spar]

11] 1] g inded E hil . 1d
age dgrouses compete mates. O instead of fightin
¢ hei] :] . : .]
Is that something you would like to see?

Student: Yes

[Video: Grouse Dances] (Transcript no. m4-5-4-14.41)

This transcript shows the use of similarity-based remindings both to help the student
make a generalization and to broaden the student’s exposure. The example story shows male
gazelles fighting to compete for the right to mate. After seeing this story, the student will
begin to integrate the new information it contains into his understanding of animal behavior.
This presents an opportunity to show an additional story that will help the student to make
new connections and form valuable generalizations. In the transcript above, the similarity
reminding the storyteller presents will help the student to recognize that competing for mates
is a general behavior pursued by many animals in many different ways and that fighting for
mates is only one of these ways. The similar story presented shows a very different way of
competing for a mate: male sage grouses do an elaborate mating dance as part of their efforts
to attract a mate. Seeing these two stories in juxtaposition will help the student to recognize
the generality of competing for mates and it provides him with two different cases that both
support this generalization. In addition, this particular similar reminding is likely to
broaden the student’s range of experience. It is a good bet that the ritualized mating dances in
this story show the student something that he has never seen before. In this way, similarity
remindings play the important role of drawing students into new areas and awakening new
interests. While they are interjections in conversations, they are natural ones because they
always relate directly to a story the student has just seen.

4.3 Expectation-Violation Remindings

As I argued in Chapter 3, the greatest opportunity for learning takes place when an
expectation is violated by observation or experience. This is what Schank (1982) calls
failure-driven learning. The failure of an expectation prompts an individual to look for the
cause of the expectation failure, initiating the learning process. However, expectation
failures do not just trigger learning, they also provoke interest. In general, stories are
interesting to the extent that they challenge our expectations rather than confirm them. After
all, an experience that conforms exactly to expectation is boring. The expectation-violation
reminding strategy is an incidental reminding strategy that uses expectation failures as a way
of provoking interest and triggering learning. In order to generate remindings based on
expectation-violations, the system must have knowledge about the expectations that students

86

are likely to possess and about which stories violate those expectations. The following
transcript shows an example of an expectation-violation reminding;:

How would you like to change your pike?

Student: A pike with wings.

E 1]] fish t}] . £]
] 5] 1il .

Would vo i to gee video 2
sStudent: Yes.
[VIDEO: MANTA RAYS SWIMMING] (Transcript no. m1-4-24-11.32)

The manta ray story was retrieved by the expectation-violation reminding strategy. It
violates the expectation that fish don’t have wings. In order to present this story, the
storyteller used the knowledge that a student would not expect a fish to have wings and that
this story violates that expectation. This information is represented in indices using rules to
encode standard expectations. A standard expectation is an expectation that an indexer
believes students in the target population are likely to possess. These expectations are
expressed as one of three types of rules:

Only-rules, e.g., “Only mammals have hair.”
No-rules, e.g., “No mammals lay eggs.”
All-rules, e.g., “All birds fly.”

While the system treats the rest of the information in its knowledge base as true under
all circumstances, the information expressed as standard expectations is used only for the
purposes of representing likely student beliefs. The other information in the knowledge base is
used to draw inferences about animals in response to students' actions. In contrast, standard
expectations are only used for expectation-violation reminding.

The expectation-violation reminding strategy works in the following way. When the
storyteller detects that a standard expectation applies to a student's current situation, it
presents a story that violates that expectation. The intended result is that a student will
develop more sophisticated expectations. In addition, expectation-violation remindings
share with similarity remindings the goal of broadening a student's range of experience.
Finally, the element of surprise that accompanies an expectation-violation serves a valuable
motivational purpose. In expanding a student’s horizons, the reminding strategy also increases
their interest and curiosity.

The expectation-violation reminding strategies are divided into two categories. The
remindings that result from the violation of only-rules and from no-rules form one category,
and the remindings that result from the violation of all-rules form the second category. The
two strategies are triggered by different situations in a student’s discussion.

4.3.1 Only-Rule and No-Rule Remindings

The following two transcripts show remindings prompted by an only-rule and a no-rule
respectively.

87

Only-rule: Only birds have beaks,
How would you like to change your butterfly?
Student: A butterfly with a beak.

Actually there are animals other than birds that have beaks.
For example, octopi have curved beaks.

Is that something you would like to see?

Student: Yes.

[VIDEO: "OCTOPUS SPAR"] (Transcriptno. m3-5-1-11.33)

So, your pike could have wings to fly.

You can commit to that now, or we can look at some other
reasons animals have wings and you can decide later.
Student: To fly.

Ok, your pike will have wings so that it can fly.
[Picture of a pike with wings]

1] | Fish tl] h t] . F
example, salmon jump.
Do you want to see that?
Student: Yes.

[VIDEO: “Salmon spawn as bear watches”]
(Transcript no. m3-5-7-15.06)

Only-rule and no-rule remindings are incidental remindings that get triggered when a
student takes an action that changes his animal. These remindings can occur when the student
selects an initial modification for his animal or when he resolves an explanation question by
committing to a new modification for his animal. In the first example above, the reminding is
triggered by the student’s initial request for a butterfly with a beak. In the second, the
reminding is triggered by the student’s decision to commit to flying as a reason for his fish.

The first reminding is triggered by an only-rule that says, “Only birds have beaks.”
This is a standard expectation that is violated by the octopus, which has a large, curved beak
concealed beneath its body. Since the student’s animal, a butterfly with a beak, also violates
this expectation, it triggers the only-rule reminding. The second reminding is triggered by a
no-rule. The student’s request for a pike that has wings in order to fly violates the standard
expectation, “No fish move through the air.” In fact, salmon do move through the air when
they jump over rapids and waterfalls during their spawning runs up streams and rivers. This
expectation-violation triggers the reminding. Prompted by a pike that flies the storyteller
gets reminded of salmon leaping through the air.

To summarize, both no-rule and only-rule remindings are triggered by students’ changes
to their animal. When a student’s animal and an animal in a story both violate the same
standard expectation, the expectation-violation reminding strategy causes the storyteller to
be reminded of the story.

4.3.2 All-Rule Remindings

All-rule reminding, like similarity-based remindings, follow directly on the heels of
example stories. They are triggered by the contents of the example stories they follow.

88

Unlike only-rule and no-rule remindings which respond to an animal that violates standard
expectations, all-rule remindings respond to example stories about animals that conform to
standard expectations. In response to a story that shows something that agrees with standard
expectations, an all-rule reminding will show something that violates those same
expectations. In the following example, a student is working on a frog that can fly.
Predictably, the student asks for wings. Since wings used to fly conforms to a standard

expectation, an all-rule reminding produces an example of wings being used for something truly
surprising:

Ok, what should we give your frog to help it fly?
STUDENT: give it wings

I like that idea. White breasted sea eagles use their large
wings to help them fly.

I think this video is great.

Do you want to see that ?

STUDENT: yes

[VIDEO: Sea Eagle Catches Fish]

use their wings to make shade.

Would you like to see that?

STUDENT: yes

[VIDEQO: “heron shades water”]

In the heron shades water story, the student sees a heron standing in a pool of water
with its wings spread to create a shady area. Fish looking for relief from the heat of the sun
are attracted to the shade where they become easy prey for the heron. This unusual use for
wings typically comes as a surprise.

All-rule remindings of this sort serve two primary purposes. First, the surprise that
ensues from them operates as a motivator. Students enjoy seeing the unexpected, so these
surprising remindings enhance their pleasure in using the system. Second, these remindings
widen students’ exposure. Through these all-rule remindings students have an opportunity to
see some lesser known phenomena from the animal kingdom that they might not encounter any
other way. Because of the context provided by the ongoing discussions of their animals
students take interest in these stories in a way they might not otherwise. Ideally, these
remindings lead students to become curious about the phenomena they see and encourage them
to use Creanimate as well as other resources to satisfy this curiosity.

4.3.3 Standard Expectations

In order to produce expectation-violation remindings it is necessary to represent standard
expectations. Standard expectations are those that we can reasonably expect students to
possess. The criterion we use for identifying when a standard expectation is relevant is:

If the contents of a story are judged to be surprising to the average adult,
then the story contains a violation of a standard expectation.

The risk in this approach is that a story will be presented as an expectation-violation
even though the student already is familiar with the exception in the story. By setting our

89

threshold for expectation-violations reasonably high, i.e., surprising to the average adult, we
minimize the frequency of an expectation-violation reminding not actually surprising a
particular student. When this does happen, then, it means that the student is unusually
sophisticated about the subject matter. Instead of this presenting a problem, we have observed
that these remindings are perceived as a reward that reinforces the student’s pride in his
exceptional knowledge. Thus, while Creanimate is unable to judge what the student's actual
expectations are, it nevertheless is able to present expectation-violations that consistently
engage a wide range of students.

4.4 Summary

The Creanimate storyteller employs several reminding strategies, each designed to
present stories that help students to learn from the animals they create and the resulting
discussions. The primary reminding strategy in Creanimate is the example reminding
strategy. The three primary example reminding strategies correspond to the three ways that
students may respond to explanation questions. The correct answer reminding strategy
provides examples to support a student’s correct answer to an explanation question. The
incorrect answer reminding strategy helps a student to learn from incorrect answers. It presents
examples of the answer in a way that shows the student situations in which his answer would
be correct. The third example reminding strategy, the suggestion reminding strategy, suggests
answers to students when they don’t know any or are too timid to try one. This strategy
suggests answers through stories that show examples of them. Finally, the identical
reminding strategy provides follow-up examples to each of the three primary example
strategies. All of the example reminding strategies are designed to give students cases that
support the abstract framework provided by explanation questions.

In addition to example remindings, the Creanimate storyteller employs two types of
incidental reminding strategies. The first is the similarity-based reminding strategy which
follows up example remindings with stories that show something “similar but different.”
Similarity-based remindings help students to form appropriate generalizations, and they
expose students to new phenomena. Expectation-violation remindings, the second type of
incidental remindings, also broaden students’ exposure. They also take advantage of the
natural motivation to learn that results from surprise. The three types of expectation-
violation remindings are based on standard expectations. Standard expectations are expressed
in the form of rules that represent the beliefs that students can reasonably be expected to
possess. Only-rule and no-rule remindings respond to a student’s change to his animal with
stories about surprising animals that violate the same expectations that the student’s animal
does. All-rule remindings follow example stories that conform to standard expectations with
surprising stories that contain exceptions to those expectations. All three forms of
expectation-violation reminding are designed to increase student curiosity and interest
through expectation failures.

While the example reminding strategies provide the foundation for a discussion of
explanation questions, the incidental reminding strategies provide relevant, intriguing
interjections. These incidental remindings use the current context to give students a wider range
of experience and, hopefully, to pique their curiosity and interest. The combination of these
strategies provides the feeling of a natural dialogue, complete with digressions, conducted by
a human teacher with a wide range of knowledge about the subject matter.

All of the reminding strategies are designed to fulfill the educational objectives of the
Creanimate system. They present stories in a way that is calculated to take advantage of a
student’s investment in creating his own animal and the context provided by explanation
questions. Because the stories respond directly to the student’s discussion of his animal and

90

they help him to resolve pending issues for that animal, the student is motivated to learn
from them. The context helps the student to index the contents of a story with respect to the
issues in the current discussion. This indexing will help the student to retrieve the cases
gleaned from stories when they become useful in the future. In addition, those cases help
reinforce the structure of the domain that is provided by the explanation questions. Combined
in this way, the structure provided by explanation questions and the cases from stories
mutually reinforce each other in a student’s memory.

Chapter 5
Reminding Algorithms

In the previous chapter I presented the reminding strategies in Creanimate from the
perspective of their pedagogical roles. Pedagogy aside, the implementation of these
reminding strategies is a research issue that falls squarely within the realm of artificial
intelligence. Implementing reminding strategies on a computer poses a difficult challenge. It
requires both an expressive indexing scheme to organize stories in the computer’s memory and
sophisticated algorithms for retrieving stories when they are relevant. In this chapter, I
describe the algorithms used to implement each of the reminding strategies described in the
previous chapter. For each strategy, I describe both the indexing information required to

generate remindings of that type and the algorithm used by the storyteller to produce the
remindings.

5.1 The Indexing Vocabulary: An Overview

Before we can look at the reminding algorithms themselves, it is important to
understand the memory structures on which they operate. The reminding algorithms in a case-
based teaching system translate a characterization of the current state of the task
environment into a description of stories that are appropriate for that situation. In
Creanimate, this description is constructed using elements drawn from the indexing
vocabulary. This is the same vocabulary that an indexer uses to index the stories in
Creanimate’s story library. To understand the reminding algorithms, some familiarity with
the indexing vocabulary is essential. (This vocabulary is discussed in detail in Chapter 7.)

The Creanimate indexing vocabulary is composed of two classes of representational
structures, objects and relationships. Objects are used to represent individual concepts such as
animals, features, and actions. Relationships link two of these objects together in a structured
relationship so that they can be associated with an animal. For example a relationship may
associate a physical feature and an action to a particular animal that uses the feature to
perform the action. The object classes in Creanimate include:

Features. Physical attributes of animals, e.g., beak, claws, fur, small size.

Actions. Activities of animals that are performed with features, e.g., running,
swimming, biting, scraping.

Behaviors. High-level, goal-directed activities of animals, e.g., hunting,
fleeing predators, attracting a mate.

Animals. Specific animals or abstract categories of animals, e.g., cheetah,
raptor, pike, mammal.

Phys-obj’s. Physical objects other than animals that are found in the world, e.g.,
plant, rock, seed.

Properties. Attributes of objects that the system uses for various bookkeeping
functions.

Indices. Descriptions of video stories in terms of other objects or relationships.

91

92

Impacts. A subjective description of a story or a relationship, e.g., funny,
dramatic.

The distinction between actions and behaviors can be confusing. They can be
distinguished from each other by their relationships to features and goals. Actions are
primitive activities that are directly associated with the features that animals use to
perform them. Behaviors are more complex activities that are associated directly with
survival goals. In particular, a behavior is an activity that supports only one survival goal,
whereas one action may support several behaviors each of which contributes to a different

survival goal. Thus, run! is an action whereas pursue prey is a behavior. Run is directly
associated with the feature legs, whereas pursue prey is not necessarily associated with any
feature. Furthermore, pursue prey is associated with a single survival goal, getting food,
whereas run can serve any number of survival goals, including getting food, avoiding danger,
and getting a mate.

Objects are represented as nodes in hierarchical networks with links to objects of both
the same and different type. Objects are connected to other objects of the same type in
traditional abstraction hierarchies. For example, the actions walk and run are both connected
to move on the ground through an abstraction relationship. Move on the ground is in turn
linked to its abstraction, move. Objects are connected to objects of other types in ways that
indicate how they relate to each other in the natural world. For example animals have links
to the features that they possess and the actions and behaviors that they engage in.
Similarly, features are directly linked to the actions that they support, and actions to the
behaviors they support. Most links that connect objects to other objects are bi-directional so
that the link that connects the feature teeth to the action chew can be traversed from either
teeth to chew or chew to teeth. Finally, objects that correspond to animals and attributes in
the real world are connected to indices of stories with bi-directional links. Thus, an index
contains pointers to the animal and its attributes that appear in the story, and each animal,
feature, or behavior contains pointers to the indices for all of the stories in which they
appear. These links enable the storyteller to identify stories that are relevant to animals,
features, actions, or behaviors by searching through the networks that connect those objects
and examining the indices that they are linked to.

Creanimate contains three primary relationships. They connect objects together in the
following ways:

Feafuns. A feafun connects a physical feature to an action that it is used to
perform, e.g., long legs in order to run fast. The name feafun is an abbreviation
of “feature for a function.”

Plans. A plan connects an action to a behavior that it supports, e.g., run fast in
order to pursue prey.

Bplans. A bplan connects a lower-level behavior to the higher-level behavior
that it supports, e.g., pursue prey in order to hunt.

Relationships are used to tie features, actions, and behaviors together and associate
them with a particular animal. For example, the animal giraffe possesses the feafun long
neck in order to reach. These relationships correspond directly to the explanation questions
that the system poses. For instance, the questions “What feature could an animal use to reach
for food?” and “Why might an animal have a long neck?” are both answered by the feafun

! A word about notation: The convention in this and subsequent chapters is that names of
concepts in the Creanimate knowledge base appear in italics.

93

long neck in order to reach. The process by which these relationships and objects are added to
the vocabulary proceeds from 1) a taxonomy of the questions that are critical to an
understanding of the subject matter to 2) a set of relationships that correspond to those
questions to 3) a set of basic concepts that are connected by these relationships.

In addition to the relationships listed above, Creanimate contains a special kind of
relationship called a rule.

Rules. A rule encodes a generalization, e.g., “No fish have wings.” Rules are
known to have exceptions.

Rules differ from the other relationships in Creanimate because the information they
encode is not true under all conditions. Rules are used to capture generalizations. However,
every rule in Creanimate has at least one significant exception. The role of rules is to trigger
expectation-failure remindings about exceptions to those rules.

The objects and relationships described in this section play a critical role in supporting
the various example, similarity-based, and expectation-violation reminding strategies.

5.2 Example Remindings

The following transcript appeared in the previous chapter as an example of a suggestion
reminding:

. We need a reason for your dog to fly. Is there a reason you
want your dog to fly?

Student: Give me some suggestions

Canada geese fly. Do you know why canada geese fly?
{This next video is really good.)

Student: Show me a video

[VIDEO: "GEESE MIGRATE"] (Transcript no. Pal-m1-6-5-12.57)

The suggestion reminding strategy is one of three primary example reminding strategies.
The other two are the correct answer and the incorrect answer reminding strategies. Each of
these retrieves stories that are appropriate for a student’s answer to an explanation question.
All three rely on the same indexing information in stories and use similar algorithms. The
challenge for retrieving example stories is identifying stories that correspond to the
particular explanation question just asked and the student’s response. This requires
information in indices that tell the storyteller which explanation questions apply to a story

and an algorithm for searching the story library to find stories for a specific explanation
question and response.

5.2.1 Indexing Information for Example Remindings
Since example remindings in Creanimate follow on explanation questions posed to
students, the stories in the Creanimate story library are indexed according to the questions
that they illustrate. For example, the story about the Canada geese in the example above can
answer the following two questions (among others):
Why do animals fly?
How do animals migrate?
These two questions both correspond to the plan fly in order to migrate. Therefore, the
Canada geese story is indexed under the action fly, the behavior migrate from cold, and the
plan fly in order to migrate from cold. In the following fragment of the definition of the index

94

for the Canada geese story, we can see the data structures for these objects in the behaviors,
actions, and plans slots respectively.

[index geese-migrate-canadian-geese
:animals ([animal canada-geese])
:behaviors ([behavior migrate-from-cold])
:actions ([action fly 1...)
:plans ([plan :action [action fly]

:behavior [behavior migrate-from-cold]})
2
.1

Therefore, the portion of the index that is most important for the example reminding
strategy is the portion that indicates the relationships (feafuns, plans, and bplans) that

appear in the story. These relationships tell the storyteller which questions and answers the
story can be used to illustrate.

5.2.2 The Example Reminding Algorithm

While the reminding algorithm that produces example remindings is simple, it relies
heavily on the expressiveness of the indexing vocabulary. The algorithm is implemented as a
search through abstraction hierarchies. The starting point of this search and the description

of a desirable story are both determined by the current context in the dialogue. As an example,
consider the following transcript:

OK, let’'s find a reason for your frog to have wings. Is
there a reason you want your frog to have wings?
Student: So it can fly

That’'s a good idea. White breasted sea eagles use their
feathered wings to help them to fly.

Would you like to see that?

Student: Yes

[VIDEO: “Sea Eagle Catches Fish”] (Transcript no. m2-4-27-14.35)

In this transcript, the explanation question is “Why have wings?” and the student’s
correct answer is, “so it can fly.” Once the dialogue manager has verified that flying is a
reason that animals have wings, the correct answer reminding algorithm initiates a search for
an example story. This search is guided by the relationship that results from combining the

2 This is an example of the printed representation of the Common Lisp data structure
corresponding to a Creanimate object. The text within a set of brackets “[. ..]” refers to a
single data structure. The first word always describes the type of data structure, e.g., animal,
feafun, index. In an object, the second word is the name of the object. The rest of the data

structure consists of alternating slot-names (beginning with a colon) and lists of slot values. For
more detail, see Chapter 7, The Indexing Vocabulary.

95

current explanation question and the student’s answer. In this case, the current explanation
question, “Why have wings?” is an explanation question of the class Why feature? A question
in Creanimate is represented as a partially filled relationship. For example, the current

question is represented as a feafun with the feafun wings and a missing action®:

[feafun :feature [feature wings] :action ?QUERY]

This question represents an attempt to identify an absent concept that can fill the
specified relationship to the provided concept. In this case, the initial concept is the feature
wings and the unfilled relationship calls for an action that wings support.

Correct Answer Remindings

When the student in the transcript above gave the answer fo fly, the storyteller
combined them into the following feafun representing wings in order to fly:

[feafun :feature [feature wings] :action [action fly]]

To be an appropriate correct answer reminding, an index must contain this feafun which
is called the target concept. To find a story that contains the target concept, the Creanimate
storyteller searches down abstraction hierarchies starting from one of the values in the target
concept. The goal of this search is to find an index that contains the target concept or a
specialization of it. Simply stated, the example reminding algorithm is a search that starts
with the values provided by the target concept and searches down abstraction hierarchies
looking for indices that contain the appropriate combination of these values. The principle
behind the example reminding algorithm is:

A story about the specialization of a concept is an example story about
the concept itself.

Therefore, a story about a feafun that is a specialization of wings in order to fly is an
example story for wings in order to fly. To retrieve the example story above, the correct
answer reminding strategy starts with the feature wings and searches down abstraction links
for features associated with stories. Each time it finds a feature that appears in a story, it
checks to see if the index for the story contains a feafun that matches the target concept.

The abstraction hierarchy beneath the feature wings looks like this:

3 For more details on the representation of questions in Creanimate, see the section on the
question data structure in Chapter 6, The Dialogue Manager.

96

MEDIUMSIZEWINGS |HGROUP)-{ROBINFLIGHT-PACKAGE]

MANTAWINGS ** |

INSECT-WINGS HGROUP) INSECTFLIGHT-PACKAGE |
WINGS (SA LEATHERYWINGS]

SMALL-WINGS HGROUP - HUMMINGBIRD-FLIGHT-PACKAGE |

LARGE-WINGS HGROUP){EAGLEFLIGHT-PACKAGE |

FEATHERED-WINGS |

Figure 26. The abstraction hierarchy of features beneath the feature wings.4

As the reminding algorithm traverses this hierarchy, it looks for indices that match
the feafun above. When it reaches feathered wings, it finds the index for the sea eagle story
that appears in the transcript above. The index for this story contains the following feafun:

[feafun :feature {[feature feathered-wings]
raction [action fly]}

Because this feafun is a specialization of the target concept wings in order to fly, the
example reminding algorithm recognizes this story as an example of the current concept and it
presents it to the student. Of course, another index that contained a further specialization
such as large wings in order to soar would also be an appropriate reminding. This reminding is
an example of a correct answer reminding. The algorithm for the other two types of example

remindings is the same except that the target concept is less tightly constrained, as shown by
table 4.

% This graph was generated by the indexing tool used to maintain the Creanimate
knowledge base. Parent objects (abstractions) appear to the left and children (specializations)
to the right. Objects appear in rectangles. Links are labeled with abbreviations of their
names that appear in ovals. For more information on the links that connect objects see Chapter

97

Table 4.-The constraints that apply to correct answer, incorrect answer, and suggestion
example remindings. To be selected as an example reminding, an index must contain a
relationship that matches the constraints. The constraints in italics are the result of

combining the applicable constraints for that type of reminding.

T f remindi Constal E Jes of Constraint
Correct Answer Current Question Why wings?
Student’s correct answer To fly.
Combined Constraint Wings in order to fly
Incorrect Answer Category of Current Question Why wings?
Student’s incorrect answer To dig holes.
Combined Constraint Some feature in order to dig
holes
Suggest Answer Current Question Why wings?
Combined Constraint Wings in order to do some
action

Incorrect Answer Remindings

Like a correct answer reminding, an incorrect answer reminding is constrained by the
answer—in this case, unverifiable—given by the student. Consider the following example of
an incorrect answer reminding, which appeared in the previous chapter.

OK, Let’s find a reason for your bear to have a beak. Is
there a reason you want your bear to have a beak?

Student: So it can smell better

I've never heard of anv animals that have beaks to smell, but
there are some other ways that animals smell.

them to smell.

I have an interesting video about that. I like this one
because it has mean fish in it.

Would you like to see a video about that?

Student: yes
[VIDEO: “*Pikes smell”] (Transcript no. m4-5-8-11.37)

In this transcript, the student gave the answer, “to smell better” in response to the
explanation question, “Why have a beak?” The resulting incorrect answer reminding shows a
pike using its nostrils to smell. This reminding is retrieved using a target concept formed by
placing the student’s answer in an unconstrained relationship of the type used to represent the
current explanation question. The target concept for the incorrect answer reminding is
generated in the following way:

98

1. Start with the relationship from the original Explanation Question:

{feafun :feature [feature beak] :action ?QUERY]
2. Replace the original concept in the explanation question with a wildcard:

(feafun :feature [feature feature] :action ?QUERY]
3. Replace the unknown concept in the resulting relationship with the student’s
answer:

[feafun :feature [feature feature]

taction Jto smelll]

This new target concept can be used to search for incorrect answer remindings. In this
case, the storyteller will search the abstraction hierarchy beneath smell looking for indices
that contain feafuns matching some feature in order to smell. In the transcript above, the
resulting incorrect reminding shows the feafun nostrils in order to smell.

Suggestion Remindings

The target concept for a suggestion reminding is also less tightly constrained than correct
answer remindings. Suggestion remindings are only constrained by the current explanation
question. The other half of the target concept remains unconstrained. For example, in a
dialogue about the explanation question, “How would you like your butterfly to fight?” the
question is represented in the following way:

(plan :action ?QUERY :behavior [behavior fight]]

A story that suggests an answer to that question will contain a plan that shows an action
being used to fight. Therefore, the target concept for the suggestion reminding algorithm in a
dialogue about Why fight? would be:

[plan :action [action action] :behavior {behavior fight]]

This target concept will match any plan that shows some action being used by an animal
in order to fight.

5.3 Similarity-Based Remindings

The similarity-based reminding algorithm presents stories that are similar to but
different from an immediately preceding example story. The challenge of creating a
similarity reminding algorithm is developing a way for the storyteller to distinguish stories
that are similar enough to be interesting and useful from stories that are similar in some

respect but do not constitute interesting remindings. The transcript shows an example of a
similarity-based reminding.

Some shrimp use their transparent bodies to help them hide.
I have an interesting video about that.

Would you like to see that?

Student: Yos

[Video: See-through shrimp]

99

Would you like to see that? (Transcript no. Pal-m1-6-30-9.37)

In this transcript the student asked for an animal that can hide, and the system engaged
him in a discussion of the physical features that animals use to hide. In this example,
Creanimate shows the student a story about a variety of shrimp whose transparency enables
them to conceal themselves from predators. This story triggered a similarity-based reminding
about owl butterflies that have a similar feature, large spots, to serve a similar purpose.
These spots scare potential predators away. This reminding helps the student to form

generalizations about mimicry and protection as well as providing him with a particularly
striking case.

5.3.1 The Original Similarity-Based Reminding Algorithm

Developing an algorithm to produce remindings based on similarity requires an
important tradeoff. This tradeoff is between a simpler, more efficient algorithm that requires
extra work on the part of the human indexer and a more complex algorithm that reduces the
workload of the indexer. Earlier versions of Creanimate used a simpler algorithm that
required the indexer to add special information specifically for similarity-based reminding.
More recently, this "original algorithm" was replaced with a more sophisticated algorithm
that eliminates the need for indexing information that is specific to similarity-based
reminding. I present the original algorithm first for two reasons. One, most of the testing with
children that is reported in this dissertation was conducted with the original algorithm.
Two, it is simpler and therefore easier to present than the improved algorithm. It is easier to
describe the most important aspects of the similarity-based reminding algorithm through a
discussion of the original algorithm, without the added complexity. Following the
description of the original algorithm in this section, I describe the improved algorithm as an
incremental enhancement of the original.

Indexing Information for Similarity-Based Reminding: The Abstraction

As I mentioned earlier, the problem for implementing similarity-based reminding is
providing a method for the storyteller to reliably determine whether a story is similar
enough to another to be an appropriate reminding. The approach used in the original
similarity reminding algorithm was to have an indexer make that judgement at the time that
he indexes a story. The idea was that the indexer, after indexing the story to indicate how it
can be used as an example, would make a judgement as to the range of other stories that would
be appropriate similarity-based remindings to follow this story. Of course, one way to do that
would be for the indexer to look at all of the possibly similar stories in the story library and
determine which of them would be appropriate. Obviously, this solution does not scale-up to
large story libraries well, and it would be difficult to maintain lists of similar stories as the
story library changes and grows.

Instead, the original similarity-based reminding uses a special representation in each
index that the indexer adds for the specific purpose of specifying the range of stories that

100

would be appropriate similarity remindings to follow the current story. As an example,
consider the transcript above. The example reminding shows shrimp that use their
transparency to camouflage themselves. An indexer might determine that any other story
that shows some aspect of an animal’s appearance being used to help the animal hide would
be an appropriate similarity-based reminding. In this case, the indexer would add a
representation that we call an abstraction to the index for that story. This abstraction would
represent the feafun appearance in order to hide, and would communicate to the storyteller
that any story that contains an appearance being used to help an animal hide could be a
similarity-based reminding to follow this story.

This abstraction is represented in indices in the following way. Recall from the section
on example remindings that every index contains representations of the relationships that are
depicted in the story. For instance, the shrimp story in the transcript above was shown to the
student because its index contains the feafun transparent color in order to camouflage. This
feafun is represented in the index in the following way:

[feafun :feature [feature transparent-color]
raction [action camouflage]
. . [. hidel
-]

We can see that in addition to the feature transparent color and the action camouflage,
this feafun contains an abstraction (underlined). This more abstract feafun, appearance in
order to hide, plays the role of defining what constitutes a similar story for the purposes of
similarity-based reminding. Any story that is encompassed by the abstraction can be
considered similar; other stories are not. Each relationship (feafun or plan) that appears in

an index is labeled with an appropriate abstraction to support similarity-based reminding.

The Original Similarity-Based Reminding Algorithm

The similarity-based reminding algorithm reverses the example reminding algorithm.
As we’ve already seen, the purpose of the example reminding strategy is to suggest concepts
that will resolve the explanation question. In the current example, the feature that was
suggested is transparent color. The example reminding algorithm starts with the initial
concept in the current explanation question and presents new concepts that fill the unfilled
relationship in the explanation question.

Example Reminding Algorithm:

Starts with: [feafun :feature ?QUERY :action [action hide]]

Result: [feafun :feature [feature transparent-color]
raction [action hidel]

In contrast, the similarity reminding algorithm starts with the result produced by the
example reminding algorithm and works backwards. It looks for other concepts that can take
the place of the initial concept in the explanation question.

Similarity-based Reminding Algorithm:
Starts with: [feafun :feature [feature transparent-color]
:action ?QUERY])

101

The similarity in this algorithm comes from the fact that it does not just use the concept
proposed by the example reminding in searching for stories. Using the abstraction as a guide,
it also looks at concepts that are similar to the newly-proposed concept. In the current
instance, the example reminding strategy started with the action to hide and suggested the
enabling feature transparent color. The subsequent similarity-reminding algorithm starts
with the feature transparent color and goes in the reverse direction, looking for actions. That
is, the example reminding algorithm went from feature to action and the similarity-based
reminding algorithm went back from action to feature. This is a general feature of the
similarity-based reminding algorithm. When the explanation question is Why feature? going
from feature to action, the similarity reminding algorithm goes from action to feature. The
same applies to explanation questions that go from behavior to action and action to behavior.
Thus, the complete similarity-based algorithm has two steps (shown in table 5).

Table 5.-The two step process of the similarity-based reminding algorithm
Similarity-based Reminding Algorithm:
Starts with: [feafun :feature [feature transparent-color]

raction ?QUERY]
Broadens to similar features:

[feafun :feature [feature appearancel
raction ?QUERY]
Result: [feafun :feature [feature color-pattern]

raction [action mimic-another-animal]]

In this algorithm, the guidance for broadening the search is provided by the abstraction
from the index of the previously-told example story. In the transcript above, the example
story showed transparent color in order to camouflage. Its abstraction was appearance in order
to hide. Since the example suggested a feature, it is the feature from the abstraction that gets
used, i. e., appearance for identifying similar stories.

Strong and Weak Similarity Remindings

The original similarity reminding algorithm produces one of two categories of
reminding, a strong reminding or a weak reminding. In a strong reminding, both concepts in the
retrieved story fall under the abstraction. In our example that would be a story that showed a
type of appearance being used for some specialization of the action hide. In a weak similarity
reminding, only one concept falls under the abstraction. The relevant concept in the
abstraction for a weak reminding is the one that corresponds to the new answer to the
explanation question. In the current example, the suggested answer was transparent color, so
the relevant part of the abstraction for a weak reminding would be the abstraction of
transparent color, which is appearance. Thus, to be a weak reminding for the current example
only requires that the feature in the reminding be a specialization of appearance. A weak
reminding would not care about the action in the reminding. In other words, to be a weak
reminding for the current example, the feature must be a type of appearance but the action
need not be a specialization of hide. Therefore, the owl butterfly story above is a weak
reminding because large spots are a type of appearance, but mimicking another animal is not a
way of hiding.

102

Table 6.~The target concepts for weak and strong similarity remindings to follow the “See-
Through Shrimp” story

Weak Reminding:

[feafun :feature [feature appearance] :action [action
actionl]

Strong Reminding:

[feafun :feature [feature appearance] :action Jaction
hidell

The Similarity Reminding Search

Simply stated, the similar reminding algorithm starts with the concept proposed by the
example reminding and searches for appropriate remindings by examining the concepts that
lay close to it in the abstraction hierarchy. The search is limited by the abstraction from the
example story. This abstraction can be viewed as an umbrella that delineates a space of
similar concepts. This space is searched for concepts that appear in appropriate stories. The
search itself is performed using an algorithm that we call cousin searching. A cousin search
proceeds by making a breadth-first search upwards from the starting point and searching
downwards from each parent concept reached in a modified depth-first order. Concepts are
only examined for relevant stories during the downward portion of the search, and leaf nodes
in the hierarchy are tested before internal nodes. Maintaining a hashtable of visited nodes
insures that each node in the hierarchy is only reached once going in each direction.

In the case of the shrimp and owl moth example above, the similarity search would
start from transparent color, go up its isa link to color then down the subtypes links to the
siblings of transparent color. (This portion of the hierarchy is displayed in figure 28.) After
the depth-first search downward from color it would continue its breadth-first search upward
to color-pattern. From color-pattern it would initiate another depth-first search down
subtypes links. This would lead it to spots, stripes, and camouflage, as well as their subtypes.
At each node on this traversal, the reminding algorithm would check for a story that meets
the similarity criteria for the current context. The search terminates either when an
appropriate story is found or when all concepts that are specializations of the current
abstraction have been searched. Since strong remindings are preferred to weak remindings, the
algorithm makes note of the first weak reminding it finds, but it continues to search for a strong
reminding until it finds one or the search space bounded by the abstraction is exhausted. If it
fails to find a strong reminding, the similarity reminding algorithm falls back on any weak
reminding it may have located.

103

5
\
4
/
Starting
point

A\

Figure 27. Illustration of the search order in cousin search. The traversal of nodes follows the
arrows up from child to parent and down from parent to child. The numbers indicate the order
in which the nodes get tested. Children are tested before their parents. The search proceeds
in breadth-first order in the upward stage from child to parents and in depth-first order in the
downward stage from parents to children.

1

The similarity reminding aigorithm is complicated in one additional respect as a result
of the goal to present stories that are different in some way from the preceding example story.
This is accomplished by filtering out any remindings that have in their index a relationship
that matches the current explanation question. In the current example the explanation
question is How to hide?. Any story that shows a feature being used to hide could be an
example story for the current dialogue. Therefore, any story that shows the action hide is
excluded from similarity-based reminding for the duration of this dialogue. These remindings
are reserved for use by the example reminding algorithms since the example reminding
strategies are more central to the educational goals of the system. This exclusion leads to the
“similar but different” nature of the remindings produced by the similarity-based algorithm.
The stories that are retrieved by this algorithm are similar because of the abstraction they
share with the example remindings that precede them. However, they are guaranteed to be
different in an important respect because they may not show any specialization of the concept
that is the basis for the current dialogue (e.g., hide). Both the search strategy and the
exclusion of example reminding stories are part of both the original and the improved
similarity-based reminding algorithms.

104

[BROWN-COLOR |
GREEN-COLOR]
CAMOUFLAGE
MANY-SMALLSPOTS |
b
[STRIPES ** |
GREV-COLOR]
WHITE-COLOR]
RED-COLOR]
[CoLoR A)-{COLOR-INSTANCES SA X{YELLOW-COLOR]
f *
[COLOR-PATTERN |..® BROWN-COLOR |
GREEN-COLOR **]
TRANSPARENT-COLOR |
MANY-SMALLSPOTS ** |
SPOTS
) BIGSPOT]

Figure 28. The hierarchy of features beneath the feature color pattern

Limitations of the Original Similarity-Based Algorithm

While the original similarity-based reminding algorithm produces valuable
remindings, it also has some weaknesses. The first weakness is the need for abstractions. The
use of abstractions necessitates work on the part of the indexer that is specific only to the
similarity-based reminding algorithm. It requires that the indexer add an abstraction for
every relationship in every index. As the knowledge base changes in response to errors and
new information abstractions become invalidated and must be updated. As the knowledge base
changes, concepts may be moved around in hierarchies so that one concept that had been a
parent of another may cease to be so. The bookkeeping involved in constantly modifying
abstractions to accommodate changes in the knowledge base is costly. One would prefer that
instead of an abstraction being a special annotation to a relationship in an index, that the
same knowledge be encoded as a general property of the knowledge base. In other words,
rather than placing appearance as an abstraction for transparent color in the index for the
transparent shrimp story, we would like that information to be inferable from general
information about the feature transparent color, and the action hiding.

The second weakness of the original similarity-based reminding algorithm is
illustrated by the following transcript:

Bees dance. Bees use their tails to help them dance.
I think this video is amazing.

Is that something you would like to see?

Student: Yes

[Video: Bees Dance]

105

That bee video reminded me of an interesting video. If you
like mean fish, then you’ll love this video.

Pikes also have tails. Only, instead of having tails to
danc £ e thej at taj to t lunge.

(Transcript no. pal-m1-6-30-12.40)

In this case, the similarity-based reminding is almost silly. While the particular story
that it shows, the pike story, is a dramatic video that few people would regret seeing, the
connection between the bee's tail and the pike's is just too tenuous to merit a reminding. It may
even cause the student to lose track of the flow of the current dialogue and feel lost after
having seen the pike story. The source of the problem in this example is that the reminding
hinges on the use of a tail by both bees and pikes; it does not take into account whether or not
the uses of those tails are similar. Common sense dictates that possession of a tail is not a
sufficient reason to have a reminding based on similarity. The class of animals that have
tails is just too broad. However, if the tails in the two stories were more similar or if the
actions performed by the animals were more similar, then the reminding would be sensible.
The problem is caused by the permissiveness of weak remindings. In this case, tail appeared
in the abstraction. If the pike story had been a strong reminding, that is, it had contained the
entire abstraction, a tail in order to be visible, then it would have been a reasonable
reminding. However, the storyteller was unable to find a strong reminding in this instance.
Instead it found a weak reminding based on the similar feature tail. The trouble is that tail is
too weak a similarity, but for weak remindings the original algorithm is unable to distinguish
between flat tail which might be a sufficient similarity to merit a weak reminding and tail
which is not sufficient.

Weak remindings were added to the original similarity reminding algorithm because
the strong reminding criterion was too stringent for a system with a limited number of stories.
It can be hard to find stories that include both of the concepts in an abstraction but are not
excluded because they are examples of the current explanation question. By removing the
restriction on one concept in the abstraction we were able to increase the likelihood of finding
a similar story that is interestingly different from the current example story. In fact, the good
similarity remindings gained by including weak remindings far outweighed the few bad
examples like the one above. However, even a rare occurrence of an overly weak remindings
can impair a student’s overall perception of the system. The problem for implementing weak
remindings is that the concepts in an abstraction may be expressed at the appropriate level of
abstractness for strong remindings but may be too abstract for weak remindings. When both
concepts in the abstraction are used as a target concept, the abstraction may be expressed at the
appropriate level of abstractness. However, when only one of the concepts from the
abstraction is used, as in weak remindings, that concept may be too abstract. This leads to the
problem in the example above. A tail being used to communicate would have been similar
enough, but a tail by itself is not a strong enough similarity. In this case, tail is at the right
level of abstractness when combined with communicate, but in the absence of communicate it is
too general.

5.3.2 The Improved Similarity-Based Reminding Algorithm

The desire to both remove the need for abstractions in indices and eliminate overly weak
remindings led to the development of the improved similarity-based reminding algorithm.
The key insight that led to this algorithm was the recognition that in Creanimate, relevant
similarity is based on both structural and functional similarity, not structural similarity

106

alone. For example, a long neck, a long beak, and a long tail are all similar to each other
because they share the quality long. In the context of a story about a long beak being used to
reach for things, a story about a long neck being used to reach for things would be relevant, but
a story about a long tail being used to swat flies wouldn’t. On the other hand, if the first story
were about a long beak being used to scratch at biting insects, the story about the long tail
would be relevant. Therefore, appearance is not sufficient for making judgements of similarity
in Creanimate; similarity also depends on functionality. While several stories may resemble
a given story because of the structural similarity of the features involved, the similarity of
those features must be relevant to the way those features are used in the stories. In the
original algorithm, the storyteller ignored distinctions between structural and functional
similarity in its blind adherence to the range of similarity established by the abstraction.

The idea behind the improved similarity-based reminding algorithm is that instead of
using an abstraction recorded by an indexer to determine similarity, the storyteller tries to
dynamically create abstractions as it examines candidate stories. If it is able to find evidence
for an abstraction that links two stories, then it considers them similar. If it doesn’t then they
are not similar. The actual search algorithm for examining stories is the same as in the
original algorithm. The search starts in the same location and proceeds through the same
cousin search. The difference is in the test for similarity. The original similarity metric
checked whether or not the concept in the story it had found was a specialization of the
abstraction from the example reminding story. In the improved algorithm, the similarity
metric considers whether or not an appropriate context-dependent abstraction can be
constructed that covers both the example story and the candidate similar story. An
abstraction can only be constructed if there is knowledge in the knowledge base that supports
its construction. Looking for knowledge to support the construction of that abstraction is the

heart of the improved similarity reminding algorithm.
The improved algorithm works in the following way:
1. Start with the concept suggested by the example reminding.
2. Conduct a cousin search just as in the original algorithm.
3. Try to identify an abstraction that covers both the relationship in the example
story and the relationship in the retrieved story.
Consider the following hypothetical example. The storyteller has just presented an
example story that shows a squirrel using its teeth to gnaw at a nut. The relevant
relationship from this story is:

[{feafun :feature [feature rodent-teeth] :action [action
gnaw]]

In the original similarity reminding algorithm, rodent teeth in this feafun would have
been labeled with an abstraction that would have likely been feeth. The similarity search
could have led it to any other type of teeth and shown how they were being used. However, in
the improved algorithm, it searches for both a feature similar to rodent teeth and an action
similar to gnaw. Suppose it found a story about a bird using a beak in order to tear food. The
storyteller would only consider these two stories to be similar if it could find evidence in its
knowledge base for an abstraction that encompasses both of these feafuns. The abstraction
would have the form below such that abstract feature is an abstraction of rodent teeth and
beak and that abstract action is an abstraction of both gnaw and bite:

[feafun :feature [feature abstract-feature]
:action [action abstract-action]]

107

To be acceptable as a similar reminding, this abstraction must meet the following
requirements:
1. The features in both the example story and the similar story must be
specializations of abstract feature.
2. The actions in both the example story and the similar story must be
specializations of abstract action.
3. Abstract feature must "support" abstract action.
In order for abstract feature to support abstract action they must be linked by a requires,
suffices, or functionality link. (These links are described in detail in Chapter 7, The Indexing

Vocabulary.) In the case of our hypothetical example, the storyteller would be able to
identify the abstract feafun:

[feafun :feature [feature mouth] :action [action tear]]

Figures 29 and 30 and the following definition of the feature mouth show that the beak
story is an appropriate similarity-based reminding because 1) Mouth is an abstraction of
rodent teeth through attachment and beak through isa; 2) Tear is an abstraction of both gnaw
and itself; and 3) mouth is linked to bite through a functionality link.

SA_){MANDIBLES]
RS [SHARP-TEETH |
hncu)—{ﬁ‘m
LONG-SHARP-TEETH |
RODENT-TEETH |
[SMALLBEAK |

[BEAK (8)ecmva)wx]

[LONGBEAK FEHHBILL]

TONGUE-L IKE-WORM |
LONG-TONGUE]

Figure 29. The hierarchy rooted at the feature mouth

108

|GRASP-IN-JAW
i
{(NIBBLE

|
|
[BITE PECK |
|
|

GNAW

MER]

BITE-OTHER-ANIMALS

Figure 30. The abstraction hierarchy beneath the action tear

(DEFFRAME feature mouth
:subtypes ([feature beak]
[feature jaws])
ractions ([action carrv-prey]
[action chew]}
[action grasp-in-jaw]
l[action bite-other-animals]

laction wocalize])

This reminding would be introduced in the following way:

That reminds me of an interesting story. White-breasted sea
eagles also use their mouths to tear. Only instead of using
their teeth to gnaw, they use their beak to tear.

Besides removing the need to explicitly represent abstractions in indices, the principle
advantage of this improved algorithm is that it allows the relationship in which a feature or
action is participating in the current story to determine whether or not it is similar to a
relationship in a second story. In other words, it allows for context-sensitivity. This means
that no longer can two stories be considered similar because of some structural similarity
between features unless the structural similarity is accompanied by a similarity in the actions
supported. Under the old scheme, a long fail to swat flies could be considered similar enough
to long legs to run if the relevant abstraction contained long appendage. Under the new
scheme, even though they share the abstract feature, long appendage, these two relationships
would not be similar because the actions do not share an abstraction that is supported by long-
appendage. However, long neck to reach for leaves and a long tongue to extract termites would
be considered similar because long neck and long tongue share the parent long-appendage, and
long-appendage supports the action reach through a functionality link. Reach in turn is an
abstraction of both reach for leaves and extract termites.

109

To summarize, the improved similarity reminding algorithm recognizes that for context-
sensitive similarity assessment in Creanimate, similarity of structure is not sufficient.
Instead, it relies on similarity of functionality. In addition, it replaces the inflexible and
costly pre-specified abstractions with a technique for dynamically generating them in the
course of similarity assessment. As of this writing, the improved similarity-based reminding
algorithm has only been implemented for similarity of feafuns, not plans or bplans. Therefore,
it only appears in discussions of the explanation questions Why feature? and How action?
However, the algorithm applies equally well to the other types of relations.

5.4 Expectation-Violation Remindings

Expectation-violation remindings present stories that are surprising in some way or
another. They use this surprise as a source of curiosity, which in turn motivates learning. In
order to present surprising stories, the storyteller must have knowledge about the expectations
that students have and must know both which stories violate those expectations and how
they violate them. This information is represented using rules which encode standard
expectations. These rules are associated with the animals, features, actions, and behaviors
that they describe, as well as the stories that violate those rules. The three type of rules,
only-rules, no-rules, and all-rules each lead to different forms of expectation-violation
remindings.

5.4.1 Only-Rule and No-Rule Remindings

The following examples of only-rule and no-rule remindings were introduced in the

: S TP

previous chapter:
How would you like to change your butterfly?
Student: A butterfly with a beak.
Actually there are animals other than birds that have beaks.
For example, octopi have curved beaks.
Is that something you would like to see?
Student: Yes.
[VIDEO: "OCTOPUS SPAR"] (Transcript no. m3-5-1-11.33)

No-rule; No fish move through the air,

So, your pike could have wings to fly.

You can commit to that now, or we can look at some other
reasons animals have wings and you can decide later.
Student: To fly.

Ok, your pike will have wings so that it can fly.
[Picture of a pike with wings]

Actually there are fish that move through the air. For
example, salmon jump.

Do you want to see that?

Student: Yes.

[VIDEO: “Salmon spawn as bear watches”] (Transcript no. m3-5-7-15.06)

110

Both of these reminding types respond to a change that the student makes to his animal
with a story that contains an expectation-violation. In only-rule and no-rule remindings, the
animal in the story violates the same standard expectations that the student’s animal does.

Indexing Information for Only-Rule and No-Rule Remindings

In order to support the reminding strategy for only-rule and no-rule remindings, it is
necessary for an index to represent the standard expectation that is violated by a story. Every
index has a slot for rules which is labeled expect-fails. The partial index for the salmon story
from the example above shows the no-rule that the story violates:

[index salmon-jump-salmon
ranimals ([animal salmonl])
ractions ([action swim-under-water)

[action jump])

:expect-fails

Sva i -in-aj

:index {index salmon-jump-salmonll])

-1

The portion of the index displayed above tells the storyteller that this story depicts a
salmon both swimming under water and jumping. Italso contains the no-rule which can be read
as, “No fish move through the air.” The indexer who entered this story into the Creanimate
story library felt that this story was surprising because ordinarily people do not expect fish to
travel through the air. This no-rule gets activated any time a student changes some fish to
make it move through the air in some way. No-rules and only-rules contain a slot labeled
index that is used by the reminding strategy to identify the particular story that violates the
expectation. Only-rules are represented the same way that no-rules are, as this only-rule
taken from the index for the octopus story reveals:

[only-rule :animals ([animal bird])
:value [feature beak]

:index [index octopus-spar]

This rule provides Creanimate with the standard expectation, “Only birds have beaks.”
The associated index slot indicates that the cctopus-spar story violates this expectation.

This rule gets activated by the only-rule reminding algorithm whenever the student asks for
an animal other than a bird with a beak.

Algorithm for Only-Rule and No-Rule Remindings

The algorithms for generating remindings from only-rules and no-rules are virtually
identical. They both proceed in the following way. When the student requests a change to an
animal, either as a way of starting a dialogue or as a way of resolving an explanation
question, any standard expectations that apply to that animal get activated. For an
expectation to apply, the only-rule or no-rule must be violated by the student’s animal. For

111

example, in the transcript below, the student’s bear with wings violates the no-rule, “No
mammals have wings.”

...What would you make?

Student: A bear with wings.

Actually., there are mammals that have winags. For example.
t A4 W] S .

Would you like to see that?

Student: Yes.

[VIDEO: “BATS COOL OFF~] (Transcript no. m3-4-30-15.12)

The no-rule in this example is:

([no-rule :animals ([animal mammal])
:value [feature wings]
:index [index bats-cool-off-bat]])

The only-rule and no-rule reminding strategy is a simple two-step process. First, it
searches for a rule that applies to the modification that the student has just made. In this
case, that would be the feature wings. Second, it determines whether or not the rule applies to
the student’s animal. In the case of no-rules, the test to determine whether the rule applies
checks to see if the animal is a member of the category specified in the rule. In this case, that
applies. An only-rule is relevant if the student’s animal is not a member of the class specified
within the rule. Thus, in the earlier example involving the only-rule, “Only birds have
beaks.” The test for applicability required that the student’s butterfly not be a bird. The
search involved in activating relevant rules searches up abstraction hierarchies. To locate
the relevant rule for the bear example, the reminding algorithm started with wings and
searched up the abstraction hierarchy for any abstractions of wings that had relevant rules.
Any rules found in this search receive tentative activation. In the current Creanimate
knowledge base, two rules get activated, the one above and the following no-rule that says,
“No fish have wings.”

[no-rule :animals ([animal fish])
:value ([feature wings]

:index [index manta-ray-feeds]]

After completing this first stage, the reminding algorithm looks for the most relevant
rule that applies to the student’s animal. A rule that applies to a closer ancestor of the
student’s modification is considered more relevant. In this case, both rules apply to the
feature wings so neither is more relevant than the other. However, if one had applied to

wings and another had applied to support-in-mediums, the rule that applied to wings would

5 The feature support-in-medium is an abstract feature that captures the similarity of
function between wings, flippers, and fins. The natural language equivalent to support-in-
medium is “appendage to propel through air or water.”

112

be more relevant. So, in the second step, the two rules that were found are examined to see if
they apply to the student’s animal. Since a bear is a mammal but not a fish, the rule “No
mammals have wings” applies, and “No fish have wings” does not. Again, if two rules had
applied, the rule with the more specific animal would have been selected because it is more
relevant. Like the example reminding strategies, the expectation-violation reminding
strategies prefer the story with the highest ranking when there is more than one equally
relevant story. Thus, if there had been two stories that both were associated with the rule,
“No mammals have wings” the one with the higher rating would have been selected. Once a
rule is activated, the appropriate bridge is generated and the student is offered the
opportunity to see the story.

To summarize, no-rule and only-rule remindings are triggered by a student’s change to his
animal. When the student’s animal violates the standard expectation expressed by a rule, an
expectation-violation reminding is triggered that shows an existing animal that also violates
the rule. These remindings surprise students with phenomena that are unfamiliar. This, in
turn, increases their interest in and curiosity about the animals they see.

5.4.2 All-Rule Remindings

The following is an example of an all-rule reminding. All-rule remindings differ from
no-rule and only-rule remindings in that they are triggered by stories, not by changes to the
student’s animal. They are also triggered by things that conform to expectations, unlike the
other expectation-violation remindings that are triggered by things that violate
expectations. All-rule remindings are triggered by stories that depict something that conforms
to standard expectations. In the event that the storyteller knows about a story that violates

that expectation, it presents an all-rule reminding.

Ok, what should we give your frog to help it fly?

STUDENT: give it wings

I like that idea. White breasted sea eagles use their large

wings to help them fly.

I think this video is great.

Do you want to see that ?

STUDENT: vYyes

[VIDEO: Sea Eagle Catches Fish]

Birxds don't just use wings to flv. For example. black herons
hei .] hade .

Would you like to see that?

STUDENT: yes

[VIDEO: *“heron shades water”]

In the example above, the sea eagle story conformed to the all-rule, “All birds use their
wings to fly.” Since the heron story was indexed as a violation of that expectation, the
storyteller presented it to the student as an expectation-violation reminding.

113

Indexing Information for All-Rule Remindings

Just as with the other expectation-violation remindings, All-rule remindings are
triggered by default-expectations that are associated with indices. All-rules are slightly
more complicated than only-rules and no-rules, however, because they encode not only the
expectation but how the expectation is violated by the story. The all-rule that triggered the
heron reminding in the previous example looks like this:

[all-rule :animals ({animal bird])
:value [feafun :feature [feature wings]
raction [action £lyl]]
:expect-viol [feafun :feature [feature wings]
raction [action make-shadel]
:index [index black-heron-shades-water]]

The expectation is recorded in the value slot of the all-rule. The expectation in this all-
rule translates into English as, “All birds use their wings to fly.” In the expect-viol slot is
found the particular element of this story that violates this expectation. In this case, it is
wings in order to make shade. (It is unnecessary to indicate which animal violates the
expectation because that information can be found in the index from the rule.) Thus, an all-
rule contains a standard expectation, a pointer to an index that violates that expectation, and
a description of how the story that corresponds to that index violates the expectation.

The principle behmd the remmdmg algonthm for all-rules is the same as that for no-
rules and only-rules. It follows a two-step process in which it checks rules both for their
applicability to the current feafun, plan, or bplan and their applicability to the current
animal. In this case, the current animal and relationship are determined by the most recent
example, not the student’s current animal. The all-rule algorithm starts with an example
reminding. After presenting an example story, the reminding algorithm looks for all-rules
that apply to the animal in the previous story. This search starts with the animal from the
story and proceeds up its abstraction links examining any all-rules found. In the previous
example, it started from the animal white-breasted sea eagle and traversed isa links
(displayed in figure 31) until it reached bird where it found the all-rule shown above.

FLYING-BIRD

(B4 -RAPTOR H(BAHY-{EAGLE A)| RHIIE-ER
[ANIMAL]-(SA")-{PREDATOR |

Figure 31. The hierarchy of animals that are abstractions of the animal white breasted sea
eagle

With each all-rule that the search encounters, the system checks to see if the value in
the all-rule applies to the example story that had just been shown. In the transcript above,
the white-breasted sea eagle story had been shown as an example of the feafun, wings in order

114

to fly. This matches the expectation in the all-rule, indicating that this is an appropriate
expectation-violation reminding for the current situation. Once again, if several equally
relevant stories had been found, the one with the highest rating would have been selected. If
the expectation in this rule had not matched the preceding example story, the reminding
algorithm would have continued searching up the abstraction hierarchy until it either found
an applicable all-rule or it reached the top of the hierarchy. An appropriate bridge to this
reminding is constructed by using the expect-viol value in the rule and the animal from the
index associated with the rule. In this case, the expect-viol is wings in order to make shade
and the animal is blue heron. So, the bridge that gets generated is:

Birds don't just use wings to fly. For example, black herons
use their wings to make shade.

In summary, all-rule remindings are triggered by a stories that match an expectation in
an all-rule. They take advantage of predictable stories as an opportunity to show something
surprising that will help expand a student’s case library of stories and help him to appreciate
the diversity of animal behavior.

5.5 Precedence of Reminding Strategies

One of the issues for a system that employs several reminding strategies, any number of
which may be active at the same time, is the relative priority of the different strategies.
Two such difficulties arise in Creanimate. The first is that one of the incidental reminding
strategies may identify a relevant story that would be better used as an example reminding in
the same dialogue. The second is that more than one incidental reminding strategy may have
a relevant reminding available at the same time, but only one can be presented.

Pending Story Mechanism

The first problem in Creanimate arises when an incidental reminding strategy identifies
a story that would also be an appropriate example reminding in the same dialogue. The
problem with incidental remindings “stealing” stories that would be more useful as examples
has been resolved by instituting a “Pending Story” mechanism. Before initiating a discussion
of a new explanation question, the pending story mechanism generates a list of remindings that
may be useful as example remindings for that discussion. These stories are marked “pending.”
Once a story has been marked “pending”, incidental reminding strategies are blocked from
presenting that story. When a story that is pending gets told, it is no longer marked pending,
but is marked “told”. A story has its “pending” mark removed when the opportunity to present
it as an example has passed. This opportunity passes either with the resolution of the current
explanation question or when the relationship the story exemplifies has been discussed
without this particular story being shown. Once a story’s “pending” mark has been removed, it
becomes available for use by incidental reminding strategies.

Once a story has been marked “told” it is treated as if its rating has been lowered
beneath the rating of any untold story. Thus, students may see the same story more than once,
but the storyteller will not offer a previously told story to a student unless there are no
remaining untold stories. The final marking a story can receive is “proposed.” A story gets
marked “proposed” when it gets offered to the student and the student chose not to see it. A
“proposed” story is treated like a “told” story, although previously proposed stories are
offered before previously told stories. In other words, when there are several equally relevant
stories available, they will be sorted so that untold stories appear first, previously proposed

115

stories second, and told stories third. Within each of those categories, stories will be ordered
according to their rating.

In this way, the pending story mechanism blocks incidental remindings from presenting
stories that are also good examples for the current discussion. It does so by marking stories
that may be presented as example remindings for the current dialogue as “pending.” Once a
story is pending, it cannot be presented by an incidental reminding strategy. In addition, the
same mechanism maintains a record of stories that have been told or proposed to students in
order to avoid repeating them.

Priority of Incidental Remindings

The second problem concerning precedence of remindings is that two different incidental
reminding strategies may be able to generate an appropriate reminding at the same moment.
The problem is deciding which reminding should take precedence when this occurs. This issue
arises because incidental remindings are brief digressions from the main discussion of an
explanation question. Showing more than one incidental reminding at a time can interrupt the
flow of the dialogue too much and may cause the student to become lost. Therefore, only one
incidental reminding is permitted for each answer to an explanation question. In the current
version of Creanimate, the different incidental reminding strategies have priorities
designated in advance such that expectation-violation remindings take precedence over
similarity-based remindings.

5.6 Summary

The Creanimate storyteller uses three different reminding strategies, example
remindings, similarity-based remindings, and expectation-violation remindings. Each
reminding strategy relies on a specific form of information being available in the knowledge
base and a specialized search algorithm that enables it to retrieve relevant stories
efficiently.

The example reminding algorithms rely on the presence of the relationships that
appear in indices. These relationships tell the storyteller the features, actions, and
behaviors that are employed in combination in a particular story. The example reminding
algorithms use target concepts created from the current explanation question and the student’s
response in order to identify appropriate examples. The target concept specifies a
relationship to be exemplified, and the search algorithm searches through abstraction
hierarchies looking for a story that illustrates a specialization of the target concept. The
underlying principle is that a specialization of a relationship is an example of that
relationship. The search is a breadth-first search down abstraction links that starts from one
of the objects that appear in the target concept.

The original similarity-based reminding algorithm relies on the presence of abstractions
in indices. Abstractions are generalizations of the specific relationships that are depicted in
a story. The abstraction delineates a range of stories that can be considered similar.
Essentially, any story that contains a specialization of the abstraction is similar for the
purposes of the similarity-based reminding algorithm. However, weak remindings are also
permitted, and a weak reminding only needs to match one of the two concepts in the
abstraction. The improved algorithm eliminates abstractions and weak remindings and
replaces them with a test for dynamically evaluating similarity using general information
stored in the knowledge-base not indices. This similarity metric takes into account similarity
of function, not just structural similarity. The search for similar stories uses a spreading-

116

activation starting from one of the concepts in the example story and searching “cousins” of
that concept in the abstraction hierarchy.

The expectation-violation reminding algorithms use standard expectations which are
represented by rules in indices. These all-rules, no-rules, and only-rules encode expectations
that are violated by the contents of a story. When a rule becomes relevant to the current
dialogue, a reminding is triggered. The search for relevant rules proceeds breadth-first up
abstraction hierarchies starting from the current topic of a dialogue.

Chapter 6

The Socratic Dialogue Manager

In this chapter, we move from the storyteller to the task environment. Creanimate’s
task environment is managed by the dialogue manager, which conducts question-and-answer
dialogues with a student. Creanimate’s dialogues respond to a student’s proposed animal with
explanation questions that expose important issues for the adaptability of that animal.
While the dialogue manager does not employ all of the techniques that have been associated
with Socratic-style teaching (Collins and Stevens 1982; Clancy 1987), it adheres to the
Socratic tradition of encouraging a student to make hypotheses and then leading him through
an exploration of those hypotheses through thought-provoking questions. The dialogue
manager’s responses to a student’s proposed animal capitalize on the student’s investment in
his animal to introduce him to the issues involved in animal adaptation. The student’s
interest in his own animal serves as a natural motivator to engage him in the process of
answering the explanation questions that apply to his animal. These explanation questions
also provide a context for presenting example stories that supply appropriate answers to these
auiacHAang
Liucouuua.

In this chapter, I describe the structure and implementation of the dialogue manager in
Creanimate. Each of Creanimate’s dialogues follows a pattern called the dialogue cycle,
which I describe in Section 6.1. This dialogue cycle forms the basis for the six dialogue plans
in Creanimate’s current repertoire. These dialogue plans are described in Section 6.2. Finally,
in Section 6.3, I describe the underlying implementation of the dialogue plans.

6.1 The Dialogue Cycle

All Creanimate dialogues share an underlying structure. Each dialogue starts with an
explanation question and proceeds through the consideration of answers to that question. The
pattern that dialogues follow is called the dialogue cycle. However, within the framework
of the dialogue cycle, individual dialogues vary a great deal. Dialogues vary for two
different reasons. First, the course of a dialogue depends ultimately on the actions and
responses of the student. Second, while every dialogue plan includes the basic dialogue cycle,
individual dialogue plans contain certain additions to this cycle. These variations are
discussed briefly later in this section and in detail in the discussions of the six dialogue plans
in the next section.

6.1.1 The Origin of the Dialogue Cycle

The dialogues in Creanimate have their origins in an experiment conducted in 1987. In
this experiment seventeen 11 and 12 year old children were told that they were testing an
unfinished computer program. However, instead of using a program the children were

117

118

conversing through a terminal with William Purves, a professor of biology at Harvey Mudd
College, who was at another terminal in an adjoining room. The goal of this experiment was to
gather valuable information about how children would respond to Creanimate and what they
might say. In addition, the conversations conducted by Professor Purves provided an important
human model for Creanimate to emulate. The following is a brief example of a dialogue
between Professor Purves and an eleven year old girl:

Purves: Okay! I really enjoy talking about kangarocos! Is
there something special you would like your kangaroo to do,
or to have? Or do you want to ask a question?

Student: would want it to have a colorful body
Purves: That sounds attractive! How might a colorful body
be an advantage to the kangaroo?

Student: it would be able to blend in to things to
hide from danger.

Purves: Excellent idea! You are talking about colors to
hide the animal.

Many animals have that kind of coloration!

In a way the kangaroco has that kind of coloration--it is
fairly drab, and its surroundings are also fairly drab. Some
other animals have very bright colors.

I am thinking of a couple of examples: the *“robin
breast” is a small bird. At certain times of year, the
feathers on the chests of the males turn red....(AW,3/19/87)

red

An analysis of the transcripts from this experiment revealed that Professor Purves’s
conversations followed a simple, but effective pattern. This conversational pattern consisted
of 1) asking for a modification, 2) asking a question about that modification, and 3) telling a
story that related to the student’s answer to his question. Using this pattern as a model, we
developed the dialogue cycle in Creanimate, which enables the program to produce dialogues
that resemble Professor Purves’s very closely. (Additional transcripts from these experiments
can be found in Appendix E).

6.1.2 The Steps in the Dialogue Cycle

The steps in Creanimate’s dialogue cycle are shown below with examples drawn from a
student's dialogue.

1. Pose Explanation Question

Is there a reason you want your pike to have wings?
2. Get answer from student or knowledge base.

Student: So it can fly
3. Present example reminding (if available)

That's a good idea. White breasted sea eagles have wings to
help them fly.
This is a great video.

119

Is that something you would like to see?
4. Allow student to commit to an answer,

So, your pike could have wings to help it to fly. Is that
why you would like your pike to have wings?
Student: Show me more reasons

The four steps above are repeated as the student proposes or the dialogue manager
suggests different answers. Once the student commits to an answer (step 4), the current
dialogue plan terminates, and a new dialogue is initiated. In a real session, the next ordering
of the steps listed above can be complicated both by the variations between dialogue plans
and by the unpredictable nature of student responses. For example, a student may decide to
click on a user control button in order to skip forward, back up, or further modify his animal. In
addition, students can give incorrect (unverifiable) answers. As we saw in the previous two
chapters, when the student gives an unverifiable answer the storyteller intervenes with an
incorrect answer reminding before returning to the main dialogue. This occurs in the transcript
below. This excerpt starts with the last step of one dialogue cycle and continues into a second
cycle. At the beginning of this transcript, the student commits to swatting as his answer to,
“How should we change your dog so it can fight?” The selection of swatting triggers the
dialogue initiation process which leads to a discussion of what feature the dog can use to swat.

Step 4. _Commit to an answer:
So your dog could swat in order to help it to fight.

How would you like your dog to fight?
Student: By swatting

Ok, your dog will swat so that it can fight...
Step 1. Pose explanation question:

How do you want to change your dog so it can swat?
Step 2. Get answer from student:

Student: Give it something new
Ok, what should we give your dog to help it swat?

Student: Give it wings
Step 3. Example Reminding (incorrect answer):

I don't know of any animals that have wings so they can swat.
But, I do know some other things that wings are used for.

For example, white breasted sea eagles use their wings to
help

them keep themselves in the air.

Is that something you would like to see?

Student: Yes

[VIDEO: "Sea Eagle Catches Fish"]

Would you like to see more things that have wings, or would
you

like to see some ways animals swat?

Student: See ways animals swat

(Step 4 is skipped because of incorrect answer)

120

Step 1. Pose explanation question:
Can you think of another way to change your dog so it can
swat?

(Transcript no. m2-4-24-14.28)

The flowchart in figure 32 shows the basic dialogue cycle, as well as the location of
possible storyteller interventions for remindings. As the flowchart shows, the nature of a
student’s response to an explanation question determines the particular path through the
dialogue cycle.

121

Student
Modifies
Animal

Only-rule or
No-rule
Reminding

Pose
1 Explanation [*
Question

v Student asks
1able Answer Evaluate for suggestions
Student's
Answer
Student gives
Correct Answer '

\ /l
Theorreci t Sug.:gh
Haeorrect Answer

Reminding

All-rule or
Similarity
Reminding

eturn to
Explanation
Question?

Commit to
Answer?

Figure 32. A flowchart of the basic Dialogue Cycle in Creanimate. Opportunities for the
storyteller to intervene with remindings appearn in ovals.

122

6.1.3 Variations from the Basic Dialogue Cycle

All of the dialogue plans in Creanimate adhere to the basic dialogue cycle, but different
dialogue plans elaborate on the cycle in different ways. Currently there are two ways in
which dialogue plans vary from the dialogue cycle. First, many dialogue plans take
advantages of opportunities to examine what the student's animal had or did before the
student made a change to it. For example, if a student changes the way an animal gets food, he
may get to see how the animal currently gets food in the wild. The step in a dialogue in which

the dialogue manager stops to discuss the way an animal actually exists in the wild, is called
“considering an animal’s current attributes.” For example,

Before we change your frog's legs we should look at what its
old legs were good for. Do you know what frogs use their
strong hind legs for?

(I have a cool video about that. This video alsc has snakes
in it.) (Transcript no. m1-5-8-13.59)

Second, several dialogue plans contain extensions that enable the dialogue manager to
continue a discussion even if it runs out of answers for a particular explanation question. In
these dialogues, if the student has seen all of the answers for a question that exist in the
Creanimate knowledge base, the dialogue manager will extend the dialogue by considering
answers to similar questions. For instance, if the dialogue manager runs out of reasons for an
animal to run fast, it can extend the discussion by suggesting some reasons that animals fly or

swim fast. In the following transcript, the student has exhausted the uses that Creanimate
knows about for beaks.

Well, that's the only video I have about why animals have
beaks, but I know about some things that are like beaks.
Maybe one of them will give you a reason you'll like for your
frog to have a beak.

Mandibles are like beaks, because they are both mouths.
Locusts have mandibles. Locusts have mandibles to help them
to saw.

I have a cool video about that. This is a close up video.

Do you want to see that ?

Both considering an animal's current attributes and extending dialogues to consider
similar attributes are discussed in more detail in the discussion of the dialogue plans that
include these variations from the dialogue cycle.

6.1.4 Scriptedness Versus Disorientation in the Dialogue Cycle
Following a simple plan like the dialogue cycle can be both a strength and a weakness
for an educational system. The consistent structure of the dialogue cycle is a strength because it
helps the student to stay oriented throughout an extended interaction. Because the discussion
is open-ended and is often interrupted for stories that run from 20 seconds to a minute, there is a
constant risk that a student will lose track of where he is in a dialogue or that he will forget
what the current topic is. The simple structure of the dialogue is designed to minimize the

123

likelihood of the student becoming lost. The consistency of the dialogue cycle reduces the
chance of the student becoming lost, and it provides him with frequent reminders of where he
is in his discussion. In addition, two of the user control buttons, "What's the point?" and "Big
Picture" give the student immediate access to orienting information.

However, the same structure that helps the student to keep track of the discussion also
raises the risk of the dialogue seeming excessively scripted. Four different features of the
Creanimate dialogue manager enable it to avoid a scripted feel while still maintaining the
consistency of the dialogue cycle. First, every dialogue starts with an open-ended question.
The fact that the student is free to answer in an unconstrained fashion and the program
responds in different ways to different answer gives the dialogue a sense of openness not
scriptedness. Since the student provides the initiative for the dialogue not the computer, the
dialogue has an unconstrained feel. Second, dialogue plans each elaborate upon the dialogue
cycle in significant ways. While they all have at their heart the same dialogue cycle, they
each contain variations. Third, the output generated by the system continually varies. At the
same point in the dialogue cycle on different passes through the same dialogue plan, the
language used by the program will differ. For example, in the Why-action? dialogue, the

same step (Step 4, the commitment point) may appear the following way on two successive
passes:

So, your frog might fly to pursue its prey.
You can commit to that now, or we can look at some other
reasons animals fly and you can decide later.

So, an animal could fly to pursue its prey. Is that what you
want for your frog?

Varying the program’s output this way makes the dialogue seem more natural. It
prevents the student from feeling that the dialogue is overly scripted while still giving him
enough information to keep track of where he is. For example, in the text above, the student is
able to recognize in both cases that he is at a commitment point, however, it avoids the mind-
numbing regularity that one might fear from a computer following a simple cycle.

Fourth, depending upon how the student responds to the explanation question on each
pass through the cycle and what stories are available for incidental remindings, a single
dialogue will differ greatly from pass to pass. Specifically, the same dialogue may get
interrupted for different kinds of expectation-violation or similarity remindings. Thus, even
though a student may make several passes through the same dialogue cycle in the course of
considering the question, “Why should a dog have a big nose?” each time he might see
different sorts of example remindings introduced in different ways and accompanied by
different sorts of incidental remindings. For example, the first time through the dialogue
cycle, the student might give a correct answer and see a correct answer reminding followed by
an expectation-violation reminding and two identical remindings; the second time he might
give an unverifiable answer and see an incorrect answer reminding; the third time he might
ask for suggestions and see a suggestion reminding introduced by a question and followed by a
similarity-based reminding.

So while all the dialogue plans in Creanimate have at their heart the same dialogue
cycle, the variety in student responses, the variety among dialogues, the variety in the
language generated by the dialogue manager, and the variety in the types of remindings
prevent these dialogues from feeling overly scripted. In general, the open-ended questions and
the different reminding strategies provide a sense of freedom and variety whereas the

124

consistency of the underlying dialogue provides structure. The dialogue cycle provides a
counter-balance to the potentially disorienting feel of a discussion punctuated by stories. This
structure helps the student to maintain a sense of orientation through a free, open-ended
interaction.

6.2 The Creanimate Dialogue Plans
There are six dialogue plans in the current version of Creanimate. They are:
* Why-feature-dialogue
* How-action-dialogue
* Check-action-dialogue
* Why-action-dialogue
* How-behavior-dialogue
* Why-behavior-dialogue
Each dialogue plan conducts a discussion of a particular explanation question. There is
one plan for each category of explanation question except for How action? which has two
plans, how-action-dialogue and check-action-dialogue. In this chapter, I describe each
dialogue plan in detail including the conditions under which the dialogue plan is initiated,
the answers that the dialogue manager will accept for its explanation question, and the ways
in which the dialogue plan elaborates on the basic dialogue cycle.

6.2.1 Why Feature Dialogue

The why-feature-dialogue is triggered when a student asks to add a physical feature to
his or her animal. The goal of this dialogue is to find an action that is supported by the
chosen feature. In other words, it tries to find the action to fill in a feafun that includes the
student’s requested feature. If the student responds to the question with an action, the
dialogue manager evaluates the answer to see if it can find an animal that uses the current
feature to help it perform the action. If it does, the storyteller will attempt to use the
resulting feafun as the basis for a correct answer reminding. If the dialogue manager cannot
find an animal with the given feafun, then the storyteller will attempt an incorrect answer

reminding. The following transcript shows one pass through the why-feature-dialogue by a
student:

Proposing a new animal
Suppose you could create a new animal by taking an existing
animal and changing it some way. What would you make?
Student: A mouse with wings.
Unfortunately, I den't have any pictures of a mouse, so you
will not be able to see the animal you make. We can still
talk about it though.
Student: Go on.

Expectation violation reminding:
Actually there are mammals that have wings. For example, fox
bats have leathery wings.
Do you want to see that ?
Student: Yes

[VIDEO: "BATS COOL OFF"]

125
Explanation question:

We should come up with a reason for your mouse to have wings.
Why would you like your mouse to have wings?
Student: So it can so it can [sicl] fly

Correct answer reminding:

That's a good idea. White breasted sea eagles use their
feathered wings to help them fly.
Would you like to see that?
Student: Yes
[VIDEO: "Sea Eagle Catches Fish"]
Identical reminding:
White breasted sea eagles are not the only animals that use
their wings in order to fly. For example, black skimmers have
wings to help them to fly.
I have a great video about that.
Would you like to see a video about that?
Student: What other videos can I see?
I can show you videcs about all of these animals that have
wings. Which would you like to see first?
black skimmer
Swainson’s hawk
robin
falcon
goose
Student: falcon
Falcons have wings to help them to fly.

I have a pretty good video about that. This has high speed
chases in it.

Is that something you would like to see?
Student: Yes
[VIDEO: "FALCON AND QUAIL"]

Commitment point:

So, your mouse could have wings to fly.

You can commit to that now, or we can look at some other
reasons animals have wings and you can decide later.
Student: To fly

Ok, your mouse will have wings so that it can fly.
(Transcript no. m3-5-15.~34)

1 Student re-typed “so it can” unnecessarily.

126

In this example, the student answered the question, “Why have wings?” with the action
fly. Since the goal of the dialogue is to find an action to go with the feature wings, this is an
appropriate answer. But what would happen if the student answered with a behavior
instead? While Creanimate’s knowledge base is divided into features, actions, and
behaviors, a student’s understanding may not necessarily follow the same distinctions. When
a student gives a behavior as an answer to the question Why feature? the evaluation of the
student’s answer is more complicated. To verify that a behavior is a correct answer, the
dialogue manager must find an action that is supported by the feature and that in turn supports
the behavior given by the student. For example, suppose a student asked for a fish with
wings, and then gave the reason “so it can chase birds,” which the parser interprets as the
behavior pursue prey. To accept that as a correct answer, the dialogue manager must find an
intermediate action that is connected with wings and pursue prey. This action would appear
somewhere in both a feafun with wings and a plan with pursue prey. The following transcript
depicts this scenario:

If your pike is going to have wings, that should help it to
do something. Why would you like your pike to have wings?
Student: So it can catch birds

That might work. Black skimmers use their wings to fly.
Flying helps them to pursue their prey.

This is a great video.

Would you like to see that?

The why-feature-dialogue diverges from the standard dialogue cycle in two ways.
First, once the student commits to a reason for having the feature, the dialogue manager stops
to consider any features that the animal currently has that will be replaced by the new
feature. Second, if the student does not choose any of the actions that Creanimate knows can be
supported by the feature, it will extend the dialogue by considering reasons for having
features that are similar to the student’s selected feature.

Considering the Animal’s Current Feature

The portion of the why-feature-dialogue that considers an animal’s current attributes
checks to see what the new feature replaces. For example, in the following transcript, a
student asked for a bear with a beak. After settling on a way for the bear to use its beak, the
why-feature-dialogue stopped to consider how bears use their current beaks.

Ok, your bear will have a beak so that it can dig.
Student: Go on.
Before we change vour bear's mouth we should look at what its
wa o)) Qr. ve ut to em to
bite,
hink thi 4 .
Is that something you would like to see?
Student: Yes.
[VIDEO: "BEAR EATS"] (Transcript no. Pal-m2-6-25-10.44)

127

In order to show this, the dialogue manager must be able to identify features that are
essentially replacements for each other. This is done by associating the property natural kind
with certain features. When a feature has the property natural kind it means that an animal
can possess only one specialization of that feature. Thus, if the student adds a new feature to
his animal and the dialogue manager ascertains that the animal already has another feature
of the same natural kind, then the dialogue manager assumes that the new feature replaces
the old feature. It then asks the student to consider what the old version of the feature was
used for. In the transcript above, the feature mouth has the property natural kind and the
feature beak is represented as a type of mouth. Thus, when the student added a beak to his
bear, the storyteller assumes that the beak must replace the bear’s current mouth.

Extending the Dialogue by Considering Similar Features

The why-feature-dialogue also diverges from the standard dialogue cycle whenever the
dialogue manager exhausts all the reasons it knows for having a particular feature. If the
dialogue manager reaches this point without the student committing to an answer then it
launches a variant of the why-feature-dialogue known as the similar-why-feature-dialogue.
The similar-why-feature-dialogue attempts to answer the current explanation question by
proposing reasons that animals use similar features. The algorithm for identifying similar
features resembles the one used by the improved similarity-based reminding algorithm. It
looks for other features that are linked to the original feature by parents that share not just a
structural similarity but a functional similarity. For example, in the following transcript,

Creanimate exhausts the reasons it knows for having a beak without the user selecting one of
them:

Well, that's the only video I have about why animals have
beaks, but I know about some things that are like beaks.
Maybe one of them will give you a reason you'll like for your
frog to have a beak.

Mandibles are like beaks, because they are both mouths.
Locusts have mandibles. Locusts have mandibles to help them
to saw.

I have a cool video about that. This is a close up video. Do
you want to see that ?

In this way, the dialogue manager is able to extend the why-feature-dialogue by
proposing reasons for having similar features.

6.2.2 How Action Dialogue

The how-action-dialogue is the inverse of the why-feature-dialogue. Like the why-
feature-dialogue, it tries to complete a feafun, but instead of looking for an action to go with a
student’s chosen feature, the how-action-dialogue looks for a feature to support the student’s
chosen action. The how-action-dialogue is initiated in one of two circumstances. The first
occurs when a student directly requests an action for his animal as the initial modification.
The second occurs when a student resolves a how-behavior-dialogue by selecting an action to
support a behavior. In both cases, the dialogue manager launches the how-action-dialogue
because it recognizes that the student’s animal has an action without an accompanying
feature.

128

Thus, the objective of the how-action-dialogue is to identify a feature that supports the
action in some way. The how-action-dialogue is not concerned with whether or not the feature
is sufficient on its own to enable the animal to perform the action. That concern is the
responsibility of the check-action-dialogue which will be discussed next. The test for
whether or not a feature is considered an acceptable answer to the explanation question is
simply whether or not the feature appears with the action in a feafun of some animal in the
Creanimate knowledge base. As the transcript below shows, the answer options associated
with the how-animal-does-action question data structure prevent the student from giving a
response other than a feature. However, the student is free to have the animal perform the
action by using an existing feature of his animal, changing an existing feature, or giving it an
entirely new feature.

How do you want to change your butterfly so it can hide?
Change its
Give it something new.
Use 1its current
Give me some suggestions.
Student: Give it something new.
Ok, what should we give your butterfly to help it hide?

Give it

Make it

Give me some suggestions
Student: Make it very small.

It is always possible for a student to give an unverifiable answer like the following,
however:

Can you think of another way to change your dog so it can
fly?

Student: Use its current front legs

I don’'t know exactly what type of forelegs dogs have...

I don’'t know of any animals that have forelegs so they can
fly. But, I do know some other things that forelegs are used
for.

For example, bears use their forelegs to help them wrestle.
Do you want to see that? (Transcript no. m4-5-8-15.24)

An unverifiable answer for the how-action-dialogue is one for which the dialogue
manager is unable to find any examples. In the transcript above, it was unable to find an
animal with the feafun forelegs in order to fly. Unverifiable answers trigger incorrect answer
remindings.

The how-action-dialogue also includes a step to consider the animal’s current attributes.
In particular, it looks at the original animal’s features. Once the student has committed to a
feature that answers the explanation question, the dialogue manager examines the animal to
see if it currently has some version of that feature. If it does, the dialogue manager will show
the student how the animal’s current feature is used, just as in the why-feature-dialogue:

129

So your frog could use legs like gulls have to help it dance.
You can commit to that now, or we can look at some other ways
animals dance and you can decide later.

What would you like to give it?

Student: legs

Before we chande vour frog's legs we should look at what its

eld legs werxe good for. Do vou Know what frogs use their

st ind s_for?

(I have a cool video about that. This video also has snakes

in it.)

Student: So they can high jumps

Yes, that is right...[Buggyoutput deleted]...frogs have strong hind

legs to help them to leap.

Would you like to see a video about that?

Student: Yes.

[VIDEO: “FROG AND SNAKE”] (Transcript no. m1-5-8-13.59)

At the conclusion of the how-action-dialogue the student commits to a feature that the
animal will use to perform the new action. This feature can either be a new one or one that the

animal already has. Verifying that this feature is sufficient to accomplish the action is the
responsibility of the check-action-dialogue.

6.2.3 Check Action Dialogue

The check-action-dialogue is initiated whenever a student completes a feafun by
providing either a feature or an action. This occurs at the completion of either a why-feature-
dialogue or a how-action-dialogue. The explanation question for the check-action-dialogue is
the same as that for the how-action-dialogue, “How should we change your animal so that it
can action?” However, the role of the check-action-dialogue is to look at the requirements of
the action to make sure that the animal has the complete set of features necessary for the new
action. If the animal is found lacking in some way, the dialogue manager will ask the student
to make additional modifications.

The dialogue manager looks at three aspects of the action in assessing whether the
animal needs further modification. It looks at an action’s parts, the features it requires, and

the features that suffice for the action.? The parts of an action are other, more primitive
actions. For example, the action fly is composed of take off, generate lift, steer in flight, and
land. 1f an action has parts, the check-action-dialogue looks at each of the parts and checks
to see whether the animal is adequately outfitted to perform them. An action may require
several individual features all of which are necessary for an animal to perform the action. If
an action requires more than one feature, then the check-action-dialogue will look to see if the
animal has all of them present in some form. Otherwise the action will have a list of
sufficient features, any one of which is sufficient for an animal to perform the action. As an

2 These are implemented through the slots of an action frame named parts, requires, and
suffices. They are discussed in Chapter 7, The Indexing Vocabulary.

130

added complication, any of the required or sufficient features may be implemented as a group
of features. If this is true, then the check-action-dialogue must ensure that every feature in
that group is present in order for the animal to perform the action.

To see how the check-action-dialogue works, let’s look at the way it handles flying. As
[mentioned before, the action fly has several parts. It also requires wings. These are shown in
the portion of the object definition for fly that appears below:

(defframe action fly
:isa ([action move-long-distance] [action move-fast]

[action move-in-air] [action move-above-ground])
:subtypes ([action soar])

:parts ([action generate-1lift] [action steer-in-flight]

: . flight-takeoff] [. -1 ight-landingl)
:features ([feature insect-wings]
[feature medium-size-wings]
[feature small-wings])
. . (£ .]
cel)

For this example, we will assume that the student started by asking for a dog with
wings. This triggers a why-feature-dialogue in which the student commits to flying. In
response, the dialogue manager initiates the check-action-dialogue to identify any
additional changes that need to be made to the student’s animal to enable it to fly. Itis
obvious to us that a dog is too large to fly

1 3 muct ho radiicrad Hawovar tho nracoce hy
S0 1ts size must be requcea. nowever, e PrOLCss Uy

which the dialogue manager recognize that fact is complicated. The first step of the check-
action-dialogue plan is to look at the actions requirements. In the case of fly the only value in
the requires slot is wings. The dialogue manager sees that the student has already given the
dog the feafun wings in order to fly so this requirement has been fulfilled. The next step is to
look at the parts of flying. The action fly has several actions in its parts slot which the
dialogue manager must look at one by one. The first one is the action generate lift . (The
program outputs the action generate lift in natural language as “keep itself up in the air.”) A
portion of the definition for generate lift appears below:

’

(defframe action generate-lift
:isa ([action move-in-air])
:part-of ([action fly])
:suffices ({feature robin-flight-package]
[feature hummingbird-flight-package 1
[feature insect-flight-package]

[feature eagle-flight-package])
<)

When the dialogue manager looks at generate lift, it recursively initiates the check-
action-dialogue. In this case, however, the action has no values in itsrequires or parts slot, so
the dialogue manager looks at the suffices slot. In the suffices slot, there are several features
that all contain the string “flight-package” in their names. Each of these flight-packages is
really a feature group that includes a body-size and a type of wing. For example, eagle-
flight-package below consists of a medium-sized body and large wings. This means that one

131

way for an animal to “keep itself up in the air” is to have the combination medium size and
large wings.

(defframe feature eagle-flight-package

:isa ([feature flight-package])
:group ([feature large-wings]

[feature medium-size])
ractions ([action generate-~lift]

faction soar])

:properties ([property vanilla-group])
:suffices-for ([action generate-1lift])

Groups provide a)primitive but effective way for indicating the different ways features
can combine to support an action. The challenge of implementing the conditions for generate
lift in Creanimate is representing the fact that a certain ratio of wing-size to body weight
must be maintained for an animal to stay aloft. The way this problem is solved is to introduce
groups of features, each of which is sufficient for generating lift. In order to generate lift, an

animal must have all the features that comprise one of these groups. The groups that are
sufficient for generate-lift are:

Group Elements
eagle-flight-package: medium size, large wings
robin-flight-package: small size, medium sized wings.
hummingbird-flight-package: very-small-size, small wings
insect-flight-package: very small size, insect wings

The fact that each of these packages appears in the suffices slot for generate lift tells
the dialogue manager that any one of them is sufficient for an animal to stay aloft. However,
an animal must have each of the features that makes up the group. Since, a dog has the
feature medium size the dialogue manager recognizes that it is closer to achieving the eagle
flight package than any of the other. Therefore, it will suggest to the student (if he asks for
suggestions) that he give his dog large wings in place of the ordinary wings that it currently
has. However, if the student proposes on his own accord to make the animal smaller, the
dialogue manager will help the student to give his animal the appropriate flight package for
his new, smaller dog.

Once the sufficient conditions for generate lift are met, the dialogue manager will go on
to consider the conditions necessary for achieving the other parts of the action fly, such as
giving it a tail that will enable it to steer while it is flying. The abbreviated transcript
below shows a student engaged in a check-action-dialog for an animal that can fly.

The first part of flying, steering:
In order to fly, animals must be able to steer while they are
flying. Let's talk about how your dog will steer while it is
flying.
Having wings is not enough for your dog to steer while it is
flying. It needs more.

132

How else do you want to change your dog so it can steer while
it is flying?
- . - (Student adds a feathered tail.) ...
OK, your dog will use its feathered tail to help it steer
while
it is flying.

The second part of flying, keeping itself in the air (generate lift):
Flying also requires an animal to be able to keep itself up
in the air. We should figure out how your dog will keep
itself up in the air.
Having wings is not enough for your dog to keep itself up in
the air. It needs more.
How else do you want to change your dog so it can keep itself
up in the air?
Student: Give it 1light bones
That's a good idea. Dogs could use hollow bones to help them
to keep themselves in the air.However, I don't have any video
that shows this.
. « . (Student gives it hollow bones.)

Hollow bones support generate lift but are not sufficient:

Having hollow bones is not enough for your dog to keep itself

O

up in the air. It needs more.

How else do you want to change your dog so it can keep itself
up in the air?

Student: Give me some suggestions

- - -(Student sees suggestion remindings for several different groups of features.)

A suggestion reminding for medium size and large wings (eagle flight package):

Medium size and large wings can work together to help an
animal to keep itself up in the air.

Canada geese use their medium size and large wings to help
them keep themselves in the air.

This is a good video.

Would you like to see that?

Commitment point for generate lift:
What would you like to add to your dog so it can keep itself
up in the air?
Student: Medium size and large wings
OK, your dog will use its medium size and large wings to help
it keep itself up in the air. (Transcriptno. Pal-m2-6-30-9.56)

To summarize, the order of steps in the check-action-dialogue is:
1. Check if the action are any required features. If so, make sure that the animal
possesses them all.

133

2. Check if the action has parts. If so, make sure the animal possesses all of the
features necessary to support those actions. (Recursively initiate the check-
action-dialogue with each part.)

3. If the action has no requirements or parts, make sure that the animal possesses
at least one of the sufficient features.

For an animal to possess a feature, the animal must have the feature or a specialization
of the feature. If the feature is a group, the animal must have all of the parts of the group.
For an action that is a part of the current action to be supported, it must itself pass all of the
tests for the check-action-dialogue. The check-action-dialogue plan does not have any
extensions for when it runs out of answers to suggest, however, it does stop to consider the
student’s initial animal in the same way that the how-action-dialogue does. Once the student
has committed to a new feature, it looks back at any similar feature that the animal might
have already had, and discusses the animal’s uses for that feature.

6.2.4 Why Action Dialogue

The why-action-dialogue seeks a behavior to complete a plan. It is triggered either
when a student adds an action to his animal as an initial modification, or when he adds one as
a reason for a new feature. An acceptable answer to the Why action? explanation question is
any behavior that the action supports either directly or indirectly. To evaluate the
correctness of a behavior suggested by the student as an answer to this question, the dialogue
manager checks the knowledge base for the existence of a plan that either includes both the
action and the behavior or one that includes the action and another behavior that supports
the behavior provided by the student. So, if the student has suggested hunting as a reason for
or a plan involving hide and some other behavior that supports hunting in some way. Thus,
the dialogue manager would accept hunt because the knowledge base contains animals with
the plan hide in order to avoid prey detection. The behavior avoid prey detection assists get
close to prey which in turn is part of the behavior hunt as shown in figure 33.

[FONT | —FART
GET-CLOSE-TO-PREY }—@\
GETCLOSE-TOFOOD |—(SA
l |&PCB-PREY-BETBETION |
[BEHAYIOR —@S4+ H)—]AYODDETECTION |—@/

Figure 33. The abstractions of the behavior avoid prey detection. The hierarchy displays
parents to the left of children so that avoid prey detection is connected to get close to prey by
an assists link. Get close to prey is in turn connected to hunt by a part-of link.

If the dialogue manager is unable to find a connection between the action and the
behavior suggested by the student, then the storyteller will attempt to present an incorrect
answer reminding. If, instead of proposing an answer, the student asks for suggestions, the
dialogue manager identifies correct answers by identifying plans that the action participates
in and suggesting the behaviors that appear in those plans.

The why-action-dialogue elaborates on the standard dialogue cycle with both a
consideration of the animal’s current activities and an extension that considers reasons for
similar actions. It stops to consider the animal’s current actions or behaviors after each correct
answer considered (regardless of whether the answer was suggested by the student or the

134

dialogue manager). For each behavior discussed as a reason for the student’s action, the
dialogue manager considers how the animal currently achieves the same objective. For
example, in the following transcript, the student asked for a bear that can dance. After seeing
bees dance to tell other bees where to find food, the dialogue manager helps the student to
consider how butterflies get their food.

Pose _the explanation question:
We need a reason for your butterfly to dance. Is there a
reason you want your butterfly to dance?
Student: Give me some suggestions

Suggestion reminding:
We'’ve already seen that bees dance. Do you know why bees
dance?
Student: Show me a video
[VIDEO: Bees dancing]
Now, do you know why bees dance?
Student: Tell me

Similarity-based reminding:
Hey, that bee reminded me of an interesting video. This has
lions in it.
Hyenas also communicate. Only, instead of dancing to tell
other animals where to find food, they bark to warn their
friends about danger.
Is that something you would like to see?

Consideration of current animal’s behavior:

Bees tell other animals where to find food. Your butterfly
could dance to tell other animals where to find food. That
might help it to find food like bees do. Do you know how
butterflies currently find food?

Student: I domn’t know
Butterflies probe to locate nectar. That is how they find

food.

mmi nt point:
So, a butterfly might dance to tell other animals where to
find food. Why would you like your butterfly to dance?
Student: Show me more reasons (Transcript no. m2-4-27-12.36)

In addition to the consideration of an animal’s current behaviors shown above, the why-
action-dialogue also varies from the standard dialogue cycle if it exhausts all of the
behaviors it has for a particular action. Just as with the why-feature-dialogue, if it runs out
of reasons for an action, it will start to suggest reasons for similar actions. It locates these
actions by searching for actions that share an abstraction with the student’s action. For

135

example, if a student exhausted all of the reasons for swimming, the similar-why-action
dialogue would respond in the following way:

Well, that's the only video I have about why animals swim,
but I know about some things that are like swimming. Maybe

one of them will give you a reason you'll like for your
butterfly to swim.

Wading is like swimming, because they are both ways that
animals move in water.

Black herons wade. Black herons wade to lie in wait for prey.
I think this video is funny.
Do you want to see that ?

Just as with the similar-why-feature-dialogue the search for similar actions is
controlled by the property natural kind in the similar-why-action-dialogue. The algorithm
searches up abstraction links from the student’s action and then presents the behaviors
associated with the actions it reaches and their specializations. In the transcript above, the
dialogue manager searched up the isa link from swim to the action move in water. Beneath
move in water it found wade which is associated with the behavior wait for prey. Therefore,
it suggested wait for prey as a reason for swimming. The dialogue manager will continue a
search until it reaches the top of the hierarchy or an action with the property natural kind. It
will not search upward from an action with this property because the actions beyond that
point will be too dissimilar from the actions beneath that point to use as suggestions for new
behaviors.

The why-action-dialogue concludes with a student selecting a behavior that is
supported by the student’s new action. This behavior may be a new one for the animal or it
may be one the animal already pursues. This behavior, in turn, may become the subject of a
how-behavior-dialogue or a why-behavior-dialogue.

6.2.5 How Behavior Dialogue

The how-behavior-dialogue tries to find a behavior or action to support a behavior
selected by the student. The dialogue manager initiates the how-behavior-dialogue when a
student chooses a behavior as his initial modification or commits to a new behavior to resolve
a why-action-dialogue or why-behavior-dialogue. Like the how-action-dialogue, the how-
behavior-dialogue may involve a multi-step process in order to satisfy all the conditions
necessary for the achievement of a behavior. In Creanimate, the process of determining how a
behavior will be achieved parallels the traditional approach to planning in artificial
intelligence (Fikes and Nillson 1971; Sacerdoti 1977). The how-behavior-dialogue works
backward from the desired behavior, assembling the appropriate combination of behaviors
and actions necessary to achieve the behavior.

In order to resolve the How behavior? question the dialogue manager must traverse the
representational tree rooted at the desired behavior. In the process, the student must select
individual behaviors that achieve the desired behavior or that are part of that behavior.
The student continues to select additional behaviors or actions to support each newly selected
behavior until every required aspect of the desired behavior is supported by actions. In other
words, the how-behavior-dialogue fills in bplans and plans until all of the behaviors
involved have been supported by actions. (Once these actions are provided, the dialogue

136

manager will initiate how-action-dialogues if necessary to support them.) As an example, we
consider the dialogue would ensue from a student’s request for a butterfly that can hunt. Figure
34 displays two levels of the the hierarchy rooted at the behavior hunt.

&S5)—{HUNT-COLLECTIVELY |

|DETECT-PREY —}-—@_S_S_)——{SEARCH-PREV

PURSUE-PREY

ECH YC—{LIE-INWAIT

|
|
|
GET-CLOSE-TO-PREY STALK-PREY }
]
|
|

(ASS y—AYOID-PREY-DETECTION

POUNCE-PREY

TACKLE-PREY

CATCH-PREY ACH
GRASP-PREY |
TRAP-PREY |
\ FIGHT-PREY |
| SUBDUE-PREY ACH POISON-PREY |
KILL-PREY |

Figure 34. The hierarchy of behaviors that comprise hunt. Sub-behaviors are connected with
a “PART” link, achieving behaviors with a “ACH” link, and assisting behaviors are
connected with a “ASS” link.

A behavior may have either 1) behaviors that achieve it, 2) sub-behaviors, or 3)

actions.3 If a behavior has either behaviors or actions that achieve it, then any one of those
behaviors is sufficient to enable an animal to perform that behavior. If it has sub-behaviors,
however, then the behavior is a complex one requiring each of the sub-behaviors to achieve it.
Every sub-behavior must be supported in order for a behavior to be supported. In addition to
actions, achieving behaviors, and sub-behaviors, behaviors may also have assisting
behaviors. Assisting behaviors can help an animal to achieve a behavior, but they are
neither necessary nor sufficient for its achievement. Therefore, students are free to add
assisting behaviors in order to support a behavior, but they do not play a role in satisfying the
conditions for the successful achievemnent of that behavior.

3 These connections are implemented through the slots of behavior frames named achieved-
by, sub-behaviors, and actions. They are described in Chapter 7, The Indexing Vocabulary.

137

Looking at hunt, we see that it has four sub-behaviors, detect prey, get close to prey,
catch prey, and subdue prey. The how-behavior-dialogue must resolve each of these
behaviors individually. The dialogue manager goes through the how-behavior-dialogue in a
depth-first fashion, so that it will try to resolve detect prey completely before moving on to
get close to prey. Of course, students are free to use the “Skip this” button in the interface to
jump from one sub-behavior to another. When they click the “Skip this” button, they are
presented with a choice of other sub-behaviors to work on:

One part of hunting is detecting prey.

How would you like your butterfly to detect prey?
Button Press -SKIP-THIS

We can do any of the things listed below.

Which would you like to do next?

(“Talk about how my butterfly will get close to its prey.")
("Talk about how my butterfly will catch its prey.")
("Talk about how my butterfly will subdue prey.")
("Add something else to my butterfly")

("Start a new animal")

("Continue where I was")

Assuming the student is content to continue with detect prey, the dialogue manager
checks its for actions, achieving behaviors, and sub-behaviors. Detect prey has no sub-
behaviors or achieving behaviors, but it does have a value in its actions slot, the action
detect. This tells the dialogue manager that it is looking for an action to fill in the plan, ... in
order to detect prey.

[behavior detect-prey
:isa ([behavior find-food] [behavior detect-food])
:part-of ([behavior hunt])
:assisted-by ([behavior search-prey])
ractions ([action detect])

<o
At this point, the dialogue manager poses the explanation question “How would you

like your butterfly to detect its prey?” and initiates the standard dialogue cycle looking for an
action to support detect prey. Any action that appears in the actions slot of detect prey or is a
specialization of a value in the actions slot will be accepted as an answer. Thus, a student
might choose see, smell, hear, etc.

[action detect
:isa ([action use-senses])
:subtypes ([action hear] [action echolocate]
[action detect-in-dark] [action smell]
[action see]
[action detect-pressure-variations])

138

Once the student selects an action to support detect prey then the dialogue manager
moves on to the next sub-behavior of hunt, get close to prey. Unlike detect prey, get close to
prey has several achieved-by values. (These can be seen in the hunt hierarchy in figure 34.)
Since these values are behaviors, the dialogue manager tries to complete a bplan this time,
not a plan. The partial bplan that represents the explanation question is:

[(bplan :sub ?QUERY :super [behavior get-close-to-prey]]

The dialogue manager executes the dialogue cycle to help the student identify a
behavior that supports get close to prey. We can see from the hunt hierarchy in figure 34 that
lie in wait, stalk prey, and pursue prey are all acceptable ways to achieve get close to prey.
Once the student has committed to one of these behaviors, the dialogue manager will initiate
a recursive how-behavior-dialogue to identify behaviors or actions that are necessary to
support the newly selected behavior.

Through the behavior hunt, we have seen each of the three conditions that arise in the
how-behavior-dialogue. They are summarized below:

1. If the behavior has sub-behaviors, initiate the how-behavior-dialogue
recursively on each of them.

2. If the behavior has achieving behaviors, conduct the dialogue cycle to allow
the student to select one of them. Then initiate the how-behavior-dialogue for
the newly selected behavior.

3. If the behavior has actions, conduct the dialogue cycle to allow the student to
select one of them.

In addition to these three conditions, all of which use the standard dialogue cycle, the
how-behavior-dialogue also contains an opportunity to consider an animal’s current attributes.
This occurs at the beginning of the how-behavior-dialogue before the dialogue manager starts
to traverse the tree of supporting behaviors. When a student adds a new behavior to his
animal, the dialogue manager takes the opportunity to discuss the way the animal currently
achieves the same goal. Thus, for example, if a student asks for a butterfly that can hunt, the
dialogue manager will ask the student how butterflies currently get their food, and the
storyteller will show an example reminding if it has one. This question is generated by
searching up the hierarchy from the new behavior looking for a behavior that is achieved by
the student’s animal in the wild. This behavior is called the intersection behavior. In the
current example, the intersection behavior is get food which is achieved both by hunt and by
get nectar, which is a behavior associated with butterflies. The following transcript shows
this consideration of how a butterfly gets food. In addition, it demonstrates some of the steps
discussed above that arise in the course of creating a butterfly that can hunt.

Suppose you could create a new animal by taking an existing
animal and changing it some way. What would you make?

Student: A Butterfly that can hunt.
Consideration of the student’s current animal:

Hunting will allow your butterfly to get food. Before we
change your butterfly so that it can hunt, we should find out
how butterflies currently get food. Do you know how
butterflies currently get food?

Student: I don’t know

139

Butterflies drink nectar which is part of getting nectar.
Getting nectar helps butterflies to get food.

Go to first sub-behavior:

One part of hunting is catching their prey.

Pose the explanation question:

How would you like your butterfly to catch its prey?
Student: By biting it

Correct answer example reminding:

That might work. Meerkats bite to grasp prey.

I have a pretty good video about that. This has scorpions in
it.

Would you like to see a video about that?

Student: Yes

Similarity-based reminding:

Wow, that meerkat reminded me of a great video.

White breasted sea eagles also grasp prey. Only, instead
of biting, they do scmething different. They grip things.
Is that something you would like to see?

Student: Yes

[VIDEO: "Sea Eagle Catches Fish"]

Identical reminding:

Meerkats are not the only animals that bite in order to grasp
prey. For example, bears bite to grasp prey.

This is a great video.

Do you want to see that ?

Student: No

Commitment point:

So your butterfly could bite in order to help it to catch its
prey.

You can commit to that now, or we can look at how some other
animals catch their prey and you can decide later.

How would you like your butterfly to catch its prey?
Student: Show me more ways

...[Dialogue cycle deleted]...

Another sub-behavior of hunt:

Another part of hunting is getting close to their prey.
How would you like your butterfly to get close to its prey?
Student: By flying close

(Transcript no. Pal-m1-6-11-17.11)

140

6.2.6 Why Behavior Dialogue
Some behaviors do not have achieving behaviors, sub-behaviors, or actions because they

are abstract. Instead they either have subtypes or they are the act of another behavior.4 For
example, the behavior fight (displayed in figure 35) is an abstract behavior that has no
actions, achieving behaviors, or sub-behaviors. Instead, it is the act of several behaviors
including fight for food, fight predators, and fight for mates. If a student requests an abstract
behavior like fight, the dialogue manager initiates a why-behavior-dialogue. The why-
behavior-dialogue starts with an abstract behavior and looks for a specialization of it. Once
the student has selected such a behavior, the dialogue manager can use this new behavior in a
how-behavior-dialogue.

|FIGHTFOR-RANK

|FIGHT-PREY

FIGHTFORFOOD

BEHAYIOR RIG il FIGHT+OR-YOUNG

|
|
|
FIGHTFOR-TERRITORY |
|
|
|

FIGHT-PREDATORS
\‘1FIGHT-ENEMIES
[FIGHTFORMATES |
TFIGHTCOLLECTIVELY |

Figure 35. The behavior tree for fight

The why-behavior-dialogue follows the standard dialogue cycle. Any behavior that is
a subtype of the current behavior or has the current behavior as its act is an acceptable
behavior. The following transcript in which a student requested a dog that can fight is an
example of a why-behavior-dialogue:

P t lanati ton:
That ‘s a good idea, is there a reason why you want your dog
to fight?

Student: 8So it can defend itself
Correct answer reminding;

That’'s a good idea. Bees fight to fight enemies.
Would you like to see a video about that?

4 The subtypes and act-of links are abstraction links for behavior hierarchies. They are
discussed in Chapter 7, The indexing vocabularies.

141

Student: Yes
[VIDEO: “BEES EXPEL WASP”]

Identical reminding:
Bees are not the only animals that fight enemies. For
example, jawfish fight enemies.
I have a good video about that. This has battles in it.
Would you like to see a video about that?
Student: Yes
[{VIDEO: *“JAWFISH DEFENDS TURF”"]

mmitment point:

So your frog can fight to defend itself.
You can commit to that now, or we can look at some other
reasons why animals fight and you can decide later.
Why would you like your frog to fight?
. . . (Transcript no. m4-5-11-11.01)

Once the student settles on a specialization of his behavior, the dialogue manager
initiates a how-behavior-dialogue to help the student determine how his animal will
achieve this behavior.

6.3 Implementing the Dialogue Manager
Managing a dialogue centered around open-ended questions like those in Creanimate is
not easy. The dialogue manager must be able to both pose appropriate questions and respond
properly to students’ answers. The primary duties of the dialogue manager are to:
* Identify and pose relevant explanation questions.
* Evaluate students’ answers with respect to the program’s knowledge.
In this section, I describe the way in which the dialogue manager performs these duties.
The first step in every dialogue is identifying an explanation question that applies to the
student’s animal and initiating a dialogue about that question. In Section 6.3.1, I describe the
algorithm that the dialogue manager uses to identify explanation questions and initiate
dialogues about those questions. Once a question has been posed, the next step is conducting a
discussion with the student about possible answers to that question. The underlying structure
for this discussion is provided by the dialogue cycle, which I described above. In order to
implement the dialogue cycle in an efficient and general-purpose manner, it was necessary to
develop data structures that would support the dialogue manager in asking questions and
evaluating answers. These data structures are described in Section 6.3.2.

6.3.1 Initiating Dialogues: Selecting Explanation Questions
The dialogue manager is implemented through a library of dialogue plans, each
corresponding to a single explanation question. Each plan5 is indexed under the explanation

question that it applies to. Thus, initiating a dialogue consists of examining the student’s
animal to identify a relevant explanation question and retrieving a dialogue plan that is

> Plans are implemented as a body of lisp code. They are not represented declaratively, nor
does the dialogue manager have access to their internals as in the traditional Al sense of plan.

142

indexed under that explanation question. The dialogue plan is then instantiated using the
particular values from the current explanation question.

The strategy for identifying relevant explanation questions is based on the relationships
in the knowledge representation and the objects that participate in those relationships. For
every relationship, there are two corresponding explanation questions. For example, feafuns
correspond to the questions, Why feature? and How action? The feafun fins in order to swim
corresponds to the questions “Why have fins?” and “How to swim?” Similarly, each type of
object participates in specified relationships, i.e. features participate in feafuns, actions
participate in feafuns and plans, and behaviors participate in plans and bplans. To identify
applicable explanation questions, the dialogue manager maintains a record of the
modifications that a student has made to his or her animal. Every time the animal is
modified in some way, the dialogue manager checks the relationships that the modification
can participate in. Based on those relationships, the dialogue manager identifies the
appropriate explanation question. This is summarized in table 7.

Table 7.-The identification of explanation questions that apply to a student’s animal. Each
type of modification (lefthand column) can participate in a limited number of relationships
(middle column). Using the student’s modification and the relationships that the
modification can participate in, the dialogue manager identifies relevant explanation
questions (righthand column). Dialogue plans are indexed under these explanation questions.

Modification Relationship Explanation Question
Feature Feafun Why feature?

Claws Claws in order to action Why have claws?
Action Feafun How action?

Dance Feature in order to dance How to dance?
Action Plan Why action?

Dance Dance in order to behavior Why dance?
Behavior Plan How behavior?

Fight predators

Action in order to fight
predators

How to fight predators?

Behavior Bplan How behavior?

Avoid predation Behavior in order to avoid How to avoid predation?
predation

Behavior Bplan Why behavior?

Fight Fight in order to behavior Why fight?

If a student adds an action to his animal, the dialogue manager recognizes that the
action can participate in both feafuns and plans. It also recognizes that the explanation
question that applies to a feafun with a specified action and an unknown feature is How
action? and that the explanation question that applies to a plan with a specified action and
an unknown behavior is Why action? Therefore, when a student adds a new action to his
animal, the dialogue manager creates internal representations of these two explanation
questions using the student's animal and the new action. For instance, if a student has been
working on a dog, and he changes it so it can dance, the dialogue manager will generate the
two explanation questions corresponding to, "How should we change your dog so it can dance?”
and "Why will your dog dance?" The first of these is an example of How action? and the
second is Why action?. Indexed under the explanation question category How action? are the
dialogue plans named how-action-dialogue and check-action-dialogue and under Why action?

143

is the dialogue called why-action-dialogue. (These dialogue plans are described in the next
chapter.) When applicable dialogue plans are identified, they are placed on a queue of
pending dialogues. As a student’s session progresses, the dialogue manager selects dialogue
plans one at a time from the the pending dialogue queue.

6.3.2 Asking and Answering Questions

Since questions provide the structure for the dialogue cycle, it follows that questions
should also provide the basic organizational unit for the dialogue manager. Questions are
represented with a data structure called, simply, a question. A question data structure contains
information about how to 1) pose a question in natural language, 2) evaluate answers to that
question, 3) infer answers to that question from information in the knowledge base and 4) state
the answer to the question in natural language. The question data structure is an object in the
terminology of object-oriented programming. It packages together four important functions
that all deal with a single type of relationship. A question data structure responds to the
following messages from the dialogue manager:

Ask: Ask its question in natural language.
Verify: Evaluate a student’s answer to that question.
Infer: Infer an answer to the question using the information in the knowledge
base.
Say: State an answer to the question in natural language.
Each of these plays an important role in managing open-ended dialogues.

Asking a Question

In response to the ask message, a question data structure provides the dialogue manager
with a text string that asks the student the appropriate question and a list of appropriate
options to allow the student to respond to the question. For example, one of the question data
structures in Creanimate is named why-animal-has-feature. This data structure provides all
of the functionality necessary to handle the question, “Why does animal have feature?” for
any particular combination of animal and feature. If the dialogue manager were to send this
question data structure the ask message along with the animal cheetah and the feature long
strong legs, the following output would be generated:

Do you know what cheetahs use their long, muscular legs for?

In addition to generating the question in natural language, the ask message to a question
data structure also generates a list of options to allow a student to respond to the question.
When the question above is asked as a bridge to a story, the options for responding are,

So it can ...

Show me a video.

What other videos can I see?
Skip this video.

When a student selects an option with an ellipsis such as “So it can ...”, he is prompted
to type his own answer in place of the ellipsis. Depending on the circumstance in which the
question is asked, different options may be presented to the student. If a student saw the

144

question above and chose to see the video, then the question would be repeated following a
video. After a video, the options for answering this question would be,

So it can
Show me the video again.
Tell me.

to appear in the absence of a story, the options would simply be:

So it can
I don’‘t know.

When a student selects the options “Tell me” or “I don’t know” the dialogue manager
generates the answer for him using the say message described below.

To summarize, a question data structure responds to the ask message with 1) a text string
that asks the student the question and 2) a list of options that that allow the student to
respond to the question in a manner that is appropriate for the context in which the question is
being asked.

Evaluating a Student’s Answer

Once the student has provided an answer to a question, the dialogue manager needs to
evaluate that answer to determine what to do next. To do so, it sends the verify message to the

anoctinon data ctrmiirhiira alan
\i“\—u‘:lvll MMM TVl WL BUL L v

o with tho ctuudont e racnnanco
Wit tng esponse

wvarifuv maothad ovaluatec the
STUGENT S a:uaes e

Tha
. The verify method ev
answer and returns one of the following four values:
Correct: The student's answer matches the information in the knowledge base.
Correct-other: The student's answer is a correct answer for some other animal, but
not for the animal in the current question.
Incorrect-but-animal-has: The student's answer is incorrect, but the animal in the
question does have the attribute specified in the student's answer.
Incorrect: The student's answer cannot be verified according to the information in
the knowledge base.

Correct-other, incorrect-but-animal-has, and incorrect are different descriptions of an
answer that cannot be verified as correct according to the Creanimate knowledge base. Such
unverifiable responses are considered incorrect. For the question why-animal-has-feature
with the animal cheetah and the feature legs, the following list shows some possible
answers, and the results of evaluating them:

Do you know what cheetahs use their long, muscular legs for?
run fast correct
Cheetahs do use their legs to run fast.

wade correct-other
Cheetahs don’t use their legs to wade, but other animals do.

camouflage incorrect-but-animal-has
Cheetahs do not use their legs to camouflage themselves, but they do
have spots for camouflage.

145

fly incorrect
Cheetahs do not use their legs to fly; there are no other animals that use
legs to fly; and cheetahs do not fly in any other way.

The result returned from this evaluation helps the dialogue manager to determine what
it should do next. In response to an incorrect answer, the dialogue manager will request an
incorrect answer reminding from the storyteller. Depending on whether the evaluation is
incorrect, incorrect-but-animal-has, or correct-other, the text generated by the dialogue
manager will vary appropriately. These variations are described in the discussion of the say
method below. In response to a correct answer the dialogue manager will confirm the student's
response and request a correct answer reminding from the storyteller.

To summarize, the verify method of a question data structure is used by the dialogue
manager to evaluate the correctness of a student’s answer.

Inferring the Answer to a Question

A question data structure contains the functionality to allow the dialogue to infer
answers to questions itself, by searching the knowledge base. Suppose the dialogue manager
needed to know what action cheetahs use their legs for. The infer routine for the question
why-animal-has-feature would search up the hierarchy starting from the specified animal
looking for a feafun containing the given feature. For the cheetah, it would find the feafun,
strong long legs in order to run fast and it would return the action from that feafun, namely run
fast. Because of speed considerations, the infer method is not used in the most recent version of
Creanimate.

Stating the Answer to a Question

In addition to information for asking questions and evaluating answers, the question
data structure also contains information on how to make statements. In response to the say
message, a question data structure will generate an appropriate statement using a specified
animal and other concepts. For example, the say message to the question why-animal-has-
feature with the animal cheetah, the feature strong-long-legs and the action run fast
generates the following statement:

Cheetahs use their long, muscular legs to help them to run
fast.

The say message method is used in many different circumstances in dialogues. First, itis
used to construct bridges to example stories.

Bees dance. Bees use their tails to help them dance,
I think this video is amazing.

Is that something you would like to see? (Transcript no. pal-m1-6-30-
12.40)

The sentence, “Bees use their tails to help them dance,” was generated by the say
message to the question how-animal-does-action using the animal bee, the action dance, and
the feature tail. However, as we have already seen, many stories are introduced with
questions not statements. In those situations, the student responds to the question either by
seeing the video or providing an answer. If he chooses to see the video, he sees the question

146

again immediately following and has the option to review the video, answer the question, or
respond, “tell me.” In each of these circumstances, the say message gets called. The following
examples show the range of answers that a student might give, and the resulting use of the say
method. The first four examples correspond to the four possible evaluations returned by the

verify method discussed above. The last example shows a student asking the system for the
answer.

Student answers the question correctly (correct):
Sage grouses have wings. They have feathered wings. Do you
know what sage grouses use their wings for?
(I have a hilarious video about that.)

Student: So they can dance.
Yes, that is right. e use ve wings t the
dance.

Would you like to see a video about that?

Student answers the question incorrectly (incorrect):
...Do you know what sage grouses use their wings for?...
Student: 3o they can dig
I don't know any animals that have wings to help them to dig.
But I do know sage grouses have winds to help them to dance.

If you want, I can show you some animals that dig.

tudent answers the gquestion incorr - :
...Do you know what sage grouses use their wings for?...
Student: so they can fan themselves
Actually, sade grouses have wings to help them to dance.
But other animals have wings to help them to fan themselves.

For example, s _have wings t elp them to fan
themselves. We can see that in a moment.
Student answers the question incorrectly (incorrect-but-animal-has):

...Do you know what sage grouses use their wings for?...
Student: so they can run

Sage grouses do run. But, gage grouses have wings to help
them to dance.

Is that something you would like to see?
Student asks for the answer:

...Do you know what sage grouses use their wings for?...
Student: show me a video

[VIDEO: GROUSE DANCES]

Now, do you know what sage grouses use their wings for?
Student: tell me

Sage grouses have wings to help them to dance.

In the same way that the list of answers returned by the ask method can be tailored to
the context, the output generated in response to a say message can be adapted to context. The
say method for a question data structure accepts data structures called impacts as optional
arguments in order to tailor the output. (Impacts are described in Chapter 7.) In the following

147

transcript, the relationship strong hind legs in order to kick dirt was passed to the say method
along with the impact surprising. This leads the dialogue manager to indicate that the
relationship is surprising when it generates the statement.

Kangaroo rats use their strong hind legs for a surprising
reason: to kick dirt.

Say methods can take other optional arguments to generate output such as the following,
in which the optional argument also was given:

Thompson's gazelles also use their long legs to help them run
fast.

Thus, say methods are used by the dialogue manager to generate natural language
statements from a question data structure. These functions generate specific sentences using the
animal and attributes passed to them by the dialogue manager. Optional arguments to the say
methods can produce special output for certain circumstances.

The Importance of the Question Data Structure

As we’ve seen, the question data structure serves as a repository for information about
discussing a particular relationship in the course of a dialogue. The question data structure
tells the dialogue manager how to ask a question about a relationship, evaluate the answer,
infer answers on its own, and state that an animal possesses that relationship. The use of
question data structures was important for the construction of the Creanimate system because it
allowed us to write general-purpose routines to execute steps in the dialogue cycle regardless of
which dialogue plan was being executed or which particular explanation question was being
discussed. Using this approach, special-purpose information about specific questions could be
encoded in the question data structures, while the routines that manipulate these data
structures could be general-purpose. As a result, most of the dialogue cycle could be
implemented through general-purpose functions that were shared by all of the individual
dialogue plans.

6.4 Summary

The Socratic dialogue manager conducts dialogues structured around important
explanation questions for the domain of animal adaptation. The dialogues are designed to
take advantage of a student’s investment in the animal that he creates as a motivator for him
to examine issues for that animal’s adaptability. In the traditional Socratic style, the
dialogue manager responds to a student’s design with thought-provoking questions that help
him to explore these issues through his own hypotheses.

The dialogue manager is implemented as a library of dialogue plans that are indexed
according to the explanation questions they discuss. Dialogue plans are initiated when the
explanation question they discuss become relevant to the student’s animal. These dialogue
plans all share a basic structure, provided by the dialogue cycle. The dialogue cycle consists of
four steps: 1) asking the explanation question, 2) evaluating a student’s answer, 3) presenting
example remindings, and 4) allowing the student to commit to an answer. In addition,
individual dialogues may elaborate on this structure with a step in which the animal’s

148

original attributes are considered and with an extension to the dialogue that considers answers
to similar explanation questions.

The six dialogue plans in the dialogue manager’s repertoire start with a modification
that a student has made to his animal. The dialogues all follow the dialogue cycle in which
the dialogue manager poses an explanation question and the student considers possible
answers. The goal of each dialogue is to have the student relate the modification he has
made to his animal to some other feature, action, or behavior in a way that would help the
animal to survive in the wild. Each dialogue has specific criteria for acceptable answers and
provides opportunities for the students to learn from relevant stories.

The general dialogue algorithm is supported by data structures that encode knowledge
about handling specific questions in the course of dialogues. These question data structures
store information about how to ask students questions, how to evaluate their answers, how to
infer answers, and how to state answers declaratively.

Chapter 7

The Indexing Vocabulary

The storyteller in a case-based teaching system requires an indexing vocabulary to label
the stories in its library. Every story must have an index that describes the situations in
which the story is relevant. An index is composed of elements from the indexing vocabulary.
In the course of a dialogue, the storyteller examines these indices in its search for stories that
are relevant to a student’s situation. To support this story retrieval, the indexing vocabulary
must be expressive enough to describe the range of storytelling situations that arise in the task
environment. While the primary role of the indexing vocabulary in a case-based teaching
system is the support of indexing and retrieval, the indexing vocabulary in Creanimate also
plays a critical role in supporting the dialogue manager. The representation language that
provides the indexing vocabulary also enables the dialogue manager to draw the inferences
about animal adaptations necessary to manage its open-ended question-and-answer dialogues.
The indexing vocabulary in Creanimate supports four major activities of the storyteller and
dialogue manager:

* Story retrieval (storyteller)

¢ Dialogue initiation (dialogue manager)

* Evaluation of student responses to questions (dialogue manager)
¢ Communication (dialogue manager and storyteller)

To support these activities, the Creanimate indexing vocabulary is capable of expressing
both the specific information about stories required by the reminding strategies of the
storyteller and the general information about animal adaptation employed by the dialogue
manager in conducting dialogues. These capabilities are provided by the Creanimate
knowledge representation language. This knowledge representation language is a slot-filler
database implementation of a semantic network (Quillian 1966: Charniak et al. 1987). Itis
designed not only to support the indexing requirements of the storyteller and the inferencing
requirements of the dialogue manager, but to provide the ability to generate and interpret
natural language.

In this chapter, I describe the components that make up this representation language. In
particular, I focus on the representational challenges that arose in the construction of this
knowledge representation language and the solutions we developed. In the next chapter, I
will describe the way the indexing vocabulary is used to construct indices and the indexing tool
that we have developed to enable a human indexer to manage the complexity of a large
knowledge base.

7.1 Design Considerations for the Indexing Vocabulary
Two important principles guided the design of the indexing vocabulary. Both principles
follow from the primary objective of this research, which is to build effective educational

149

150

systems. Both principles place decisions concerning representation at the service of this
primary objective. These principles are:
* Minimal representation.

* Primacy of pedagogy

7.1.1 Minimal Representation

Representation is the critical issue in this research. Creanimate succeeds or fails with
the success or failure of its representation scheme. If the representation were inadequate or
the vocabulary too limited, Creanimate would not be able communicate effectively with
students or retrieve stories when they are relevant. In Creanimate, unlike other research in Al
that focuses on the content issues of representation, e.g., CYC (Guha and Lenat 1990; Lenat and
Guha 1990), the representation is not the end goal. In this case, the end goal is educational.
Since the representation exists solely in service of the educational goals, our objective has been
to represent the domain as little as possible in order to achieve those goals. We have adopted
this principle of minimal representation because the primary research is concerned with the
quality of the system's performance as an instructional system, not the quality of its internal
architecture on a scale of elegance. Where issues concerning the representation have appeared
in the course of conducting this research, our question has never been, "What is the correct way
to represent these concepts?” but, "What is the simplest representation we can have for these
concepts and still achieve the goals of the system?" This approach is essential because
“correct” representation is a Holy Grail. No matter how close a representation gets to being
correct, there is always another intricacy to represent. If we had tried to represent the issues

for animal adaptation “correctly” we would have had to solve the entire Al problem.

One of the advantages of case-based teaching over other Al approaches to teaching
systems is that a case-based teaching system need not understand everything it is teaching.
Unlike the traditional ITS approach to instruction (Sleeman and Brown 1982; Wenger 1987),
the teaching system does not need to understand the domain as well as the student does.
Traditional ITS’s must understand the domain well enough to maintain a model of a student’s
current understanding of the subject matter and to improve that understanding. A case-based
teaching system only needs to understand its domain well enough to monitor a student's actions
in the task environment and produce stories to help the student learn from his situation. Most
of the knowledge that the student gains from a case-based teaching system is either provided
by the structure of the task environment or is encapsulated within stories. This architecture
enables the system to teach topics that are elaborate and complex, indeed well beyond the
current state of the art of representation in Al, without requiring a representation capable of
handling that complexity. Since this complex information can be provided by stories, the
teaching system is left with the sole responsibility of getting the right story to the student at
the right time. Therefore, the burden of understanding for a case-based teaching system is to
understand the actions that a student can take in the task environment in a way that will
enable it to find the right story for that student. This does not require that the system be
capable of understanding or representing much of the information that is contained within
stories.

Minimal representation is an essential approach if one is to avoid the explosion of
intricacies that arise in any knowledge representation effort. The value of the case of the
case-based teaching architecture is that with only a minimal representation a case-based
teacher is able to convey knowledge that is much richer and more complex than can be
captured by the representation itself.

151

7.1.2 Primacy of Pedagogy

In any Al application, the choices made in the design of the representation language
reflect a theory of the domain. In a teaching system this domain theory plays an important
role in shaping a student’s experience with the system. Since the decisions made in developing
the representation language influence what a student will learn, it is imperative that the
pedagogical goals direct the development of this representation. This imperative constitutes
the principle we call primacy of pedagogy. In Creanimate, the decisions made in designing
the indexing vocabulary show up in students’ interactions in three forms: 1) the particular
explanation questions that the dialogue manager poses; 2) the ways in which it interprets and
evaluates students’ responses to these questions; and 3) the specific contexts which the
storyteller recognizes as appropriate for a particular story.

As we saw in Chapter 2, explanation questions convey the important relationships of a
domain. Therefore, in Creanimate, determining the appropriate explanation questions was
the first step towards developing a representation and indexing vocabulary. This choice of
explanation questions was based on an analysis of what is appropriate and important for
students in the target age group to understand about animal adaptation. The choice of these
explanation questions in turn determined which types of concepts and relationships had to be
included in the knowledge representation. For example, historically the first explanation
question implemented in Creanimate was How action? e.g., “How would you like to change
your tortoise so it can run fast?” This explanation question reflects an educational goal that
students recognize that every action an animal performs requires a set of enabling physical
features. Furthermore, students should know the particular features required for particular
actions. To present knowledge to the student in this form, Creanimate must have its
knowledge organized in the same fashion.

Therefore, each explanation question establishes important requirements for the
Creanimate knowledge representation. For instance, the implementation of How Action?
requires that the knowledge representation include a vocabulary to describe physical features,
actions, and the different ways that actions can depend on physical features. In addition, it
must provide a way of associating a particular feature with a particular action for a
particular animal. In Creanimate these requirements gave rise to the objects called features,
actions, and feafuns. The implementation of this explanation question also influenced the
structure of indices. For the storyteller to retrieve stories that are relevant to a discussion of
the How Action? explanation question, the indexing vocabulary must be able to indicate that
a particular story illustrates the use of one or a set of physical features to support an action.

Maintaining the primacy of pedagogy means using pedagogical goals to shape a
teaching system’s representation. In the development of Creanimate, the pedagogical goals
were specified first, in the form of explanation questions. The representation language was
then designed around these questions.

7.2 The Creanimate Knowledge Representation: An Overview

The Creanimate knowledge representation language is a frame languagel composed of
two frame types: objects and relationships. Objects are used to represent single concepts and

! For readers who are unfamiliar with this terminology, there is a good introduction to
frame representation languages in Charniak et al. (1987). For a good historical perspective on
the development of semantic networks, frame languages and other issues in knowledge
representation see Brachman and Levesque (1985).

152

relationships are used to link two or more objects to a third object. As introduced in Chapter 5,
the types of objects and relationships are:

Object Types

Animal Feafun

Feature Plan

Action Bplan

Behavior Rule

Phys-obj

Property

Impact

Index

Each type of object and relationship has a corresponding class of frame defined with a

fixed set of named slots. The fillers for these slots are other objects and relationships. For
example, frames that represent animals have slots for the features, actions, and behaviors
that those animals possess. Likewise, features, actions, and behaviors all have a slot that
contains a list of animals that they are associated with. Thus, conceptually the Creanimate
knowledge base is an extensive network of nodes (frames) connected by named links (slots).
Many of the links in the knowledge base are bi-directional, meaning that if an animal has a
link connecting it to a feature then there is a complementary link from the feature back to the
animal. Bi-directional links enable the inferencing mechanisms used by the storyteller and
dialogue manager to conduct flexible and efficient searches.

Abstraction

For efficiency in both representation and inference, objects in the Creanimate knowledge
base are organized into abstraction hierarchies. The animal hierarchy, for example, has the
most general category (called simply animal) at the top, and specific species and subspecies of
animals at the bottom. In between are increasingly specific categories of animals, some of
which coincide with the categories in the phylogenetic tree and some of which are ad hoc
categories that suit the pedagogical goals of the system. The categories in abstraction
hierarchies are not mutually exclusive, so one object may fall into several overlapping
categories. Therefore, an object may have several parents. That means that abstraction
hierarchies are directed acyclic graphs, not simple trees. Displayed below is a portion of the
hierarchy that shows the parents and children of the animal primate:

153

BUSHBABY

[PROSIMIAN (54

TARSIER

[MONKEY _ 1((5A){BABOON |
[ANIMAL 18- [MAMMIAL (54 -{CARD MAMMAL (52 - ERIVRIEH(EA)
HUMAN
GORILLA
APE SA MNCHIMPANZEE
GIBBON

ORANGUTAN I

Figure 36. The hierarchy showing the parents and children of primate. The other children of
land-mammal, mammal, and animal are not shown.

While animals have only one type of abstraction link, the isa link, other object classes
have several types of abstraction links, each of which carries different semantics.
Abstraction hierarchies serve two main purposes. They allow the dialogue manager to
identify similarities among concepts that share parents, and they implement inheritance.

Inheritance

Inheritance of attributes through abstraction hierarchies provides Creanimate with an
important efficiency in representation. When an object is connected to a parent by an
abstraction link, then the child inherits certain attributes of the parent. Thus, for example,
primate inherits the feature warm-blooded from mammal, and bushbaby inherits the feature
tail from prosimian. The underlying frame system allows for flexible inheritance, so that
different slots may be inherited across different abstraction links. In addition, slots may be
inherited from multiple parents across more than one type of abstraction link. To implement
this multi-parent, selective inheritance, each slot for each object class has a set of abstraction
links that are designated as that slot's inheritance links. The inheritance links for a slot may
be all the abstraction links for the object class, or they may be a subset of them. (The
inheritance links for a particular slot in an object are an attribute of the object's class, e.g.,
animal, not the object itself.) Inheritance provides the primary mechanism for drawing
inferences in Creanimate.

The combination of bi-directional links and inheritance in Creanimate, requires that
some values be inherited from children instead of parents. This inverse inheritance is
necessary for the following reason. Bi-directional links are made up of two individual links
called forward links and inverse links. If a forward link is inherited from parents to children
then symmetry requires that the corresponding inverse link must be inherited from children to
parents.

Inheritance provides significant savings in both the amount of memory required for the
knowledge representation and in the amount of effort necessary to construct the knowledge
representation. Inheritance allows an indexer to link one object with another at a high level

154

of abstraction and provides a mechanism for the system to infer the same link between two
objects that inherit from them.

7.3 Representation Issues in Creanimate

In accordance with the goal of minimal representation, the representation language in
Creanimate started out with the fewest types of objects possible. Initially there were only
four object types: animals, features, actions, and behaviors. Each object had only one
abstraction link, the isa/subtypes link, to connect it to other objects of the same type. Animals
had links to connect them to each of the features, actions, and behaviors that they employ.
Features were connected with bi-directional links to the actions they support, just as actions

were connected to the behaviors they support. So, initially, the frames used to represent
objects had only the following slots:

Animal Feature Action Behavior
Isa/Subtypes Isa/Subtypes Isa/Subtypes Isa/Subtypes
Features Animals Animals Animals
Actions Actions Features Actions
Behaviors Behaviors

This very simple representation scheme provided many of the capabilities required by
Creanimate, but it fell short of fully supporting the needs of either the storyteller or the
dialogue manager in a number of respects. For example, some necessary inferences could not be
drawn because the semantics of the slots were too vague. Some other inferences were not
possible because they required access to relationships that were not be captured by the
available slots. In response to these shortcomings, the representation was extended through a
series of incremental improvements. Each improvement was designed to address a specific
problem that hindered the program'’s ability to achieve its pedagogical goals. These
problems fell into five categories of representational challenges:

1. Representing the requirements of performing actions and behaviors.

2. Representing specific forms of similarity.

3. Representing relationships involving more than two different types of objects.
4. Recording subjective impressions.

5. Generating and interpreting natural language.

In the following sections, I discuss the specific examples of these problems that arose in
the development of the Creanimate knowledge representation. For each problem, I also
describe how the knowledge representation was enhanced to resolve it. As a supplement to
this discussion, the reader may want to refer to Appendix A, which contains a summary
description of the slots in all of the objects and relationships in the Creanimate knowledge
representation.

7.3.1 Expressing the Requirements of Objects

The initial, minimal Creanimate representation supported the asking of why questions,
i.e. “Why would an animal have a beak?” but it did not really support the asking of how
questions. The initial links enabled the dialogue manager to look at a feature or an action and
determine what it was used for, but it did not allow it to look at an action or a behavior and
determine what combinations of actions or features were necessary for an animal to perform
the action or behavior. To implement dialogue plans that discuss how questions, it was
necessary to add slots to describe requirements of actions and behaviors.

155

Requirements of Actions

For an animal to perform an action, that animal must have features that support that
action. To breathe requires lungs or gills, and to run requires legs. However, some actions are
complex. They are performed through a combination of more primitive actions. In the initial,
minimal representation, the features slot made it possible to indicate that a feature was used
in some way to perform an action, but it was not possible to determine which particular
combinations of features were required to perform the action. In addition, it was impossible to
represent an action as the composition of several other actions.

Issue: Different features may be combined in several ways to perform an action.

Example: Swimming fast requires 1) one of a number of features to propel the
animal, e.g. fins or a tail, and 2) a sleek body shape.

Solution: Requires/required-by and suffices/suffices-for slots.

The requires/required-by and suffices/suffices-for slots in actions and features. In
addition to the initial features slot in actions and actions slot in features, features and actions
have two additional slots that indicate more precisely the ways that particular features
support particular actions. Any feature that appears in the features slot of an action must also
appear in either the requires or suffices slot of the action.

The requires slot of an action contains a list of features which are all necessary to
perform the action. In order for a student’s animal to perform an action, it must have each of
the features in that action’s requires slot or specializations of those features. The suffices slot
of an action contains a list of features, any one of which is sufficient to enable an animal to
perform that action. In other words, the requires slot indicates that a combination of features
are necessary, and the suffices slot indicates that only one feature is necessary. Any particular
action may only have values in one or the other of the requires or suffices slots. Since features
can be combined into groups (see below), there is some flexibility in the use of these slots. A
group in the suffices slot means the same thing as each of the features appearing individually
in the requires slot. Therefore, if there are several ways to perform an action, each requiring a
conjunction of features, each conjunction should appear in the suffices slot as a group.

The action below, hide in shell, is an example of the use of the requires slot.

[action hide-in-shell

:isa ([action hold-self-in-position]

(action take-refuge])
:animals ([animal turtle])
:behaviors ([behavior defend-against-predators])
:features ({[feature shell]

[feature retractable-body-parts])

trequires ([feature shell]

[feature retractable-body-parts 1)
«.]

Since shell and retractable body parts both appear in the requires slot of hide in shell,
the dialogue manager knows that an animal can only perform the action hide in shell if it has
both a shell and retractable body parts. In the frame for the action smell, shown below, the
features nose, nostrils, and antennae all appear in the suffice sslot which tells the dialogue
manager that any one of those features is sufficient to enable an animal to smell.

156

[action smell
:isa ([action use-senses] [action detect]
[action investigate])
:animals ([animal bear] [animal pike]
[animal tree-cricket])
:behaviors ([behavior detect-insects]
[behavior detect-vegetation]
[behavior locate-carcass]
v
:suffices ([feature nosge
Ifeature nogtrils 1
e e te e)
The requires and suffices slots are used by the how-action-dialogue plan to determine if

the physical features that a student has given to an animal are sufficient to enable the animal
to perform a desired action.

Issue: A feature necessary to perform an action may be composed of several
individual features.

Example: To hide in a shell like a turtle requires retractable body parts. This
group of features is composed of retractable legs, a retractable head, and a
rotractabla tail

Solution: Group/part-of slots

The group/part-of slot in features. The group link is used to bring together several
different features that all work together to perform an action as if they were a single feature.

[feature retractable-body-parts

:group ([feature retractable-legs]
[feature retractable-head]
[feature retractable-tail])

ranimals ([animal turtle])

ractions {([action hide-in-shell])

:required-by ({action hide-in-shell])

-]

Because retractable body parts is really a group composed of retractable legs, head, and
tail, it inherits any attributes that each of them may have individually. However, since
they are all required together in order to hide in its shell, they are associated together in the
group. The group slot is an abstraction slot, so if an animal has the feature retractable body
parts, the system is able to infer that it also has each of the elements of the group
individually. The inverse link for group is part-of.

In making sure that a student’s animal has all of the features to perform an action, the
check-action-dialogue checks to see if any of the features has parts. If one of the features
does, the dialogue manager will initiate a dialogue in which the student has the opportunity
to add any necessary parts of the feature to his animal.

157

Issue: One action may be performed through the simultaneous or sequential
performance of several more basic actions.
Example: Flying is really composed of several actions, taking off, generating lift,
steering in flight, and landing.
Solution: Parts/part-of slots.
The part-of/parts slot in actions. When an action is performed through a combination of
several other actions, these actions appear in the parts slot of the action. For example, take
off, steer, generate lift, and land are all in the parts slot of the action fly. While a parent

across a part-of link is considered an abstraction of its child, there is no inheritance across
part-of/parts links.

(DEFFRAME action fly
iisa ({action move-long-distance]
faction move-fast]
[action move-in-air]
laction move-above-ground])
:subtypes ([action socar])
<parts (faction take-off]

t enerate-lift

)

In the check—agtfo;t:dialogue the dialogue manager checks each of the parts of an action
to determine whether a student’s animal has all of the features necessary to perform the
action.

Requirements of Behaviors

In the initial, minimal Creanimate representation, behaviors were linked to other
behaviors through isa hierarchies and to actions through the actions slot. The actions slot
waorks well for indicating the requirements of some behaviors, such as pursue prey or attract
mate. These behaviors can be achieved through one of a number of actions, e.g., run fast or
dance. However, high-level behaviors, e.g., eat, cannot be linked directly to any actions
because they are more complex. Instead, they are achieved by other behaviors, either
individually or in combination. Therefore, the representation of behaviors was enhanced to
include a goal achievement hierarchy. The goal achievement hierarchy connects more
specific behaviors to the high-level behaviors that they achieve. This hierarchy follows
achieves, part-of, and assists links. The goal achievement hierarchy supplements the isa
hierarchy, which captures other aspects of similarity.

Issue: A high-level behavior may be achieved by one of several other behaviors,
instead of being directly achieved by any specific action.

Example: Getting food can be achieved by hunting, foraging, scavenging, etc.

Solution: Achieved-by/achieves links.

The achieved-by/achieves slots in behaviors. The achieves link indicates that
performing the child behavior is a way to successfully achieve the goal of the parent. In
general, the difference between one behavior and the behavior that it achieves, is that either
the act of the behavior or its object is more specific. For example, maintain warmth has a
more specific object than maintain body temperature. Since, by definition, a behavior can only

158

serve one survival goal, it can only have one behavior in its achieves slot. However, a
behavior may have an unlimited number of behaviors in its achieved-by slot. The achieves
link is an inheritance link, so attributes of behaviors are inherited across achieves.

The achieves/achieved-by links are used by the how-behavior-dialogue plan to
identify behaviors that can be used to achieve a student’s selected behavior.

Issue: One behavior may be achieved through several, sequential behaviors.

Example: The behavior hunt involves four other behaviors: detect prey,
approach prey, catch prey, and subdue prey.

Solution: Sub-behaviors/part-of slots.

The sub-behaviors/part-of slots in behaviors. The sub-behaviors/part-of slots are used
for the representation of behaviors that consist of several individual behaviors. A behavior
may only be part of one other behavior. In addition, a behavior may have a value in either
its part-of or its achieves slot, but not both. Figure 37 shows the sub-behaviors that comprise
the behavior hunt.

§S)—{HUNTCOLLECTIVELY |

[DETECT-PREY —@ss)—{SEARCH-PREY |

PURSUE-PREY |

/@é{L IE-INWAIT }

GET-CLOSE-TO-PREY \tSTALK-PHEY I
AVOID-PREY-DETECTION

POUNCE-PREY

TACKLE-PREY

CATCH-PREY

GRASP-PREY

FIGHT-PREY

SUBDUE-PREY POISON-PREY

|
|
|
TRAP-PREY |
|
|
|

KILL-PREY

Figure 37. The behavior hierarchy beneath hunt. Part-of/sub-behavior links are labelled

“part”; assists/assisted-by links are labelled “ass”; achieves/achieved-by links are labelled
llachll.

During the how-behavior-dialogue the dialogue manager checks each of a behavior’s
sub-behaviors to insure that a student’s animal is able to achieve a behavior he has selected.
The student has the opportunity to add the actions necessary for his animal to perform each of
the sub-behaviors.

159

Issue: A behavior may play a role in achieving another behavior but may be
neither necessary nor sufficient for the achievement of that behavior.

Example: Avoiding detection can be helpful in getting close to prey, but it is
neither necessary nor sufficient.

Solution: Assisted-by/assists links.

The Assisted-by/Assists slots in behaviors. A behavior that can help an animal to
achieve another behavior but is not essential for achieving that behavior is connected to it
via an assists link. The reasons assists is used in the case of detect prey and get close to prey is
that it is possible to get close to one’s prey making any special effort to conceal oneself.
However, many animals do engage in the behavior avoid prey detection to help them perform
the behavior get close to prey. Since a behavior that assists with one behavior will also
assist an animal to achieve its children, assisted-by links are inherited.

7.3.2 Expressing Specific Aspects Of Similarity

While the isa relationship encodes non-specific similarity between objects that share a
parent in many cases, it is necessary to represent more specific forms of similarity. For
example, behaviors may be similar because they share the same underlying activity or
because they share the same goal. Depending on which form of similarity two behavior
possess, they will be treated differently in dialogues about achieving behaviors. Similarly,
for features, it is useful to indicate whether two features share some structural similarity, e.g.
size or shape, or whether they are two versions of the same anatomical structure, e.g. a nose.
As a result, the vague semantics of isa links were divided into more specific categories of
similarity, expressed through more specific links.

Issue: The isa relationship among features indicates that they both correspond to

the same anatomical structure. However, it is also important to represent the
fact that two features share some structural similarity.

Example: Tongues, trunks, and some tails all share the property that they are
flexible.

Solution: Qualities/quality-of slots.

The qualities/quality-of slots of features. The qualities link connects an aspect of a
feature, called the quality, to a feature itself. For example, red color is a quality of the
feature red breast. Since red color has the functionality be visible, red breast inherits this
functionality from red color. Qualities include color, size, and shape. The following is a list of
representative qualities:

[feature strong] [feature long-quality]
[feature flat] [feature hard]

[feature short-quality] [feature soft]

[feature big-quality] [feature small-quality]
[feature curved] [feature flexible]
[feature noticeable] [feature unnoticeable]
{feature fat] [feature skinny]

[feature blue-quality] [feature black-quality])

Issue: While isa effectively represents the fact that one action achieves the
same end as another, it is useful to represent that two actions are similar in
some other respect.

Examples: Swim fast and run fast share the quality of moving fast.

160

Solution: Qualities/quality-of slots.
The qualities/quality-of slots of actions. Just as with features, the qualities slot links
an attribute of an action with specific actions that share that attribute. A quality generally
expresses an adverbial modifier. Thus, fast might appear in the qualities slot of both run fast

and swim fast. Qualities can also be used to represent the locations that actions take place,
such as under water.

Issue: While isa represents the fact that two behaviors share a specialization of
both their act and object, many behaviors only share the same act.

Example: Detect prey and detect food both share the same act, detect, and the
same object, food. However, detect predator and detect prey only share the
same act.

Solution: Actfact-of slots.

The act/act-of slots in behaviors. The act slot of a behavior contains a behavior that is
a more abstract description of the activity involved in the first behavior. This means that
behaviors that share the same parent by an act link share a basic similarity in the way that

they are performed. For example, the behavior flee is the act-of both flee predator and flee
cold.

(DEFFRAME behavior flee
:isa ([behavior move])
ract-of ([behavior flee-predator]
[behavior flee-enemies]))

By definition, a behavior must be goal-directed. Therefore, the value of the act slot
must have a goal, however its goal may be less strictly specified than the goal in the child
behavior. In fact, acts are a special case of behaviors, in that they may be general enough to
encompass more than one survival goal, e.g., flee. As a result, the only place in the behavior
hierarchy that such a behavior may exist is in the act slot of another behavior. Because a
behavior that appears in the act slot of another behavior is permitted to have a vague goal,
it is not allowed to have any values in its achieves slot. In other words, if a behavior is the
act-of another behavior (either directly or by inheritance), then it may not achieve or be part
of some other behavior. A behavior is only allowed to have one value in its act slot. Values of
the act slot are inherited across achieves and isa slots.

The act/act-of links are important because students frequently request behaviors with
vague goals, e.g. fight. When a student requests a behavior like fight that is an act-of other
behaviors, the dialogue manager initiates the why-behavior-dialogue plan in order to
identify a goal for that behavior. For example, a student might choose fight predators or
fight other males as a reason for fighting.

An important form of similarity for features is similarity of location in an animal’s
anatomical structure. This similarity, represented through attachment, was added to
accommodate the vague manner in which people use language. For example, in answer to the
question, “Do you know what bears use to swat other animals?” students might respond, “their
paws,” “their claws,” or “their arms.” While any one of these answers indicates that the
student understands the answer, the knowledge base typically has an action like swatting
associated with only one feature, the most specific one involved. Therefore, it is important

161

that the dialogue manager understand the relationship between each of these features in a
way that enables it to accept one feature for the other in students’ answers. The link that is
used in Creanimate to indicate this relationship is called attachment. Attachment differs
from composition (represented by group/part-of links) because attachment represents
similarity of location in the anatomical structure, whereas composition represents a mutual
interdependence for the performance of an action. The same features can, however, be related
through both attachment and composition.

Issue: It is necessary to represent the connection between features that are

attached to each other. In conversation, these terms can be used loosely to refer
to each other.

Example: A paw is attached to a leg.
Solution: Attached-tojattachment slots.
Attached-to/Attachment. A physical connection between features is represented by the
attached-tojattachment links. A feature that is farther away from an animal’s body is
attached-to a feature that is closer. So, leg would appear in the attached-to slot of foot.

(DEFFRAME feature feet

:isa ([feature end-of-appendage])
:subtypes ([feature feet-with-toes |}
[feature feet-without-toes])
t e e

Tho attarhed. tn ral
ALl WAL IILUA PV AL

173
(¢}
-
o}

(S = 3 § 9 ¥ AL Ity Jtuutit w

the question, “Do you know hat a cheetah uses to bite its prey?” tudent mlght respond, “its
mouth.” Although, the dialogue manager might be seeking sharp teeth, it can infer that the
student’s answer is compatible with the desired answer using the attached-to relationship .
In a situation like this, the dialogue manager would respond, “That is right. Cheetahs use
their sharp teeth to bite.”

7.3.3 Relationships Involving More Than Two Objects

In the initial Creanimate representation, objects representing animals had links to each
of the features, actions, and behaviors that the animals possess or engage in. However, since
features can support several actions, actions can support several behaviors, and vice versa,
these links were not sufficient. For example, bears have both teeth and claws. They also
perform the action scrape. With only links to individual features, actions, and behaviors, the
dialogue manager could not infer whether the bear used its teeth, its claws, or some other
feature in order to scrape. Furthermore, if an index indicated that a story contained teeth,
claws, and scrape, the storyteller could not determine if the story was an example of teeth
scraping or claws scraping. It is clear that both the dialogue manager and storyteller require a
representation that can express in specific terms, which features support which actions and
which actions support which behaviors, as well as which behaviors are supported by which
other behaviors for a particular animal or index. This problem is solved using frames called
relationships. Individual relationships are not named, nor are they connected by abstraction
hierarchies.

162

Feafuns, Plans, and Bplans
Issue: The representations for animals and indices must indicate which of the
features that an animal possesses are used to perform which of its actions.
Example: A bear could use either its teeth or its claws to scrape.
Solution: The relationships called feafuns.
A feafun is a relationship that links together a feature with an action it supports.
Feafuns appear in the feafuns slots of animals and indices, as in the example below:

(DEFFRAME animal red-cockadoo-woodpecker

tisa [animal flying-bird])

:features ([feature small-beak])

ractions ({action peck])

:feafuns ([feafun :feature [feature small-beak]

raction [action peck]])

Issue: The representations for animals and indices must indicate which of the
actions that an animal engages in are used to support which of its behaviors.

Example: A beaver could either swim or run to flee predators.

Solution: The relationships called plans.

Plans link an animal with a specific action that it uses to achieve one of its behaviors.
For example,

[plan :action [action swim]
:behavior [behavior flee-predator]]

Issue: A particular animal can use one of several behaviors to achieve another
behavior.
Example: An animal could get food by hunting, foraging, scavenging, etc.
Solution: The relationships called bplans.
A plan has two slots called sub and super. The behavior in the sub slot is used by the
animal with the bplan in order to help the animal perform the behavior in the super slot.
The bplan hunt in order to get food is displayed below:

[bplan :sub [behavior hunt] :super [behavior get-food]]

The behavior in the sub slot of a bplan must be connected to the behavior in the super slot
by either an achieves, assists, or part-of link. Because a behavior can only support one other
behavior through achieves or part-of links, bplans are not strictly necessary for behaviors
connected in these ways. If an animal performs a behavior that achieves, assists or is part-of
another behavior, then the bplan that connects the two can be assumed for that animal.
Therefore, in most cases, bplans are treated as implicit by Creanimate rather than being
explicitly represented. Bplans are important, however, for consistency in the general-purpose
reminding and dialogue management routines that deal with feafuns, plans, and bplans
identically.

163

The feafun, plan, and bplan relationships are best viewed as multi-directional links.
Instead of connecting one object to another the way traditional slots do, these relationships
connect one object with two others. Feafuns connect an animal to both a feature and an action,
plans connect animals to both actions and behaviors and bplans connect animals to two
behaviors. They allow the dialogue manager and storyteller to recognize not just which
features, actions, and behaviors an animal might have or a story might illustrate, but the
pairs of these objects that go together for the particular animal or story.

Rules

In addition to feafuns, plans, and bplans, Creanimate contains a fourth form of
relationship that is required by the expectation-violation reminding strategy. The
expectation-violation reminding strategy requires the ability to represent standard
expectations. These expectations are generalizations that a student might expect to be true but
are not, in fact, true in all cases. Standard expectations are represented using the
relationships called rules. Rules differ from the rest of the knowledge representation in the
fact that they express information that is not universally true. Each rule in Creanimate is
violated in an interesting way in some story. Rules are used to trigger remindings about these
exceptions.

Issue: Representing standard expectations.

Example: Only birds have beaks. (In fact, many mollusks, including octopuses,
have beaks.)

Solution: The relationships called rules.

There are three types of rules in Creanimate, all-rules, only-rules, and no-rules. Each
type of rule is used to represent a different type of generalization. Like the other
relationships, rules do not have any abstraction hierarchies or inheritance.

The following example is a rule that tells the storyteller that the generalization, “All
birds use their wings to fly,” is violated by a story showing octopi.

[only-rule :animals ([a bird])
:value [feature beak]
:index [index octopus-spar]

This particular rule triggers an expectation-violation reminding any time a student asks
to give a beak to an animal other than a bird. The slots in rules connect animals to attributes
that those animals are either expected to possess (all-rules and only-rules) or not to possess
(no-rules) and to the indices of stories that violate those expectations.

7.3.4 Recording Subjective Impressions

The success of Creanimate depends in large part on how natural the dialogue seems to
the student. An important part of a natural-seeming dialogue is output that is capable of
conveying subjective impressions. To enable the system to produce this output, an indexer
records his own subjective impressions of stories and the relationships that they contain.
These opinions appear in the bridges and other statements described in Chapters 5 and 6.
They are recorded in the form of objects called impacts. Their name comes from the fact that
they are intended to convey the impact that a story or statement will have on a student.

Issue: Presenting subjective impressions of the relationships in stories that are
depicted in stories makes dialogues more natural and helps to interest students
in seeing those stories.

164

Example: The way kangaroo rats use their hind legs to kick dirt in the eyes of
predators is surprising.
Solution: Associating impacts with the relationships that appear in stories.
The impact slot in relationships is used by the storyteller in generating the bridges that
introduce a story. The following feafun with the impact surprising appears in the index for a

story about kangaroo rats. In this story, a kangaroo rat kicks dirt in the eyes of predatory
snake:

[feafun :feature [feature strong-hind-legs]
raction [action kick-dirt]
:impact [impact surprising
:object [action kick-dirt]]]

The impact causes the storyteller to introduce this story in the following fashion:

hei hind 1 f ..
. Kick di

I have an amazing video about that.

Would you like to see that?

In Chapters 5 and 6, we saw questions used as bridges to stories. The decision that a
particular relationship in a particular story should be introduced by a question is a subjective

decision made by an indexer. In general, the criteria for an askable relationship in an index
are: 1) the animal must be familiar to nearly all the students in the target population, and 2)
some students should know the answer.

When the impact askable is associated with a relationship, that tells the storyteller
that a story depicting that relationship can be introduced with a question. Below is the
feafun talons in order to grip that contains the impact askable from a story about eagles.

[feafun :feature [feature talons]
;action [action grip)
:impact ([impact askable])]

The presence of the askable impact in this feafun causes the storyteller to generate the
following bridge when introducing the story it appears in:

White breasted sea eagles have claws. Their claws are called

talons. Do vou kpow what white breasted sea eagles use their
aws for?

(I have a great video about that.)
Would you like to see that?

An impact only appears in a relationship when the relationship is part of an index.

Issue: Giving a student someone’s overall impression of a story can help promote
the story.

165

Example: A particular student might especially like stories with chase scenes in
them and dislike stories with close-ups of insects.
Solution: Associating story impacts with indices.

Indices contain a slot for storing impacts that describe the story as a whole. This
impacts slot contains an impression of the story that an indexer feels will help the student to
make an informed judgement about whether or not he wants to see the story. In many cases,
this impact serves as an advertisement highlighting elements that make the story most
appealing. Just as with impacts stored in relationships, impacts associated with indices
themselves are used to construct the bridges that introduce stories. The impacts that apply to
indices fall in the five categories described below. Each index may have several impacts but
only one of each type.

Impression. An impression impact describes the way a viewer will react to a
story. Some impressions are funny, surprising, gruesome, and exciting.
Sample output: I think this video is exciting.

Action. An action impact describes the action that appears in a story. Some
action impacts are, high-speed chase, graceful swimming.

Sample output: I like this video because it has graceful
swimming in it.

Animal. An animal impact describes the animals other than the animal in the
index that appear in the video. For example, a story about a school of fish that
also includes a shark might have the animal impact shark.

Sample output: If you like sharks, you’ll love this video.

Technique. A technique impact describes the way a video was filmed. Some
technique impacts are, close-up and slow-motion.
Sample output: This video was filmed in slow-motion.

Location. A location impact describes the place that a video was filmed. Some
location impacts include underwater, in the treetops, in a beehive.
Sample output: They had to be underwater to film this video.

Impacts are used in both relationships and indices to enable the storyteller to introduce
stories in the way that a person would. The introductions to stories produced by Creanimate
contain not just objective information about the contents of the story and how it relates to the
student’s discussion but also subjective information about what is exceptional and appealing
about a particular story.

7.3.5 Controlling Search

In each of the reminding algorithms the storyteller searches through the knowledge
base examining the indices that are associated with animals or their attributes. For the
example reminding and expectation-violation reminding algorithms, controlling these
searches is not difficult because they only search up or down a hierarchy. Because these
algorithms only search in one direction, they terminate either when they find a story or when
they reach the top or bottom of the hierarchy. However, the similarity-based reminding
algorithm is implemented as a widening search that goes both up and down abstraction
hierarchies. Left unchecked, this spreading activation will search an entire abstraction

166

hierarchy. Therefore, it was necessary to introduce a mechanism to prevent this similarity
search from spreading beyond objects that are reasonably similar to the starting point. As I
discussed in Chapter 5 the Creanimate system has used two different techniques for controlling
this search.

Issue: Establishing boundaries for similarity searches.

Solution: The abstraction slot.

Abstraction slots in feafuns and plans. Like the impact slot, the abstraction slot is only
used in relationships that appear in indices. The abstraction slot in a relationship contains
another relationship made up of objects that, individually, are abstractions of each of the
objects in the initial relationship. For example, a story about a skunk squirting skunk juice
contains the feafun scent duct in order to squirt noxious fluid. In the abstraction slot of that
feafun appears the feafun orifice in order to propel fluid.

[feafun :feature [feature scent-duct]
:action [action squirt-noxious-fluid]
iabstraction [feafun :feature [feature orjficel
. ag:j on [agr‘j on QEQQEJ _f “”'dl]]
This abstraction conveys the information that any story that shows an orifice being used

to propel fluid in some way could be considered similar to the skunk story. The abstraction is
used by the similarity-based reminding algorithm to identify similar stories. The
relationship in the abstraction slot establishes the boundaries of a set of stories that can be

considered similar to the current story. For more details see the discussion of the original
similarity-based reminding algorithm in Chapter 5.

Issue: Controlling similarity search with abstractions requires an indexer to add
information to every feafun or plan in every index specifically for this purpose
rather than using general-purpose information from the knowledge
representation.

Solution: Functionality/functionality-of slots.

The Functionality/functionality-of slots in features/actions. The functionality slot
connects features to actions. This slot is only used in abstract features. An abstract feature is
one that appears as an internal node in the feature hierarchy and would never be directly
linked to an animal. The functionality relationship expresses a similarity of function among
the children of an abstract feature, as opposed to simply a similarity of structure. For
example, in Creanimate the feature sharp is a quality of sharp teeth, quills, and talons,
among others. Sharp is an abstract feature which would never be directly associated with any
animal. It provides, however, a useful category for gathering together several features which
share sharpness as a basic quality. The functionality slot represents the usefulness of a
feature’s being sharp. Sharp has the abstract action pierce in its functionality slot. The
functionality slot is used by the improved similarity-based reminding algorithm described in
Chapter 5.

The abstraction and functionality/functionality-of slots both allow the storyteller to
establish bounds on its similarity search. Abstractions require less processing at run-time,
however they require additional work by the indexer as he enters stories into the system. The
functionality slot, coupled with the other slots that link features to actions, allow the
storyteller to dynamically generate the same information available in the abstraction slot by
using general-purpose information from the knowledge base.

167

7.3.6 Generating and Understanding Natural Language

In conducting dialogues with students, the Creanimate system must be able to both
generate natural-sounding prose and interpret students’ free-form input. Creanimate generates
output by combining sentence templates with text strings that correspond to objects in the
knowledge base. These text strings are produced from slots called say slots that are attached
to objects.

Issue: Generating natural language output corresponding to objects in the
knowledge base.

Example: Producing the question, “Do you know why sage grouses dance?” using
the objects [animal sage-grouse] and [action dance].

Solution: Say slots.

Say slots are used to generate the natural language equivalent to a frame. The system
possesses basic rules for conjugating verbs and converting the number of nouns. However, in
order to deal with exceptions, specific slots that correspond to the different ways that a
concept may appear in an English sentence are necessary.

Generating Noun Forms from Animals and Features

Since features and animals are nouns, the system must be able to generate natural
language equivalents in both singular and plural. Because features may be expressed as
phrases it is necessary to allow for exceptions when a feature appears following a possessive
noun. These conditions are handled by the following slots:

Sayl. The sayl slot is used to talk about a single animal. For an animal, the sayl value
is the singular form of the animal's name. Thus, the sayl value for cheetah would be
“cheetah.” For a feature, whether the say1 value is the singular or plural form depends on
whether an animal has one or several of the feature. For nose, the sayl value would be "nose"
because an animal only has one nose. However, for feet, it would be "feet,” since an animal has
more than one foot. The Creanimate natural language generator contains rules for producing
the values for the other say slots from the value of the sayl slot. However, in the case of
irregular nouns, an indexer overrides the rules by adding explicit values to the appropriate
slots.

Say. The say slot contains the text string that corresponds to multiple animals. The say
slot always contains a plural form. For example, the say value for cheetah is "cheetahs" and
the say value for nose is "noses.” Since most sentences that Creanimate generates use the
plural, the say slot is the most commonly used form. In the absence of a value in the say slot,
Creanimate will generate it from the value in the sayl slot.

Say-its and Say-their. The say-its and say-their slots only apply to features. They are
used for features that have a say value that is a phrase. For example, the animal manta ray
has a feature called manta wings. These fins have the say value "wings that are like fins."
This phrase works well in the sentence, "Manta rays have wings that are like fins."
However, it does not sound natural in the sentence, "They use their wings that are like fins to
swim.”" Therefore, the say-their slot is used for manta wings with the value, "wing-like fins."
When the say-their value is used, the sentence above appears as, "They use their wing-like
fins to swim."

Generating Verb Forms from Actions and Behaviors

Since behaviors and actions represent verbs, the system must be able to conjugate them
for number and tense. In addition to the simple present form, the system uses the present
participle, and the infinitive. As with nouns, the natural language generator contains rules

168

for generating other forms from one form, the plural, third person, present form. This value
appears in the say slot. Therefore, the other slots are only present in order to record
exceptions. The say slots that are used in actions and behaviors are:

Say and Sayl. Just as with nouns, the default number is plural. Therefore, the say value
is the default. The say slot contains the third person plural present form of the verb. For
example, the say value for run is "run.” The sayl value can usually be generated by the system
from the say value according to standard rules. The most common instance when generating the
sayl value from the say value will not work is with behaviors that are generated as phrases.
For example, defend itself has the say value of "defend themselves" and the sayl value
"defend itself."

Say-ing, Say-ingl, Say-to, and Say-tol. The say-ing and say-ingl slots are used to store
the present participle form for an action or behavior. The say-to and the say-tol slots contain
strings corresponding to the infinitive. These slots are only used for verbs that are exceptions
to the standard rules.

Interpreting Student Input

An important strength of the Creanimate system is that it allows students to enter their
own ideas in their own words. However, understanding natural language places a heavy
burden on the system. To respond appropriately to natural language input, the dialogue
manager must be able to interpret student input in terms of the concepts in its knowledge base.
In other words, it must be able to translate students’ phrases typed in free text into elements of
the indexing vocabulary. After three decades of research, understanding natural language
remains an unsolved problem in artificial intelligence and was not a problem that we wanted
to solve as just one part of developing the Creanimate system. Therefore, to meet our
pedagogical objectives, the system had to be designed to allow students the freedom to express
themselves in free text without requiring us to solve the general natural language problem.

What makes natural language understanding manageable in Creanimate is the design of
the user interface. Rather than allowing students to enter full sentences in response to the
program’s questions, we provide them with partial sentences that they complete. Without
this interface, we would have had to devote significantly more resources to natural language
understanding without realizing any gains in the performance capabilities of the program.
For example, consider the range of possible sentences that a student might construct as an
answer to the question, “How would you like to change your butterfly?” He might say any of
the following, all of which should produced the same response from Creanimate.

I want it to have a big nosa.
Give it a big nose.

A big nose.

Can I give it a big nose?
Let’s give it a big nose.

Rather than devote energy to the problem of understanding all the different ways to
express “Give an animal a feature” and distinguish it from all the ways to express, “Give it an
action” and “Give it a behavior,” we decided to provide students with partial sentences to
complete. Therefore, in response to the question, “How would you like to change your
butterfly?” a student sees the following options:

169
Give it
So it can...
So it is

These partial sentences ease the natural language understanding problem for
Creanimate in two ways. They remove the need to handle all of the different ways to
construct a sentence with the meaning, “Give it a big nose,” and they make it easier to
distinguish sentences that mean “Give it a feature,” from sentences that mean “Give it an
action,” or “Give it a behavior.” When a student selects the options, “Give it...” or “So it is ...”
Creanimate can assume that the phrase the student types in will be a feature. Similarly, if
he selects “So it can...” then the program can expect either an action or a behavior. The
ability to rely on these expectations greatly reduces the difficulty of the natural language
processing task in Creanimate. For example, Creanimate does not need to handle the
ambiguity of the word “fly” between the animal fly and the action fly because it always
knows whether it is looking for an animal or an action to fill in a particular blank.

Thus, the natural language understanding task in Creanimate is to map from a phrase
entered by a student to an object in the knowledge base. The class of that object is
predetermined by the partial sentence that the student selects. In other words, natural
language understanding in Creanimate is a matter of recognition. Whenever a student enters a
phrase, the dialogue manager attempts to recognize that phrase as one of the concepts in the
knowledge base. Martin (1989; 1990) describes an architecture for natural language
understanding called the Direct Memory Access Parser (DMAP) which is ideally suited to
Creanimate. A DMAP parser is a recognition-based parser that operates on hierarchically
organized memories like Creanimate’s knowledge base. In a DMAP parser, text strings are
associated with individual concepts in the knowledge base, and the parser uses the links
between concepts to traverse the knowledge base as it processes a phrase. As it processes a
partially parsed phrase, it builds up predictions about the remaining elements of the phrase.
These predictions are generated by examining the links that connect concepts in memory.
Predictions make the DMAP parser efficient and flexible in its ability to handle missing or
unrecognizable information in an input.

In Creanimate, the DMAP parser works in the following way. Suppose, Creanimate
asks a student why he wants his turtle to run fast, and the student selects “So it can...” and
then enters:

chase arfter female turtles

From the question which is of the form Why action? and the choice of “So it can...” the
parser gets the initial prediction that the input is a behavior. It processes the phrase one
word at a time from left to right. The constituent “chase” leads to the activation of two
behaviors, pursue and drive away (i.e. “chase away”). The parser then traverses the
specialization links associated with these behaviors in order to generate predictions to guide
further processing. The behavior pursue has two behaviors in its act-of slot, pursue-prey and
chase mates. Drive away has the behavior drive away enemies in its act-of slot. The parser
therefore predicts that the remainder of the phrase will match one of these more specific
behaviors. If it doesn’t then the parser will return one of the two general behaviors. As it
continues to process the phrase, the parser’s predictions for chase mate match against “chase
after female turtles,” and the parser reports to the dialogue manager that it has recognized
chase mates in the student’s input.

170

As this brief example shows, the DMAP architecture is ideal for Creanimate because
the parsing task is one of recognition and because the structure of Creanimate’s knowledge base
is hierarchical. To support the DMAP parser, two forms of information had to be added to the
knowledge base. First, text strings were associated with the appropriate concepts in the
knowledge base. Second, information was added to tell the parser which links to traverse
through the knowledge base in the course of processing input. The Creanimate parser is
described in greater detail in Fitzgerald (1992).

Issue: Providing the DMAP parser with the information necessary to generate
predictions and recognize phrases.
Solution: Dmap-parses slot.

Creanimate objects have a single slot devoted to storing the information required by the
parser. The dmap-parses slot stores one or several "phrases” that the parser uses to process
input and generate predictions. These phrases combine text strings, actual objects from the
knowledge base, and the names of slots. These elements can combined in arbitrary
permutations. An object may have any number of phrases in its dmap-parses slot. The
following examples show the range of possible parser phrases that could be associated with
the behavior pursue prey:

pursue prey: Activated by the presence of "pursue” in a student input.
Predicts the string “prey” as an upcoming constituent of the input.

[behavior pursue] prey: Activated when a constituent of the student’s
input leads to the activation of the behavior pursue. Predicts the string “prey”
in the remainder of the input.

[behavior pursue] [animal preyl: Activated by the activation of
the behavior pursue. Predicts the presence of any of the constituents that would
activate the animal prey.

:act :object: Activated by the activation of any of the behaviors in the
act slot of pursue prey (The behavior pursue is the act of pursue prey.) Predicts
the presence of constituents that will activate any concepts in the object slot of
pursue prey. (The animal prey appears in the object slot of pursue prey.)

7.3.7 Minimal Representation Revisited

In response to specific needs of the Creanimate system, the knowledge base has been
enhanced. However, the guiding principle has continued to be minimal representation. The
knowledge representation was expanded only in response to specific needs and only with
minimal modifications. Specifically, the knowledge representation was improved in the
following ways:

* New links between features, actions, and behaviors were added to indicate the

manners in which they support each other.

*A new type of frame called a relationship was created in order to link
more than two objects together.

* Information was added to the hierarchies to help control the search
that is central to the reminding strategies.

* Objects were created to store the intuitive impressions that allow the
storyteller to construct natural bridges when it introduces stories.

¢ Information was added to assist in the generation and understanding of
natural language.

171

A summary of the resulting knowledge representation can be found in Appendix A. This
appendix shows the slot names and a description of their fillers for all of the classes of objects
and relationships in the Creanimate knowledge representation.

7.4 Unresolved Representation Issues

In the introduction to this thesis I emphasized the fact that an important goal of this
research was to provide a testbed for investigating reminding strategies and exploring
pedagogical issues. Therefore, it has been an important priority of this research to reach a
point at which reminding strategies could be implemented and pedagogical effectiveness
evaluated as quickly as possible. In achieving those objectives it has been necessary to limit
our goals concerning the range of relationships taught. It was important that the
representation be broad enough to be educationally valuable but that the representation task
not be overly ambitious. Therefore, explanation questions about important areas of animal
adaptation have not yet been implemented. As the program is extended, however, these will
be integrated into the existing system. Some of the outstanding representation issues are
described below.

Habitat. The habitat that an animal lives in plays a crucial role in determining which
survival goals are in jeopardy for that animal and what strategies are available to achieve
those goals. For example, an animal that lives in the tropics may have to face the issue of
maintaining a low enough body temperature, but it will not have to deal with maintaining
warmth. Habitat will probably be represented as a collection of individual features including
available food sources, climactic conditions, and the animal populations that share the
habitat.

Interaction Among Animals. In the current system, it is not possible to represent the
impact on both animals of an action or behavior that involves two animals. For example, the
behaviors attract a mate and select appropriate mate are both represented in Creanimate.
Yet it is not possible to represent the interaction between a male’s attract mate behavior and a
female’s select appropriate mate. The same is true of pursue prey and flee predator.
Combined with habitat factors, the ability to represent interactions among animals will
enable Creanimate to make inferences about whether a selected strategy for getting food will
be effective for the food sources or prey populations in a particular animal’s environment. To
make inferences like this, however, there must be a way to represent the interaction between
the activities of both individual animals and of animal populations.

Interference among animal attributes. The current representation of features, actions,
and behaviors represents affordance relationships, but not interference. For example,
Creanimate currently knows that there are several ways to enable a flying animal to stay
aloft, all of which involve having wings that are large enough for the animal’s body size.
However, this is represented as positive information about what combinations of features
enable the animal to stay aloft. It is not possible to represent the fact that being heavy
directly interferes with flying. Likewise, the system currently cannot know that having lungs
is incompatible with having gills. To make inferences about how changes to animals will
interfere with an animal’s current abilities, the system must be able to reason about the way
that attributes interfere with each other.

7.5 Summary

In any case-based teaching system, the indexing vocabulary supports the indexing and
retrieval of stories for the storyteller. In Creanimate, however, the indexing vocabulary also
supports the dialogue manager. It provides the general knowledge about animals and their

172

attributes necessary to manage open-ended dialogues about students’ animals. The indexing
vocabulary, called the Creanimate knowledge representation, was designed in accordance
with the principles of minimal representation and primacy of pedagogy. These principles
ensure that the instructional objectives of the teaching system take priority in every design
decision.

The Creanimate knowledge base is a semantic network that links animals together with
their attributes. This network is implemented using frames with fixed sets of slots. Specific
frame types are used to represent animals, physical features, actions, and behaviors. These
frames are organized into abstraction hierarchies with inheritance of attributes. Beyond
associating animals with their attributes, the knowledge representation language was
enhanced to respond to five sets of representational issues: representing the requirements of
actions and behaviors, expressing various forms of similarity, recording subjective impressions,
controlling search, generating and interpreting natural language.

Chapter 8

Indices and the Indexing Tool

In this chapter, we turn from the indexing vocabulary itself to a discussion of how it is
used to index stories. In the first section of the chapter, I describe the structure of indices and
how their structure supports Creanimate’s reminding strategies. In the second section, I discuss
the role of the indexer. An indexer is a system developer who does not program, but is
responsible for maintaining the knowledge base and creating the indices for stories. In the
third section, I describe the Creanimate Indexing Tool. The indexing tool is a software
environment designed to support a human indexer with the process of building and maintaining
the knowledge base, as well as indexing video clips. The indexing tool has been a vital
resource for managing the complexity of the knowledge base as it grew to include over a
thousand different features, actions, and behaviors.

8.1 The Structure and Use of Indices

The Creanimate knowledge representation supplies the vocabulary for describing the

rontante nf a gty in aninday An indov in Craanimnta io an nhinat irmmmlamaniad in tha camao
LulLilkiilo v a DI,UI] 11l All 111IUCA. MU LIIMCA ool caiulliae 1o ai UUJCL!. uul,}xcxucut.cu 111 WIC oAl

fashion as the other objects. Indices are frames with slots, most of which contain objects from
the Creanimate knowledge representation. Each index describes the role of one animal in the
story. Any particular story may have several indices. Thus, a story about a robin chasing a cat
away from a nest full of chicks might have three indices, one for the robin, one for the cat, and
one for the chicks. The following example shows an index for a story about a woodpecker using
its beak to probe for insects. This index is relatively simple; some more elaborate indices can
be found in Appendix C.

(DEFFRAME index woodpecker-pecks-woodpecker
ranimals ([animal red-cockadoo-woodpecker])
:features ([feature small-beak])
:behaviors ([behavior search-for-insects])
:actions ([action peck])
:feafuns ([feafun :feature [feature small-beak]
:action [action peck]
:abstraction
[feafun :feature [feature beak]
;action [action pierce]]
1)
:plans ([plan :action [action peck]

:behavior [behavior search-for-insects]

173

174

:impact ([impact askable])
:abstraction
[plan :action {action pierce]
:behavior [behavior get-food]]])
:story [story woocdpecker-eats)
rimpact ([impact cool]
[impact slow-motion])

:rating 8
:VIDEO ((101001 102500 (disk 'nat-and-brit) "A")))

8.1.1 The Primary Slots in Indices

Indices have two parts. The first part describes an animal and the attributes that it
displays in the story, and the second describes some other aspects of the story. The slots
devoted to describing the animal in the story are:

Animal. An animal that appears in the story.

Features. Features used by the animal in the story.
Actions. Actions performed by the animal in the story.
Behaviors. Behaviors achieved by the animal in the story.
Feafuns. Feafuns demonstrated by the animal in the story.
Plans. Plans demonstrated by the animal in the story.

Except for the animal slot, these are the same slots that appear in an animal frame. In
fact, the values that appear in these slots in an index also appear in the same slots in the
frame for the animal. However, the values in the slots of an index are the subset of the
animal’s total attributes that actually appear in the story.

The animal, features, actions, and behaviors slots are bi-directional slots that link
indices directly to objects in the knowledge representation. The storyteller traverses these
links in the course of searching for stories about particular objects. So, for example, in a
discussion of how to fight, the storyteller would start at the behavior fight and then search
down abstraction links to other behaviors. At each behavior, it would examine the indices
linked to that behavior to see if it is appropriate the current context. The bi-directional links
that connect objects to indices enable the storyteller to identify candidate indices in this way
for both example remindings and similarity remindings. These candidate indices must then be
compared with the target concept for the current reminding strategy.

Candidate indices are evaluated by comparing the relationships that appear in the
index with the target concept for the current reminding algorithm. As I discussed in Chapter 5,
the target concept in a reminding algorithm is always a feafun, plan or bplan. For example, if
a student proposes that his animal fight by stabbing other animals, the target concept would

[plan :action [action stab] :behavior [behavior fight]]

Searching down from the behavior fight the storyteller would find the behavior fight
enemies.

175

(DEFFRAME behavior fight-enemies

tisa ([behavior defend-against-enemies])
:achieves ([behavior protect-self])

ract [behavior fight])

:ranimals ([animal jawfish] [animal bee])

:stories ([index bees-stinging-enemy-bee]
[index bees-fight-wasp]
[index jawfish-defends-territory 1)

)

This behavior is linked to three indices that all appear in its storie slot. (The stories
slot in a behavior is the inverse link of the behaviors slot in an index.) All three of these
indices become candidate remindings. Since the student proposed that his animal stab other
animals in order to fight, the storyteller must examine each of these indices to see if they
contain this target concept. One of these indices, the one named bees-stinging-enemy-bee,
contains the following three plans in its plans slot:

[plan :action [action sting] :behavior [behavior fight-enemies]]
[plan :action {action drag] :behavior [behavicor fight-enemies]]
[plan :action [action swarm] :behavior [behavior fight-enemies]]

Since stab is an abstraction of sting, through isa links, and fight is an abstraction of fight
enemies through act links, the target concept matches against the plan sting in order to fight
enemies from the story.

As this example shows, the slots in indices that describe the attributes of an animal in a
story support the example and similarity-based reminding algorithms in two ways. First, the
direct links to the objects in the knowledge base enable the storyteller to locate candidate
indices by traversing hierarchies of animals, features, actions, and behaviors and identifying
objects that are linked to indices. Second, the slots for feafuns, plans, and bplans enable the
storyteller to match the contents of indices against the target concept for the current reminding
strategy.

8.1.2 The Secondary Slots in Indices

The remaining slots in an index describe other aspects of a story. They are:

Expect-viols. Expect-viols is short for “expectation violations.” The expect-viols
slot contains rules that are violated by a story.

Impacts. Subjective descriptions of the story.

Rating. A numeric value between 1 and 10 that the storyteller uses to decide
between two stories that are relevant. The rating is intended to capture a
story’s overall appeal.

Story. The story link is a pointer to a story object.

Video. The video slot is used to store the physical address of the video clip on a
disk.

The expect-viols slot supports the expectation-violation reminding strategy by
providing a direct bi-directional link to rules representing expectations that are violated by
the story. When the storyteller identifies a rule that applies to the current discussion, it
traverses this link to the appropriate index. In the impacts slot, the storyteller finds the

176

impacts it uses to construct bridges for stories. The rating slot gives the storyteller information
about the relative value of stories. A higher rating indicates that a story is more dramatic,
exciting, or unusual. The storyteller gives preference to stories with higher ratings when all
other factors are equal. The story slot links an index to a story object. The role of a story object
is to connect together all of the indices that describe the same video clip. This prevents the
storyteller from showing the same story twice as a result of retrieving it through two different
indices. The final slot, the video slot, is used by the storyteller to locate the actual video clip
on a videodisk. The video value specifies the disk on which the clip appears,as well as the
frame numbers of the first and last frame in the clip.

8.1.3 The Indices in Creanimate

The current Creanimate knowledge base includes 206 indices. However, the prototype
version tested in the schools had access to only 60 minutes of video, which limited it to 135
indices. The indices in Creanimate cover a wide range of birds, mammals, fish, reptiles, and
amphibians. A partial list of those indices follows.

jawfish-defends-territory
bees-make-honey
ostrich-dances-ostrich
bear-gets-salmon-disk
salmon-jump-salmon
geese-migrate-canadian-geese
nurse-shark-and-remora-nurse-shark
lion-sets-territory-lion
mom-and-baby-chimp-chimpanzee
leopard-carries-food-into-tree-leopard
anteater-sniffs-anteater
ox-digs-in-snow-musk-ox
cricket-smells-tree-cricket
assassin-bug
baby-vulture-asks-for-food
skunk-and-wolf
eagle-catches-rabbit
squirrels-flee-predator
rabbit-escapes—eagie
elephants-at-waterhole-elephant
wildebeests-migrate-wildebeest
gerenuks-eat-and-fan-selves-gerenuk
robin-and-cat
grouse-dances-sage-grouse
Creanimate is able to get a great deal of mileage out of the clips that it possesses
because each clip can be used in several different ways. In the story selection process,
versatility is emphasized. The versatility of a clip is determined by the number of animal

attributes that can be recorded in the index for that clip. For example, an index with five
different features can be retrieved to illustrate five different Why feature dialogues by the

177

example reminding algorithm. The average index in Creanimate includes at least two
different values for each type of animal attribute. In other words, an average index in
Creanimate contains slightly more than two features, two actions, and two behaviors. Since
actions can be used in both Why action and How action dialogues, this means that the
average index can be used to illustrate discussions of at least eight different explanation
questions. Table 8 shows the average numbers of attributes that have been associated with
the current 206 Creanimate indices. In addition to these attributes which are used for example
reminding, seven percent of the indices are associated with expectation-violations, meaning
that they can be retrieved by the expectation-violation reminding strategy.

Table 8.-The average number of values in each of the primary slots in the 206 Creanimate

indices
Slot Name Average number of slot values per index
Features 2.14
Actions 2.39
Behaviors 2.17
Feafuns 2.10
Plans 2.32

A second way to look at the breadth of coverage of the indices in Creanimate is to look
at the number of different objects in the knowledge base that appear in indices. The larger
this number, the broader the coverage of the Creanimate story library. Table 9 shows this
number both for attributes that appear directly in indices and for those that are linked to one
or more indices by inheritance.

Table 9.-The number of objects of each type that appear in indices

Object Class Number that appear | Number that appear | Total Number in
in indices directly in indices by Creanimate
inheritance
Animals 111 (32%) 174 (50%) 343
Features 110 (35%) 190 (61%) 310
Actions 121 (48%) 191 (76%) 250
Behaviors 106 (50%) 184 (88%) 210

Table 9 shows that the storyteller can produce a relevant story for between 61 and 88
percent of the attributes of animals that Creanimate knows about. While these statistics
show a high coverage rate for the stories in Creanimate, our experience indicates that optimal
story coverage for Creanimate’s current knowledge base would require approximately twice as
many stories as the system currently contains. This degree of coverage would remove the need
to start dialogues by suggesting animals and modifications to students and would allow them
to choose anything in the knowledge base. The primary obstacle to achieving this goal is not
the indexing process, however. It is story availability. Since film libraries do not tend to be
encyclopedic, obtaining a wide range of animal video has proved to be difficult.

8.2 The Role of the Indexer

Just as the technology of expert systems gave rise to the new occupation of knowledge
engineer, case-based teaching systems have given rise to the occupation of indexer. An indexer

178

is a non-programmer who plays an essential role in developing a case-based teaching system.
As the name indicates, an indexer indexes. However, the role of an indexer extends beyond
simply labeling stories with indices. In Creanimate, the indexer participates in story
selection, video production, knowledge representation, testing, evaluation, and debugging, in
addition to indexing. The indexing process has several steps, many of which overlap or
alternate.

The first step, story selection, is described in Chapter 3. To assure adequate coverage,
the initial story collection stage should generate many more stories than can actually be used
in the final system. This gives the indexer sufficient flexibility in revising the story
selections as the indexing and knowledge representation progress. The first stage in building a
new system once a large enough body of stories has been collected is called pre-indexing. Pre-
indexing is a quick and rough way to take stock of the available stories. Raw footage is first
previewed and segmented into self-contained stories that illustrate phenomena of interest.
Each story is then reviewed for the features, actions, and behaviors that appear in it. In the
pre-indexing stage these attributes are only loosely characterized. Thus, instead of
identifying different types of claws as talons, pincers, etc. during pre-indexing they may all
just be called claws. In the early development of Creanimate, pre-indexing information was
recorded in a spreadsheet. Once the pre-indexing information is complete, stories can be
grouped together based on shared features, actions, or behaviors. These groups are then used to
filter out stories that are not rich enough in their contents or that duplicate each other. Pre-
indexing information can also be used to determine which choices of animals and modifications
should be presented to students on the program’s first screen.

Once the initial filtering of stories based on pre-indexing is completed, the indexer
begins the work of knowledge representation and indexing. Knowledge representation and
indexer will view a story and identify the number of indices required for it based on the number
of different animals of interest in it. He will then begin to enter the indexing information for
that story. Indexing is done by successive refinement, so the first time the indexer may only
enter what he sees as the most important elements of a story, and he may stick to the level of
description used in the pre-indexing stage. In the early stages of indexing, the priorities are
getting the indices into the storyteller’s library in some form and discovering where the
knowledge base needs to be expanded. When the indexer discovers elements in video clips
that do not appear in the knowledge representation, he must extend the knowledge
representation to include the new concepts before he can index those clips. In this way, the
indexing process drives the development of the knowledge base.

Once the indices have been entered into the knowledge base in a rough form, the indexer
can begin to test the system’s new knowledge by running the program. As he runs the program
he can identify indexing errors and additional gaps in the knowledge base. Once the stories
have been roughly indexed and partiaily tested, the indexer refines the indices. Refinements,
such as the distinctions between varieties of claws, that the indexer has ignored until this
stage, are now added to both the knowledge base and the appropriate indices. To support
incidental remindings, abstractions are added to the relationships in indices, and expectation-
violations are recorded. The ratings of stories are adjusted to insure that more appealing ones
are offered first, and impacts are added to help the storyteller generate accurate
introductions.

It is only after the knowledge representation and indices are reasonably well refined
that video production begins. Depending on the source of the video, production may involve
the editing and splicing of clips and the addition of sound effects, voiceovers, and music, or it
may simply involve dubbing from an externally produced source tape. Once the clips have
been edited to their final form, they can be copied onto the storage medium that the program

179

will use. In the current version of Creanimate, the storage medium is an optical disk recorded
using the standard laserdisc format. The video production process can be extremely time
consuming and may require significant technical production skills.

The final stages of indexing focus on testing and debugging. At this stage, natural
language generation and understanding receive a great deal of attention. It is important to
have as large a population of testers as possible use the system in order to collect as many
transcripts as possible. The indexer then analyzes the transcripts for incorrect output and mis-
parsed or unparsed input. These errors are corrected by modifying or adding to the information
in the knowledge base.

Every stage in the indexing process requires careful thought and great attention to
detail. An indexer must have the appropriate temperament for detail work and be
conscientious through every step of testing and refinement. While indexing does not require
any programming ability, it does require that the indexer understand the ways in which the
program will manipulate the information that he is entering into the knowledge base. The
ability of the dialogue manager to evaluate students’ answers depends on the correctness of the
knowledge base. Maintaining the validity of the knowledge base is assisted by a knowledge
representation manual (Edelson 1992) that explains the different object types in the system,
their slots, and fillers. Because the Creanimate system deals with elementary topics, a
layman’s understanding of animal adaptation was sufficient background for our indexer.
However, a library of reference materials was essential, as was access to our consulting
professor of biology.

Once the initial corpus of stories had been indexed, the knowledge base was sufficiently
well-developed that indexing became significantly easier. Initially, every index required
extensive additions to the knowledge base. During this stage, it could take as long as a day to
index one story because the knowledge base required frequent reorganization. Each
reorganization, in turn, forced a good deal of re-indexing. However, as the knowledge base
grew more and more stable, reorganizations became less frequent and more localized in their
impact. In our most recent indexing efforts, we estimated that the indexer was able to add
stories at a rate of approximately one hundred a month, excluding video production time.

8.3 The Creanimate Indexing Tool

While the indexer is a vital resource in the development of a case-based teaching
system, indexing on a large scale would be impossible without development tools like the
Creanimate Indexing Tool. Building a large knowledge base and indexing hundreds of stories
is a daunting task. To ease it, we developed a suite of software tools that assist an indexer
with the processes of indexing stories, modifying the knowledge base, and maintaining its
consistency. Experience in knowledge representation has shown the importance of the ability
to view a knowledge representation in several ways. In particular, the ability to view frames
both graphically, as a network of links and nodes, and textually, as a set of slots and fillers, is
essential. The Creanimate Indexing Tool provides these capabilities as well as giving the
indexer the ability to work directly with video clips. The two views on the knowledge base
are provided by modules called the hierarchy browser and the frame editor. Video
previewing is provided by the clip editor. The Indexing Tool was written in Common Lisp
(Steele 1990) on the Apple Macintosh using standard conventions for the Macintosh interface.

180

3 % Flle I¢it Eval Tools Windows Uiew Frome-Edit Uslidete Misc

D B
£33t ANIMAL Frame: BESR frame Bzeopoy

ISA SUBTYPES PROPERTIES FEATURES impect mean-fish
PREDATOR PANDA FUR behavior fish
LAND- MAMMAL GRIZZLY-BEAR BROWN-COLOR feature flying-fish-fins

cus FORELEGS

BROWN- BEAR LOCATION feature fish-package

| POLAR-BEAR LYERY-LARGE-SIZE animal fish
ACTIONS COMMENT animal jawfish
SWAT FISH animal fiying-fish
WRESTLE FIGHT-FOR-TERRIT. animal crawfish
WAIT SEARCH- FOR-NSE...
SMELL BREAK-UP-FO0D onimal demo-fish
\GRIP LINGEST - FOOD animal rock-fish
FEAFUNS PLANS animal angler-fish
LONG-CURYED-CLAWS to SWAT GRASP- IN-JAW to FISH animal fishing-bet
FORELEGS to SWAT SWAT o FIGHT - FOR-MATES story seo-eagle-gets-Tfish
FORELEGS to WRESTLE WRESTLE o FIGHT~FOR=-TERRITO... _ -h
MOUTH o GRASP-IN-JAW to FIGHT-FOR-TERRITO.. story angler-fish-hunts
LLEGS __ to WADE story crawflsh-find-desd-fish

story
story

heron-nabs-fish
grey-heron-gets-fish
grebe-dives-for-fish

Figure 38. A screendump showing a hierarchy browser at the lower left and a frame editor

above it

An indexer views and modifies the knowledge base through the browser and the frame
editor. Browser and editor windows can be opened by selecting choices from a menu or by
typing commands to a Common Lisp interpreter. A browser window displays a network that
shows objects of a single type and the links that connect them. When the indexer wants to
view a hierarchy, he opens a browser window by specifying the particular object whose
relationships he wants to see. That object is designated the center node of the hierarchy
displayed in the browser window. Abstractions (parents) of the center node are displayed to
the left of the center node, and specializations (children) are displayed to the right. A
browser window for the feature horns is shown in figure 39.

APPENDAGE (1S4)+ APPENDAGE-ON-HEAD & SINGLEHORN (84>
[** APPENDAGE -(f5A){POINTY-APPENDAGE R (COUANTERS
[QuaLiTy T@SAD{HARD QUAL Y™ TWOHORNS (54)-{TONGHORNS

Figure 39. A browser window for the feature horns. When the same object appears twice in the
same window, it is annotated with two asterisks (**), as with the feature appendage.

From within a browser window, an indexer can use the mouse to open a browser window
centered on one of the visible objects. He can also choose to view one of the visible objects in a
frame editor window. The frame editor provides a very different view of an object. It
displays all of the slots and fillers of a single object, as shown in figure 40.

ISA SUBTYPES PROPERTIES FEATURES
PREDATOR PANDA FUR b
LAND- MAMMAL GRIZZLY-BEAR BROWN-COLOR -
cus FORELEGS b
BROWN-BEAR LOCATION X
POLAHE BEAR YER b3
,§
ACTIONS BEHAVIORS COMMENT o
. 5
SwaT 3 FISH o 3(
WRESTLE FIGHT - FOR-TERRIT. Fd
WAIT SEARCH-FOR- INSE...£ =
SMELL BREAK-UP- FOOD R
GRIP - FO0D
FEAFUNS PLANS
LONG-CURYED-CLAWS to SWAT B GRASP-IN-JAW to FISH
FORELEGS to SWAT SWAT to FIGHT-FOR-MATES B
FORELEGS to WRESTLE WRESTLE t0 FIGHT - FOR-TERRITO....§
MOUTH te GRASP-IN-JAW SWAT to FIGHT-FOR-TERRITO...§ :
LEGS to WADE ; BITE-OTHER-A... to FIGHT-FOR-TERRITO.. [

Figure 40. An editor window showing some of the slots in the frame representing the animal
bear. The remaining slots can be seen by scrolling the window down.

Just as with browser windows, editor windows enable the indexer to use the mouse to
open new windows to display any of the visible objects. Editor windows allow an indexer to
view a frame in one of two modes: local mode or inherited mode. In local mode, the editor
window displays all of the slot values directly associated with the object in the window. In
inherited mode, the indexer sees all of the local values plus any values that the object
inherits through abstraction links.

Editor windows allow the indexer to modify the knowledge base through the addition
or deletion of values from slots. Using the indexing tool, the indexer can modify slots with the

182

standard Macintosh cut, copy, and paste operations. An object is selected by clicking on it with
the mouse. It can then be cut or copied with a menu command or keystroke equivalent. That
object can then be added to another slot in the currently displayed object or in some other object
by selecting the desired slot with the mouse and issuing a paste command. Objects can also be
added to slots by clicking on the slot, selecting the “Add Slot Value” command from the menu
and then typing in the name of the desired object as shown in Figure 41. The indexer is always
asked to confirm any changes, including requests to create new objects, before they are executed.

File £dit Eval Tools Windows Uiew PIPNICHTIIN Ualidate Misc
; Cut

Copy
ISA SUBTYPES Copy Current

PREDATOR PANDA Paste
LAND- MAMMAL GRIZZLY-BEAR
cus

BROWN- BEA Bl Add Siot lalue v~y
x - - Change Sfat Halug
ACTIONS BEHAVIURY

SWAT 2 FISH 25 Delete Frame

WRESTLE #] | |FIGHT-FOR-TERRIT. 3 Rename Frame
b SEARCH-FOR-INSE...E33

BREAK-UP-FOOD

FEAFUNS PLANS

LONG-CURYED-CLAWS to ; GRASP-IN-JAW to FISH g
FORELEGS k] SWAT % FIGHT-FOR-MATES &
FORELEGS to WRESTLE to FIGHT - FOR-TERRITO... k55
MOUTH to SWAT to FIGHT-FOR-TERRIT X

LEGS to BITE-OTHER-A.. to FIGHT~-FOR-TERRITO... |

Figure 41. An indexer adding a value to the behaviors slot of the animal bear. The Indexing
Tool will prompt the indexer for the name of the behavior he wants to add. Alternatively,

the indexer could select the desired object in a browser or editor window and “paste” it into the
slot.

The indexer can also use the frame editor to construct and modify indices. For example,
figure 42 shows an index for a story about two octopi fighting over territory.

% File £} Eval Tools Windows Uiew

Fra

PROPERTIES

FEATURES

R

~-Edit Ualidate Misc

BEHAVIORS

T [

OCTOPUS CURYED-BEAK FIGHT - FOR-TERRIT.}
TENTACLES WARN- ENEMIES
COLOR-PATTERN
ACTIONS COMMENT FEAFUNS
CHANGE -COLOR CURYED-BEAK to BITE-OTHER-A..[&
BITE TENTACLES to WRESTLE
WRESTLE COLOR-PATTERN to SEND-SIGNAL
SEND-SIGNAL
ITE-OTHER-ANIM. b
PLANS
CHANGE-COLOR to WARN- ENEMIES :
BITE-OTHER-A... to FIGHT - FOR- TERRITO..
WRESTLE to FIGHT - FOR-TERRITO..
SEND-SIGNAL to WARN-ENEMIES
STORY IMPACT RATING VIDED
OCTOPUS-SPAR AMAZING 9 561301
573400
<Disk nat-and-brit 2 "..
A
EXPECT-FAILS
ONLY (bird) BEAK

183

R R A AR E R R
&¢&@Z€w¢@¢m'éw§l¢\‘av¢vN\'/A»a_«\'»z.uy,,y\y?}"c\}'&ewg@,goy?{sm&qyé;g:v.3._.{}.\%{::.\v,..)agwou@qm@\v@mh%m\mu\'ixw.wﬁ;x«% 338 L4 v

Gk

Figure 42. An index for a story about octopi fighting over territory. This index violates the
expectation that only birds have beaks. In this story, an octopus uses its beak, which is
concealed beneath its body, to attack another octopus.

Locating Obijects with the Indexing Tool

Usually, an indexer uses the indexing tool for two one of two purposes. One is to add new
stories by previewing video clips, creating indices for them, and adding any new concepts they
require to the knowledge base. The second is to debug the knowledge base in response to testing
and use of the program. In both of these tasks, locating objects in the knowledge base is central.
Consider, for example, indexing a story about Malaysian flying frogs. These frogs have large,

webbed feet. They glide from tree to tree by leaping into the air and spreading their toes,

allowing the membranes between them to act as wings. In the process of indexing this story,

the indexer will need to know if the feature webbed feet exists in the knowledge base already.
If it doesn’t, he will have to add it. He has several options available to him for locating this
object. The first option is to request a frame editor window for the frame webbed feet. He

184

would do this by selecting “Edit Frame” from the “View” menu and typing in “[feature
webbed-feet]”. If the frame does not exist, the indexing tool will ask him if he wants to
create it. If it does exist, the tool will display it in a frame editor window. However, if he is
not certain whether or not the frame already exists, the indexer may prefer not to find the
frame this way for two reasons. First, he could easily mistype the name of the frame. Second,
the frame might already exist with a different name. For example, he might leave out one of
the b’s in webbed, or he may have already created with the name webbed foot or web feet. In
any of these cases, he would have accidentally created an unnecessary frame by typing in the
wrong name. Errors like these that result in unnecessary duplication are very difficult to
identify and correct.

Instead, he might use one of the built-in techniques for locating frames in the knowledge
base. The goal of these techniques is to make it quick and easy to locate objects without
requiring that the indexer either memorize the names of all of the objects in the knowledge
base or be an error-free typist. In many cases, the best way to search for an object is by browsing
through hierarchies. To find webbed feet, the indexer could call up a hierarchy displaying
all of the features in the knowledge base, but he would be more likely to display a hierarchy
centered on feet. One advantage of searching for objects through hierarchies is that if they do
not already exist, the indexer can find the appropriate place to to insert them.

A different way to locate objects is with the “apropos” command. The apropos command
allows an indexer to type in a string and see the names of all the objects in the system that
have that string in their name. Thus, an indexer could type in either “web” or “feet” and see a
list of objects with those substrings in their names. The apropos command is available to the
indexer any time he is prompted to type in the name of an object. For example, suppose the
indexer wants to add the behavior avoid predators to an index, but he can’t remember whether

it’s called avoid-predation, avoid-predator, or avoid-predators. Instead of typing one and
hoping he’s correct, he can just type “avoid” and press the “apropos” button. The indexing tool
will present a list of behaviors with the string “avoid” in their names. The indexer can select
the one he wants with the mouse, thereby avoiding errors caused by mistyping. The last way
to search for objects is using frame editor windows. If the indexer knew that he had added

webbed feet to the animal duck, he might call up an editor window for duck and look at its
features slot.

Background Actions in the Indexing Tool

The indexing tool is designed to reduce bookkeeping work on the part of the indexer. For
example, without the support of the indexing tool, if an indexer were to add a feafun to an
animal, he would also need to check if the the action and feature were present individually in
the representation of the animal. If not, he would have to add them. To remove this burden
from the indexer, the indexing tool employs if-added methods. If-added methods are
functions that are associated with individual slots. When an indexer adds a value to a slot,
the if-added method for that slot checks to see which additional slots should be updated to
maintain consistency. These if-added methods allow the indexer to combine the processes of
adding to the knowledge base and indexing stories into one. Since the representation of an
animal must possess all the attributes that it displays in a story, adding an attribute to an
index automatically results in the addition of the same attribute to the animal. For example,
if an indexer added the feafun raptor’s beak in order to tear meat to a story about an eagle
eating a fish, any of the following changes that were necessary would be effected by if-added

methods:

185

Table 10.-The results of adding the feafun raptor’s beak in order to tear meat to a story about
an eagle eating a fish

Value added Toslot Of object
Raptor’s beak in order to tear meat Feafuns Index
Raptor’s beak Features Index

Tear meat Actions Index
Raptor’s beak in order to tear meat Feafuns eagle
Raptor’s beak Features eagle

Tear meat Actions eagle
Raptor’s beak Features tear meat
Tear meat Actions raptor’s beak

In this case, the indexing tool only requires one action where eight would have been
necessary otherwise. When the indexer adds or deletes a value of a slot the indexing tool
calculates all of the resulting changes and presents them as a group to the indexer for
confirmation before effecting any of the changes. This allows the indexer to see all the effects
of any change before committing to them.

Safeguards in the Indexing Tool

Maintaining consistency in a large knowledge base can be extremely difficult. The
indexing tool contains functions that assist with this process. For example, the frame
definitions for the Creanimate objects specify permissible values for every slot. If the indexer
tries to add an inappropriate value to a slot, the indexing tool will prevent it. Thus, if the
indexer tries to put an animal into the features slot of an action, the indexing tool will notify
him of his error. In addition, the indexing tool contains safeguards against redundant
information in the knowledge base. If the indexer adds a value to an object that the object
already possesses, either locally or through inheritance, it will not allow him to add it again.

The safeguards that provide the biggest savings in time and effort are those that search
through the knowledge base looking for inconsistencies and missing information. If an indexer
only added knowledge to the database and never deleted anything, the if-added methods
could be counted on to maintain consistency. However, because the indexer can delete and move
objects around, inconsistencies may arise. One inconsistency commonly appears when
hierarchies get rearranged so that one object that used to be an abstraction of another no longer
is one. The indexing tool contains knowledge validation routines that locate situations like
this and brings them to the attention of the indexer. Inconsistencies also arise in hierarchies
of objects that are only allowed to have a value in one of a set of slots. For example, a
behavior is only allowed to have a value in either its achieves, assists, or part-of slots. The
indexing tool has routines that the indexer can use to search object hierarchies looking for
errors like these. Lastly, indexers occasionally leave out required information from objects.
All of the features that appear in an action’s features slot, for example, must also appear in
either the requires or suffices slot of that action. If the indexing tool locates an action with a
feature in its features slot that doesn’t appear in its requires or suffices slots, then it will
request that the indexer add it to one of them.

All of the validation routines that search the knowledge base for inconsistencies and
missing information can be run in either batch or one-at-a-time mode. In batch mode, the
indexer lets the validation routines run to completion at which point he receives a report of
all of the problems they have located. This process can take an hour or more for a large
knowledge base. In one-at-a-time mode, a validation routine runs until it finds a problem

186

which it reports to the indexer immediately. After the problem is resolved, the validation
routine continues searching from the point where it identified the problem.

Testing in the Indexing Tool

The indexing tool includes facilities for testing the behavior of the program itself.
After entering information into the knowledge base or indexing new video clips, an indexer
might want to ensure that these objects and stories will appear the way he expects them to in
a student’s interaction. The indexer can test Creanimate from within the indexing tool in three
ways. First, he can run the program itself. Instead of seeing the graphical interface that
students use, however, an indexer tests it in a normal text window. In this “command-line”
mode, the indexer responds by typing instead of clicking with the mouse. Likewise, instead of
actually seeing video stories, he simply sees the title of the story. Figure 43 shows
Creanimate running in command-line mode. In command-line mode, an indexer may check to
see whether or not a particular story is presented when he expects it to be, and that the
dialogue manager is able to use the information in the knowledge base in order to respond
properly to a student’s input.

% File Edit Eval Tools Windows Uiew Frame-Edit

He should coma up with a reason for your bee

B to have a big nose. WUhy would you |ike your
bee to have a big nose?

("So it ean™ (300 ".")

("Give me some suggestions.”)

STUDENT> so it can smell well

That's a good idea. Tapirs have big noses
to help them to smell.

| have a hilarious video about that. If you
like strange animals, then you'll love this
video.

Would you like to see a video about that?

("Yes.">
("Hhat other videos can | see?")
("No.">

STUDENT> yes

TITLE: TAPIR SMELLS
Cl Idie

Figure 43. Creanimate being tested by an indexer. The indexer's typed input appears in
boldface. This testing facility is always available in the indexing tool.

187

When the indexer enters new concepts into the knowledge base, he often wants to make
sure that the natural language generation and understanding information for those objects
operates the way he expects. The indexing tool includes facilities for testing generation and
parsing without running the whole program. Figure 44 shows the tool for testing the natural
language generator. This tool generates a sentence for every form in which the concept could
appear in Creanimate output. The indexer can then review these sentences to verify that the
information he has entered is correct.

TR o oy QD ettt e o PP

| This littie piggy runs fast.

{ These littie piggies run fast.

| This little piggy needs to run fast.

| These little piggies need to run fast.

it This little piggy is runing fast.
These little piggies are runing fast.

Figure 44. The tool for testing the natural language generator. In this case, the indexer is
testing the forms for the action run fast. The present participle form, “running” is spelled
incorrectly.

A different tool allows the indexer to test the parser. After an indexer adds parsing
information to an object, he can test it with the parser tool to make sure that the parser
performs the way he expects. Sometimes, the indexer may make a mistake in entering parser
information or there may be another concept in the knowledge base whose parsing information
conflicts with the new entry. The parser tool helps the indexer to identify these problems.
Figure 45 shows the indexer testing to make sure the parser understands the phrase “chase girl
bugs” correctly.

Constraints behavior

Text chasel girl bugs

Attempting to parse to one of (bebavior)
Reading chase

Activating [behavior pursuve]

Reading girl

Activating [phys-obj female]

Activating [animal woman]

Activating [animal female]

dctivating [bebavior chase-mate]
Reading bugs ... expanding to (bug bugs)

Adctivating [animal insect]
Parsed to [behavior chase-mate].

Figure 45. The tool for testing the parser. The indexer enters the type of object that he wants
parsed in the “Constraints” box, and the text he wants parsed in the “Text” box. A trace of the

parser’s actions appears in the main box. The phrase “chase girl bugs” parsed to the behavior
chase mate.

Working with Video Clips in the Indexing Tool

The indexing tool includes a module called the clip editor, which allows the indexer to
view video clips on his monitor as he is indexing them. Using a control panel that looks like
the controls for a VCR, the indexer determines the beginning and end of a story. Using a menu
command, he caninstruct the clip editor to automatically enter the frame numbers of these
points into the video slot of an index. In addition, the clip editor allows him to select a
“preview” picture for the animal in an index. The preview picture is a still picture digitized
from the video clip that shows the animal in the index. The preview picture is shown to the

189

student when the storyteller offers him the story. If the animal’s name is unfamiliar to the
student, the preview picture can be very important in helping him decide whether or not he
wants to see the story. The clip editor is shown in figure 46.

Start: 135202

End: 140529

Current Frame 135308

(«c« < K] stop o1]> [»[>»)]
(Search | Get Pict [Show Clip] Close [Swap Disc|

Figure 46. The Creanimate clip editor. The clip editor includes (clockwise from top right), the
main preview screen showing live video directly from the videodisk player, the control panel,
the digitized preview picture of the animal, the last frame of the clip and the first frame of
the clip.

8.4 Summary

Indices draw on objects from the Creanimate knowledge representation in order to
describe a story. An index describes the attributes that a particular animal displays in a
story. Because indices are directly linked to objects in the knowledge base, the storyteller is
able to retrieve them efficiently.

Indexing large numbers of stories and building a large knowledge base is a difficult and
complex task. To assist with that process, we have constructed an indexing tool. This indexing
tool enables an indexer to view the knowledge base both graphically and textually, and to
modify it through a simple interface. It also enables the indexer to maintain the validity and

190

consistency of the knowledge base. Maintaining a knowledge base of significant size can
become unmanageable without tools that reduce complexity. The indexing tool was essential
in keeping the Creanimate knowledge base and story library manageable as it scaled up from a
few hundred objects to a few thousand.

Chapter 9

Perspectives on Creanimate and Case-

Based Teaching

In this chapter I place the foregoing discussion of Creanimate and case-based teaching in
context. In the first section, I discuss related work in education, artificial intelligence, and
multimedia learning environments. In the second section, I describe some ways the research
described in this dissertation can be extended in the future.

9.1 Related Work

Three areas of research have a direct bearing on Creanimate and case-based teaching.
They are 1) the case method of education, 2) the theory of case-based reasoning, and 3)
computer-based learning environments.

9.1.1 The Case Me od

A AW WAL AYANLLAL

The value of teaching with cases has long been appreciated in many quarters. Law
schools, business schools, and, increasingly, other professional schools teach with cases.
Williams (1991) in a survey of instruction with cases states, “The case method [in legal
education] is popular because teachers and students believe that it is an effective way to learn
an ill-structured domain, i.e., one that does not have a consistent underlying theory that can
act as a structure for organizing knowledge.” In the law, the case method of education emerged
out of a dissatisfaction with the previous methods of legal education, which were either
apprenticeship or lecture (Williams 1991). Apprenticeship was valued for the practicality of
its lessons, however an apprenticeship was only as good as the supervising lawyer and as
broad as the lawyer’s practice. An apprenticeship had the advantage of learning through
firsthand experience under supervision, but the quality of that experience and supervision
varied greatly from lawyer to lawyer. At the time of the introduction of the case method in
the 1870’s, the alternative to apprenticeship was private law schools that taught principles
of law through lectures. The training provided by these schools was frequently criticized for
its lack of practicality. In 1870, Christopher Langdell, Dean of the Harvard Law school
introduced the case method for studying the law (Redlich 1914; Reed 1921). It improved on
both the potentially uneven coverage of apprenticeship and the remoteness of lectures from
practice. Despite significant early criticism, the case method spread widely on the basis of its
results, such that today it is the predominant teaching method in U.S. law schools. Because of
the success of the case method in training for the law, Edwin Gray, the first Dean of the
Harvard Business School, adopted the case method for teaching business too (Copeland 1954).

Similarly, in recent years, medical instruction has come under increasing scrutiny with
one result being a shift toward teaching with cases. Traditionally the curriculum of the first

191

192

two years of medical school has consisted of basic science taught in lecture style. Studies have
shown that most of what is learned during this period is forgotten before students begin their
clinical rotations in their third year (Gonella et al. 1970; Levine and Foreman 1973). In
response, medical schools have been experimenting with a form of case method that Williams
(1991) calls problem-based learning. Problem-based medical education is intended to remedy
the decontextualization of knowledge, and the passive role of the student that occur in
traditional lecture-based medical education.

The case method employed in law, business, medical, and other professional schools is
essentially the same. A case that has been selected for its pedagogical value is presented to
students. A discussion ensues in which the instructor and the students examine the issues
raised by the case. In business and medicine, the case is presented as a problem that the
students solve. In law schools, the case is frequently presented as a result and then analyzed to
understand its implications.

The case method resembles case-based teaching in its emphasis on learning from concrete
cases. However, they differ in the way they employ cases. In the case method, a case is
presented to initiate a discussion. The case establishes a context for learning. In case-based
teaching, a case is presented in response to a situation in which the case is relevant. The case
responds to an opportunity for learning. The two instructional techniques are compatible,
though, in spite of their differences. Case-based teaching can be done in the course of a
discussion that is initiated by the presentation of a case, in the style of the case method.

While case-based teaching and the case method differ in the way they employ cases,
they share important features. They both rely on the presentation of cases to provide
situated, contextualized learning. They both emphasize learning interactions that are
authentic to the actual use of the lessons learned. Finally, the issues of case selection and case
As with case-based teaching, the case method requires cases that provide adequate coverage
of the subject matter, and present their lessons in a clear and memorable fashion. Employing
the case method raises the question of ordering cases, which is handled in case-based teaching
by presenting cases in response to students’ actions. The order of case presentation in the case
method is generally fixed in advance according to a theory of how the subject matter is
organized. The order of case presentation in case-based teaching is dynamic, determined by
the needs and interests of the student. Thus, while the case method and case-based teaching
share many of the advantages of teaching with cases, case-based teaching is able to
opportunistically respond to the interests and needs of the student.

9.1.2 Case-Based Reasoning

Just as the case method is case-based teaching’s close relative in the field of education,
case-based reasoning is its close relative in artificial intelligence. Teaching with cases that
respond to context parallels the process of reasoning from cases. In both architectures, features
of the current situation are used to retrieve appropriate cases from memory. The primary
difference between the two is the way cases are used after they are retrieved. In case-based
reasoning the cases are used to explain or resolve the reasoner’s current situation, whereas in
case-based teaching, they are presented to a student as stories from which to learn. Table 11
shows the similarity between the processes of case-based reasoning and case-based teaching.

193

Table 11.-Similarities between the processes of case-based reasoning and case-based teaching

1. Identify significant features in the 1. Identify significant features of the
current situation in the world. student’s situation in the task environment.

2. Use features to retrieve case. 2. Use features to retrieve story.

3. Adapt case to fit current situation 3. Construct a bridge to the story from the

current situation.

A difficult challenge for case-based reasoning is feature extraction, the process of
identifying the significant features of the current situation in the world to use in retrieving
cases. This problem is simplified for a case-based teaching system because it deals with a
simplified world, the task environment. For example, in Creanimate, the current situation is
fully specified at any particular point in a dialogue by the student’s current animal, the most
recent modification to that animal, the current explanation question, and the answer to that
question that is under consideration. Depending on where the student is in the course of a
dialogue, different subsets of these features are used by reminding strategies as retrieval cues.
In case-based teaching, feature extraction is not the problem that it is in case-based reasoning
because each reminding strategy uses a predetermined subset of the current features.

The reminding process in case-based teaching parallels the retrieval process in case-
based reasoning exactly. In both architectures, a search algorithm traverses the system’s
memory of cases comparing the indices it finds to the features of the current situation. Ina
typical case-based reasoning system, these features are compared to the features recorded in
the index according to a similarity metric. The use of this similarity metric is similar to the
role played by the abstraction in Creanimate’s similarity-based reminding algorithm. In the
example reminding algorithm, no similarity metric is necessary because a story must be a
precise specialization of the current target concept or the story is not an appropriate example.

Surprisingly, even the indexing based on expectation-violations in Creanimate has
precursors in case-based reasoning systems. For example, CHEF (Hammond 1986) indexes the
plans in its case library by the failures that they avoid. Since the failure of a plan results in
an expectation-violation, indexing by plain failures is the same as indexing according to
expectations that are violated. The value of the retrieved cases in both systems is similar,
too. Expectation-violations in Creanimate are intended partly to avoid students from
maintaining overly strong generalizations. In other words, they help student to avoid
mistakes. Retrieving cases by plan failures in CHEF serves a similar purpose. It helps the
planner to avoid executing a plan that will fail. Both strategies are intended to avert
mistakes.

An important element of the case-based reasoning process that plays no part in the
current implementation of case-based teaching is case adaptation. In case-based reasoning, a
retrieved case is typically modified according to the differences between the current situation
and the case to make the case applicable to the current situation. Since the stories in a case-
based teaching system are pre-recorded, they cannot be adapted to fit the current situation.
Instead, the adaptation phase in case-based reasoning is replaced with bridge creation in
case-based teaching. A bridge is an introduction that communicates to the student the
relationship between the student’s current situation and the story he is about to see. In future
case-based teaching systems, stories may be adaptable, in which case experiences with
adaptation in CBR (e.g., Kass 1990) will be valuable.

Overall, the case-based teaching architecture bears a strong resemblance to its cousin,
case-based reasoning. They share the same central research issues of indexing and retrieval.
As a result, Creanimate has benefited from earlier research in case-based reasoning.

194

9.1.3 Computer and Multimedia Learning Environments

The use of computers and multimedia in education has a considerable history. Itis
beyond the scope of this work to summarize that history here. However in this section I do
discuss a few topics that relate directly to important aspects of the research described in this
dissertation. These topics are intelligent tutoring systems (ITS's), indexed video libraries, and
biology by design. As I have mentioned previously, intelligent tutoring systems are a different
class of computer-based learning environments that also employ artificial intelligence.
Indexed video is a technology that provides students access to large libraries of video through

random access. Biology by design1 is an expression that describes several computer programs
that, like Creanimate, allow a student to learn about biology through the creation of new
animals or ecosystems.

Intelligent Tutoring Systems

While intelligent tutoring systems are similar to case-based teaching systems in their
use of theories and technologies from Al, I discuss them here more for their striking differences
than their similarities. Nevertheless, Creanimate does follow in the tradition of some work
in intelligent teaching systems. For example, two early intelligent teaching systems,
SCHOLAR (Carbonell 1970a; Carbonell 1970b) and WHY (Stevens and Collins 1977) used
question-and-answer dialogues that resemble those in Creanimate. More recently GUIDON,
like Creanimate, modeled its dialogues after Socratic or inquiry teaching (Clancy 1987).
GUIDON also used cases as a central part of its strategy for teaching medical diagnosis.
However, GUIDON’s teaching was an example of the case method not case-based teaching
because it selected its cases to establish an instructional context rather than in response to the
context. Creanimate resembles another intelligent teaching system in its use of examples. The
WEST system (Burton 1982) employed an approach they called issues and examples, in which
the system responded to errors by students by determining which issues were misunderstood
and presenting examples of correct ways to deal with those issues. In a rough sense, the issues
of WEST are similar to the explanation questions in Creanimate because they are triggered by
student actions and illustrated by examples. A more recent system that teaches with examples
is the one under construction by Ashley and Aleven (1992a; 1992b). It retrieves examples from
any of five categories to help students learn the appropriate use of precedent cases in legal
reasonmg.

These systems aside, most ITS research contains fundamental differences in philosophy
from case-based teaching. The central issue in most ITS research is student modeling, which is
an attempt to keep track of a student’s understanding. An ITS typically compares its model of
the student’s understanding to a model of an expert’s understanding and intervenes with
appropriate teaching strategies when it sees opportunities to bring the student’s understanding
closer to the desired, expert understanding. Conceptually, the ITS model has great appeal. It
portrays a teacher as a diagnostician who is able to infer the state of a student’s knowledge
from his or her actions and is able to respond appropriately to correct deficits in a student’s
understanding. However, the ITS approach has important limitations. First, as I have
mentioned in Chapters 1 and 7, it relies on an extremely sophisticated representation of the
subject matter that is capable of accommodating models of both novices and experts in the
domain. Second, it requires the ability to draw sophisticated inferences about the state of a
student’s understanding from the limited evidence provided by observing his actions. These

! john Cleave, a graduate student at ILS, originated the phrase biology by design.

195

limitations currently restrict the applicability of ITS research to task-based, logical domains
like algebra, geometry, physics, and computer program. These domains are suitable for ITS’s
because they lend themselves to rule-based reasoning and because clear goals, plans, and plan-
steps can be identified in the tasks within them. However, in more complex domains, those in
which there is no strong theory that can be encoded in rules, ITS’s will not work. In complex
domains, people reason with cases, and the best way to teach students to function in these
domains is to expose them to cases that they can use for reasoning.

In contrast, case-based teaching, as an architecture, requires a much less sophisticated
ability to represent domain knowledge or the current state of a student’s understanding. A
case-based teaching system’s need for domain expertise is limited to the ability to interpret
actions in the task environment with respect to one of its reminding strategies. Its expertise in
student modeling and diagnosis is encoded in the reminding strategies themselves.

In addition, through its presentation of cases, case-based teaching supports the natural
process of case-based reasoning. In this respect, case-based teaching addresses an issue that
has not been well addressed by ITS research. This is the issue that Wenger (1987) calls
knowledge communication. Significantly, most ITS’s are rule-based systems and have at their
heart a model of a student as a rule-based reasoner (e.g. GUIDON (Clancy 1987) and WEST
(Burton 1982)). The form that their communication with students usually takes is therefore
abstract rules. However, as I stated in Chapter 2, psychological evidence indicates that
people reason from cases in complex situations. Learning rules will not help with case-based
reasoning. On the other hand, learning from firsthand experiences and stories does provide
cases to support case-based reasoning. In contrast to the rule-based knowledge communication
employed by ITS’s, a case-based teaching system uses stories to provide students with the
cases that they can use in the natural process of case-based reasoning.

Ore final difference between the ITS approach and case-based teaching is what they
choose to model. An ITS models knowledge whereas a case-based teaching system models
interest. An ITS maintains a model of a student's current knowledge and acts according to what
it believes a student knows and doesn't know. The case-based teaching architecture could
employ such a model in the decision to tell a story. However, case-based teaching systems are
more concerned with what a student may or may not be interested in at a particular moment
than what he may or may not know. One of the problems facing ITS's is that very often a
student acts as if he understands a concept at one moment and then acts as if he doesn't
understand it shortly thereafter. It can be difficult for the ITS to maintain a model of the
student’s knowledge in these circumstances, and therefore hard to determine when and how to
intervene.

The problem is that people do not categorically know something or not know it.
Sometimes they only know things partially, or they forget them temporarily, or they lose
confidence in what they thought they knew. This is not a problem for a case-based teaching
system which monitors a student's situation looking for times when he might be interested in a
story as opposed to times when he needs a story because he lacks some knowledge. People are
interested in stories that confirm their knowledge as well as stories that correct their
ignorance. A case-based teaching system contains a model of when a story is relevant based on
the context that a student is in, not based on a model of what he knows. It is relatively easy to
predict what a student will be interested in seeing when you know what decisions he is facing.
It is significantly harder to predict what a student knows based on what actions he has taken.
For this reason, maintaining a model of a student's interest is much more valuable to a case-
based teaching system than a model of his knowledge.

196

Indexed Video

One of the most exciting educational technologies to become available in recent years
has been random-access storage of motion picture footage. Advances in technologies such as
videodisks, CD-], and digital video compression make it possible for a viewer to instantly
access single video clips from increasingly large video libraries. Instructional designers have
long recognized the power of motion pictures as a communication medium and are rapidly
capitalizing on the new random-access technologies. The instructional products based on these
technologies usually fall into three categories. The simplest category does not use a computer,
but provides a user with a well-organized listing of the contents of a video library and an
interface to the technology that allows the user to immediately view any clip that he or she
chooses. This interface may consist of a remote control that allows the user to type in the
starting frame number of the clip or a bar code reader that translates a bar code into the frame
address of the video clip. Systems like these are particularly useful as aids to teachers in the
presentation of lectures. Teachers can prepare material in advance and then illustrate a
lecture with relevant film clips.

The second category of indexed video system incorporates a computer interface. These
systems put the capabilities of computer database and hypermedia technologies at the
disposal of the user. A user might be able to locate a clip he is interested in by doing a
keyword search through a database of descriptions of video clips or by browsing through a
hypermedia system. Such systems enable a motivated user to locate video clips of interest
either by searching for them using direct queries or by browsing in a “discovery learning” mode.
The number of indexed video systems with computer front-ends is already enormous, and
several commercial educational products are devoted to the same subject matter as
Creanimate. One, The Encyclopedia of Animals distributed by Optical Data Corporation
(Optical Data Corporation 1989), consists of eight one-hour videodisks containing clips that
similar to those employed in Creanimate. These videodisks come with a Hypercard stack
that allows a user to search for clips by topic or word, follow pre-recorded “tours” through the
clips on a disk, or to browse the contents of a disk directly. Another, Mammals: A Multimedia
Encyclopedia is an award-winning CD-ROM produced by the National Geographic Society
(National Geographic Society 1989). While Mammals only contains 45 actual video clips, it
includes 700 color photos and 155 animal vocalizations. The interface lets children search for
animals by name or browse by family.

The third form of indexed video system is the case-based teaching architecture
described here. The presence of the task environment is a key difference between case-based
teaching and the other indexed video architectures described above. The search and browsing
interfaces described above rely either on a motivated learner who knows what he or she is
looking for on the value of discovery learmning. However, in the absence of a task, a student
might have no motivation to view the video clips that are available to him and no reason to
pay attention to any of their contents. A task environment with a motivating task provides a
student with a reason to view to video clips, and a context through which to interpret them
and index them in his memory. Several other case-based teaching systems in addition to
Creanimate are under development at the Institute for the Learning Sciences.

Biology by Design

Creanimate uses a task in which a student studies something by constructing it. This
“constructionist” (Papert 1986) approach is not inherent to case-based teaching systems but is
an effective means for achieving active learning. When a student creates something himself
he becomes invested in it in a way that provides a motivation for him to learn principles that
apply to it. In addition, designing an artifact provides valuable opportunities for learning. In

197

the course of refining a design for an animal, for example, a student can confront the same issues
that need to be explained when considering an existing animal.

Several other computer-based systems besides Creanimate use this approach to teach
about animal biology. Designasaurus II, a commercial program produced by the Britannica
Software (Patterson 1990), gives the user the opportunity to create a dinosaur by selecting
various body parts from other dinosaurs. The user then places his creation in one of several
prehistoric ages and climates, where he controls it while it searches for food and water,
avoids predators, and looks for mates in a simulated environment. The simulated environment
provides a video game in which the user gains points by helping his dinosaur to survive.
Because the physical features of the user’s dinosaur determine what his requirements for food
and rest are as well as what strategies he can pursue to locate food and avoid predators, the
program can help a user to learn the relationships between features, activities, and behaviors.
However, because the program is designed more for entertainment than for education, many
opportunities to teach or reinforce lessons are missed.

A second commercial product also employs a simulation of animals in their environment.
SimLife, produced by Maxis (Karakotsios 1992), simulates an ecological system composed of
animal and plant species specified by the user. The user can either create his own plants and
animals or use ones provided by the system. A user invents an animal species by specifying
parameters that determine its food sources, its means of locomotion, its defenses, its
reproductive rate, its mutation rate, etc. The user also controls the environment by choosing
the terrain, climate, and initial distribution of plants and animals. Once the simulation
starts, the user can observe individual animals acting and interacting, as they move, feed,
mate, reproduce, and die. The simulation can be observed through a display of the animals
and plants showing their locations in the environment and through graphical displays that
show population distributions and trends. The passage of time within the simulation can be
controlled by the user so that he can watch things change over hours, days, seasons, or years.
The user is free to establish his own goals in using the simulation; he may try to construct a
stable population or he may want to observe how quickly different populations grow or perish.
One of the difficulties of learning from SimLife, as with many complex simulations, is
identifying the causes for the phenomena observed. Trends develop over time, but if time is
passing too fast then it can be impossible to identify causes. On the other hand, if time is
passing too slowly trends are not perceivable. Even if the passage of time in the simulation is
at the right scale to observe a particular trend, the causes of the trend may be difficult to
distinguish among the complexity of possible interactions. Nevertheless, SimLife provides an
effective and dramatic window into population dynamics, evolution through genetic mutation,
and the interactions between attributes of animals and their ability to survive in various
environments.

On a different front, the MIT Media Lab has produced several strands of systems
designed to teach biology by design. One is the Vivarium project, conceived by Alan Kay and
pursued in concert with Apple Computer. The ambitious goal of the Vivarium project was to
allow students to create vivid, realistic simulations of complex animals and their
environments. While that goal has never been achieved, they have produced several,
individual components of their desired system. For example, BrainWorks (Travers 1988),
allows a user to construct a simple nervous system for a Logo turtle? and then observe that
turtle interacting with other turtles and its environment. AGAR (Travers 1988) extends the
capabilities of animals in BrainWorks by increasing their possible range of behaviors, giving

2 Logo is a simple programming language designed to help children learn mathematical and
geometric constructs through programming. It is described in Papert (1980).

198

them the ability to activate scripts and allowing them to learn. Petworld (Coderre 1988) is a
third system under the umbrella of the Vivarium project. Petworld simulates animals through
a set of behaviors that include fighting, foraging, eating, building nests, and exploring.
Apparently, none of these particular systems was used with children. Instead, they were
considered steps toward a system that children could use to learn about animals by constructing
them and their environments and observing simulations.

Other biology by design systems developed at the Media Lab, however, have been used
with students. LEGO/Logo (Resnick 1988) allows students to build “artificial” animals that
move around in the real world. These artificial animals are constructed out of LEGO blocks
with motors, touch sensors, and light sensors. Students write control programs for their
creations using the Logo programming language. The students are encouraged to consider the
parallels between their machines and how animals and people interact with their
environments. It also helps them to see how the complex behaviors of animals can be built out
of simple processes.

*Logo (Resnick 1991a; Resnick 1991b) is another Media Lab system designed to teach
biology by design. *Logo (pronounced “star-logo”) is a set of extensions to Logo that allows a
student to program large numbers of Logo turtles that all coexist in the same environment.
*Logo allows the student to program both the characteristics of a turtle and characteristics of
the environment. In one example provided by Resnick (1991a), a hypothetical student
programmed ants that could locate their food and their nest by following pheromones left by
other ants. *Logo enables a student to populate a world with large numbers of his animals,
each of which operates according to the same simple algorithm. An important lesson
provided by observing *Logo scenarios is that the animals’ behaviors seem to indicate a
central control mechanism. When people looked at the ant system described they had the
strong impression there must be an organized, central controller instructing the ants on how to
collect food and bring it to the nest. However, this appearance of centralized control emerges
from the individual interactions among the ants, their environment, and each other. This is a
valuable lesson in understanding the complex activities and constructions produced by societies
of very simple organisms in the natural world.

To summarize, Creanimate is one of a number of computer-based environments that teach
biology by design. They each use different techniques to teach different lessons. Some, such as
SimLife and *Logo, are focused on interactions among large numbers of animals and their
environment. Others, e.g., BrainWorks, AGAR, and LEGO/Logo, focus on the relationship
between an animal’s control structure or nervous system and its external behaviors. Finally,
Creanimate and Designasaurus focus on the adaptability of an individual animal, in
particular the relationships between its physical features and its actions and survival
behaviors. Underlying all of these systems is the belief that constructing animals is a
valuable way to get students invested and interested in learning about animals and how they
survive. Interestingly, each of the other systems is compatible with the case-based teaching
approach embodied by Creanimate. Any one of them could be coupled with a storyteller that
would help students to learn from their experiences and observations of their creations. Both
the general case-based teaching architecture and the Socratic case-based teaching
architecture of Creanimate could be useful adjuncts to these biology by design systems. Using
the general case-based teaching architecture, the storyteller would observe the student’s
experiences with his or her creations and present stories when they are relevant. Using the
Socratic case-based teaching architecture of Creanimate, a dialogue manager could respond to
students’ situations with questions which would establish opportunities for learning from
stories.

199
9.2 Future Directions

We move now from the topic of related works to a discussion of how the research
described in this dissertation can be extended in the future. In Chapter 1, I outlined a set of
ambitious goals for developing computer-based learning environments that addressed the
concerns of researchers in education and computer science, educators, parents, and children.
The work described in this dissertation is one step toward achieving those goals. In looking
forward to the next steps in this research program, there are two important questions: 1) How
should Creanimate itself be extended? 2) How can the lessons of Creanimate be applied in
order to further the development of case-based teaching?

9.2.1 Extending Creanimate

The Creanimate system is an experiment designed to investigate reminding in support of
teaching. In developing Creanimate, our goal has been to develop and implement a theory of
reminding based on theories of the roles of stories in learning and cases in understanding. The
resulting architecture establishes a context for teaching with stories through a Socratic-style
dialogue in which the computer responds to students’ hypotheses with thought-provoking
questions. It capitalizes on the resulting opportunities for learning by presenting stories
retrieved by three different reminding strategies. Creanimate, as an implementation of this
Socratic case-based teaching architecture, has demonstrated the potential of this approach.
In extended sessions, it conducted natural question-and-answer dialogues with elementary
school students and presented relevant stories at appropriate moments. This preliminary
success notwithstanding, Creanimate has great room for improvement. Some of these potential

improvements contain lessons for case-based teaching in general, and some are particular to
Creanimate.

Evaluating Educational Effectiveness

A great deal more study needs to be done before sound conclusions about the effectiveness
of either Creanimate or case-based teaching can be made. In the course of developing
Creanimate, we also created a set of assessments designed to determine the effectiveness of
Creanimate. These assessments presented students with pictures of unfamiliar animals and
asked them to either write down their questions about those animals or to answer explanation
questions about them. The goal was to determine whether using Creanimate had an effect on
the sorts of questions that students and explanations students generate for animals. In
particular, the hypothesis we were hoping to verify was that as a result of using Creanimate
students would ask more explanation questions and use case-based reasoning more often in
constructing explanations. Unfortunately, our preliminary testing revealed no statistically
significant shift in question-asking or explanation. We attribute these results to the
relatively short period of time that students used the program distributed over several weeks
(approximately forty-five minutes a week for three weeks).

The point of mentioning these evaluations here is not to claim educational effectiveness
for Creanimate. Instead, the point is to indicate the direction that such evaluations should
take in the future. The focus of this work, up to this point has been developing and
implementing a theory in artificial intelligence. The theory describes the role of reminding in
teaching, and the architecture is the Socratic case-based teaching architecture embodied by
Creanimate. In the next stage of this research program, this architecture should be evaluated
to determine whether it is effective in achieving the goals stated in the theory. However,
the evaluation methods must be consistent with the philosophies of learning and
understanding that underlie the architecture. A traditional approach to assessment would

200

have tested students’ commands of facts about animals in the wild before and after the use of
the program. These results might have been compared to those of students engaged in some
control activity, such as reading a textbook, hearing a lecture or viewing a film. However,
Creanimate is not designed to improve a student’s recall of facts, and in spite of any incidental
improvement it might cause, it should not be evaluated that way. Therefore, one important
way to extend the research begun with the Creanimate system is to continue to explore

assessment techniques that are suited to the objectives of case-based teaching3 .

Any studies of the educational effectiveness of computer-based learning environments
should also be concerned with the influences of using the systems on attitudes and motivation.
In our preliminary evaluations of Creanimate we interviewed the students to determine how
they viewed Creanimate in comparison to standard school activities and also to leisure
activities such as watching TV or using video games. These evaluations are important because
one goal of this research program is to counter the negative perceptions of science that students
currently develop in our school systems. The Creanimate system is an attempt to achieve this
goal by producing an environment that children enjoy, and that sparks their curiosity about
science. As I described in Chapter 1, students responded extremely favorably to Creanimate.
They became deeply absorbed in their sessions, were reluctant to stop using it, and eager to
return for successive sessions. In the surveys we conducted, they expressed a strong enjoyment of
the program. Success in achieving this goal with individual systems such as Creanimate, will
help to improve students’ attitudes toward science in general. To document these changes, it
will be important to continue to monitor students’ enjoyment of Creanimate and the program’s
influence on their attitudes about science and science learning.

Mors v Tectina
S‘ge"d and VIEINOTY 1SSUES

In building educational systems, even experimental ones, the issue of hardware
affordability must be confronted. School systems have, and will continue to have, only
limited resources to expend on computer technology. While Creanimate was never intended to
be a system that could be deployed on currently affordable platforms for schools, we wanted to
show that it is feasible on hardware that would be affordable within the next five years.
With the support of IBM, we developed a version of Creanimate that runs on an IBM PS/2

Model 80%. This was a difficult task because the size of Creanimate’s knowledge base strained
the computer’s memory capacity, and the program'’s reliance on search in order to draw
inferences and retrieve stories strained the computer’s processing speed. In fact, while we were
able to demonstrate the feasibility of deploying systems like Creanimate on affordable
hardware in the near future, we have not been satisfied with the speed at which it ran on this
hardware. Typically, it required more than a second between steps in a dialogue, and pauses
of up to nine seconds occasionally occurred while the dialogue manager evaluated a student’s
typed response or the storyteller searched for remindings. (For comparison, running on an IBM
RS/6000 UNIX workstation, the response time of Creanimate was never longer than 1/2 second
and was typically less than 1/10 of a second.)

3 To avoid any possible misunderstanding, I feel it important to mention that the only reason I
am advocating evaluation and assessment is to document the educational effectiveness of case-
based teaching systems, not to provide evaluations of the progress of individual students.

4 The cpu in this model is an Intel 80386 running at a clock speed of 25 MHz. Running
Creanimate required that the computer be configured with a total of 16Mbytes of RAM.

201

Any honest appraisal would have to conclude that in the current implementation of
Creanimate, the slow response of the computer interferes with the program’s educational
effectiveness. Because students had to wait for the system to respond, their attention would
occasionally wander. In addition, students rarely backed up in their dialogues, changed their
answers, or chose to see what other videos were available. Our hypothesis is that the slow
response of the system made them feel that they had a large investment in time in getting to
their current point so they were not inclined to experiment or change their minds. While the
undeniable ill effects of Creanimate’s slow speed were discouraging, the generation of
hardware on which Creanimate was implemented has already been replaced by faster, more
powerful computers. Because Creanimate was written in Common Lisp using CLIM, the
Common Lisp Interface Manager (Symbolics Inc. 1991), a machine-independent interface
language, it can be run on any other machine that supports these widespread implementation
languages.

There are two conclusions to be drawn from this experience with trying to implement an
experimental Al system on a low-end computer. First, the speed at which an educational
system runs does have an important impact on its effectiveness. Despite the fact that case-
based teaching systems are Al systems that rely on search through large knowledge bases,
they must be designed to run efficiently on affordable hardware. If, as they grow more
sophisticated and more powerful, they continue to remain just above the capabilities of
affordable hardware, Al-based learning environments will never have an opportunity to
make an impact. In Creanimate, slow speed could be disregarded as an implementation detail
that could be dealt with later. However, it cannot continue to be treated that way in future
systems. It must be treated as the important issue that it really is. Second, and more positive,
while it is not possible to claim that knowledge-intensive case-based teaching systems can be
deployed on hardware that is widely available in schoois today, current trends make it
reasonable to believe that the hardware to support these types of systems will be affordable
for schools in the foreseeable future. To conclude, in the short-term it is acceptable for
experimental systems to be impractical in their current market. However, in the longer term

making experimental systems both practical and affordable must become an important part of
the experiment.

Limitations in Representation

In reviewing transcripts of students using Creanimate, the most obvious limitation of
Creanimate is the inflexibility of its knowledge. Every once in a while, Creanimate lives up
to the stereotype of the computer as being overly literal and logical. The difference between
the flexibility of Creanimate and its ability to use its knowledge and that of a person shows
up in the following dialogue.

Student: A Frog that can hunt.

One part of hunting is getting close to its prey.

How would you like your frog to get close to its prey?
Student: By chasing after themn.

I don't know any animals that pursue to get close to their
prey, but I do know about some reasons that animals do
pursue.

Would you like to see reasons to pursue or would you like
talk about how you want your frog to get close to its prey?
Student: Stick with pursuing

202

White breasted sea eagles pursue. White breasted sea eagles
pursue their prey.

I think this video is great.
Is that something you would like to see?

To the student, the behavior of Creanimate in this transcript would look very curious.
The program is saying that chasing after your prey is not a way to get close to your prey, but it
is a way to pursue your prey. What's the difference? The problem here is that at the time
this transcript was recorded, Creanimate’s representation of the behavior hunt decomposed it
into four mutually exclusive sub-behaviors. Two of them were get close to prey and catch prey.
(The other two were detect prey and subdue prey.) Getting close to prey is performed by
stalking or lying in wait. The student’s answer “Chasing after them” was interpreted as
pursue, whose specialization, pursue prey, is part of catch prey. In other words, the student
answered with a way to catch prey while the computer was looking for ways to get close to
prey. People generally don’t maintain these sorts of strict distinctions in their thinking about
behaviors, however Creanimate’s representation requires that distinctions like these be
made. This particular problem in the representation of hunt has been fixed in more recent
versions of Creanimate, but the overall problem, the rigidity of the representation, has not
yet been solved.

To a certain extent, Creanimate’s inability to handle situations like these more flexibly
can be ascribed to the approach of minimal representation described in Chapter 7. It was an
important priority in this research to keep the representation as simple as possible in order to
focus the research on issues of indexing, reminding, and dialogue management. As a result, the
representation could be made more sophisticated and more powerful to handle situations like
the one above. In continuing to develop Creanimate, it will be important to increase the
expressiveness and sophistication of the knowledge representation. It is the biggest limiting
factor for the abilities of the dialogue manager. Therefore, it should be enhanced to cover new
sorts of concepts like environments, interference among features, and interactions among
animals as [described in Chapter 7. In addition, it should be enhanced to include more
refinement in its understanding of the concepts it can already represent. However, we must
also recognize the inherent limitations in this approach. Knowledge expressed using
traditional symbolic Al techniques, such as Creanimate’s semantic network, is rigid. Inference
through deductive retrieval can not match the flexibility of human reasoning. While the
ability of Creanimate’s dialogue manager to participate in a natural dialogue can be
significantly improved through successive refinements of its knowledge representation
scheme, it would be naive to say that it would approach the naturalness of human discourse.
Achieving this goal will require significant breakthroughs in knowledge representation, not
evolutionary refinements.

Additional Reminding Strategies

The reminding strategies employed by the storyteller in Creanimate do not exhaust the
possibilities for a case-based teaching system. Several additional incidental reminding
strategies for Creanimate have already been identified. These include strategies for
retrieving extreme remindings and opposite remindings. Extreme remindings will respond to a
student’s request for a particular modification to an animal by showing the extreme forms of
that modification in nature. Thus, if a student asked for an animal that could run fast, an
extreme reminding would present the fastest running animal. Opposite remindings also
respond to a student’s changes to his animal. Opposite remindings show stories about animals
that have an attribute that is somehow opposite to an attribute of the student's animal. For

203

example, the opposite reminding strategy would respond to a student’s request for an animal
that runs fast with a story about an animal that is notable for being slow-moving. Two
unanswered questions in this research are how many different reminding strategies can be
identified for Creanimate, and how well do they generalize to other domains and task
environments. The example reminding strategies clearly generalize to any system that
employs the sort of explanation question-based dialogues that Creanimate uses, as do the
similarity and expectation-violation reminding strategies. These strategies all generalize
because they do not hinge in any way on the domain of animal adaptation. In fact, they are
appropriate for any dialogue that deals with how and why questions about three-way
relationships. On the other hand, the opposite and extreme remindings described here would
probably generalize to other discussions about design (i.e. relationships between form and
function) but not necessarily to discussions of other types of explanation questions.

9.2.2 Beyond Creanimate

As we look to the future, it is important to think not just about how to extend and
improve Creanimate, but how to take the ideas that were developed through Creanimate and
apply them elsewhere. Creanimate has been a valuable platform for testing and extending
the theory of case-based teaching. While it was constructed to teach in a specific domain,
many aspects of its design are general and have wide applicability. In Chapter 3, I argued for
the general usefulness of the case-based teaching architecture. A clever designer can invent
engaging task environments for virtually any domain. Using the guidelines for constructing
storytellers presented in Chapter 3, one can build storytellers to accompany these task
environments. However, before case-based teaching systems can be produced in large numbers,
these guidelines must be encoded in tools that support the production of new systems. The
Indexing Tool described in Chapter 8 is one such tool. While it was designed specifically for
Creanimate, it is, in fact, a general-purpose tool that can be used for building knowledge
representations and indexing stories in any domain. It is specialized for the Socratic case-
based teaching architecture in that it indexes stories according to questions and provides
support for the similarity-based and expectation-violation reminding strategies. Future
research in case-based teaching systems should provide insights on how to further assist and
automate the construction of task environments and storytellers. To understand what these
tools will do and how they should look, it will be important to take the ideas developed
through Creanimate and apply them in new domains. This experience will provide important

knowledge to inform tool development. In this section, I focus on three widely applicable
aspects of the Creanimate system.

¢ The reminding strategies.
¢ Socratic-style dialogues.
* Design tasks.

By applying these ideas in case-based teaching systems in diverse subject areas, we will
gain valuable knowledge about the general effectiveness of case-based teaching and about the
process of constructing case-based teaching systems. This knowledge can in turn be used to build
more effective teaching systems more easily.

The Reminding Strategies

Because the reminding strategies employed in Creanimate are not specific to the domain
of animal adaptation, they can be employed in a broad range of Socratic case-based teaching
systems. To apply these strategies to new domains, it will be necessary to develop an
appropriate knowledge representation for the target domain. This representation will serve

204

as the indexing vocabulary. As with Creanimate, that representation must rest on the
fundamental relationships that link the concepts in the domain. Once these relationships
have been identified, then particular stories can be indexed according to the relationships
they exemplify. Examples of these relationships can be retrieved by the same example
reminding algorithms used in Creanimate. Similarity reminding can be performed using the
same search algorithm that is used in Creanimate. The similarity metric can also be borrowed
from one of the two approaches employed in Creanimate or a new one that is more appropriate
to the domain could be identified. In addition, standard expectations could be expressed
through all-rules, no-rules, and only-rules in order to produce expectation-violation
remindings at appropriate moments.

The reminding strategies in Creanimate were designed to be applicable to dialogues
about explanation questions in general, not animal adaptation in particular. Through the
development of new Socratic case-based teaching systems, we will be able to explore the range
of applicability of these reminding strategies. In addition, we will likely discover new
reminding strategies with different ranges of applicability. One long-term goal of this
research program should be to increase the number of available reminding strategies and to
develop a characterization of which sorts of reminding strategies are appropriate for which
types of task environments and which range of domains.

The Socratic Dialogue Management Tool

The dialogue manager in Creanimate is Socratic in the sense that it is a responsive
questioner. When the student proposes an animal, it responds with a thought-provoking
question about that animal. In addition, like a Socratic teacher, it pursues follow-up questions
to examine the ramifications of students’ answers. Teaching with questions in a case-based
teaching system is designed to achieve two important pedagogical goals. It teaches students
the explanation questions to ask when confronted with novel situations, and it establishes a
context for storytelling. Questions both motivate students to attend to stories and provide
them with a valuable structure for indexing the stories as cases in their own memories. Since
the value of responsive questioning extends far beyond the domain of Creanimate, the Socratic
case-based teaching architecture explored by Creanimate will have value for a large range of
subjects.

One way this research can be extended beyond Creanimate, then, is by developing a
Socratic Dialogue Management Tool. This tool will allow a system designer to generate new
dialogue plans by simply describing the explanation questions for the domain in an
appropriate representation. This representation will resemble the question data structures
described in Chapter 6. With this information the Socratic Dialogue Management Tool will
be able to automatically generate dialogue plans for the explanation questions provided by
the designer. This tool will rapidly increase the rate at which new dialogue plans can be
added to Socratic case-based teaching systems.

On a similar front, Creanimate’s dialogue manager does not make use of all of the
questioning strategies that have been associated with Socratic teaching. Stevens & Collins
(1982) have identified a number of different strategies that inquiry teachers pursue. In the
GUIDON system, Clancy (1987) included many of these strategies for helping students to
recognize their misconceptions and increase their understanding. Another way to build on the
groundwork laid by Creanimate will be to increase the repertoire of questioning styles pursued
by the dialogue manager in subsequent Socratic case-based teaching systems.

205
Design as a Task for Case-Based Teaching

One aspect of Creanimate’s task environment is not inherent to case-based teaching but
raises interesting prospects for future case-based teaching systems. That is the aspect that I
described I called biology by design in Section 9.1. Learning about something by designing an
artifact has several features that are important for learning. First, students become invested
in their design providing them with a valuable motivation for learning. Second, the
particular features of their design give a student a perspective from which to learn, because
information can be interpreted in terms of how it relates to the student’s design. Third,
designing something gives a student a meaningful goal, which is another important source of
motivation and provides a student with a yardstick by which to measure his progress.

One of the insights of all the biology by design systems I described earlier is the
recognition that a phenomenon that is not usually considered to be the result of a design process
can still be studied through design. Thus, we have systems that teach about animals and
ecosystems by allowing children to create their own. In the process they learn about the
principles and processes that affect animals and ecosystems in the natural world. It is an
obvious extension of the research described here to build systems that teach about design
through the act of design. For example, case-based teaching systems that teach automotive or
aeronautic engineering can be built along exactly the same lines as Creanimate. This will be a
valuable way to extend the research described here. However, a less obvious extension, but
one that may have significant value, will be to identify other domains that, like animal
adaptation, can be studied through design even though they are not ordinarily considered
design domains. So, for example, a student could study political science by designing a
government. A Socratic dialogue manager could ask the student about the implications of his
decisions, and a storyteller could present cases of governments from history. In another area, a
student couid study comparative religions by designing his own religion. In response, a case-
based teaching system could present relevant examples from the history of religion. The
student could learn about the ramifications of his decisions and modify them accordingly.

The paradigm of learning through design has great potential for the case-based
teaching architecture because the design process provides the engagement and challenge
necessary for an effective task environment. The design task also gives students the
motivation, perspective, and structure to allow them to learn from stories and develop a well-
indexed library of cases for future use.

9.3 Conclusion

Creanimate has been a platform for developing and extending a theory of reminding in
teaching. It demonstrates the capabilities of a case-based teaching system to establish a
context for learning through an engaging task environment and to capitalize on that context
with stories. Furthermore, it embodies the Socratic case-based teaching architecture which
uses a dialogue based on responsive questioning as the means for establishing valuable
opportunities for learning. Through this research, we have developed an architecture that
rests on theories of learning and understanding that have emerged from research in artificial
intelligence and cognitive science. This case-based teaching architecture provides the cases
that students require in order to be effective case-based reasoners.

The challenge of constructing case-based teaching systems is to build engaging task
environments and to design effective storytellers that are able to respond to the situations
that arise in the task environments with appropriate stories. In particular, a storyteller
requires a library of stories indexed according to the situations in which they are relevant, a
means of communicating with the task environment, and a set of reminding strategies that
enable it to locate appropriate stories when they become relevant. In the course of this

206

research, we have identified and implemented three categories of reminding strategies that
are useful in Socratic case-based teaching: example remindings, similarity-based remindings,
and expectation-violation remindings. Each of these serves a particular set of pedagogical
goals, requires a certain type of information to be present in indices, and is appropriate for a
particular set of situations in the task environment.

In the next stages of this research, the architecture must be empirically tested to
determine whether its theoretical claims are borne out in practice. In the meantime, the
contribution of this work is in the field of artificial intelligence, as a theory and
implementation of reminding in teaching. We have identified an architecture for
establishing instructive situations through a natural question-and-answer dialogue and for
capitalizing on those situations with stories. This architecture resembles the way teachers
and parents both use stories in their own teaching. In future research, Creanimate can be
improved and extended to be a more powerful educational system, and its architecture can be
applied to new domains.

Appendix A

The Components of the Indexing
Vocabulary

This appendix provides a brief summary of the elements that comprise the Creanimate
knowledge representation. It is divided into two sections, one for the objects and one for the
relationships.

1. The Creanimate Objects

1.1 Animals

The animal object in Creanimate represents a category of animal, as opposed to an
individual animal in the world, i.e. the category cat not a particular cat. The representation
consists of a collection of attributes that all animals in that category share. The values of the
slots in an animal object are:

Isa/subtypes. Broader/more specific categories of animal.

Features. Features possessed by all animals in the category.

Actions. Actions performed by all animals in the category.

Behaviors. Behaviors performed by all animals in the category.

Feafuns. The combinations of the features and the actions they support possessed
by all animals in the category.

Plans. The combinations of actions and behaviors they achieve possessed by all
animals in the category.

Rules. The standard expectations violated by stories that apply to this category
of animal.

Stories. Indices of stories in which the animal appears.

Say, sayl. Text strings determining how to describe the animal in natural output.

Dmap-parses. Patterns for identifying the animal in student input.

1.2 Feature

A feature is used to represent a category of physical features that animals possess.
Isa/Subtypes. Other more general/specific categories for the same anatomical
structure.
Qualities/Quality-Of. Other features with the same physical structure.
Group/Part-Of. Features that this feature is composed of /composes.
Attached-To/Attachments. Other features connected to the feature.
Animals. Animals that possess the feature.

207

208

Actions. Actions the feature supports.

Functionality. Abstract actions supported by this feature. Only if feature is
abstract.

Required-By. Actions that cannot be performed without this feature.

Suffices-For. Actions that can be performed with just this feature.

Rules. Standard expectations about this feature that are violated by a story.

Stories. Indices of stories which show the use of this feature.

Say, Sayl, Say-Its, Say-Their. Text strings corresponding to this feature in
different roles in sentences.

Dmap-Parses. Patterns for identifying the feature in student input.

1.3 Action

An action is some basic activity conducted by an animal that can serve more than one
survival goal.

Isa/Subtypes. Other more general/specific forms of the action.

Qualities/Quality-Of. Adverbial modifiers of an action.

Part-Of/Parts. Actions that this action composes/is composed of.

Animals. Animals that perform this action.

Behaviors. Behaviors this action achieves.

Features. Features that support this action in some way.

Requires. A list of features that are all essential to perform the action.

Suffices. A list of features any one of which is sufficient to perform the action.

Functionality-For. Abstract features that support this abstract action.

Rules. Standard expectations about the action that are violated by this action.

Stories. Indices of stories that show this action.

Say, Sayl, Say-Ing, Say-Ingl, Say-To, Say-Tol. Text strings for generating the
action in natural language.

Dmap-Parses. Patterns for recognizing the action in student input.

1.4 Behavior

A behavior is a goal-directed activity performed by animals. A behavior can be
supported by several different actions.

Achieves. A behavior that is achieved by performing this behavior.

Achieved-By. Other behaviors that achieve this behavior.

Assists. Behaviors that this behavior helps but does not achieve.

Assisted-By. Behaviors that help to acheive this behavior.

Act. A behavior with a more general goal that is an abstract description of all
the actions that support the behavior.

Act-Of. A behavior with a more specific goal that shares the act of this
behavior.

Part-Of. A behavior composed of this behavior.

Sub-behaviors. The behaviors that compose this behavior.

Isa/Subtypes. More general/specific behaviors. Only used if no other abstraction
links apply.

Animals. Animals that perform the behavior.

Actions. Actions that achieve the behavior.

Rules. Default expectations involving the behavior that are violated by stories.

Stories. Indices of stories that show animals performing the behavior.

209

Say, Sayl, Say-Ing, Say-Ing1, Say-To, Say-Tol. Text strings corresponding to
different ways the behavior can appear in a sentence.
Dmap-parses. Patterns for identifying the behavior in student input.

Object. The object of the verb in the act slot. (Used in the patterns in the dmap-
parses slot.)

1.5 Phys-Obj

The phys-obj object type is used in the object slot of behaviors. Phys-obj's are used to
represent nouns that may appear in student input but are not animals or features.
Isa/subtypes. More general/specific phys-obj's.
Dmap-parses. Patterns for identifying this phys-obj in student input.

2. The Creanimate Relationships

2.1 Feafun

A feafun represents a feature that is used to perform an action. It is used to connect the
pair to an animal that uses the feature in performing the action.

Feature. A feature.

Action. An action the feature supports.

Impact. A subjective description of the relationship. Only used if the feafun
appears in an index.

Abstraction. A feafun that contains an abstraction of the feature and action.
Only used in feafuns that appear in indices.

2.2 Plan

A plan links an action and a behavior it achieves to an animal that performs them
together.
Action. An action.
Behavior. A behavior that the action achieves.
Impact. A subjective impression of the relationship. Only used in indices.
Abstraction. A plan containing an abstraction of the action and of the behavior.
Only appears in plans in indices.

2.3 Bplan

A bplan links a behavior with another behavior used in achieving it. Bplans are
mainly included for consistency with plans and feafuns because a behavior can only be part of
or achieve one other behavior. Therefore, the presence of one behavior in an animal implies
the presence of the behavior it is part of or achieves.

Sub. A behavior.
Super. A behavior that the behavior in the sub slot either is part of, achieves,
or assists.

210

2.4 All-Rule

An all-rule is used to encode an expectation that a category of animal possesses a feafun,
plan or bplan.
Animals. The animals to which the rule applies.

Value. A plan, feafun, or bplan that the animal is expected to possess.

Index. The index of a story that violates the rule.

Expect-viol. The attribute that appears in the story in place of the contents of
the value slot.

2.5 Only-Rule
An only-rule is used to encode an expectation that only animals of a particular category

possess a feature, action, or behavior.
Animals. The animals to which the rule applies.
Value. A feature, action, or behavior that the animals in the animals slot is

expected to possess.

Index. The index of a story that violates the rule.

2.6 No-Rule

A no-rule encodes the expectation that no animals in a particular category possess a

given feature, action, or behavior.
Animals. The animals to which the rule applies.
Value. A feature, action, or behavior that the animals in the animals slot is

expected not to possess.
Index. The index of a story that violates the rule.

Appendix B

Sample Creanimate Object Definitions

1. Animals

(DEFFRAME animal tree-cricket

risa | [animal jumping-insect])
:feafuns ([feafun :feature [feature antennae])
taction [action smellll])
:plans ([plan :action [action smell]
:behavior [behavior detect-

vegetation]])
:features ([feature very-small-size]
[feature antennae]

[feature mouth-part])

tactions ([action smell])

:behaviors ([behavior detect-vegetation]
[behavior protect-eggs])

:stories ([index cricket-smells-tree-cricket])

:dmap-parses (LIST (LIST (list 'tree ‘'cricket)))

(DEFFRAME animal flying-fox
:isa ((animal bat])
:feafuns ([feafun :feature [feature gripping-claws]
raction [action gripl]

[feafun :feature [feature leathery-wings]

raction [action fan-self]])
:plans ([plan :action [action fan-self]
:behavior [behavior keep-coolll)

211

212

:features ([feature gripping-claws]

[feature leathery-wings]

[feature small-size])

:actions ([action fly]

[action fan-self]

[action grip])

:behaviors ([behavior keep-cool])
:stories ([index bats-cool-off-bat])
:rsay *fox bats*

:dmap-parses (LIST (LIST (list ‘'flying 'fox)

(list 'fox 'bat)))

:sayl "fox bat*

(DEFFRAME animal amphibian

:properties

:features (
:dmap-parses (LIST (LIST (list ‘amphibian)))

:definition ([definition amphibian]

iisa fanimal animall)

:subtypes ([(animal frog]

[animal toad]

{an

'.—A
3
3

[}

0]

H

fanimal sa
([property real-name]
[property class])
[

feature stomach])

:complex ([animal amphibian])

(DEFFRAME animal frog

risa ([animal amphibian])
:subtypes ([animal lunging-frog] [animal bufo-frog]
:feafuns ([feafun :feature [feature long-tongue]
raction [action grip]]
[feafun :feature [feature mouth]
raction [action bite]]
[feafun :feature [feature eyes]
raction [action look]]

[feafun :feature [feature ear-drums]

water]]

legs]

mates]]

insects]]

insects]]

predator]]

saction [action listen]]
[feafun :feature [feature webbed-feet]

raction [action swim-under-

[feafun :feature [feature forelegs]
;action [action grip]]
[feafun :feature [feature larynx]
:action [action croak]]
[feafun :feature [feature vocal-sack]
:action [action croak]]
[feafun :feature [feature jaws]
:action [action bite]]

[feafun :feature [feature strong-hind-

taction [action leapl]
[feafun
:feature [feature jaws]

:action [action bite-other-

[plan :action faction croak]
:behavior [behavior attract-

[plan :action [action gripl]
:behavior [behavior grasp-

[plan :action [action bite]
:behavior [behavior grasp-

[plan :action [action lungel

:behavior [behavior grasp-insects]]

[plan :action {action lunge]
:behavior [behavior pounce-prey]]
{plan :action [action bite]

:behavior [behavior grasp-prey]]
[plan :action [action swim-under-water]

:behavior (behavior flee-

{plan :action [action leap]

213

214

predators]]

areal]]

:features

:actions {

[plan

behavior [behavior flee-predator

raction [action look]

:behavior [behavior detect-predators]]

[plan

raction [action listen]

:behavior [behavior detect-

[plan

action [action swim-under-water]

:behavior [behavior go-to-spawn-

{plan

[plan

[plan

{plan

[plan

([feature

[feature
[feature
[feature
[feature

[feature

taction [action release-sperm]
:behavior [behavior spawn]]
taction [action lay-eggs]
:behavior [behavior spawn]]
raction [action grip]

:behavior [behavior spawn]]
raction [action lunge]

:behavior [behavior grasp-worms]]
raction [action grip]

:behavior [behavior grasp-worms]]

webbed-feet] [feature forelegs]
ear-drums] [feature mouth]
long-tongue] [feature larynx]
vocal-sack] [feature eyes]

jaws] {[feature strong-hind-legs]

green-color] [feature small-size])

[action bite] (action lunge]

[action
[action
[action
[action

[action

leap] [action swim-under-water]
croak] [action listen]

grip] [action release-sperm]
lock] [action lay-eggs]

bite-other-animals])

:behaviors ([behavior spawn] [behavior grasp-prey]

[behavior grasp-insects]

215

[behavior pounce-prey]

[behavior go-to-spawn-area]

[behavior detect-predators]

[behavior flee-predator]

[behavior attract-mates]

[behavior grasp-worms])
:stories ([index frog-eats-worm]

[index frog-and-snake]

[index grass-frog-mates]

[index frog-releases-sperm]

{index frog-eludes-snake-disk-3]

[index frog-eats-worm-disk-3])

:dmap-parses (LIST (LIST (list 'frog)))

2. Features

(DEFFRAME feature tusks

tisa ([feature pointy-appendage]
[feature appendage-on-head]
[feature teeth])
(feature long-appendage])
:animals ([animal elephant]
[animal walrus])
ractions ([action charge]
[action push-other-animals]
[action spar])
:suffices-for ([action charge]
[action push-other-animals]
[action spar])
:stories ([index elephants-spar])
:dmap-parses (LIST (LIST (list 'tusk)))

(DEFFRAME feature nose

tisa [feature appendage-on-head]
[feature orifice]

[feature sense-organs])

216

:subtypes ([feature beak]
{feature big-nosel])
:group ([feature nostrils])
:animals ([animal land-mammal] [animal bear]
[animal squirrel] [animal meerkat])
tactions ([action smell] [action snorkel)
[action fill-hole] [action dig-hole]
[action push-dirt])
:functionality ([action dig] [action probe])
:properties ([property one] [property natural-kind])
:suffices-for ([action smell] [action snorkel]
[action fill-hole] [action dig-hole])
:stories ([index bears-get-food]
[index squirrel-buries-nuts]
[index meerkat-digs-hole-meerkat]
(index tapir-swims-tapir]
[index ant-bear-roots-insects-ant-bear]
[index tapir-smells-tapir]
[index prairie-dog-standby]
[index squirrel-buries-nuts-disk-3]
[index bears-get-food]
{index bears-get-food-disk-3])
:dmap-parses (LIST (LIST (list ‘'nose)

(list 'snout)))

(DEFFRAME feature wings

:isa | [feature support-in-medium])

:subtypes ([feature feathered-wings]
[feature large-wings]
[feature small-wings]
[feature leathery-wings]
[feature insect-wings]
[feature manta-wings]
[feature medium-size-wings])

:qualities ([feature flat])

ractions ([action fan-self] [action cover-something]

[action fly])

217

:functionality ([action move-in-air] [action shield]

:properties ([property natural-kind])
:required-by ([action spread-wings] [action fly])
:suffices-for ({[action fan-self] [action dance]
[action cover-something])
:stories ([index bees-fan-hivel
[index partridge-nest-and-young]
[index butterfly-flies-disk-3])
:dmap-parses (LIST (LIST (list 'wings)
(list 'wing)))
:rules ([no-rule :animals ([animal land-mammal])
:value [feature wings]
:index [index bats-cool-off-bat]]
[no-rule :animals ([animal £fish])
:value [feature wings]

:index [index manta-ray-feeds]]

3. Actions

(DEFFRAME action move
risa | [action action])
:subtypes ([action move-fast] [action move-slow]
[action move-under-water]
faction move-in-water]
[action move-self-to-location]
{action move-in-air]
[action move-above-ground]
[action move-on-ground]
[action move-undetected])
:comment *locomotion only, not move things"
:dmap-parses (LIST (LIST (list 'move)
(list 'go))))

(DEFFRAME action kick-dirt

risa ([action use-force]

218

[action throw])

:animals ((animal kangaroo-rat])

:behaviors ([behavior fight-predators])

:features ([feature legs])

:requires ([feature legs])

:stories ([index kangaroco-rat-and-snake-kangaroco-rat])

:dmap-parses (LIST (LIST (list 'kick 'dirt)
(list 'shoot 'dirt)
(list ‘'throw ‘dirt)
(list 'kick 'sand)
(list 'throw 'sand))))

(DEFFRAME action scrape
:isa ([action make-contact] [action take-apart])

:subtypes ([action scrape-at-ground])

:animals {([animal armadillo] [animal wolf])
:behaviors ([behavior build-nest])
:features ([feature long-curved-claws]

[feature long-sharp-teeth])
:suffices ([feature long-curved-claws]

[feature long-sharp-teeth])
:functionality-for ([feature hard])
:dmap-parses (LIST (LIST (list ‘scrape))))

4. Behaviors

(DEFFRAME behavior pursue
:isa ([behavior move])
tact-of ([behavior chase-mate] .
[behavior pursue-prey])
:dmap-parses (LIST (LIST (list ‘chase)
(list ‘'run ‘after)
(list 'pursue)

(list 'overtake)))

(DEFFRAME behavior store-food
:assists ([behavior get-food])
:actions ([action deposit-object][action regurgitate]
[action dig-hole] [action fill-hole])
:animals ([animal bee] [animal squirrel])
:object ([phys-obj focd])
:stories ([index bees-make-honey]
[index bees-gather-pollen]
[index squirrel-buries-nuts]
[index bees-fight-wasp-disk-3]
{index bees-gather-pollen-disk-3])
:dmap-parses (LIST (LIST (list 'store ':object)
(list ‘'save ':object)
(list ‘'stock ':object)
(list 'stow ':object)
(list ‘'put ':object)
(list 'store 'away ':object)
(list 'save ‘away ':object)
(list 'stock 'away ':object)
(list 'stow 'away ':object)
(list 'put ‘away ':object)
(list 'put ':object 'away)
(list ‘'put 'it ‘'away)
(list 'store 'it)
(list 'save 'it)
(list ‘'stock 'it)))

:say-ing *storing food for later"

{DEFFRAME behavior lie-in-wait
:assisted-by ([behavior lure-preyl)
;achieves ([behavior get-close-to-prey])
;actions ([action remain-motionless]
[action wade])
:animals ((animal bear]
[animal black-heron]
[animal pikel])

iobject ({animal prey])

219

220

:stories ([index salmon-jump-bear]
[index black-heron-shades-water])

:say *lie in wait for prey*

:dmap-parses (LIST (LIST (list 'wait 'for 'prey)
(list 'wait ':object)
(list 'sit ':object)
(list 'stand ':object)
(list 'until ‘:object)
(list 'remain ':object)
(list 'patiently ':object)))

:say-ing “lying in wait for prey"

(DEFFRAME behavior defend-self
:subtypes ([behavior defend-against-predators]
[behavior defend-against-enemies])
ract ([behavior defend])
:say "defend themselves"
:dmap-parses (LIST (LIST (list ‘'defend ‘'itself)
{list 'defend 'themselves)
(list 'defend 'self)))
:say-ingl "defending itself*
:say-tol "to defend itself"
:sayl *defends itself™

Appendix C

Sample Creanimate Index Definitions

The following are examples of indices drawn from the current Creanimate story library.

1. Tiger Captures Deer
In this story, a Bengal tiger chases a deer into a small pond and captures it in its teeth.

(DEFFRAME index tiger-captures-deer-tiger
:animals ([animal tiger])
:features ([feature mouth] [feature long-legs]
[feature long-sharp-teeth] [feature jaws])
:behaviors ([behavior move-food] [behavior grasp-prey]
{behavior pursue-prey])
ractions ([action carry-prey] [action run-fast]

[action bite] [action bite-other-animals])

:feafuns ([feafun :feature [feature long-legs]
raction [action run-fast]
:impact ([impact askable])

:abstraction [feafun :feature [feature legs]
raction [action move]]]
[feafun :feature [feature jaws]
:action [action carry-prey]
:abstraction [feafun
:feature [feature mouth)]

;action [action move-objects]

1]

{feafun :feature [feature long-sharp-teethl]
:action [action bite-other-animals])
:impact ([impact askable])
:abstraction [feafun :feature [feature mouth]
raction [action piercell
1
:plans ([{plan :action [action run-fast]
;behavior [behavior pursue-prey]

221

222

:impact ([impact askable])
:abstraction [plan :action [action move-on-ground]
:behavior {behavior hunt]]]
[plan zaction [action carry-prey]
:behavior [behavior move-food]

:abstraction
[plan :action [action move-objects]
:behavior [behavior process-food]]]
[plan raction [action bite-other-animals]
:behavior [behavior grasp-prey]
:impact ((impact askable :isa [impact askable]
:object [action bite]l])

:abstraction {plan :action [action pierce]
:behavior [behavior hunt]
11)
:story [story tiger-captures-deer]
:impact ([impact great])

:rating 8
:VIDEO (list (list 152802 161000 (disk ‘'nat-and-brit) "A"))

In this humorous story, a tapir wanders around sniffing the air with its large nostrils
flared.

(DEFFRAME index tapir-smells-tapir

ranimals (fanimal tapir])
:features ([feature big-nose] [feature nose])
:behaviors ((behavior get-info-world])
:actions ([action smell])
:feafuns ([feafun
:feature [feature big-nose]
:action [action smell]

:abstraction [feafun :feature [feature sense-organs]

saction [action investigate]]
1)
:plans ([plan :action [action smell]
:behavior [behavior get-info-world]

:abstraction [plan :action [action use-senses]
:behavior [behavior get-infol]
N
:story [story tapir-smells]
:impact ([impact hilarious] [impact strange-animals])
:rating 9

223

:VIDEO (list (list 61101 64100 (disk 'nat-and-brit) "A"))

3. Cranes Dance

In this story several cranes dance awkwardly on their long legs, hopping, moving their
necks, and flapping their wings in an elaborate courtship ritual.

(DEFFRAME index cranes-dance-crane
:animals ([animal whooping-crane])
:features ([feature long-legs] [feature legs]

[feature long-neck] [feature feathered-wings])
:behaviors ([behavior attract-mates])

:actions ([action spread-wings] (action hop] [action dance])
:feafuns ([feafun

:feature [feature long-neck]
raction [action dance]
:abstraction
[feafun :feature [feature neck]

raction [action move-body-parts]}]

[feafun
:feature [feature feathered-wings]
raction faction spread-wings]

:abstraction [feafun :feature [feature wings]
:action [action spread]]]
[feafun
feature [feature long-legs]
raction [faction hopl
tabstraction [feafun :feature [feature legs]
raction [action jump]]}
[feafun :feature [feature feathered-wings]}
raction [action dance]
:abstraction [feafun
:feature [feature wings]
:action [action be-visible]]]

[feafun :feature [feature long-legs]
raction [action dance]
:abstraction

[feafun :feature [feature legs]
;action [action be-visiblel]]])
:plans ([plan :action [action spread-wings]
:behavior [behavior attract-mates]
:abstraction ([plan :action [action spread]
:behavior [behavior get-mate]]]

224

[plan :action [action hop]

:behavior [behavior attract-mates]

:abstraction

[plan :action [action jump]
:behavicr [behavior attract-mates]]

[plan :action [action dance]

:behavior [behavior attract-mates]

:impact ([impact askable])

:abstraction (plan :action [action be-conspicuous]

:behavior [behavior get-mate]]l])
:story [story cranes-dance]

:impact ([impact frantic-dancing])
:rating 5
:VIDEO (list (list 65201 71700 (disk 'nat-and-brit) "A")))

4. Jaja Billabong Shades its Eggs

In this story, a female Billabong bird uses its wings to shield its wings from the searing
heat of the sun.

(DEFFRAME index jaja-billabong-shades-eggs

:animals ([animal jaja-billabong])
:features ([feature feathered-wings])
:behaviors ([behavior protect-eggs])
ractions ([action make-shade])

:feafuns ([feafun

: feature [feature feathered-wings]
raction [action make-shade]
:abstraction

[feafun :feature [feature wings]
raction [action shield-from-elements]]
1)
:plans ([plan :action [action make-shade]
:behavior {behavior protect-eggs]
:abstraction
[plan :action [action shield-from-elements]
:behavior [behavior care-for-young]]
1)
:story [story jaja-billabong-protects-eggs-2]
rexpect-fails ([all-rule :animals ([animal bird])
:value [feafun :feature [feature wings]
:action [action flyl]
:exXpect-viol [feafun :feature [feature wings]

-

225

raction [action make-shade]]
:index [index jaja-billabong-shades-eggs]])
:impact ([impact funny])
:rating 7
:VIDEO (list (list 302003 303500 (disk 'nat-and-brit) "aA"}))

5. Salmon Jump

In this story, salmon swimming upstream to spawn leap many feet into the air to get up
and over some rapids.

(DEFFRAME index salmon-jump-salmon
ranimals ([animal salmon])
:features ([feature tail-with-fins]
[feature fins]
[feature fish-packagel)
:behaviors ([behavior go-to-spawn-areal)
:actions ([action swim-under-water]
[action jump])
:feafuns ([feafun :feature [feature tail-with-fins]
action laction jump]
rimpact ([impact askable])
:abstraction [feafun
:feature [feature tail]
raction [action move-above-ground]]]
[feafun :feature [feature fish-package]
:action [action swim-under-water]
:impact ([impact askable])
:abstraction
[feafun :feature

[feature swim-under-water-packagel]

;action [action move-in-water]}])
:plans ([{plan :action [action swim-under-water]
:behavior [behavior go-to-spawn-areal]
:impact ({impact askable :isa ([impact askablel])

:object [action swim]])
:abstraction [plan :action [action move-in-water]
:behavior [behavior mate]]]
{plan :action {action jump]
:behavior [behavior go-to-spawn-area)
:impact ([impact askable])
:abstraction

(plan :action [action move-above-ground]

226

:behavior [behavior spawnl]])

:story [story salmon-jump]
:expect-fails ([no-rule :animals ((animal fish])

:value [action move-in-air]

:index [index salmon-jump-salmon]])
rimpact ([impact funny])
:rating 9
:VIDEO (list (list 190706 192229 (disk 'nat-and-brit) ®*A"))

Appendix D

User Control Buttons in Creanimate

The User Control Buttons in Creanimate are drawn from a set of sixteen buttons proposed
by Jona et al. (1991, see also Schank and Jona 1991). These buttons provide a student with an
ability to express his current state in so that an educational system can respond appropriately.
Through these buttons, a teaching system can get the sort of information about a student that a
human teacher can often read directly from a student’s face and actions, and that intelligent
tutoring systems devote enormous resources to inferring. In addition, they encourage the
student to become more aware of his own learning processes and to act on this awareness. The
user control buttons proposed by Jona et al. (1991) fall into three categories: feelings, questions,
control. The complete set of sixteen buttons is:

Feelings: Awesome, Boring, No Way, Huh?, Too Hard.

Questions: Why? How do I do that? Now what? What's the point?
History?

Control: Change task, Back up, Big picture, More detail, Skip this.

Figure 47. The button palette from the Creanimate user interface showing the User Control
Buttons. The buttons are labeled, from left to right, start over, change animal, big picture,
what’s the point?, back up, and skip this.

Six user-control buttons were chosen for use in Creanimate. They are shown in figure 47.
Their functions are:

Change animal. The change animal button gives the student the ability to either start
with a new animal or make an additional change to his current animal. The system is
designed with the idea that a student should only pursue a topic for as long as it holds his
interest. The change animal button makes it easy for students to switch to something they
find more engaging if their interest in their current animal wanes.

What's the point? The What's the point? button is one of two buttons that helps
students stay oriented during a dialogue. The What's the point? button provides the student
with an explanation of why the dialogue manager has said something. Below are two
examples of the output from the What's the point? button.

227

228

OK, let's find a reason for your bear to have a beak. Is
there a reason you want your bear to have a beak?
Student: Button press-wWHAT’S THE POINT?

Animals have things for a reason--to help them survive. If

your bear is going to have a beak, it should help it survive
some way .

So, your bear could have a beak to skim the water. Why would
you like your bear to have a beak?

Student: Button press-wWHAT’'S THE POINT?
It is your decisicn why your bear will have a beak. You can
choose now, or see more reasons,and choose later

As these examples show, the What's the point? button takes a step back and tells a
student the reason behind a statement or question from the dialogue manager.

Big Picture. The Big picture button helps the student to get his bearings. Because the
dialogue is punctuated by videos that can range from 30 seconds to a minute, the student can
become so absorbed in a video that he momentarily looses his place. By pressing the Big
picture button, the student can see a screen that provides information about the dialogue. The
Big picture screen displays the student’s current animal, the question currently under
discussion, and questions that have already been discussed. It also displays a list of questions
about the animal that the dialogue manager is waiting to discuss. The bottom half of the Big
picture screen is devoted to a complete transcript of the discussion up to this point. The
transcript and the lists of resolved and pending questions are all mouse-sensitive. The student
can click on any one of them and jump forward or backward to that point in the dialogue.

Back up. The back up button enables the student to go back to any point in the dialogue
and do something different. The student can back up one step or as many as he would like.
This is empowering for a student because it means he can pursue several alternative paths for a
single animal. This helps the student to see the learning interaction not as a series of
irrevocable decisions, but as a space of opportunities that can all be explored. The ability to
skip to different topics gives the student control over what content he gets exposed to, but the
environment is crafted in such a way that the student still gets exposed to the important
principles it is teaching. However, the degree of control that a student has allows him to see
them in a context that he selects.

Skip this. Like the back up button, the skip this button allows the student to take
control of the flow of the dialogue. In response to the skip this button, the dialogue manager
will present the student with choices to skip forward within the current dialogue or to skip
forward to a pending question. The following transcript reveals the range of choices that a

student might see in response to the skip this button. In this example, the student is working
on a butterfly that can hunt.

One part of hunting is catching prey. How would you like
your butterfly to catch its prey?

Student: give me some suggestions

Meerkats catch their prey by grasping prey.

I have an interesting video about that. I like this one
because it has scorpicns in it.

Would you like to see a videc about that?

229

Student: Button Press-SKIP THIS

We can do any of the things listed below. Which would you
like to do next?

"Look at how other animals catch their prey"

*Talk about how will my butterfly get close to its
prey."

*Talk about how will my butterfly subdue prey."

*Talk about how will my butterfly detect prey."

*Add something else to my butterfly"

*Start a new animal®

"Continue where I was®

In this example, the student chose to skip a story showing a meerkat catching its prey.
The options the dialogue manager presents provide him with an opportunity to skip within
the current dialogue and see the ways other animals catch their prey. Or he can skip ahead to
other pending questions for his butterfly that fights, such as how it will get close to its prey,
subdue its prey, or detect its prey. The final options allow him to change his animal or
continue where he was. The skip this button allows the student to control the pace and topic of
his interaction.

Start over. The start over button allows a new student to restart the program after

another student has been using it. Pressing the start over button erases the program’s memory
of the current interaction and restores it to the introductory screen.

Appendix E

Transcripts from the Pre-Creanimate Trials

The following transcripts were recorded during experimental sessions conducted in 1987.
In these sessions, children believed they were interacting with a computer program but, in
fact, they were communicating with William Purves, a biology professor, who was in an
adjoining room. Dubbed the “Wizard of Oz” trials, these experiments were conducted to
gather data on students’ behaviors and to inform the design of the program. The dialogue
cycle described in Chapter 6 was modeled on an analysis of these transcripts.

Twenty sessions involving 17 children between the ages of 9 and 12 were conducted. This
appendix contains sections of transcripts from three of these sessions.

1. The Experimental Setting
The sessions with children were handled and recorded as follows. The child,
accompanied by a parent, is met by Dr. Purves and Maria, his student colleague, and taken

(without the parent) to an office with a computer terminal. The child is told a bit about the
program, called BILL, on the way to the office. While the college student tells the child
about the terminal, Dr. Purves goes to his own office and starts a program running on a DEC
VAX to which the child’s terminal is also connected. When the child types BILL on the
terminal, the session begins.

The child sees both his or her own entries and BILL’s replies on the screen. A transcript
of the session is also maintained by the program. Each line of the dialogue is numbered on the
transcript, the speaker (child or BILL) is identified, and each entry is timed, as is the session
as a whole. By prior arrangement with the child, the session ends when the child enters
Goodbye*. Certain parts of the dialogue involve “canned” responses by BILL, but most of the
replies are written on the spot by Dr. Purves. At the end of the session, the child is debriefed;
he or she is asked to comment on the program, is told that many of BILL’s replies were
actually provided directly by Dr. Purves, and is allowed to ask any questions about the
program and this research project.

During the sessions, Dr. Purves spoke into an audio recorder, keeping track of his thought
processes, with particular attention to what inputs trigger the next story to be told. After the
session, Purves’s remarks are copied into the transcript at the appropriate points; and further
comments may be added by Purves or the student.

2. Transcript1

Session of 5 March 1988

ID: SK

230

231

SEX: M

AGE: 11

GRADE: 5

purves

1

2 Hi!

3

4 I am a very young (and not very smart) computer program.

5 My name is BILL. I would like to talk to you today.

6 When I finish my turn and am waiting for you to say

7 scmething to me, I will end my message to you

8 with a star. Wwhen you finish a thought, you can

9 end your message with a star, too.

26 This program works both in the world of nature and in the
world of

27 make believe. I can tell you about lots of animals
and creatures that

28 exist, or you can think about MAKING UP ANIMALS THAT
DON'T EXIST!

29 You might be surprised at how many strange and wonderful
animals do exist

30 in nature, like flying frogs, dancing bees, and rodents
with no eyes.

31 All these animals live successfully in their particular parts

of
the world.

39 If YOU could make ANY kind of animal, maybe one that is
really strange,

40 WHAT WOULD IT BE, or WHAT WOULD YOU WANT IT TO DO?
I would really like

41 to hear your ideas!

42 *

student :

43 I WOULD LIKE IT TO FLY LIKE A BIRD*

purves:

44 Okay, that sounds like a good idea!

45 Is it actually a bird, or are we going to

46 build scme other animal that flies like a bird? *

student :

47 ITS NOT A BIRD

483 *

purves:

49 Okay. Can you tell me anything more about our

50 new animal, or

51 shall I ask you some qQuestions about it? *

student :

232

52 WELL, IT LOOKS LIKE A DOG AND HAS LARGE EARS

53 *

purves:

54 Wow! What an animal!!

55 It flies like a bird, looks like a dog, and has large ears!
56 I'd like to hear from you about why it has those large ears.
57 Could you tell me why our animal has large ears? *
student:

58 BECAUSE THEY GROW FAST*

purves:

59 Ch, I see!

60 What does it DO with those large ears? *

student:

61 IT MAKES THEM GO UP AND DOWN,

62 SORT OF LIKE DUMBO

63 *

purves:

64 Ch... does that mean our dog-bird-Dumbo uses its ears
65 to fly and does not have wings? *

student :

66 YES*

purves:

67 Okay .

68 Our animal flies by flapping its ears.

69 Many birds fly by flapping their wings.

70 Other birds hold their wings stretched out most of

71 the time and just soar, without flapping.

72 Can you think of other ways some other animals fly? *
student:

73 NO,NOT REALLY

74 *

purves:

75 The FLYING FISH doesn't have wings, but it can fly for
76 a fair distance. The flying fish swims very fast and
77 then leaps up into the air; it uses broad fins (almost
78 like wings) to soar for some distance.

79 The FLYING SQUIRREL has no wings, and no fins. But

80 when it stretches its front and back legs out to the
81 sides, they are connected by a web. The flying

82 squirrel climbs trees, then jumps and stretches out

83 its legs, and it can socar for some distance.

84 Their are even some FROGS that can do something like that!
85

86 NOTE THAT THIS PROGRAM IS STILL UNDER DEVELOPMENT.

87 IT WILL HAVE A VIDEO DISK PROGRAM THAT SHOWS PICTURES....
88 Until I get my video disk, we can only imagine that

89 I am showing you pictures.

90 Let's look at another animal that may have big ears.
91 Look at this photograph of a rabbit that lives in

92 the icy climate of the Arctic. It has

93

94

95

96

97

98

99

100
student :
101
102
purves:
103
104
105
106
107
108
109
110
111
purves:
112
113
114
115
116
student :
117
purves:
118
student :
119
120
purves:
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135

small, furry ears.

Now look at this photograph of a rabbit that lives near
here. It has larger ears, that aren't so furry.

And now look at this photograph of a rabbit that lives
in the desert. It has VERY large ears, that are

almost hairless!

Can you guess why those different rabbits have ears
that look so different? *

maybe its just nature
*

That is a reasonable answer!

But I'd like to have you THINK a bit about it...

Those 3 kinds of rabbits live in

3 different climates.

The small, furry ears are in the Arctic,

and the huge, hairless ears are in the desert.

What is a big difference between the Arctic and the desert?

ones hotter than te other
*

Yes!!

Now think about something else...

have you ever been REALLY cold, like maybe when
you were in the snow, or in a skating rink, or
just when you were outdoors in the winter? = *

yes*
And what parts of you felt really cold? =+

my toes felt numb,and the bottom of my pants
because I fellso many times*

Ouch!

Lots of people also get very cold EARS unless their
ears are covered up.

When something feels cold like that, it means that
part is LOSING HEAT from the body, so the body gets
colder.

Now let's think about those rabbits...

The ones in the Arctic don't want to lose heat...
they are in a very cold place. Their ears are
small and furry.

The ones in the desert tend to be very hot. The
sun shines on them, and the soil is very hot.

Those rabbits need to LOSE HEAT so they don't

get TOO hot. To do that, they have BIG EARS that
lose heat and cool the rabbit, just as our small

233

234

136
137
138
139
140
student :
141
purves:
143
144
student:
145
146
purves:
147
148
149
150
purves:
151
152
153
154
155

Ao

120

157

158

159

160

161

162

163

164

165

166

167
student:
168

169
purves:
170
student:
171

172
purves:
173

174
student:
175

176

ears lose heat and feel awfully cold in cold weather!

But back to our animal,
that flies with its ears and looks like a dog.
Do you want to tell me anything else about our animal?

it lives in hot weather and has small feet

That's very interesting!
Do you want to tell me why the feet are small? *

it has large claws though so it can get food
%*

Okay!

Does it use the claws to DIG for food, or
does it use the claws to CATCH its food? *
to dig for food*

I see.

Our animal digs for food, and

it can fly, which may help it find its food.

NOTE THAT THIS PROGRAM IS STILL UNDER DEVELOPMENT.

IT WILL HAVE A VIDEO DISK PROGRAM THAT SHOWS PICTURES....

Until I get my video disk, we have to imagine that
I am showing you pictures.

Look at this picture of a dog.

Its eyes look straight ahead.

Look at this picture of a rabbit.

Its eyes point off to the sides of the animal.
Look at this picture of a tiger.

Its eyes look straight ahead.

Look at this picture of a deer.

Its eyes point off to the sides of the animal.

Can you figure out why the eyes point in different
directions on different kinds of animals? *

because of their heads
*

Do you know the words PREY and PREDATOR? *

ves
*

Good for you!
Is a tiger a predator, or is it prey? *

its a predators8

*

235

purves:

177 Right!

178 Is a rabbit a predator, or is it prey? *

student:

179 prey

180 *

purves:

181 Very good. You do know those words!

182 Our animal sounds like a predator to me, if it's

183 like a dog.

184 Those pictures showed that the PREDATORS usually

185 have eyes that look straight ahead of the animal.

186 The PREY usually have eyes that look off to both

187 sides.

188 Can you try to explain that? *

student :

189 yves because the rabbit needs to be on the look out

190 for predators that might eat it as a meal

191 *

purves:

192 VERY good! You figured it out!

193 The prey spend their time eating plants, and they

194 need to be on the look out for predators.

195 Now why do the predators have eyes that look

196 straight ahead? *

student :

197 so they can look for prey

198 *

purves:

199 That sounds good to me!

200 And when they FIND prey, they often must CHASE

201 the prey. They need to keep their eyes on the

202 prey, and they aren't worrying about other

203 predators sneaking up on THEM!

204

205 [REMEMBER: you can ask questions about animals any time you

want to.

206 If I have just asked you a question, don't be afraid to
ask ME one

207 right back! Just remember to wait for the beep that says it's

208 your turm...]

209

210 Our animal is going to have long claws, you said, to

211 help it dig up its food.

212 Have you decided what the food is that it's digging up? *

student:

213 im not quite sure do you have any ideas?*

purves:

214 Well, there are lots of animals that DO dig...

215 and they often have long claws to help them dig...

236

216
217
218
219
student:
220
221
purves:
222
223
224
225
226
227
student:
228
purves:
229
230
231
232
233
234
235
236

oS

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

animals like woodchucks and badgers and moles...

those animals eat lots of different things, like

worms and insects and so forth.

Do you know the words CARNIVORE and HERBIVORE? *

no
Y

That's okay! A CARNIVORE is an animal that eats other
animals (it eats meat);

an HERBIVORE is an animal that eats plants;

an OMNIVORE is an animal that eats both meat and plants.
We are omnivores.

Is a dog a carnivore or an herbivore? *

a herbivore,I think*

Think of what dogs like best:

they like bones, and big chunks of meat, and things
like that. Dogs and other predators are CARNIVORES.
Rabbits, cows, deer, garden snails and many

other animals are HERBIVORES.

Back to our digging animal!

Some digging animals eat worms and insects and things
like that--their food is animals, so they are
CARNIVORES.

But some other digging animals, like gophers, eat
plants and are HERBIVORES. These animals may just
eat the roots, but some pull the whole plant down into
their holes and eat the whole thing!

So our animal

looks like a dog,

flies by flapping its ears,

lives in hot weather,

and has small feet with long claws
that it uses to dig for what it eats!
If T had my video disk, I would

try to draw a picture for you...

but I can't.

3. Transcript 2

Session

ID:
SEX:

of 19 March 1987

AW (SECOND SESSION)

AGE:
GRADE:

237

11
6

TYPING ABILITY: Hunt and Peck...

purves:
26

27
really

28

29
student :
30
purves:
31

32

33

34
student:
35
purves:
36

37

38
student :
39

40
purves:
41

42

43

44

45

46
student :
47

48

49

50

51

52

53

54

55

56

57

58

If YOU could make ANY kind of animal, maybe one that is really
strange,
WHAT WOULD IT BE, or WHAT WOULD YOU WANT IT TO DO? I would

like

to hear your ideas!
*

I would want it to be a kangaroo.*

That is interesting!
Kangaroos do many interesting things.

Is there something special about your kangarco?
*

Yes 1t would be able to jump into space.*

That is asking too much of any animal, I think!
But I would like to talk about jumping kangaroos...
First tell me: how many legs does a kangaroo have? *

2

*

Okay .
It has two strong hind legs
and two little front legs that you may think of as arms...

It uses only the hind legs to jump and run with.
It also has a very big, heavy tail.

Can you figure out what it might use that tail for? ~*

To hit things with .*

That sounds interesting.

In fact, it uses the tail for at least two things:

For one thing, it uses the tail to balance itself when

it is standing still. It is hard for a 2-legged animal

to stand for a long time (at least for SOME 2-legged animals).
The kangaroo can lean back slightly on this big tail, and
turn itself into a 3-legged stool! (two legs and one tail)
ALSO,

the kangaroo uses its tail to balance itself when

it is running.

As the kangaroo runs, its body leans forward. The tail

238

65

student:

66
purves:
67
68
69

student:

70
purves:
71
72
73
74
75

student :

76
purves:
77
78
79

student :

80
purves:
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

sticking out in back keeps it from falling over.
NOTE THAT THIS PROGRAM IS STILL UNDER DEVELOPMENT.
IT WILL HAVE A VIDEO DISK PROGRAM THAT SHOWS PICTURES..

If T had my video disk now I would show you some pictures
of a running kangaroo.

What else about your kangaroo? *
It would be able to sing.*

What a kangaroo! I wonder what it will sing about...
I am thinking of other animals that sing, such as birds.
What is the reason you would like your kangaroo to sing? *

because kangaroos don‘t sing.*

That means this will be a challenge!

Let's think about animals that DO sing in nature.
Many male birds sing.

They sit in trees or on chimmeys and sing and sing.
Do you know WHY they sing? *

to call other birds*

Yes! They call them for
Do you want to figure them out, or
shall I tell you? *

to mate or when their in trouble or when they find food*

Very good!

The bird has TWO main motives for singing:

they both relate to mating!

The male bird sings to tell OTHER MALE BIRDS:

"This is MY home -- go away!*"

The male bird sings to tell FEMALE BIRDS:

"I am a male bird and I am inviting you to visit me!"

But I interrupted your kangaroo story...

you wanted your kangarco to jump into space

and I said animals couldn't do that

Let's talk for a minute about

animals jumping.

I am thinking of some animals: a kangaroo, a horse, a flea,
a cat, a dog, a deer, and

a little animal called a kangaroo rat.

NOTE THAT THIS PROGRAM IS STILL UNDER DEVELOPMENT.

IT WILL HAVE A VIDEO DISK PROGRAM THAT SHOWS PICTURES...
If I had my video disk, I would show you pictures of
these animals jumping.

101
102
103
104
105

106

107
108
student :
109
purves:
110
111
112

113

114
115
116

117
118
119

120
121
122

123

124
125

126

127
128
129
130
131
student :
132

133
purves:
134
135
student:
136
purves:
137
138
139
140
141
142
143
144

239

They are animals of VERY different sizes! Think of a kangaroo
and a flea.

IN FACT, ALL OF THESE ANIMALS JUMP TO ABOUT THE SAME HEIGHT!
That 1is, for animals like these, the height to which they can
junp does not depend on the size of the animal! '

Why can't a kangaroo or a dog or a flea
jump into space? *

they don't have enough stranth in their legs to*

That is exactly right!

We could give them more strength by

giving them bigger muscles.

Think for a minute about a cat with

much bigger muscles, such as

kangaroo muscles...

That would be a stronger cat, and so

you might expect it to be able to jump higher.
But it couldn't... the problem is, the cat
itself would now be bigger!

When an animal jumps, we have to think of
TWO THINGS:

strength and weight!

The muscles give an animal strength, but
they also give it weight. So bigger
animals still jump to about the same height.

Back to the kangaroo...

a kangaroo is a kind of animal found in
Australia.

Like many other Australian mammals, it

is a MARSUPIAL. Do you know that word? *

yes*

Great!
Then do you know what a MARSUPIUM is? *

no*

Then I'll tell you about it!
The marsupium is the POUCH that a kangaroo

. or other marsupial

carries its babies in.

All marsupials have a marsupium--so that's
where their name comes from.

The marsupium is an interesting thing...
when OTHER mammals have babies, they are

240

145 separate from their mother after they

146 are born. The mother takes care of them
147 for a while. The babies nurse at their

148 mother's breasts.

149 Marsupials are different...

150 they are born much earlier--they are very
151 tiny, and they are totally unable to do

152 anything--even as much as a human baby.

153 These very tiny babies crawl up along their
154 mother's fur and climb into the marsupium
155 (the pouch, or "pocket*). 1Inside the

156 marsupium are very tiny nipples. The baby
157 kangaroo finds a nipple and puts its mouth
158 over it .

159 and stays there for MONTHS!

160 So much of its growth is inside the mother's
161 marsupium instead of inside the mother's womb.
162 There are many other kinds of marsupials
163 (besides kangaroos) in Australia.

164

165 Shall we keep on talking about

166 your kangaroo,

167 or do you want to change the subject? *
168 keep on talking*

4. Transcript 3

Session of 25 February 1987

1D: JB
SEX: M
AGE: 11
GRADE: 6

TYPING ABILITY: Hunt and Peck...

27 If YOU could make ANY kind of animal,

28 maybe one that is really strange,

29 WHAT WOULD IT BE, or WHAT WOULD YOU WANT IT TO DO?
30 I would really like to hear your ideas!

31 *

student:

32 IT WOULD BE A SLOGG AND IT WOULD BE LIKE A DOG.*
purves:

33 Sounds good to me.

34 Is 'SLOGG' a made-up name, or

35 do you mean a slug ? Tell me which, please *

student :

36
purves:
37
38
39
40

student :

41
purves:
42
43

student:

44
purves:
45
46
47

student :

48
purves:
49
50
51

student:

52
purves:
53
54
55

student:

56
purves:
57
58
59
60
61l
62
63
64
65
66
67
68
69
70
71
72
73

IT IS A MADE UP NAME AND I MEAN A SLOGG.*

Thank you! This ought to be good .

Tell me more about our slogg .

you said it would be like a dog . . .

how will it be DIFFERENT from an ordinary dog? *

IT CAN FLY.*

Wow! A flying dog... I mean, a flying slogg!
HOW will it fly? =*

IT WILL HAVE WINGS.*

How many wings will our
slogg
have? *

TWO. *

Sounds reasonable to me.
Do you know any flying things that have
MCRE than two wings? *

YES A DRAGON. *

I don't know anything about 'DRAGON's .
I only know about animals.
Do you know how many wings insects have? *

NO.*

Most of them have FOUR wings.

Dragonflies have four wings, and so do bugs and beetles.
By the way,

one way we can tell bugs from beetles (they really are
two different kinds of animal!) is by the way their
wings fold up.

In bugs, the wings fold straight down in back, with
the left wings on the left side of the body

and the right wings on the right side of the body.
THAT WAS A MISTAKE.

That was beetles...

In BUGS, the wings cross over each other and look

like an X.

Anyhow, tell me more about our great slogg!
Is there anything else about
it that is different from a dog? *

241

242

student:
74
purves:
75

76

77
student :
78
purves:
79

80

81

82
student :
83
purves:
84

85

86

87

38

89

90

91

32

93

94

95

96

g7

98

99
student:
100
purves:
101

102

103

104

105

106

107

108

109

110

111

112

113
student:
114

IT HAS EIGHT LEGS AND TWO ARMS AND WALKS UPRIGHT.*

Wow! I wonder how it walks upright on eight legs!
Do all 8 of them touch the ground most of the time,
or are some of them hanging up in the air? *

THEY ALL TOUTCH THE GROUND. *

Hmm. .. I wish I could draw a picture of this so
we could look at it!

Can you tell me any other kind of animal that
has EIGHT legs? *

A OCTOPUSE BUT THAT IS A MAMAL.*

YES! an octopus has eight legs! It isn't a mammal,
though. Mammals are things like dogs, cats, bears,
rabbits, mice, people, cows, deer, and so forth.
An octopus is a MOLLUSK. Some other mollusks are
clams, snails, and so forth.

I can think of an animal that has eight walking
legs and two 'arms' with claws on them .

I am thinking of a CRAB. A crab is neither

a mammal nor a mollusk. It is an ARTHROPOD.

Other arthropods are insects, lobsters, spiders,
and so forth.

You have said several interesting things.

Let me ask you: do you think dogs would be better
animals if they could fly? *

NO. *

I agree with you!

A dog with wings could do some things regular dogs
can't, but

they would lose some things, too. It is a lot

of WORK to fly, and the dog would have to eat a
lot more, for example.

So far, our wonderful slogg has two wings, eight
legs, two arms, and stands upright.
Doesn't look a lot like a dog to me any more!

You said our slogg would be like a dog.
In what way is the slogg like a dog? *

A SLOGG HAS THE HEAD OF A DOG.*

243

purves:

115 Oh, I see!

116 Tell me something about the head of a dog .

117 I think you may have a reason for saying that.

118 Is there something special about the dog's head

119 that makes it good for our slogg to have one? *
student :

120 IT HAS GOOD EARS AND A GOOD NOSE TO TRACK DOWN FOOD. *
purves:

121 Yes! It also has good eves.

122 NOTE THAT THIS PROGRAM IS STILL UNDER DEVELOPMENT.

123 IT WILL HAVE A VIDEO DISK PROGRAM THAT SHOWS PICTURES....
124 If T could make pictures, I would say these things:

125 Look at this picture of a dog --

126 it has eyes on the front of its head.

127 Look at this rabbit --

128 it has eyes on the sides of its head.

129 Look at this picture of a lion --

130 it has eyes on the front of its head.

131 Look at this picture of a deer --

132 it has eyes on the sides of its head.

133 Can you explain this to me? *

student:

134 NO I CAN'T.*

purves:

135 Do you know the words PREY and PREDATOR? *

student:

136 YES.*

purves:

137 Okay, good for you, J!

138 Would you say a lion was usually a PREDATOR, or is it usually
PREY? *

student:

139 PREDATOR. *

purves:

140 Good! What about a dog? *student:

141 PREDATOR. *

purves:

142 Very good!

143 What about a rabbit? *

student:

144 PREY.*

purves:

145 You really know your predator and prey stuff!

146 Now think about this...

147 the predators, like lions and dogs and sloggs, have their
1438 eyes on the front of their heads (try to picture what they
149 look like);

150 the prey, like rabbits and deer, have their eyes on the

151 sides of their heads (try to picture what they look like).

244

152
153
154
student :
155
purves:
156
157
158
159
160
student :
161
purves:
162
163
164
165

Now, can you suggest why this might be? That is, how is
it useful for the predator and the prey to have their
eyes where they are? *

NO.*

Okay. Let's think about this.

Think first about the prey, sitting there chewing grass or
whatever... it 1is concerned about NOT LETTING PREDATORS SNEAK
UP ON IT. How might it help that prey animal to have

eyes facing to the sides of its head? *

SO THEY CAN SEE THE PREDATOR. *

Right!

With eyes looking to the sides, it can see almost all the way
around itself, so it is hard to sneak up on a rabbit!

Now, what about the predators, with their eyes looking

forward..

166
student :
167
purves:
163

169

170

171

172

173

174

175

176

177
178

179

180

181
182

183
student :
184
purves:
185

186
student:
187
purves:
188

189

190

can you say anything about that? *
NO. *

Okay, let me try.

I think that a predator isn't worried about something sneaking
up on it.

It is concerned with chasing and catching things, so it
helps it to have eyes that can point right at what it is
chasing.

In fact other predators besides predator mammals may have
eyes on the fronts of their heads.

Think of an owl, for example.

IF I HAD MY VIDEO DISK,

I'D SHOW YOU A PICTURE OF AN COWL,

SO YOU COULD SEE THAT.

Back to the slogg!

Do you have an interesting reason for it having
eight legs? ~*

NO*

Shall we keep on talking about sloggs, or do you
want to build another animal? *

SLOGGS™*
Okay! I LIKE your slogg. Let's see...

it has 2 wings, 8 legs, 2 arms, and it stands upright...
and it has the head of a dog...

191

192
student :
193
purves:
194

195

196

200

shall we talk about any of these things, or do you
want to tell me OTHER things about the slogg? *

Goodbye*

Thank you for talking with me. I REALLY enjoyed it!

You have helped the people who are making me smarter.

Goodbye, and thanks again!

¥*

245

References

Ashley, K. D. and V. Aleven. 1992a. “Automated generation of examples for a tutorial in case-
based argumentation.” In Proceedings of the Second International Conference on
Intelligent Tutoring Systems in Montreal,

Ashley, K. D. and V.Aleven. 1992b. “Generating dialectical examples automatically.” In
AAAI-92: Pr ings of the Tenth National Conference on Artificial Intelligence in San
Jose, CA. 654-660. Menlo Park: AAAI Press.

Bareiss, R. and R. Osgood. 1993. “Applying Al models to the design of exploratory hypermedia
systems.” Paper presented at the annual meeting of the American Association for
Educational Research, Atlanta, Georgia, 12-16 April 1993..

Bassett, G. W. 1970. Innovation in primary education: A study of recent developments in
primary education in England and the U.5.A. London: John Wiley & Sons.

Bell, B. L. and R. Bareiss. 1993. “Sickle cell counselor: Using goal-based scenarios to motivate
the exploration of knowledge in a museum context.” In Proceeedings of the World
Conference on Al in Education in Edinburgh. Charlottesville, VA: Association for the

Advancement of Computers in Education.

Brachman, R. J. and H.J. Levesque, eds. 1985. Readings in knowledge representation. Los Altos,
CA: Morgan Kaufmann Publishers, Inc.

Braitenberg, V. 1984. Vehicles: Experiments in synthetic psychology. Cambridge, Mass.: MIT
Press.

Brown, A. L. and A. S. Palincsar. 1989. Guided, cooperative learning and individual knowledge

acquisition. In Knowing, learning, and instruction: Essays in honor of Robert Glaser, ed. L.
B. Resnick. 393-451. Hillsdale, NJ: Lawrence Erlbaum Associates.

Brown,]. 5., A. Collins, and P. Duguid. 1989. SItuated cognition and the culture of learning.
Educational Researcher 18 (1): 32-42.

Bryant, S. C. 1905. How to tell stories to children. Cambridge, Mass.: Houghton Mifflin.

Burke, R. and A. Kass. 1992. “Integrating case presentation with simulation-based learning-by-

doing.” In Fourteenth Annual Conference of the Cognitive Science Society in Bloomington,
IN, 629-634. Lawrence Erlbaum Assoc.

Burton, R. R. and Brown, J. S. 1982. Investigation of computer coaching for informal learning

activities. In Intelligent tutoring systems, ed. D. Sleeman and J. S. Brown, 79-97. London:
Academic Press.

Carbonell, J. R. 1970a. Al in CAI: An artificial intelligence approach to computer-assisted
instruction. JEEE Transactions on Man-Machine Systems 11 (4): 190-292.

Carbonell,]. R. 1970b. Mixed-initiative man-computer instructional dialogues. Doctoral
dissertation. Massachusetts Institute of Technology.

246

247

Charniak, E., C. K. Riesbeck, D. V. McDermott, and J. R. Meehan. 1987. Artificial intelligence
programming. Second ed., Hillsdale, NJ: Lawrence Earlbaum Associates.

Chi, M. T. H., M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser. 1989. Self-explanations:

How students study and use examples in learning to solve problems. Cognitive Science 13:
145-182.

Clancy, W. J. 1987. Knowledge-based tutoring: The GUIDON program. Cambridge, MA: MIT

Press.

Clancy, W J., E.H. Shortliffe, and B.G. Buchanan. 1984. Intelligent computer-aided instruction

for medical diagnosis. In Medical artificial intelligence: The first decade, ed. W.].
Clancey and E.H. Shortliffe. Reading, Massachusetts: Addison-Wesley.

Cleave, J. B., D. C. Edelson, and R. Beckwith. 1993. “A matter of style: An analysis of student
interaction with a computer-based learning environment.” Paper presented at the annual

meeting of the American Educational Research Association, Atlanta, Georgia, 12-16
April 1993.

Coderre, B. 1988. Modeling behavior in petworld. In Artificial life, ed. C. Langton. 407-419.
Reading, Mass.: Addison-Wesley.

Cognition and Technology Group at Vanderbilt. 1990. Anchored instruction and its relationship
to situated cognition. Educational Researcher 19 (6): 2-10.

7 ~L . RN S
1

~T - Starmel T Qe A1 1NN 1O0A M AN
WILEgY ITaINEWOIK. ILLE DPECITUm, viarcn i1¥75 17575, 54-57.

Coles, R. 1989. The call of stories: Teaching and the moral imagination. Boston: Houghton
Mifflin.

Nl B 10017 T o s
\.LIC, D. 1770, lllt‘:t

Collins, A., J. S. Brown, and D. E. Newman. 1989. Cognitive apprenticeship: Teaching the

crafts of reading, writing, and mathematics. In Knowing, learning, and instruction: Essays
in honor of Robert Glaser, ed. L.B. Resnick. 453-494. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Collins, A. and A. L. Stevens. 1982. Goals and Strategies of Inquiry Teachers. In Advances in
instructional psychology I, ed. R. Glaser. Hillsdale, NJ: Lawrence Earlbaum Associates.

Copeland, M. T. 1954. The genesis of the case method in business instruction. In The case method
at the harvard busin hool: Paper resent an members of the faculty and
staff, ed. Malcolm P. McNair. New York: McGraw-Hill Book Company, Inc.

De Wit, D. 1979. Children's faces looking up : Program building for the storyteller. Chicago:
American Library Association.

Deci, E.L. 1975. Intrinsic motivation. New York: Plenum.

Dillon, J.T. 1985. Using questions to foil discussion. Teaching and teacher education 1 (2 1985):
109-121.

Edelson, D.C. 1992. The Creanimate Knowledge Representation Manual. Institute for the
Learning Sciences, Northwestern University. Unpublished manual.

248

Feigenbaum, E. A. 1977. “The art of artificial intelligence: Themes and case studies of

knowledge engineering.” In [JCAI 5: Proceedings of the Eighth International [oint
Conference on Artificial Intelligence.1014-1029.

Feynman, R. P., R. B. Leighton, and M. Sands. 1963. The Feynman lectures on physics. Reading,
Mass.: Addison-Wesley.

Fikes, R. and N. Nillson. 1971. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2 (1971): 189-208.

Fitz-Gerald, C. and D. Gunter. 1971. Creativ lling, for libr. nd teacher ai
Dallas: Leslie Press.

Fitzgerald, W. A. 1992. Direct memory access parsing in the creanimate biology tutor. Institute
for the Learning Sciences, Northwestern University, Unpublished Manuscript.

Forman, G. and P. Pufall, eds. 1988. Constructivism in the computer age. Hillsdale, NJ:

Lawrence Earlbaum Associates.

Foster, J. 1972. Discovery learning in the primary school. London: Routledge & Kegan Paul.

Gonella, J.S., M.J. Goran, J.W. Williamson, and M.]. Cotsonas. 1970. Evaluation of patient care.
Journal of American Medical Association 214 (11): 2040-2043.

Guha, R. V. and Douglas B. Lenat. 1990. CYC: A midterm report. Al Magazine 11 (3): 33-59.

Halloun, I. A. and D. Hestenes. 1985. The initial knowledge state of college physics students.
American Journal of Physics 53 (11): 1043-1055.

Hammond, K. J. 1986. Case-based planning: An integrated theory of planning, learning and
memory. Yale University.

Harter, S. 1981. A new self-report scale of intrinsic versus extrinsic orientation in the classroom:

Motivational and informational components. Developmental Psychology 17 (1981): 300-
312.

Jona, M., B. Bell, and L. Birnbaum. 1991. “Button theory: A taxonomy of student-teacher
communication for interface design in computer-based learning environments.” In
Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society in

Chicago, IL, 765-769.
Jones, A. and J. Buttrey. 1970. Children and stories. Oxford: Blackwell.

Karakotsios, K. 1992. SimLife. Maxis. Computer Program.

Kass, A., R. Burke, E. Blevis, and M. Williamson. 1992. The GuSS project: Integrating
instruction and practice through guided social simulation. Institute for the Learning
Sciences, Northwestern University, Technical Report 34.

Keller, J. M. 1983. Motivational design of instruction. In Instructional-design theories and
models: an overview of their current status, ed. Charles M. Reigeluth. 383-434.
Hillsdale, NJ: Lawrence Earlbaum Associates.

249

Klein, G.A. and Calderwood, R. 1988. “How do people use analogues to make decisions?” In

ning Workshop (DARPA) in San Mateo, CA, 209-218.
Morgan Kauffmann Publishers.

Kolodner, J. L. 1991. Improving human decision making through case-based decision aiding. Al
Magazine 12 (2): 52-67.

Kolodner, J. L., R. L. Simpson, and K. Sycara-Cyranski. 1985. “A process model of case-based

reasoning in problem-solving.” In Ninth International Joint Conference on Artificial
Intelligence.

Leinhardt, G. 1987. “Situated knowledge and expertise in teaching.” In Teacher's Professional

Learning in Lewes, Essex, England, edited by J. Calderhead, Falmer Press.

Lenat, D. B. and R. V. Guha. 1990. Building large knowledge-based systems. Reading, Mass.:
Addison-Wesley.

Lepper, M. R. and D. Green, eds. 1978. The hidden costs of reward: new perspectives on the
psvchology of human motivation. Hillsdale, NJ: Lawrence Erlbaum Associates.

Lepper, M. R, D. Greene, and R. E. Nisbett. 1973. Undermining children's intrinsic interest with
extrinsic rewards: A test of the "overjustification" hypothesis. Journal of Personality and
Social Psychology 28: 129-137.

L 5) P
demic Press, Inc.

Levine, H.G. and P.M. Foreman. 1973. A Study of Retention of Knowledge of Neurosciences
Information. Journal of Medical Education 48 (1973): 867-869.

Lindsay, R. K., B. G. Buchanan, E.A. Feigenbaum, and J. Lederberg. 1980. Applications of

artificial intelligence for organic chemistry: The DENDRAL project. New York:
McGraw-Hill.

Malone, T. 1981. Toward a theory of intrinsically motivating instruction. Cognitive Science 4 :
333-369.

Malone, T. W. 1980. What makes things fun to learn: A study of intrinsically motivating
computer games. Doctoral dissertation, Stanford University.

Malone, T. W. and M. R. Lepper. 1987. Making learning fun: A taxonomy of intrinsic
motivations for learning. In Aptitude, learning, and instruction: Vol. IIl. Conative and

affective process analyses, ed. R. E. Snow and M. J. Farr. Hillsdale, NJ: Lawrence
Earlbaum Associates.

Martin, C. 1989. Case-based parsing. In Inside case-based reasoning, ed. C. K. Riesbeck and R. C.
Schank. Hillsdale, NJ: Lawrence Erlbaum Associates.

Martin, C.E. 1990. Direct memory access parsing. Ph.D. dissertation, Yale University, New
Haven, CT.

McCloskey, M., A. Caramazza, and B. Green. 1980. Curvilinear motion in the absence of
external forces: Naive beliefs about the motion of objects. Science 210: 1139-1141.

250

McConnrell, J. V. 1977. Understanding human behavior. Second ed., New York: Holt, Rhinehart
& Winston.

McConnell, J. V. 1978. Confessions of a textbook writer. American Psychologist 33 (1): 159-169.

National Geographic Society. 1989. Mammals: A multimedia encyclopedia. Washington, DC:
National Geographic Society. CD-ROM.

Ohmaye, E.. 1992. Simulation-based language learning: An architecture and a multimedia
authoring tool. Doctoral Dissertation, Northwestern University.

Optical Data Corporation. 1989. Encyclopedia of animals/The living textbook. Interactive
Videodisc.

Paley, V. G. 1990. Th who would be a heli r: _The uses of storytelling in the classroom.
Cambridge, Mass.: Harvard University Press.

Papert, S. 1980. Mindstorms: children, computers, and powerful ideas. New York: Basic Books,

Inc.

Papert, 5. 1986. Constructionism: a new opportunity for elementary science education. MIT
Media Laboratory, Proposal to the National Science Foundation. Quoted in Mitchell
Resnick. “Beyond the Centralized Mindset.” In The International Conference on the
Learning Sciences: Proceedings of the 1991 Conference in Evanston, 111, edited by L.
Birnbaum, 389-396. Charlottesville, VA: Association for the Advancement of Computing

in Education. 1991.

Patterson, S. L. 1990. Designasaurus II. San Francisco, CA: Britannica Software. Computer
Program.

Piaget, J. 1954. The construction of reality in the child. New York: Basic Books.

Quillian, M. R. 1966. Semantic memory. Doctoral dissertation, Carnegie Institute of
Technology.

Redlich, J. 1914. The common law and the case method in American university law schools. The
Carnegie Foundation for the Advancement of Teaching, Bulletin Number 8.

Reed, A. Z. 1921. Training for the public profession of the law. Carnegie Foundation for the
Advancement of Teaching, Bulletin Number 8.

Resnick, M. 1988. LEGO, Logo, and life. In Artificial Life, ed. C. Langton. 407-419. Reading,
Mass.: Addison-Wesley.

Resnick, M. 1991a. “Animal simulations with *Logo: Massive parallelism for the masses.” In
From animals to animats: Proceedings of the First International Conference on Simulation
of Adaptive Behavior in edited by J. A. Meyer and S. W. Wilson, 534-539. MIT Press.

Resnick, M. 1991b. “Beyond the centralized mindset.” In The International Conference on the

Learning Sciences: Proceedings of the 1991 Conference in Evanston, Il1., edited by L.
Birnbaum, 389-396. Charlottesville, VA: Association for the Advancement of Computing
in Education.

251

Riesbeck, C. K. and R. C. Schank. 1989. Inside case-based reasoning. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Ross, B.H. 1989. “Some Psychological results on case-based reasoning.” In Case-Based
Reasoning: Proceedings of a Workshop on Case-Based Reasoning in San Mateo, CA, 144-
147. Morgan Kaufmann Publishers.

Sacerdoti, E. 1977. A structure for plans and behavior. American Elsevier.

Schank, R., W. Ferguson, M. Brand, R. Burke, E. Domeshek, D. Edelson, M. Freed, M. Jona, B.
Krulwich, E. Ohmaye, R. Osgood, and L. Pryor. 1990a. “Beyond process: a universal
content theory for indexing.” In AAAI Sprin ium Seri jum on case-

ased reasoning in Stanford, CA

Schank, R., R. Osgood, M. Brand, R. Burke, E. Domeshek, D. Edelson, W. Ferguson, M. Freed, M.
Jona, B. Krulwich, E. Ohmaye, and L. Pryor. 1990b. A content theory of memory indexing.
Institute for the Learning Sciences, Northwestern University, March 1990. Technical
Report 2.

Schank, R. .C. 1982. Dynamic memory. Cambridge: Cambridge University Press.

Schank, R. C. 1986. Explanation patterns: understanding mechanically and creatively.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Schank, R. C. 1990. Tell me a story: a new look at real and artificial intelligence. New York:
Charles Scribner's Sons.

Schank, R. C. 1991. Case-based teaching: Four experiences in educational software design.

Institute for the Learning Sciences Technical Report, Northwestern University, Technical
Report 7.

Schank, R. C. and R. P. Abelson. 1977. Scripts, plans, goals, and understanding. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Schank, R. C., R. Bareiss, A. Fano, R. Osgood, and W. Ferguson. 1992. Agents in the story
archive. Institute for the Learning Sciences, Northwestern University, May 1992.
Technical Report 27.

Schank, R. C. and M. Y. Jona. 1991. Empowering the student: New perspectives on the design of
teaching systems. The Journal of the Learning Sciences 1 (1): 1-34.

Schoenfeld, A. H. 1992. Learning to think mathematically: Problem solving, metacognition,

and sense-making in mathematics. In Handbook of research on mathematics teaching and
learning, ed. D. A. Grouws. New York: Macmiilan.

Shortliffe, E. H. 1976. Computer-based medical consultation: MYCIN. New York: American
Elsevier.

Shulman, L. S. and E. R. Keisler, eds. 1966. Learning by discovery. Chicago: Rand, McNally.
Sleeman, D. H. and J. S. Brown, eds. 1982. Intelligent tutoring systems. London: Academic Press.
Steele, Guy L., Jr. 1990. Common Lisp: The Language. Second ed., Bedford, Mass.: Digital Press.

252

Stevens, A.L. and A. Collins. 1977. “The goal structure of a socratic tutor.” In Proceedings of the

National ACM Conference in Seattle Washington, 256-263. New York: Association for
Computing Machinery.

Symbolics Inc. 1991. Common lisp interface manager (CLIM): Release 1.0. Symbolics, Inc.,
March 1991. Reference Manual.

Thorndyke, P. W. 1975. Cognitive structures in human story: Comprehension and memory. Santa
Monica, CA: Rand Corp.

Travers, M. 1988. Animal construction kits. In Artificial Life, ed. C. Langton. 421-442. Reading,
Mass.: Addison-Wesley.

Wenger, E. 1987. Artificial intelligence and tutoring systems: Computational and cognitive
approaches to the communication of knowledge. Los Altos, CA: Morgan Kaufmann.

Whitehead, A. H. 1929. The aims of education. Cambridge: Cambridge University Press.

Williams, S. M. 1991. Putting case-based instruction into context: Examples from legal, business,

and medical education. Learning Technology Center, Vanderbilt University, November
1991. Technical Report

Winne, P. H. 1979. Experiments relating teachers' use of higer cognitive questions to student
achievement. Review of Educational Research 49 (1): 13-50.

