Northwestern University

The Institute for the Learning Sciences

REPRESENTATION AND PERFORMANCE
IN A PARTIAL ORDER PLANNER

Technical Report # 35 - October 1992

Gregg Collins
Louise Pryor

Established in 1989 with the support of Andersen Consulting

Representation and Performance in a Partial Order
Planner

Gregg Collins and Louise Pryor

The Institute for the Learning Sciences
Northwestern University
1890 Maple Avenue
Evanston IL 60201

This work was supported in part by the AFOSR under grant number AFOSR-91-
0341-DEF, and by DARPA, monitored by the AFOSR under contract F49620-88-C-
0058. The Institute for the Learning Sciences was established in 1989 with the sup-
port of Andersen Consulting, part of The Arthur Andersen Worldwide
Organization. The Institute receives additional support from Ameritech and North
West Water, Institute Partners, and from IBM.

Contents

1 Introduction 1
2 Partial order planning 4
2.1 The SNLP algorithi.....c.ocoviiiiiiiiiciiinicccccntce e 5

3 Filter conditions 8
3.1 Plan effiCiency .. 8
3.1.1 Using filter conditions to avoid inefficient plans.......c.c..cccccecueuvee 8

3.1.2 Inefficient plans in SNLP.......cccooiiiiiiiiiiiiinircercenenes 11

3.2 Indicating unachievable Goals..........ccccoueiviiiiicciiiciieieicieeecreenes 12
3.2.1 Using filter conditions to avoid unachievable goals.................. 12

3.22 Unachievable goals in SNLP........ccccccveiviniininiiniiccieieeeenns 13

3.3 LOOPS ittt 13
3.3.1 Using filter conditions to avoid 100Ps.......c.ccocevvviniiiniiinn, 13

3.3.2 LOOPS IN SNLP ..ottt 17

3.4 Accounting for effects ... 17

4 Filter conditions in a partial order planner 21
4.1 A basic implementation of filter conditions in SNLP..........ccccccorvrnurnnne. 22
4.2 Using filter conditions in search ... 23

5 Operator selection and context-dependent effects 24
5.1 Secondary preconditions.........cviiiniiiiii s 24
5.2 Secondary preconditions in SNLP.......ccccooiiiiiiiniiiine e 25
5.3 Related WOTIK ... 27

6 Empirical results 28
6.1 The test problems..........cccoviiniiiiini 29
6.2 Successful SOIUIONS ... 30
6.3 CPU tINE .ottt et s 31
6.4 Path length ..o 33
6.5 Branching factor ... 35

7 Conclusions 38
References 38
Appendix A: Formal descriptions 41
A.1 The basic SNLP algorithm. ..o 41
A.2 The SNLPS al@OTithIML.. ..coiuieeirierceniecieieeceei et eiesecsesee s 43

Appendix B: Test domain 48

B.1 DOMAIN OPEIALOrS.......ovuveiecieiicirieinteiiesessnie st s e 49
B.1.1 Basic STRIPS OPEIALOIScccueeeeeumrerrrisiieieisieeseseeeeses e sesesseseseos 49

B.1.2 STRIPS operators with filter conditions........ccccc.ceveveriecreinnne........50

B.1.3 STRIPS operator with secondary preconditions............................52

B.2 Test Problems.............cocoviiiicivcnieneineinnieee e D3
Appendix C: Experimental results 54
C.1 Problems with one goal cONdition......c.ccccoeumrrieiesiirisiecrieee .55
C.1 Problems with two goal cONditionsSccccevevvernrriisiriceceecsseer . 57
C.3 Problems with three goal conditions........ccocecvvvvivvevonrrieicerreirereennnn .59

ii

1 Introduction

Because planning systems solve problems by reasoning about actions and their ex-
pected effects, the representation of actions has long been a central issue in planning
research. Many current planning systems use representation schemes based on the
so-called STRIPS operator (Fikes & Nilsson, 1971). Such systems often incorporate
modifications to the basic format of the STRIPS operator aimed at improving its effi-
ciency, its expressiveness, or both. One common modification is the use of filter
conditions (Charniak & McDermott, 1985; Tate, 1977; Wilkins, 1988). In this paper
we discuss the arguments that have been advanced for adding filter conditions to
the STRIPS representation, and consider how filter conditions could be implemented
in a partial order planner. We reach three conclusions: first, while filter conditions
can be added to a partial order planner, they are not a natural extension of such an
algorithm; second, many of the purposes that have been suggested for filter condi-
tions are in fact better achieved through other means; third, Pednault’s secondary
preconditions (Pednault, 1988a; 1988b; 1991), which can, as we demonstrate, be im-
plemented straightforwardly in a partial-order planner, achieve the basic functional-
ity of filter conditions more efficiently.

The basic STRIPS operator comprises the preconditions for executing an action, a
list of the facts that become true as a result of executing the action (the add-list), and
a list of the facts that become false as a result of executing the action (the delete-list).
Figure 1.1 shows a STRIPS operator for pushing an object from one place to another.
Roughly speaking, the operator asserts the following: in order to push an object

Action: (push ?object ?from ?to)

Preconditions: (at robot ?from)
(at ?object ?from)

Delete list: (at robot ?from)
(at ?object ?from)
Add list: (at robot ?to)

(at ?object ?to)

Figure 1.1: STRIPS operator to push ?object from ?from to ?to
(adapted from Fikes & Nilsson (1971))

(7object) from a starting point (?from) to a destination (?t0), both the robot and the
object must be at the starting point to begin with; as a result of executing the action,

the robot and the object cease to be at the starting point and come to be at the desti-
nation.

In the STRIPS paradigm the preconditions of an operator become new goals (or
subgoals) for the planner when that operator is included in the plan. Preconditions
that become subgoals are called enabling preconditions (Pednault, 1988b). Al-
ternatively, preconditions might be interpreted as stating requirements that must be
met if the operator is to be selected for inclusion in the plan to begin with; such an
operator will be chosen only if its preconditions are not already true in the world.
Because such preconditions in effect act as filters on operator selection, they are
commonly referred to as filter conditions. Filter conditions are useful because in cer-
tain situations planning to achieve an unmet subgoal may lead to inefficient or
nonsensical plans. For instance, an operator to turn on a light might have a precon-
dition that the switch be off initially, but it would make no sense to turn the switch
off in order to apply the operator. The precondition switch off should thus be made
a filter condition rather than an enabling precondition.

In many systems, the basic STRIPS operator has been extended to allow the speci-
fication of filter conditions as well as enabling conditions. This is particularly com-
mon in systems that are intended to be of practical use (e.g. Currie & Tate, 1985;
Currie & Tate, 1991; Tate, 1977; Wilkins, 1988). Such systems typically incorporate
other extensions to the basic STRIPS representation as well, mainly involving the in-
troduction of different types of preconditions and annotations to the preconditions.
Many of the modifications that have been introduced are in fact special cases of filter
conditions, as we shall see later on in this paper.

In general, planning systems that are concerned with formal properties! (e.g.
Chapman, 1987, McAllester & Rosenblitt, 1991) have avoided such modifications.
This is not surprising, inasmuch as the difficulty of proving the formal properties of

"For example, completeness (able to find all valid plans), correctness (all the plans produced are
valid), and systematicity (every point in the search space is visited at most once) of the algorithm (e.g.
Chapman, 1987).

a planing system will generally increase as the complexity of its representation in-
creases. We became interested in action representations when we tried to add filter
conditions into one such system, SNLP? (Barrett, et al., 1991; McAllester & Rosenblitt,
1991) in the hope that filter conditions might help to improve SNLP’s poor perfor-
mance on many simple blocks-world problems. Although our implementation re-
sulted in an improvement over the unmodified algorithm, its performance was
much worse than we expected, to the extent that there were many problems involv-
ing stacking three blocks that the system could not solve within a time-limit of sev-
eral hours. This result led us to consider the intended functionality of filter condi-
tions in more detail, and ultimately led to the conclusion that filter conditions are
fundamentally incompatible with partial order planning. We therefore investigated
alternative mechanisms for achieving the required functionality, and found that
Pednault’s secondary preconditions can be used to achieve much of the functionality
of filter conditions, with much greater efficiency in SNLP.

In what follows we describe how we came to these conclusions. Although the
use of filter conditions is widespread, very few explicit arguments have been made
to justify their utility. We thus describe the various uses to which they have been
put and provide possible explanations of these uses. We then describe the alterna-
tive mechanisms that can achieve the intended functionality of filter conditions
within a partial order planner, and present an extension to SNLP that incorporates
the secondary preconditions proposed by Pednault (Pednault, 1988a; Pednault, 1988b;
Pednault, 1991).

2A Systematic Non-Linear Planner.

2 Partial order planning

Classical planning systems in general carry out a special case of means-ends analysis
(Newell & Simon, 1963): Given a goal, the planner first chooses an action that, if ex-
ecuted in the right circumstances, will result in goal being achieved. Having thus
chosen the action with which it will ultimately achieve the goal, the planner then
goes about planning to ensure that circumstances will indeed be right. So, for
example, given the goal “be in London”, the planner might choose the action “take
a taxi to Piccadilly Circus”. Since this action will have the desired effect only if the
planner is fairly close to Piccadilly Circus to begin with, the planner must then find a
plan that will get it close enough to London to make taxi-taking viable. For instance,
a reasonable plan might be to get to Heathrow airport, then take a taxi from the air-
port to Piccadilly Circus. In choosing this approach the planner acquires a subgoal to
get to Heathrow, and it must then choose an action to achieve that subgoal—"take a
flight from JFK”, for instance. Since this action will have its own preconditions, the
planner will acquire new subgoals for which it must choose another action, and so
on. The construction of a plan is thus a recursive process that will, if successful,
ground out in actions the preconditions of which are true to begin with.

The plan produced by such a classical planner is an ordering on a set of actions,
where the ordering follows mainly from the constraint that if one action achieves a
precondition of another action, the former must occur before the latter. This simple
picture is complicated by the fact that several actions in conjunction are often
needed to achieve the preconditions for a single action—for example, to fly from
JFK to Heathrow, one would need to buy a ticket, secure a passport, and get to the
gate from which the plane is to leave, among other things. While there is no a
priori reason to impose a particular ordering on conjunctive actions, such an order-
Ing may turn out to be necessary in cases where one of the actions would undo the
effect of another. For instance, getting to the gate, in the above example, should
probably be done after securing a passport, since securing the passport is likely to re-
sult in the planner no longer being at the gate. The planner must therefore not only
find a set of actions that ensures that all subgoals are achieved, but also constrain the
ordering of those actions so that they do not undo each other’s results.

Two main approaches have been taken to this problem: Total order planners al-
ways maintain a total ordering on the actions in the (partially completed) plan, if
necessary by making arbitrary ordering choices. If a total order planner fails to com-
plete the plan, it may back up and try other possible orderings. Partial order plan-
ners, on the other hand, impose ordering constraints only when not doing so would
demonstrably result in a plan that could fail, and otherwise allow actions to remain
unordered with respect to each other. STRIPS (Fikes & Nilsson, 1971) is a total-order
planner, while planners such as NONLIN and SIPE (Tate, 1976; Wilkins, 1988) are
partial-order planners.

An issue that is sometimes confused with the issue of the ordering of the steps in
a plan is the issue of the linearity of subgoals. Total order and partial order planners
are sometimes known as linear and non-linear planners respectively. We prefer to
reserve the latter terms to distinguish planners that cannot interleave actions aimed
at achieving the preconditions of different actions from those that can so interleave
actions. The question of whether a planner is a total order or partial order planner
is orthogonal to the question of whether it is, in this sense, a linear planner or a
non-linear planner. A partial order planner is always a non-linear planner in this
sense, but the reverse is not true.

2.1 The SNLP algorithm

Our investigations were carried out using the Systematic Non-linear Planner
(SNLP), which was implemented by (Barrett, et al., 1991) based on the algorithm of
(McAllester & Rosenblitt, 1991). SNLP is a complete, correct and systematic partial
order planner. The basic action representation in SNLP is the standard STRIPS repre-
sentation with preconditions, add list and delete list, augmented by codesignation
constraints on the variables (Chapman, 1987), which are used to specify that two
variables must be equal, or that they must not be equal.

A set of steps: The actions to be executed.

A set of open conditions: States to be achieved.

A set of links: Each link is of the form (stepl state step2), where state is re-
quired for the execution of step2 and is achieved by stepl.

A partial ordering: Ordering constraints on the steps.

A list of unsafe links: Those links for which there is a step (the clobbering step) that

could potentially (according to the partial ordering) be executed
between stepl and step2 and that would unachieve state.

A set of codesignation Required or forbidden bindings for the variables in the partial
constraints: plan.

Figure 2.1: The structure of partial plans in SNLP

SNLP operates by searching the space of partial plans (figure 2.1). The basic algo-
rithm is as follows:

* The most promising partial plan is chosen from the search queue.

* [f the partial plan is complete (i.e., there are no open conditions and no un-
safe links) the search process is terminated and the resulting plan is returned.

e If there are any unsafe links, one such link is removed from the unsafe list
and each modification shown in figure 2.2 is attempted. Each successful modi-
fication produces a new partial plan, which is added to the search queue.
Links made unsafe due to the modification are added to the unsafe list.

* Otherwise, there is at least one open precondition, for a step that is therefore
not yet enabled. One such precondition is removed from the open list and
each modification shown in figure 2.3 is attempted. Each successful modifica-

Promotion: Introduce an ordering to ensure that the clobbering step occurs after the step at the
end of the unsafe link.

Demotion: Introduce an ordering to ensure that the clobbering step occurs before the step at the
beginning of the unsafe link.

Separation: Introduce codesignation constraints to ensure that the state resulting from the
clobbering step cannot unify with the state in the unsafe link.

Figure 2.2: Modifications for unsafe links

Add new step: Find an operator with a proposition in its add list that can be unified with the open
condition. Make the operator the new step, add its preconditions to the list of open
conditions, and add its codesignation constraints. Add a link from the new step to
the unenabled step.

Add new link: Find a step with a proposition in its add list that can be unified with the open
condition. Add a link from the found step to the unenabled step.

Add link: Add the bindings necessary for the unification to the set of codesignation con-
straints. Make the appropriate ordering constraint.

Figure 2.3: Modifications for open preconditions

tion produces a new partial plan, which is added to the search queue. Links
made unsafe due to the modification are added to the unsafe list.

3 Filter conditions

A filter condition is a precondition that does not become a new subgoal. For exam-
ple, “the light is off” might be a filter condition for the action of turning the light on.
This would mean two things: first, the light must be off in order to turn it on, and
second, one would never want to turn the light off in order to turn it on. In general,
if the filter conditions of an operator would not be true at the point at which the
operator would be executed, the use of that operator is ruled out. This contrasts with
enabling preconditions, which become new subgoals to be achieved through
subsequent planning.

If we are going to consider whether filter conditions should be added to a
planner’s action representation, we would like to know how and when they should
be used. The answer to this question is surprisingly unclear. Charniak & McDermott
(1985) state that “It is usually obvious what conditions belong in which category
[filter conditions or enabling preconditions]” but do not elaborate further, and in
ject.? In this section we shall examine the four uses that have been proposed for
filter conditions, and discuss the justifications that have been put forward for these
uses. It should be noted that the four are not mutually exclusive: a single filter
condition may serve more than one purpose.

3.1 Plan efficiency
3.1.1 Using filter conditions to avoid inefficient plans

Filter conditions can be used to block the construction of inefficient plans by pre-
venting the use of particular operators in certain situations. For example, Charniak
and McDermott describe a blocks world in which there is a special operator for get-
ting a block onto the table when it is glued to the wall (Charniak & McDermott,
1985). They argue that this operator should be given the filter condition “the block is

3Possible exceptions are {(Feldman & Morris, 1990), and (Currie & Tate, 1991); we will consider their
work in some detail below.

Action: (move-from-wall ?block)

Filter conditions: (glued-to-wall ?block)

Preconditions:
Delete list: (glued-to-wall ?block)
Add list: (on ?block table)

Figure 3.1: Modified STRIPS operator to move a block from a
wall
(adapted from Charniak & McDermott (1985))

glued to the wall” (see figure 3.1), preventing its use in cases in which the block is
not initially glued to the wall. The alternative would be to make “the block is glued
to the wall” an enabling precondition for the operator, which would allow the pos-
sibility that the planner would glue a block to the wall and then remove it in order
to get that block onto the table. Charniak and McDermott’s point is that such a plan
is obviously inefficient, and the planner ought to be prevented from generating it.
SIPE makes similar use of filter conditions to avoid inefficient plans (Wilkins, 1988).

FaAar
L

TDT At~ yaen bz
LU 1

example, PE operator that fetches objects from a room has the filter con-

dition “the object is in the room” (see figure 3.2). This prevents the planner from
moving an object into a particular room solely in order to fetch it from that room.

The general idea behind the use of filter conditions to avoid inefficient plans is
this: if you know in advance that in certain circumstances operator O will not be the
best method of achieving its result, then don’t use operator O in those circum-
stances. For example, common sense would dictate that if one is traveling between
two locations in the western hemisphere, flying via London will not be the best
plan. The planner can be prevented from generating such a plan by using a filter
condition on the operator—for example, by adding the filter condition “not travel-
ing between cities in the western hemisphere” to the operator representing the
flight to London.

The use of filter conditions to rule out inefficient plans depends on our ability to
construct a set of propositions like our assertion about flying to London, having the
general form “there is a better alternative to operator O in circumstance C.” Such
propositions have a very interesting property, namely that they anticipate the

Action: (fetch ?object] ?room)

Filter conditions: (inroom ?object ?room)

Preconditions: (inroom robot ?room)
(nextto robot object)

Delete list: (nextto robot ?object)

Add list: (holding robot ?object)

Figure 3.2: Modified STRIPS operator to fetch an object from a
room
(adapted from Wilkins (1988))

outcome of the planning process. That is, they do not merely assert something about
the cost of applying a particular operator, but in addition make a claim about the
availability of alternative plans to that operator. Since in general it is not possible to
find easy-to-compute features that infallibly predict the outcome of the planning
process?, in general such assertions will be assumptions. For example, in the airline
scheduling problem, the proposition “there is a better alternative to flying via
London in traveling between two locations in the western hemisphere” is an
assumption based on the expected availability of flights, among other things. It is a
plausible assumption, but it may fail in some unusual circumstance. Likewise, it is
an assumption that gluing a block to the wall and then ungluing it will not be the
best way to get the block onto the table, which depends on the availability and
efficacy of other methods for transporting blocks.

Having clarified the theory behind the use of filter conditions to avoid inefficient
plans, we are now in a position to see why there are flaws in this approach. There
are two major ones: First, because the use of filter conditions to rule out inefficient
plans in general involves making assumptions, as detailed above, it would mean
that the planner could not be guaranteed to be complete, since in cases where the as-
sumption failed the planner might not find a plan even though a viable plan did ex-
ist.> Second, since there is no known method for automatically generating proposi-

4 it is casy to find such features, then it is probable that “planning” in the domain in question can be
carried out by an algorithm that is much simpler than a general-purpose planner.

5“Condition typing allows information to be kept [about the role of a condition]. However use of this in-
formation itself will almost certainly commit the planner to prune some of the potential search space

10

tions of the form “there is a better alternative to operator O in circumstance C”, we
cannot describe a general method for avoiding inefficient plans using filter condi-
tions; we can only describe a method for the special cases in which such propositions
can be discovered. There is therefore still a need to find a general method of avoid-
ing inefficient plans, and in fact there appears to be a straightforward approach to the
development of such a method, which we describe below. Given this general
method there is no clear reason to retain the special-purpose method based on filter
conditions.

3.1.2 Inefficient plans in SNLP

In SNLP, the problem of avoiding inefficient plans can be formulated as the problem
of controlling the search process efficiently. At each step SNLP extends the most
promising partial plan that has been formulated up to that point. The ranking func-
tion used to decide which plan is most promising can and should be constructed to
consider the costs of the partial plans and the estimated costs of completing them.
This approach to avoiding inefficient plans is preferable to the use of filter condi-
tions for two reasons: First, SNLP never completely rules out any valid partial plan;
it simply avoids spending time on plans that are relatively unpromising. For in-
stance, in Charniak and McDermott’s example, the search process would in general
avoid gluing a block to a wall and then ungluing it as a method of moving the block
to the table simply because it would first extend plans using less expensive methods,
such as picking up the block and setting it down in the desired location. If such
methods were for some reason impossible to apply in a particular case, however, the
planner would attempt to extend a plan involving gluing a block to the wall and
then ungluing it. SNLP thus remains complete while avoiding consideration of
inefficient plans. Second, rather than requiring the programmer to discover
propositions that imply the unfitness of particular operators in particular circum-
stances, SNLP simply requires methods for estimating the costs of executing opera-
tors and achieving subgoals.

thereby losing claims of completeness [if inappropriate condition types are used].” (Currie & Tate,
1991).

®In other words, to do an A style search, in which the partial plan that is extended is the one with the
lowest estimated total cost.

11

Action: (move ?block ?new)

Filter conditions: (on ?block ?base)
(inst ?base block)
(inst ?new block)

Preconditions: (clear ?block)
(clear ?new)

Delete list: (on ?block ?base)
(clear ?new)

Add list: (on ?block ?new)

(clear ?base)

Figure 3.3: Modified STRIPS operator to move a block from one
block to another
(adapted from (Charniak & McDermott, 1985))

3.2 Indicating unachievable goals
3.2.1 Using filter conditions to avoid unachievable goals

Filter conditions can be used to prevent the planner from pursuing subgoals that
cannot be achieved by any known action. For example, figure 3.3 shows an operator
for moving a block from one supporting block to another. Since this operator is only
applicable if both the original location and its destination are other blocks, “the cur-
rent support is a block” and “the target support is a block” must be either filter con-
ditions or enabling preconditions. Since there is no action in the standard blocks
world that results in the creation of a new block, it has been suggested that such pre-
conditions should in fact be filter conditions (Charniak & McDermott, 1985). O-Plan
supports a similar use of filter conditions, termed only-use-if preconditions (Currie
& Tate, 1991).

We believe that the argument for this use of filter conditions is specious. As in
the case of using filter conditions to avoid inefficient plans, the method relies on an
implicit assumption, namely the assumption that a particular condition such as
“the object’s support is a block” is unachievable by the planner. If we view the set of
planning operators as being open rather than closed, then such an assumption may
be invalidated at any time by the addition of a new operator. For example, the fact

12

that Charniak and McDermott’s planner does not have an operator to make a block
does not mean that such an operator will not be added. Building assumptions of this
type into planning operators means that when a new operator is added any number
of old operators may be invalidated. In effect, using filters in this way constitutes a
breakdown of modularity in the definition of operators, which has the undesirable
effect that lack of modularity has in any design process.

Such a violation of modularity might be acceptable if it were offset by a corre-
sponding benefit, but there is no such benefit in this case. If an operator is given an
enabling precondition that is unachievable by any known operator, the planner will
simply fail to find an operator to achieve that precondition, and the plan will fail if
the condition is not true a priori. The planner will of course pay the cost of checking
to see whether any operator can achieve the condition, but there is no reason to be-
lieve that in general the processing overhead incurred in treating the condition as a
filter condition would be any less than the overhead incurred in treating it as an en-
abling precondition.

TV = 1. _ .)

3.2.2 Unachievable goals in SNLP

A dead end in SNLP’s search space is an incomplete partial plan that cannot be modi-
fied to resolve unsafe links or establish unachieved conditions. When such a partial
plan is encountered, that branch of the search simply fails. A partial plan containing
an unachievable goal such as “the table is a block” cannot be modified so as to
achieve the goal, as SNLP will not be able to find an operator with an add-list con-
taining “the object is a block”. SNLP’s general mechanism for recognizing dead ends
is thus entirely adequate for recognizing unachievable goals.

3.3 Loops

3.3.1 Using filter conditions to avoid loops

Filter conditions can be used to avoid certain kinds of loops. Consider, for example,
a blocks world domain with two actions: picking a block up, and putting a block

down on another block (see figure 3.4). Suppose that a plan is required that will
move block A from block B to block C (see figure 3.5). Block C must be clear before

13

Action: (pickup ?block) (putdown ?base)
Preconditions: (clear ?block) (clear ?base)
(empty-hand) (holding ?block)

(on ?block ?base)

Delete list: (empty-hand) (clear ?base)

Add list:

(on ?block ?base) (holding ?block)

(holding ?block) (on ?block ?base)
(clear ?base) (empty-hand)

Figure 3.4: STRIPS operators in a blocks world domain

block A can be put on it, and since block C is clear in the initial configuration com-
mon sense suggests that the planner should simply take advantage of this and pro-
ceed to move block A. However, there is another possible approach, which is to en-
sure that block C is clear by removing a block from it. For example, consider the fol-
lowing plan:

1.

Qs W

o

Pickup A
Put A onto C
Pickup A
Put A onto B
Pickup A
Put A onto C

(so that something is on C)
(so that C is clear)
(so that the hand is empty)

(to achieve the main goal)

This is in fact a valid plan, but it is apparent to the observer that it cannot possi-

bly be the best plan, because it contains a loop: the condition A on C is achieved in
support of the preconditions of the action of putting A on C. A planner like SNLP

Initial Goal

Figure 3.5: A blocks world problem

14

Action: (fetch ?object1 ?room) (move ?objectl ?room)
Filter conditions: (inroom ?object ?room) (inroom robot ?0ld-room)

Preconditions: (inroom robot ?room) (holding robot ?object)
(nextto robot ?object)

Delete list: (nextto robot ?object) (holding robot ?object)
(inroom robot ?0ld-room)
(inroom ?object ?0ld-room)

Add list: (holding robot ?object) (inroom robot ?room)
(nextto robot ?object)

Figure 3.6: Modified STRIPS operators in the SIPE domain
(adapted from (Wilkins, 1988))

will avoid generating the inefficient plan simply because it will find a better plan
first, namely:

1. Pickup A

2. PutAontoC (to achieve the main goal)

This depends, however, on the accuracy of the planner’s cost-estimating func-
tions. If the top level goal is simply “get A on C”, then the planner is unlikely to ex-
tend the undesirable looping plan very far. If, however, the top level goal was some-
thing like “get A on C and achieve G”, where G is a subgoal the achievement of
which will not interact significantly with the achievement of “get A on C”, then the
situation would be different because the planner would have much more of an op-
portunity to make erroneous cost estimates. For example, suppose that the planner
initially underestimates the cost of achieving G. This will tend to cause it to expand
all possible alternatives for achieving “get A on C”, since as each partial plan is ex-
tended to deal with G it will begin to look more and more expensive. Thus SNLP
may generate a partial plan containing the loopy plan for getting A on C described
above before its attention shifts back to the preferable alternative. We have observed
SNLP in similar situations building many iterations of such loops before it finds a
plan. The cost of considering such plans may be very high.

This loop, and others like it, can be avoided through the use of filter conditions.
If “the block to be picked up is on another block” is treated as a filter condition for
the pickup action, instead of an enabling precondition, the planner can never put a

15

block on another block simply in order to take it off again. This change would pre-
vent the planner from generating step 2 of the loopy plan described above. A similar
use of filter conditions is made in the SIPE domain of (Wilkins, 1988). Consider the
two operators shown in figure 3.6. Without filter conditions, a planner might devise
a plan to move an object to room1 that involved moving it to room1 so that it could
fetch it in room1 enabling it to move it to rooml—and so on ad infinitum. If, how-
ever, the object’s being in a room is a filter condition rather than a precondition for
fetching it from that room, these loops cannot arise.

The use of filter conditions in avoiding loops was recognized by (Feldman &
Morris, 1990). The result of their analysis is to eliminate two simple types of loops:
those in which a goal is an immediate subgoal of itself, and those in which a goal
repeats after two steps. However, these loops are eliminated only in certain special
circumstances that apply only in very restricted domains.” It would not, for instance,
work in any of the common representations of blocks world.

Thus we have once again an application of filter conditions to solve a problem
that is a special case of one that the planner must solve in any case. This use of filter
conditions does not address the general question of loop detection and elimination,
but only rules out certain simple cases of loops. Furthermore, there does not seem to
be anything especially natural about using filter conditions in this way: they are
simply a device for causing the planner to skip some portions of the search space,
and any such device could in principle be manipulated in such a way as to prevent
some loops.

In fact, to our knowledge, no one has yet proposed a method that would rule out
loopy plans in general, but there is certainly reason to pursue the creation of such a
method. It appears to be somewhat tricky to state the conditions under which a loop
may be recognized, since in a partial order planner a partial plan that appears to con-
tain a loop may be modified by the addition of steps into the apparent loop in such a
way that the completed plan is free of loops. This is a problem for future research.

“The example they present in their paper does not seem to meet the conditions for the analysis they
propose.

16

3.3.2 Loops in SNLP

SNLP does not avoid loops directly, so it will in fact extend plans containing loops if
its current estimate ranks this as the most promising partial plan. However, for ev-
ery plan containing a loop there is a shorter (and thus less expensive) plan that does
not contain the loop, and SNLP will generate this possibility as well. Eventually SNLP
can generally be expected to extend this plan to completion in preference to the
loopy plan®, although as discussed above it may expend considerable effort extend-
ing the loopy plan in the interim. Of course, if an inexpensive loop-detector did ex-
ist, it could easily be incorporated in SNLP .

3.4 Accounting for effects

An action will in general have different effects in different contexts, and any scheme
of action representation must be able to represent these context-dependent effects. In
STRIPS operators, context-dependence is accounted for through the use of variables,
which may appear in the preconditions, add list, and delete list of the operator. Each
possible instantiation of these variables represents a different context in which the
action associated with the operator might be executed. For example, consider the TIP
operator in figure 3.7. Here the container that is to be tipped is represented by a vari-
able (?container) so that instances of tipping one container can be differentiated
from instances of tipping another. Since the operator’s effects are stated in terms of
the variables, different effects will be asserted in different contexts, allowing the
planner to represent, for example, the fact that the container that is tipped is the
same container that is subsequently empty.

SIn fact, if SNLP’s cost-estimating functions were admissible—that is, always underestimates of the
actual cost—it could be guaranteed that SNLP would find the cheaper plan. Of course, the likelihood
of finding admissible cost-estimating functions in real-world planning domains is virtually nil.

17

Action: (tip ?container)

Preconditions: (container ?container)
(full ?container)
(contains-liquid ?container)
(holding robot ?container)
(directly-above ?container
?target)

Delete list: (full ?container)
(contains-liquid ?container)

Add list: (empty ?container)
(wet ?target)

Figure 3.7: A STRIPS operators for TIPping a container

There are two ways in which the variables in an operator may become instanti-
ated: they may be bound when the operator is chosen, or they may be bound during
subsequent planning. A variable is bound at the time the operator is chosen if a par-
ticular binding of that variable is necessary in order to ensure that the operator will
le if the TIP

Lll.

in fact achieve the gn:\l For exam L1

achi al. For examp
“Container A is empty”, then clearly the variable representing the container must be
bound to A. A variable is bound during subsequent planning when its binding does
not matter for the achievement of the goal. For example, the TIP operator has a vari-
able (?target) that represents the object directly under the container. Since whatever
is under the container will get wet when the container has liquid in it and is tipped,
this variable is needed to represent the context dependency of this effect of the TIP
operator. However, since the identity of the object beneath the container does not af-
fect the achievement of the goal to empty the container, the variable will be left un-
bound when the operator is chosen.

If the planner is to correctly project all the effects of executing the TIP operator, it
must at some point bind all its variables. The variables that are not bound when the
operator is selected will be bound in the course of choosing methods to achieve the
operator’s preconditions. For example, the TIP operator has the precondition “the
container to be picked up is directly above a particular object”, represented as:

(directly-above ?container ?target).

18

The planner’s options in establishing this precondition are: (1) to assume that the
container will remain directly above whatever object it is directly above at the start
of the plan, (2) to assume the container will remain directly above whatever object it
came to be above as the result of a previous action in the plan, or (3) to schedule an
operator designed to position the container over a particular object. The third possi-
bility, scheduling an operator to position the container over a particular object,
seems pointless, since the operator will achieve the goal of emptying the container
regardless of what object the container is positioned over.

This represents an efficiency problem similar to that described in the section on
loops. While it is clear that for any plan in which an action is taken solely to posi-
tion the container there is a more efficient alternative plan in which the action is
not taken, the planner may nonetheless waste considerable amounts of time in con-
sidering plans that involve the less efficient choice. One way to fix this problem is to
represent as filter conditions those preconditions that establish the bindings of vari-
ables not bound at selection time. For example, the condition “the container is di-
rectly above a particular object” could be made a filter condition for the TIP operator.
This would mean that the planner would never move the container in order to
achieve this condition. The filter condition would still fulfill the objective of dis-
criminating the context in which the operator is being applied, by binding the vari-
able representing the object under the container.

By using filter conditions to discriminate between contexts in which an operator
might be executed, we prevent the planner from taking actions designed to switch
between these contexts. The argument for this approach is that, since it does not
matter to the achievement of the goal which context the operator is executed in,
there is no point in expending effort solely to make such a switch. Notice, however,
that this reasoning applies only to the use of an operator to achieve a particular goal.
Since a STRIPS operator may be used to achieve any condition on its add list, this is
problematic. For instance, in our example the TIP operator was chosen to achieve the
condition “a particular container is empty”, but it might equally well have been cho-
sen to achieve the condition “a particular object is wet”. In this case it would not
make sense to have “the container is over a particular object” be a filter condition.
In fact, it would be essential that it be an enabling precondition, since the planner

19

Action: (tip ?container) (tip ?container)

Filter conditions: (directly-above ?container ?target)

Preconditions: (container ?container) (container ?container)
(full ?container) (full ?container)
(contains-liquid ?container) (contains-liquid ?container)
(holding robot ?container) (holding robot ?container)

(directly-above ?container ?target)

Delete list: (full ?container) (full ?container)
(contains-liquid ?container) (contains-liquid ?container)

Add list: (wet ?target) (empty ?container)

Only use for: (empty ?container) (wet ?target)

Figure 3.8: Modified STRIPS operators for the TIP action

should consider plans in which the container is moved in order to position it over
the object that is to be made wet.

One solution to this problem would be to incorporate the distinction made in O-
Plan between only-use-for effects and regular effects (i.e., side-effects). An o
such as TIP could be split into two (or more) operators , each one having a single ef-
fect as its only-use-for effect (see figure 3.8). This would allow the planner to have
one operator for emptying containers, for which “the container is directly above a
particular object” would be a filter condition, and another operator for getting things
wet, for which this would be an enabling precondition. Preconditions that are only
required in order to make variable bindings, like this filter condition, are termed
query conditions in O-plan (Currie & Tate, 1991).

This scheme appears to be workable, and it represents the first solid argument
that we have found for the use of filter conditions. However, as we discuss in the
following sections, filter conditions cannot in theory work effectively in many types
of planners, and in particular we empirically demonstrate their inefficacy in SNLP.
An alternative representation mechanism, the secondary preconditions introduced
by Pednault (1988a; 1988b; 1991), is as effective as the method based on filter
conditions for dealing with context-dependent effects, and can be more effectively
implemented within partial-order planners such as SNLP.

20

Action: eat-dry-cereal eat-wet-cereal buy-cereal

Filter conditions: lack-milk have-milk

Preconditions: have-cereal have-cereal lack-cereal

Delete list: hungry hungry lack-cereal
lack-milk

Add list: thirsty have-cereal
have-milk

Figure 4.1: Modified STRIPS representation for a
cereal domain

4 Filter conditions in a partial order planner

Filter conditions are meant to act as constraints on the selection of operators. If the
operator’s filter conditions are true, it may be selected; if they are not, it may not.
This deceptively simple description hides some complexity, however. In particular,
the condition on selection is more accurately stated as “the operator’s filter condi-
ime when it would be executed, were the operator in fact

selected”. The computation of this complex condition may be tricky.

For example, consider the following problem involving a hungry graduate stu-
dent. She can satisfy her hunger by eating cereal. If she has milk, she will eat the ce-
real with milk, but if she has no milk she must eat it dry, in which case she becomes
thirsty. If she has no cereal, she can go to the store and buy some; whenever she is at
the store to buy cereal, she also buys milk. The modified STRIPS operators for this
(somewhat contrived) domain are shown in figure 4.1.

Now suppose that the student is hungry, and lacks both cereal and milk. Her goal
is to assuage her hunger. There are two operators she could use: she could eat cereal
either wet or eat cereal dry. In order to decide which she will do at the time that she
is constructing her plan, she must make a judgment as to which operator will be ap-
plicable. Examining the filter conditions at planning time, she sees that the eat-wet-
cereal operator requires that there be milk. Since she lacks milk, she rejects this op-
erator and decides on the eat-dry-cereal operator instead. Since she does not have
any cereal, she sets up a new subgoal to acquire some, which she can achieve by us-

21

ing the buy-cereal operator. At this point her plan consists of the two operators: buy-
cereal and eat-dry-cereal, in that order. Although all the preconditions in the plan
are now satisfied, it turns out that the filter condition for eat-dry-cereal will not in
fact be satisfied at the time when the action comes to be executed, because the action
of buying cereal results in the purchase of milk as well as the purchase of cereal, so
that the condition lack-milk will not be true. The planner has thus made a mistake
due to its inability to guess correctly whether a filter condition would hold at the
time when an operator was executed.

The problem in the above example came about because the planner added an op-
erator to the plan affecting the value of the filter condition of an operator that had
previously been scheduled. If new operators can be inserted at any point in the plan,
then it is impossible to be sure what the situation will be when a particular action is
executed until the plan is complete. It is therefore impossible to use filter conditions
in such a planner to rule out alternative operator choices, since they cannot be used
to rule out partial plans. An important aspect of the rationale for filter conditions—
ruling out unreasonable uses of individual operators in partial plans—is therefore
missing. This argument implies that filter conditions will be ineffective in all non-
linear” planners (because the scheduling of operators may be changed during the
planning process). Our prediction that a partial order planner using filter conditions
will perform inefficiently is supported by the empirical results we describe in section
6 below.

4.1 A basic implementation of filter conditions in SNLP

To test the feasibility of a straightforward implementation of filter conditions, we
constructed a version of the SNLP planner that uses a STRIPS representation aug-
mented to include filter conditions. The modified algorithm proceeds in exactly the
same way as the standard SNLP algorithm, ignoring filter conditions, until all out-
standing subgoals of a partial plan are satisfied. At this point, the planner attempts
to show that the existing plan satisfies all the filter conditions of its operators; if any
filter condition is not satisfied, the plan is rejected. In attempting to show that a fil-

“Note that all partial order planners are non-linear.
P P

22

ter condition is satisfied, the planner may add constraints to the plan involving the
ordering of operators or the identity of variables, but it may not add a new step in
order to satisfy a filter condition.!0

4.2 Using filter conditions in search

In the implementation of SNLP with filter conditions we have just described, the
filter conditions play no role in the planning process until the end, and thus have
no influence on the search process used in constructing partial plans. While filter
conditions cannot be used to rule out operator choices during plan construction,
they can be used to help guide the search. This can be done by prioritizing the search
through the plan space based on an estimate of the likelihood that the filter condi-
tions in a given partial plan will ultimately be established. While the information
necessary to make an accurate estimate of this probability is not readily available, by
counting the number of currently unestablished filter conditions a partial plan con-
tains, the planner can make a crude guess as to the probability that the plan will
eventually achieve these conditions. To test this alternative mechanism for imple-
menting filter conditions, we implemented a version of SNLP in which partial plans
that include unestablished filter conditions are penalized in the search process. As
the empirical results in section 6 show, this implementation performs better than
the basic implementation of filter conditions, despite the extra work involved in
checking the filter conditions after each modification.

""Our implementation uses the normal mechanism for adding links to test the satisfiability of the filter
conditions, and can thus be viewed as an adaptation of the technique suggested by (McAllester &
Rosenblitt, 1991) for dealing with abstractions.

23

5 Operator selection and context-dependent
effects

Although we have demonstrated that it is possible to implement filter conditions
directly in SNLP, there are, as we have just seen, severe drawbacks to any such
implementation, stemming from the very nature of partial order planning. These
drawbacks led us to explore the alternative approach described below.

5.1 Secondary preconditions

Pednault presents a method that accounts for context-dependent effects of operators
that avoids the difficulties described in section 3.4 (Pednault, 1988a; 1988b; 1991). In
Pednault’s method, a distinction is drawn between preconditions that are necessary
in order for it to be possible to execute an action, which are termed feasibility or
primary preconditions, and preconditions that specify the effect of an action on a
particular state, termed secondary preconditions. A further distinction is drawn
between two types of secondary preconditions:

* A causation precondition is a condition that must be true in order for a par-
ticular state to become true as a result of a particular action.

* A preservation precondition is a condition that must be true in order for a
particular state to remain true through the execution of a particular action.

For example, consider the pickup operator from blocks world. Figure 5.1 shows
the operator for the pickup action formulated in terms of Pednault’s representation.
Each item on the add list is associated with a set of causation preconditions, with the
interpretation that the item is added only if its associated causation preconditions
hold. Similarly, each item on the delete list is associated with a set of preservation
preconditions, with the interpretation that the item is deleted only if its associated
preservation conditions do not hold. For example, a block may become clear as the
result of executing the pickup operator, but this effect results only if the block was
previously supporting the block that was picked up.

24

Action: (pickup ?block)

Preconditions: (empty-hand)

(clear ?block)
Add list: (holding ?blocka) (clear ?base)
Causation (= ?blocka ?block) (on ?block ?base)
preconditions: (not (= ?base table))
Delete list: (empty-hand) (on ?block ?other)
Preservation (on ?block ?other2)
preconditions: (not (= ?other2 ?other))

Figure 5.1: The blocks world pickup operator using
secondary preconditions

5.2 Secondary preconditions in SNLP

The basic SNLP algorithm can accommodate the addition of secondary preconditions
without major modification. The required changes concern the structure of open
conditions, and the generation of possible modifications to a partial plan that may be
made in order to resolve an unsafe link (see figure 5.2) or establish an open condi-
tion (see figure 5.3). An open condition may now be required to be either true or
false. The truth of a condition is established, as before, by a link from an add condi-
tion of a prior step: the falsity of a condition is established analogously by a link
from a delete condition of a prior step.

A condition may be required to be true if it is:
* An enabling precondition of a step.

* A causation precondition of an effect possibly added by a step when the addi-

Prevention If the clobbering arises through the [addition, deletion] of a desired state, prevent if
by adding the [causation, preservation] preconditions of the relevant proposition on
the ladd, delete] list (required to be [false, true]) to the list of open conditions, and
adding the [negation of the causation, preservation] codesignation constraints to the
set of codesignation constraints.

Figure 5.2: New modification for unsafe links with secondary preconditions

25

Add new step If the open condition is required to be false, find an operator with a proposition in its
delete list that can be unified with the open condition. Make the operator the new
step, add its preconditions (required to be true) and its codesignation constraints. Add a
new link from the new step to the unenabled step.

Add new link If the open condition is required to be false, find a step with a proposition in its delete
list that can be unified with the open condition. Add a link from the found step to the
unenabled step.

Add link Ensure that the proposition is deleted by adding one of the preservation preconditions
of the proposition on the delete list (required to be false) to the list of open conditions,
or adding the negation of one of the preservation codesignation constraints of the
proposition on the delete list. Add the bindings necessary for the unification to the set
of codesignation constraints. Make the appropriate ordering constraint.

Figure 5.3: New modifications for open preconditions required to be false

tion is required in order to establish the truth of a further effect.

* A preservation precondition of an effect possibly deleted by a step when the
deletion must be prevented so as not to clobber another condition.

A condition may be required to be false if it is:

* A causation precondition of an effect possibly added by a step when the addi-
tion must be prevented so as not to clobber another condition.

* A preservation precondition of an effect possibly deleted by a step when the
deletion is required in order to establish the falsity of a further effect.

The secondary preconditions of an effect are never expanded into subgoals unless
the effect either is used to establish a condition or must be prevented from clobber-
ing an established condition. If neither of these cases applies, the truth or falsity of
the effect has no influence on any other step in the plan, and it is ignored.

From this description of the modified algorithm it can be seen that secondary
preconditions fit straightforwardly into the structure of SNLP, providing a neat way
of representing context-dependent effects without multiplying the number of opera-
tors that are needed to represent the actions in a domain. Operators in this frame-
work make the nature of context-dependent effects more explicit than do STRIPS op-

26

erators with filter conditions. The modified algorithm preserves completeness and
correctness (see Appendix A).

5.3 Related work

Pednault introduced secondary preconditions in the context of ADL (Action
Description Language), a planning formalism combining much of the expressive
power of the situation calculus with the notational and computational power of the
STRIPS representation (Pednault, 1988b; Pednault, 1989). The first implementation to
use ADL was Pedestal (McDermott, 1989), a total order planner. More recently,
Penberthy and Weld have implemented a partial order planner for ADL, which they
call UCPOP (also based on SNLP) (Penberthy & Weld, 1992). Unlike these implementa-
tions, our work does not attempt to implement ADL: instead, we have tried to com-
pare a single representation mechanism used in ADL (secondary preconditions) with
an alternative mechanism (filter conditions).

Conditional preconditions of a slightly different form were used by Chien
(Chien, 1990; Chien & DeJong, 1992). His notation allows negated clauses, thus al-
lowing a single list of effects instead of the separate add and delete lists required by
the STRIPS representation. Each effect on the single list may have conditional pre-
conditions associated with it: the operator will not cause the effect unless the condi-
tional preconditions are true. The conditional preconditions associated with a non-
negated effect are thus the effect’s causation preconditions in Pednault’s terminol-
ogy; those associated with a negated effect are the negation of the effect’s preserva-

tion preconditions.

In SIPE (Wilkins, 1988) context-dependent effects are represented independently
of the operators. Instead, they are deduced through the use of rules representing a
causal theory of the domain.

27

6 Empirical results

We performed experiments using four versions of the SNLP algorithm:

SNLP-B The basic algorithm using basic STRIPS operators with no filter condi-
tions or secondary preconditions (see section 2.1).

SNLP-F The algorithm using STRIPS operators with filter conditions, making
use of the filter conditions only at the end of the planning process (see
section 4.1).

SNLP-FF The algorithm using STRIPS operators with filter conditions, using the
filter conditions to guide the search process (see section 4.2).

SNLP-SP The algorithm using STRIPS operators with secondary preconditions
(see section 5.2).

We applied these four algorithms to 150 random test problems in a specially de-
signed domain. This domain is described in Appendix B, and was designed to high-
light context-dependent effects by eliminating the effects of expensive actions, un-
achievable goals, and loops. The test set of problems consists of 50 each with one,
two and three goal conditions. The method of constructing the problems is described
in Appendix B.

Three statistics were collected and analyzed:

e CPU time taken to solve the problem. This measures the overall efficiency of
the algorithms.

e The length of the search path to a solution. This measures the search perfor-
mance of the algorithms, ignoring such effects as the costs of matching and
unification.

e The average branching factor in the search path. This gives some idea of how
the algorithms might perform on more complex problems.

28

Number of goal

conditions
Plan steps 1 2 3 Total
0 22 8 3 33
1 8 4 4 16
2 9 20 10 39
3 11 12 17 40
4 4 11 15
5 2 4 6
6
7 1 1
Total 50 50 50 150

Figure 6.1: Problem complexity—numbers of problems by plan steps and
goal conditions.

A limit of 25000 units was placed on the amount of CPU time allowed for each prob-
lem. The detailed statistics that were collected are shown in Appendix C. In our
analyses we performed pairwise T-tests on planned comparisons between SNLP and
SNLP-F, SNLP-F and SNLP-FF, and SNLP-FF and SNLP-SP, with a 95% significance level
in all cases.

6.1 The test problems

The 150 randomly generated problems that we used included 50 each with one, two
and three goal conditions. However, the number of goal conditions is not the best
guide to the complexity of each problem, as the goal conditions may be true in the
initial state, leading to a simple plan with no steps and one link establishing each
goal condition. A better guide to problem complexity is given by the number of steps
in the plan that solves the problem. An analysis of the complexity of the problems
in our test set is shown in figure 6.1.

29

—aA— SNLP-SP
—— SNLP-FF
—o0— SNLP-F
—e— SNLP-B

Proportion
solved

. —r
0 1 2 3 4 5 6 7
Problem complexity

Figure 6.2: Success rate by problem complexity

6.2 Successful solutions

Not every algorithm solved each problem successfully within the time limit we im-
posed. Figure 6.2 shows how the algorithms performed by problem complexity.
None of the algorithms solved the more complex problems within the time limit,
with SNLP-SP performing best and SNLP-B worst. SNLP-SP solved all the problems
with 3 steps in their solution, whereas SNLP-B solved only 7 out of these 40 prob-
lems, or 18%. In no case did another algorithm solve a problem on which SNLP-SP
failed. It is somewhat discouraging to note that all the algorithms failed to solve
even fairly simple problems within the time allowed, which was fairly generous (at

least as measured by the patience of a researcher waiting for the experiments to run).

The results of the pairwise T-test are shown in Figure 6.3. All the comparisons
are significant at the 95% level, so that SNLP-SP, SNLP-FF, SNLP-F, and SNLP-B are sig-
nificantly more successful than each other in that order.

30

30000 -

SNLP-SP
CPU SNLP-FF
time
SNLP-F
SNLP-B

0 1 2 3 4 5
Problem complexity

Figure 6.4: Mean CPU time taken

6.3 CPU time

The performance of the algorithms also varied widely as measured by the CPU time
taken to solve each problem. In the analysis in this section problems that were not
solved are taken into account at the time limit. This of course enhances the appar-
ent performance of the unsuccessful algorithms. Figure 6.4 shows the mean CPU
time taken by each algorithm on problems of varying complexity: the results for
problems with solutions longer than five steps are not shown, because none of the
algorithms solved them within the time limit.

SNLP-FF and SNLP-SP appear to be better than the other two algorithms, which
seem to perform at roughly similar levels. However, the results may be distorted by

Comparison Mean T-value
SNLP-SP to SNLP-FF 0.047 2.701
SNLP-FF to SNLP-F 0.220 6.483
SNLP-F to SNLP-B 0.087 2.906

Figure 6.3: Success rate comparisons

31

100

10

SNLP-SP
Ratio
(log scale) SNLP-FF
SNLP-F
1 SNLP-B

A I] 1
0 1 2 3 4
Problem complexity

Figure 6.5: Mean CPU ratios

the under-estimates used for those problems that were not solved within the time
limit. This effect is not present in Figure 6.5, which gives some idea of the relative
efficiency of each algorithm on those problems that they solved. For each algorithm
the time taken to solve the problem was divided by the time taken by SNLP-SP, and
the graph shows the means of these ratios. Only those problems that were solved by
the algorithm under consideration are included.

With the ceiling effect of the time limit removed, we can see that the difference
in performance is really quite dramatic—SNLP-F taking as much as 35 times longer
on average than SNLP-SP on problems with 3 steps in their solutions, and SNLP-B
and SNLP-F taking over ten times as long on all except the simplest problems. SNLP-
FF takes between two and five times as long on average as SNLP-SP on all the prob-
lems that it solves. The results for SNLP-F on problems with three steps in the solu-
tion are probably strongly affected by the fact that it solved eight of these problems in
a CPU time at about the time limit, and another two took more than 90% of the time
limit. All other problems that were solved by any of the algorithms within the time
limit were solved in less than 70% of the time limit.

The results of the pairwise T-test are shown in Figure 6.6, by problem complexity
and in total. The time limit is used for problems that were not solved, which is an
underestimate. Cells in which no problems were solved are not shown, but are in-

32

Comparison

Complexity

0

W

=N

Total

SNLP-B to SNLP-F

Mean

*5.424
293
3219

¥ 747

* 670

T value Mean
* 0.500 *-13
2272 240
3.376 5398
*-0.910 20127
* 1478

* 1.905 6943

SNLP-F to SNLP-FF

T value

*-1.651
2.871
4.573

22.139
*1.796
8.886

SNLP-FF to SNLP-SP

Mean T value

23 2430

* 35 *1.975
367 15.209
2330 10.249
8880 4.324
1611 5.407

Figure 6.6: Mean CPU time comparisons

cluded in the total. All results are significant at the 95% level except those marked
with an asterisk. These results show that SNLP-F does not have a significantly better
performance than SNLP-B, and that SNLP-SP does perform better than SNLP-F which
in turn outperforms SNLP-F. These results are affected by including unsolved prob-

lems, which results in understating the difference between algorithms.

6.4 Path length

The CPU time taken to solve a problem is affected by the amount of matching and

Path
length

1500

1000

500 -

Figure 6.7: Mean length of search path

2
Problem complexity

—2— SNLP-SP
—— SNLP-FF
—O0— SNLP-F
—e— SNLP-B

33

Ratio SNLP-SP

(log scale) SNLP-FF
SNLP-F
SNLP-B

A4 T T
0 1 2

Problem complexity

SV
=

Figure 6.8: Mean path length ratios

unification that is performed as well as by the efficiency of the search. We can mea-
sure the latter by looking at the number of nodes on the search path to a solution.
Again, there are large differences in performance among the algorithms. Figure 6.7
shows the average path length to solution by problem complexity for the four algo-
rithms. For problems that were not solved within the time limit, the length of the
search path at the time of stopping was used. This is, of course, an underestimate
and introduces the same types of distortion that we saw in the previous section.

Figure 6.8 gives some idea of the relative search efficiency of each algorithm on
those problems that they solve. For each algorithm the path length to solution was
divided by the length of the path taken by SNLP-SP, and the graph shows the means
of these ratios. Only those problems that were solved by the algorithm under con-
sideration are included. Again, the results are affected by the closeness of the solu-
tion time to the time limit for SNLP-F on some problems with three solution steps. If
the time limit had been slightly lower, the results could have been significantly dif-
ferent. However, it appears clear that SNLP-B and SNLP-F search much less efficiently
than SNLP-SP, with path lengths of over ten times as long. The effect is less marked
for SNLP-FF, which has an average path length of about three times the length of that
of SNLP-SP.

34

Comparison SNLP-B to SNLP-F SNLP-F to SNLP-FF SNLP-FF to SNLP-SP

Complexity Mean T value Mean T value Mean T value
0 0 0 0

1 *-0.8 *-0.880 224 2.761 0.8 8.062

2 *-272 *-0.854 243.1 6.638 9.2 10.748

3 -824.2 -6.453 1216.8 8.930 44.6 8.318

4 *55.7 *1.652 129.0 4.425

Total -224.7 -4.903 396.4 7.122 30.7 6.622

Figure 6.9: Mean path length comparisons

The results of the pairwise T-test are shown in Figure 6.9, by problem complexity
and in total. The length of path at stopping is used for problems that were not
solved, which is an underestimate. Cells in which no problems were solved are not
shown, but are included in the total. All results are significant at the 95% level ex-
hese results show that SNLP-F performs worse
than SNLP-B, and that the overall comparison is significant. SNLP-SP performs signif-
icantly better than SNLP-FF which in turn outperforms SNLP-F. These results are af-
fected by including unsolved problems, which results in understating the difference

between algorithms.

6.5 Branching factor

In these algorithms based on SNLP, the branching factor of the search space depends
on the number of modifications that can be made to a partial plan. There are two
situations in which a partial plan is modified: in order to protect a threatened link,
and in order to add a new link. The use of secondary preconditions increases the
number of ways of protecting threatened links, but typically decreases the number of
ways in which a new link can be added, due to the reduction in the number of oper-
ators required to represent a domain. It is therefore not immediately clear how the
branching factor of the search space will be affected by the introduction of secondary
preconditions.

35

6—
5
4—
Branching —#&— SNLP-SP
factor 31 —1— SNLP-FF
5 —oO0— SNLP-F
——A— & & ——A— A ¢ SNLPB
1—
O 1) i 1 |
0 1 2 3 4

Problem complexity

Figure 6.10: Mean branching factor—all problems

Figure 6.10 shows the mean branching factors for the four algorithms under con-
sideration for all problems, whether solved or not. It appears that SNLP-SP has a
much lower branching factor, with the advantage increasing on the more complex
problems. Other things being equal, a low branching factor is an advantage, and we
demonstrated in the previous section that SNLP-SP typically has a shorter search path
to solution than the other algorithms.

Branching SNLP-SP

factor SNLP-FF
SNLP-F
SNLP-B

Problem complexity

Figure 6.11: Mean branching factor—solved problems

36

An indication of how the branching factor affects the search process might be
gained by looking at the difference between the searching factor on those problems
that were solved within the time limit and those that were not. Figure 6.11 shows
the mean branching factor for only those problems that were solved. The mean
branching factors for SNLP-B and SNLP-F are much lower than for all problems, many
of which these two algorithms found difficult (they failed to solve them within the
time limit). This may indicate that, for this type of algorithm, the branching factor is
a strong influence on the ease with which a problem can be solved. From the
graphs, it appears that the effect may increase with the complexity of the problem,
giving rise to the expectation that the use of secondary preconditions may be more
advantageous with more complex problems. However, this effect could very possi-
bly be a result of the particular domain we used for these experiments, which was
designed to highlight the influence of context-dependent effects.

37

7 Conclusions

Many researchers have modified the basic STRIPS representation by introducing filter
conditions. In this paper we have analyzed the purposes to which filter conditions
have been put, and concluded that in only one case are they actually appropriate for
the purpose, namely as a method of representing the context-dependent effects of
operators. We then considered the problem of implementing filter conditions in a
partial order planner while preserving the completeness and correctness of the
planning algorithm. We concluded that it is possible to construct such an
implementation, but that it will be inefficient. Pednault's secondary preconditions,

however, provide a good way of achieving the required functionality.

We implemented secondary preconditions in a version of SNLP, a partial order
planner, and performed an empirical comparison of filter conditions with secondary
preconditions. The modified algorithm we present is provably correct (see Appendix
A), and it improves on the performance of the unmodified algorithm. We believe

that the theoretical analysis of planning algor
functional considerations faced by practical planners, and that such analysis can
provide valuable help to practical planners. In this paper we have shown how these

two approaches to planning can be combined.
Acknowledgments

Thanks to Larry Birnbaum, Matt Brand, Mike Freed and Bruce Krulwich for many
useful discussions, to Brian Drabble, Austin Tate, Dan Weld and the AAAI review-
ers for their comments on parts of earlier drafts, and to Dan Weld for supplying the
SNLP code. Parts of this work first appeared in (Collins & Pryor, 1992).

References

Allen, J., Hendler, ., & Tate, A. (Ed.). (1990). Readings in Planning. San Mateo, CA:
Morgan Kaufmann.

Barrett, A., Soderland, S., & Weld, D. S. (1991). Effect of Step-Order Representations
on Planning Technical Report 91-05-06. Department of Computer Science and
Engineering, University of Washington, Seattle.

38

Barrett, A., & Weld, D. S. (1992). Partial-Order Planning: Evaluating Possible
Efficiency Gains Technical Report 92-05-01. Department of Computer Science and
Engineering, University of Washington.

Chapman, D. (1987). Planning for Conjunctive Goals. Artificial Intelligence, 32, 333-
337. Also in (Allen et al 1990).

Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading,
MA: Addison-Wesley.

Chien, S. A. (1990). An Explanation-Based Learning Approach to Incremental
Planning Report No. UIUCDCS-R-90-1646. Department of Computer Science,
University of Illinois at Urbana-Champaign.

Chien, 5. A., & DeJong, G. F. (1992). Constructing Simplified Plans via Truth Criteria
Approximation. In Proceedings of the AAAI Workshop on Abstraction and
Approximation of Computational Theories, San Jose, CA: AAAL

Collins, G., & Pryor, L. (1992). Achieving the functionality of filter conditions in a
partial order planner. In Proceedings of the Tenth National Conference on
Artificial Intelligence, San Jose, CA: AAAL

Currie, K., & Tate, A. (1985). O-Plan—Control in the Open Planning Architecture.
Expert Systems, 85, 225-240. .

~ s

Currie, K., & Tate, A. (1991). O-Plan: the open planning architecture. Artificial
Intelligence, 52, 49-86. .
Feldman, R., & Morris, P. (1990). Admissible criteria for loop control in planning. In

Proceedings of the Eighth National Conference on Artificial Intelligence, Boston,
MA: AAAL

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2, 189-208. .

McAllester, D., & Rosenblitt, D. (1991). Systematic Nonlinear Planning. In
Proceedings of the Ninth National Conference on Artificial Intelligence, (pp. 634-
639). Anaheim, CA: AAAL

McDermott, D. (1989). Regression Planning Technical Report YALEU/CSD/RR #752.
Computer Science Department, Yale University.

Newell, A., & Simon, H. A. (1963). GPS, a program that simulates human thought.
In E. A. Feigenbaum &]. Feldman (Eds.), Computers and Thought (pp. 179-293).
New York: McGraw-Hill. Also in (Allen et al 1990).

Pednault, E. P. D. (1988a). Extending Conventional Planning Techniques to Handle
Actions with Context-Dependent Effects. In Proceedings of the Seventh National
Conference on Artificial Intelligence, St Paul, MN: AAAL

39

Pednault, E. P. D. (1988b). Synthesizing plans that contain actions with context-
dependent effects. Computational Intelligence, 4, 356-372. .

Pednault, E. P. D. (1989). ADL: Exploring the Middle Ground Between STRIPS and
the Situation Calculus. In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning, .

Pednault, E. P. D. (1991). Generalizing Nonlinear Planning to Handle Complex Goals
and Actions with Context-Dependent Effects. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, Sydney, Australia.

Penberthy, J. S., & Weld, D. S. (1992). UCPOP: A sound, complete, partial order
planner for ADL. In Proceedings of the Third International Conference on
Knowledge Representation and Reasoning, Boston, MA: Morgan Kaufmann.

Tate, A. (1977). Generating project networks. In Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, Cambridge, MA: IJCAL
Also in (Allen et al 1990).

Wilkins, D. E. (1988). Practical Planning: Extending the Classical Al Planning
Paradigm. San Mateo, CA: Morgan Kaufmann.

40

Appendix A: Formal descriptions

This appendix contains formal algorithm specifications and sketches of proofs. They
follow closely those in (McAllester & Rosenblitt, 1991) and (Barrett & Weld, 1992),
where further details my be found.

A.1 The basic SNLP algorithm

We start with some basic definitions:

Definition A.1.1: A STRIPS operator schema consists of an operator name, a precondition list,
an add list, a delete list, and a set of binding constraints. The elements of the precondition, add,
and delete lists are all proposition expressions. the elements of the set of binding constraints
mention only those variables appearing elsewhere in the schema. A STRIPS planning problem is
a triple <®, X, Q>, where ¥ is a set of STRIPS operator schemas, I is a set of initial proposi-
tions, and (2 is a set of goal propositions.

Definition A.1.2: A solution to a STRIPS planning problem <9, I, Q> is a sequence « of opera-
tor schemas in ¥ together with a set of binding constraints, such that the result of successively

applying the operators in o, instantiated according to the binding constraints, starting in the
initial state I results in a state containing the goal state Q.

Definition A.1.3: A symbol table T is a mapping from a finite set of step names to operator
schemas in 1 and an associated set of binding constraints. Every symbol table must contain
START, a step name mapped to an operator that has empty precondition and delete lists and a
set of initial conditions as an add list, and FINISH, a step name mapped to an operator that has
empty add and delete lists and a set of goal conditions as a precondition list.

Hereafter when we refer to a step name’s precondition list, add list or delete list we
mean the lists of the associated operator schema instantiated in a manner consistent
with the binding constraints. So far these definitions have been fairly standard: we
now move on to some that are more specifically concerned with the SNLP algo-
rithm.

Definition A.1.4: A causal link is a triple <s, P, w> where P is a proposition symbol, w is a
step name in T that has P as a precondition, and s is a step name that has P in its add list.

Causal links are written as s —gw

Definition A.1.5: A step name v in T is a threat to a causal link s Ewifv has a proposition
that possibly unifies with P in its add list or delete list, and v is not s or w. An ordering con-
straint is an ordering s; < 5j O 5 > 5 where s; and s are step names inT.

41

Causal links are the way in which effects are established; a threat to a link is a possi-
bly clobbering step.

Definition A.1.6: A partial order plan is a tuple <T, L, O, G> where T is a symbol table, L is a
set of causal links, and O is a set of ordering constraints. G is the set of open conditions P such

that P is a precondition of some w in T, and there is no causal link in L of the form s Bw.

Definition A.1.7: A partial order plan <T, L, O, G>is complete if:

* Every step name appearing in the elements of L or O is a member of T.
* Gisempty.

¢ If L contains a causal link s £>w and T contains a step name v that is a threat to s —I—)>w , then
O contains either the ordering constraint v < s or the ordering constraint v > w.

In other words, a plan is complete if the preconditions of every step are established
by links (there are no open conditions), and if every step that threatens a link is con-
strained to either precede or follow the threatened link. Note that the goal condi-
tions are preconditions of the FINISH step, and the initial conditions may be used to
establish preconditions because they comprise the add list of the START step.

Definition A.1.8: A topological sort of a partial order plan <T, L, O, G> is a linear sequence of
all the members of T such that:

* The first step in the sequence is START.
* The last step in the sequence is FINISH.

« For each causal link s B in L, the step s precedes the step w.
* For each ordering constraint u < v (or v > u) in O, the step u precedes the step v.

A topological sort of a partial order plan is a solution if executing the sequence of operators of
the steps between the START and FINISH steps, starting in the state given by the add list of the

START step, results in a state that contains all the preconditions of the FINISH step. A partial
order plan is called order inconsistent if it has no topological sort.

These definitions lead directly to the following:

Lemma: Any topological sort of a complete partial order plan is a solution.

We now define a nondeterministic procedure that will find the completion of a par-
tial plan if such a completion exists.

Procedure FIND-COMPLETION <T, L, O, G>
1. If <T, L, O, G> is order inconsistent then fail.

2. If<T, L, O, G>is complete then return <T, L, O, G>.

42

3. If there is a causal link s Bw in L and a threat v to this link with v in T with neither v<s
nor v>w in O, then nondeterministically do one of:
a) Return FIND-COMPLETION <T, L, O + (v<s), G>
b) Return FIND-COMPLETION <T, L, O + (v>w), G>
¢) Find (nondeterministically) binding constraints b that prevent the possible unification

of the threatening add or delete condition of v with P, then return FIND-COMPLETION
<T+b,L, 0O, G>

4. There must now be some P in G, i.e. there is some step name w in T with a precondition P such

that there is no causal link of the form s Bw in L. Nondeterministically do one of:

a) Lets be (nondeterministically) some step name in T and b be (nondeterministically)
binding constraints such that s has an add condition that possibly unifies with P consis-

tent with b and return the plan FIND-COMPLETION <T + b, L + s£>w, O,G-P>.

b) Select (nondeterministically) an operator schema o; with preconditions p; from the al-
lowed set of operator schemas and select (nondeterministically) binding constraints b
such that an add condition of o0; possibly unifies with P. Create a new entry in T that
maps a new step name s to 0j, and return the plan FIND-COMPLETION <T+s + b, L + s
—[—)>w,O,G—P+pi>.

It is straightforward to check that every completion of <T, L, O, G> is equivalent (up
to renaming of steps) to a value found by this procedure. This procedure is therefore

a complete and correct planning algorithm. It can also be shown that no two distinct

execution paths can produce equivalent complete plans.

A2 The SNLPS algorithm

The formal specification of the SNLP algorithm modified to include secondary pre-
conditions is very similar to that of the basic algorithm. Again, we start with basic
definitions.

Definition A.2.1: A STRIPSS operator consists of an operator name, a precondition list, an add
list, a delete list, and a set of binding constraints. The elements of the precondition list are
proposition expressions. The elements of the add list each consist of a proposition expression (an
add condition) together with a set of proposition expressions and binding constraints (the causa-
tion preconditions). The elements of the delete list each consist of a proposition expression (a
delete condition) together with a set of proposition expressions and binding constraints (the
preservation preconditions). The elements of the set of binding constraints mention only those

variables appearing elsewhere in the schema. A STRIPSS planning problem is a triple <9, Z,

>, where 9 is a set of STRIPSS operators, X is a set of initial propositions, and Q is a set of goal
propositions.

Definition A.2.2: A solution to a STRIPS® planning problem <38, X, Q> is a sequence o of opera-
tor schemas in @ together with a set of binding constraints, such that the result of successively

43

applying the operators in «, instantiated according to the binding constraints, starting in the
initial state X results in a state containing the goal state (2.

Definition A.2.3: A symbol table T is a mapping from a finite set of step names to operator
schemas in ¥ and an associated set of binding constraints. Every symbol table must contain
START, a step name mapped to an operator that has empty precondition and delete lists and a
set of initial conditions as an add list, and FINISH, a step name mapped to an operator that has
empty add and delete lists and a set of goal conditions as a precondition list.

Hereafter when we refer to a step name’s precondition list, add list or delete list we
mean the lists of the associated operator schema instantiated in a manner consistent
with the binding constraints. So far these definitions have differed from those in the
previous section only as a result of the different operator format.

Definition A.2.4: A causal link is a triple <s, P, w> where P is a proposition symbol, w is a
step name in T that has P as an enabling precondition, a causation precondition, or a preserva-
tion precondition, and s is a step name that has P as an add condition. Causal links are written

)
ass Bw. A prevention link is a triple <s, R w> where R is a proposition symbol, w is a step
name in T that has R as an enabling precondition, a causation precondition, or a preservation
precondition, and s is a step name that has R as a delete condition. Prevention links are written

as s 5)?0.

Definition A.2.5: A step name v in T is a threat to a causal link s Bwora prevention link s

—%w if v has an add condition or a delete condition that possibly unifies with P, and if v is not s
or w. An ordering constraint is an ordering s; < sj Or 5j > s where 5; and sj are step names in T.

Causal links establish effects, as before; prevention links prevent the establishment
of effects. A threat to either type of link is a possibly clobbering step.

Definition A.2.6: A partial order plan is a tuple <T, L, O, G, F> where T is a symbol table, L

is a set of causal and prevention links, and O is a set of ordering constraints.

G is the set of open conditions P such that either:

¢ Pisaprecondition of some w in T, and there is no causal link in L of the form s —E)w or

¢ There is some causal link s gw in L (so that P is an add condition of s), and Q is a causal pre-
condition associated with P in s, and there is no causal link in L of the form uQs.

F is the set of negated-open conditions such that:

¢ There is some prevention link s —%w in L (so that R is a delete condition of s), and Q is a
preservation precondition associated with R in 5, and there is no prevention link in L of the

form ugs .

Definition A.2.7: A partial order plan <T, L, O, G, F> is complete if:
* Every step name appearing in the elements of L or O is a member of T.

44

* Gisempty.
¢ Fisempty
e If L contains a causal link s £>w (so that P is an add condition of s), and T contains a step

name v that is a threat to s Hw , then either:
© O contains the ordering constraint v < s or
© O contains the ordering constraint v > w or

© L contains a prevention link of the form 1%s for at least one causation precondition Q
associated with P.

* If L contains a prevention link s Bw (so that R is a delete condition of s), and T contains a

step name v that is a threat to s £>w , then either:
© O contains the ordering constraint v <s or
© O contains the ordering constraint v > w or

o L contains a causation link of the form #8s for all preservation preconditions Q associ-
ated with R.

In other words, a plan is complete if the preconditions of every step and of every ef-
fect used to establish a precondition are established by links, and if every step that
threatens a link is either constrained to precede or follow the threatened link, or the
effect that would threaten the link is prevented from occurring. Note that the goal

c
2]
©
a
S
4]
w
2]
Qo
=
=
=

g
-t
o
[}
o
=
e
=
O
5
7]
o
g0}
0
o
e
w
[¢°]
o
=
[¢]

<
0
o
=)

e

2.
[72]
(4]
-
=
(¢}
o
a
a.
=
2]
)
o
- 0
-
=
(¢°]
2]
.—]
>
=
5

w

2}

[¢°]

o

This definition of a complete plan is the crux of the proof of the completeness
and correctness of the modified SNLP algorithm. The proof proceeds by demonstrat-
ing that the procedure used by the algorithm to construct completions of partial or-
der plans results in a complete plan as defined here.

Definition A.2.8: A topological sort of a partial order plan <T, L, O, G, F> is a linear sequence
of all the members of T such that:

* The first step in the sequence is START.
* The last step in the sequence is FINISH.

« For each causal link s B in L, the step s precedes the step w.

¢ For each prevention link s Bwin L, the step s precedes the step w.
* For each ordering constraint u < v (or v > 1) in O, the step u precedes the step v.

A topological sort of a partial order plan is a solution if executing the sequence of operators of
the steps between the START and FINISH steps, starting in the state given by the add list of the

START step, results in a state that contains all the preconditions of the FINISH step. A partial
order plan is called order inconsistent if it has no topological sort.

These definitions lead directly to the following:

45

Lemma: Any topological sort of a complete partial order plan is a solution.

We now define a nondeterministic procedure that will find the completion of a par-
tial plan if such a completion exists.

Procedure FIND-COMPLETIONS <T, L, O, G, F>
1. If<T, L, O, G, F> is order inconsistent then fail.
2. If<T, L, O, G, F> is complete then return <T, L, O>.

3. If there is a threatened link of either type then nondeterministically do one of:

i) If there is a causal link s Bw in L (so that P is an add condition of s) and a threat v to
this link with v in T with neither v<s nor v>w in O, nor any prevention links of the
formu Bs in L where Q is a causal precondition associated with P in s then nondeter-
ministically do one of:

a) Return FIND-COMPLETIONS<T, L, O + (v<s), G, F>

b) Return FIND-COMPLETIONS <T, L, O + (v>w), G, F>

¢) Find (nondeterministically) binding constraints b that prevent the possible unifica-
tion of the threatening add or delete condition of v with P, then return FIND-

COMPLETIONS <T+ b, L, O, G, F>

Let Q be (nondeterministically) a causal precondition associated with P in s and re-

turn FIND-COMPLETION® <T+ b, L, O, G, F + Q>

[@9)
~—

ii) If there is a prevention link s Bwin L and a threat v to this link with v in T with nei-

ther v<s nor v>w in O, then nondeterministically do one of:

a) Return FIND-COMPLETIONS <T, L, O + (v<s), G, F>

b) Return FIND-COMPLETIONS <T, L, O + (v>w), G, F>

¢) Find (nondeterministically) binding constraints b that prevent the possible unifica-
tion of the threatening add or delete condition of v with P, then return FIND-
COMPLETIONS <T+ b, L, O, G, F>

d) Let Q;j be (nondeterministically) the preservation preconditions associated with R

in s and return FIND-COMPLETIONS <T+ b, L, O, G + Q;, F>
4. Either G or F is now non-empty. Nondeterministically do one of:

i) If G is non-empty, so there is some step name w in T with a precondition P such that

there is no causal link of the form s Bw in L, then nondeterministically do one of:

a) Lets be (nondeterministically) some step name in T and b be (nondeterministically)
binding constraints such that s has an add condition A (with associated causation
preconditions A;) that possibly unifies with P consistent with b and return the plan

FIND-COMPLETIONS <T +b, L +s 5w, 0, G- P + Aj, F>

b) Select (nondeterministically) an operator schema o; (with preconditions Pj) from
the allowed set of operator schemas and select (nondeterministically) binding con-
straints b such that an add condition A (with associated causation preconditions

46

Aj) of o possibly unifies with P. Create a new entry in T that maps a new step name

s to 0, and return the plan FIND-COMPLETIONS <T+s + b, L + s—P>w, O0,G-P+P;y
Aj, F>.

1) If Fis non-empty, so there is some prevention link s BwinL (so that R is a delete condi-
tion of), and Q) is a preservation precondition associated with R in s, and there is no

prevention link in L of the form ugs, then nondeterm1mst1cally do one of:

a) Letv be (nondeterministically) some step name in T and b be (nondeterministically)
binding constraints such that v has a delete condition D (with preservation precon-
ditions D) that possibly unifies with Q consistent with b and return the plan

FIND-COMPLETIONS <T + b, L + vgu, 0,G F-Q+Dp

b) Select (nondeterministically) an operator schema o; (with preconditions P;) from
the allowed set of operator schemas and select (nondeterministically) binding con-
straints b such that a delete condition D (with preservation preconditions D;) of o;
possibly unifies with Q consistent with b. Create a new entry in T that maps a new

step name v {0 0, and return the plan FIND-COMPLETIONS <T+v + b, L + v qu, 0,
G+P;, F-Q+Djp>.

It is straightforward to check that every completion of <T, L, O, G, F> is equivalent
(up to renaming of steps) to a value found by this procedure. This procedure is
therefore a complete and correct planning algorithm. It can also be shown that no
two distinct execution paths can produce equivalent complete plans.

47

Appendix B: Test domain

We tested the planning algorithms described in this paper on an artificial domain
designed to highlight the effects of context-dependent effects and operator selection
on planning efficiency. The domain consists of a series of tiers, each of which can
hold an infinite number of blocks. Each block may be in any of six orientations (like
dice) (figure B.1). There is just one type of action:

Raise moves a block up a tier while changing its orientation by a quarter turn to
the next position in a cycle of the six.

In order to move a block from a tier, there must be another block on the same tier
(no tier may be left empty as the result of a move). Goals are expressed as a required
position, for example (on A tier3). This domain therefore includes many context-
dependent effects, as the orientation of a block after an action depends on its
orientation before the action but not on the particular action that is performed. The
domain also isolates the effects of context-dependency: none of the other possible
uses of filter conditions are possible, as loops are impossible, and all actions are
equally expensive.

— D Tier 3

A B C Tier 2

Tier 1

In order to move block D to Tier 3, one of A,B,C must be moved

first. After D has been moved, it will have face 4 uppermost.

Figure B.1: Our test domain.

48

B.1 Domain operators

In this section we show the action representations that we used with the various
algorithms. Note that the basic STRIPS representation and the representation using

filter conditions both require 12 operators, while the representation using secondary
preconditions requires just one.

B.1.1 Basic STRIPS operators

Raise a block from tier 1 starting in orientations 1 through 3:

Action:

Preconditions:

Delete list:

Add list:

Codesignation
constarints:

{move11 ?block)

{on ?block tier1)
(on ?other tier1)
(up ?block face1)

(on ?block tiert)
(up ?block facet)
(

(

on ?block tier2)
up ?block face2)

(not (?block ?other))

(move12 ?block)

(on ?block tier1)
{on “?other tier1)
{(up ?block face?2)

{on ?block tiert)
(up ?block face?2)

(on ?block tier2)
(up ?block face3)

(not (?block ?other))

(move13 ?block)

(on ?block tier1)
(on ?other tier1)
(up ?biock face3)

(on ?block tier1)
(up ?block face3)

{on ?block tier2)
(up ?block faced)

(not (?block ?other))

Raise a block from tier 1 starting in orientations 4 through 6:

Action:

Preconditions:

Delete list:

Add list:

Codesignation
constarints:

(move14 ?block)

(on ?block tier1)
{on ?other tier1)
{up ?block face4)

(on ?block tier1)
(up ?block face 4)
(

(

on ?block tier2)
up ?block face5)

(not (?block ?other))

(move15 ?block)

(on ?block tier1)
(on ?other tiert)
(up ?block face5)

{on ?block tier1)
(up ?block faceb)

(on ?block tier2)
(up ?block face6)

(not (?block ?other))

(move16 ?block)

(on ?block tier1)
(on ?cther tiert)
(up ?block face6)

(on ?block tiert)
(up ?block face6)

(on ?block tier2)
(up ?block face1)

(not (?block ?other))

49

Raise a block from tier 2 starting in orientations 1 through 3:

Action:

Preconditions:

Delete list:

Add list:

Codesignation
constarints:

(move21 ?block)

{on ?block tier2)
{on ?other tier2)
(up ?block facet)

(on ?block tier2)
(up ?block face1)

{on ?block tier3)
(up ?block face2)

(not (?block ?other))

(move22 ?block)

(on ?block tier2)
(on ?other tier2)
(up ?block face2)

(on ?block tier2)
(up ?block face2)

(on ?block tier3)
(up ?block face3)

(not (?block ?other))

(move23 ?block)

(on ?block tier2)
(on ?other tier2)
(up ?block face3)

{on 7block tier2)
(up ?block face3)

(on ?block tier3)
(up ?block faced)

{(not (?block ?other))

Raise a block from a tier 2 starting in orientations 4 through 6:

Action:

Preconditions:

Delete list:

Add list:

Codesignation
constarints:

{move24 ?block)

{on ?block tier2)
(on ?cther tier2)
(up ?block faced)

{on ?block tier2)
{(up ?block face 4)

{on ?block tier3)
(up ?block face5)

(not (?block ?other))

{move25 ?block)

{on ?block tier2)
(on “?other tier2)
(up ?block face5)

(on ?block tier2)
(up ?block faceb)

(on ?block tier3)
(up ?block face6)

(not (?block ?other))

(move26 ?block)

{on ?block tier2)
{on ?other tier2)
(up ?block face6)
(on ?block tier2)
(up ?block face6)

(on ?block tier3)
(up ?block face1)

(not (?block ?other))

B.1.2 STRIPS operators with filter conditions

Raise a block from tier 1 starting in orientations 1 through 3:

Action:
Filter conditions:

Preconditions:

Delete fist:

Add list:

Codesignation
constarints:

move11 ?block)
up ?block face1)

(

(

(on ?block tiert)
(on ?other tier1)
(on ?block tiert)
(up ?block facet)
(
(
(

on ?block tier2)
up ?block face2)

not (?block ?other))

(move12 ?block)
(up ?block face2)

(on ?block tier1)
(on ?other tiert)

(on ?block tier1)
(up ?block face2)

{on ?block tier2)
(up ?block face3)

(not (?block ?other))

(move13 ?block)
{(up ?block face3)

{on ?block tiert)
{on ?other tier1)

(on ?block tier1)
(up ?block face3d)

(on ?block tier2)
(up ?block faced)

(not (?block ?other))

50

Raise a block from tier 1 starting in orientations 4 through 6:

Action:

Filter conditions:

Preconditions:

Delete list:

Add list:

Codesignation
constarints:

(move14 ?block)
up ?block face4)

(
{on ?block tier1)
on ?other tier1)

(
(on ?block tier1)
(up ?block face 4)
(

(

on ?block tier2)
up ?block face5)

{not (?block ?other))

(move15 ?block)
{(up ?block faceb)

(on ?block tier1)
{on “?other tier1)

(on ?block tier1)
(up ?block faces)

{(on ?block tier2)
(up ?block face6)

(not (?block ?other))

(move16 ?block)
(up ?block face6)

{on ?block tier1)
(on ?other tier1)

{on ?block tier1)
(up ?block face6)

{on ?block tier2)
(up ?block facet)

(not {?block ?other))

Raise a block from tier 2 starting in orientations 1 through 3:

Action:

Filter conditions:

Preconditions:

Delete iist:

Add list:

Codesignation
constarints:

(move21 ?block)
up ?block face1)

on ?block tier2)
on ?other tier2)

(

(

(

{on ?block tier2)
{up ?block facet)
(

(

(

on ?block tier3)
up ?block face2)

not (?block ?other))

(move22 ?block)
{(up 7block face2)

(on ?block tier2)
(on ?other tier2)

{on ?block tier2)
{(up ?block face?2)

(on ?block tier3)
(up ?block face3)

(not (?block ?other))

(move23 ?block)
(up ?block face3)

{on ?block tier2)
(on ?other tier2)

(on ?block tier2)
(up ?block face3)

{on ?block tier3)
(up ?block faced)

(not (?block ?other))

Raise a block from a tier 1 starting in orientations 4 through 6:

Action:

Filter conditions:

Preconditions:

Delete list:

Add list:

Codesignation
constarints:

move24 ?block)
p ?block face4)

n ?block tier2)
on “?other tier2)

(

(u

(0

(

(on ?block tier2)
(up ?block face 4)
(
(
(

on ?block tier3)
up ?block face5)

not (?block ?other))

(move25 ?block)
(up ?block face5)

(on ?block tier2)
{on ?other tier2)

(on ?block tier2)
(up ?block face5)

(on ?block tier3)
{up ?block face6)

(not (?block ?other))

(move26 ?block)
(up ?block faceb)

(on ?block tier2)
(on 7?other tier2)

(on ?block tier2)
(up ?block face6)

(on ?block tier3)
(up ?block face1)

(not (?block ?other))

51

B.1.3 STRIPS operator with secondary preconditions

If secondary preconditions are used, just a single operator is needed in this domain:

Action: (move ?block)

(on ?block ?tier)
(on ?other ?tier)

(not (?block ?other))

Preconditions:

Codesignation constarints:

Each delete condition has associated preservation preconditions and codesignation
constraints:

Delete condition Preservation

codesignation constraints

(not (?tier tier1))

(not (?tier tier2))

(not (?f1 face1))

(not (712 face2))

(not (7?12 face3))

(not (712 faced))
)
)

Preservation
preconditions

on ?block tier1)
on ?block tier2)
up ?block face1)

(

(

((up ?block ?f1)
(up ?block face2)

(

(

(

(up ?block ?2)
(up ?block ?3)
(up ?block ?f4)
(up ?block ?15)
(up ?block ?f6)

up ?block face3)
up ?block face4)
up 7block face5) (not (7?12 faceb

(up ?block face6) (not (?f2 face6

Each add condition has associated causation preconditions and codesignation
constraints:

Add condition Causation

codesignation constraints

Causation
preconditions

(on ?block tier2)

(on 7block tier3)

(?tier tier1)

(?tier tier2)

(up ?block face1)
(up ?block face?2)
(up ?block face3)
(up 7block faced)
(up ?block face5)
(up ?block faceb)

{up ?block face6)
(up ?b lock facet)
(up ?block face2)
(up ?block face3)
(up ?block faced)
{up ?block face5)

52

B.2 Test problems

We constructed 150 random problems in our test domain, 50 each for problems
involving one, two, and three blocks. Each problem included two extra blocks, not
mentioned in the goals, that start on the lowest level. The problems were
constructed so that a block specified in a goal condition starts out on a level equal to
or lower than its goal level. The inclusion of the extra blocks ensures that all such
problems are solvable. The orientation and level of the goal and extra blocks were
fully specified in the initial conditions. The order of the conjuncts within the initial
conditions and the goal conditions was randomized.

The algorithm we used to construct a problem with n goals was as follows:

Algorithm

Make two lists, LISTA and LISTB, each of length 7, each element
randomly picked from integers 1, 2, 3.

Make a list, LISTC, n elements long composed of pairs of elements
from LISTA and LISTB, the lower number first in each pair.

Make a list, LISTI, composed of the first element in each pair of
LISTC. This list will be used to provide the initial positions of the
blocks in the problem.

Make a list, LISTG, composed of the second element in each pair of
LISTC. This list will be used to provide the goal positions of the
blocks in the problem. We have now guaranteed that each block
will start out on a level equal to or lower than its goal level.

Make a list, LETTERS, consisting of the first n letters of the
alphabet in random order.

The initial position of each element of LETTERS is given by the
corresponding element in LISTI, and its initial orientation is chosen
randomly from the integers one to six. Two extra blocks, X and Y,
have initial postitions on level one and initial orientations chosen
randomly. These 21 + 4 initial conditions are formed into a list, the
order of which is randomized.

The goal position of each element of LETTERS is given by the
corresponding element in LISTG, These n goal conditions are formed
into a list, the order of which is randomized.

Example

LISTA=(321)
LISTB = (1 3 2)

LISTC = {(1 3) (2 3) (1 2))

LISTI = (1 2 1)

LISTG = (33 2)

LETTERS = (B AC)

Initial conditions:

(up X face1) (on C tier1)

{on B tier1) (up Y faceb)

(up B faceb) (up A face4)
(up C face3) (onY tierl)
{on A tier2) (on X tiert)

Goal conditions:
(on C tier2) (on A tier3)
(on B tier3)

53

Appendix C: Experimental results

We ran four algorithms on each problem, and analyzed three resulting statistics: the

CPU time taken, the length of the search path, and the branching factor. The four
algorithms were:

* OSNLP-B, the basic form of the algorithm in which there are neither filter
conditions nor secondary preconditions. The statistics resulting from this
algorithm are CPUB, PATB, BCHB.

* SNLP-F, in which filter conditions are used in the action representations but
are not used to guide the search (see section 4.1). The statistics resulting from
this algorithm are CPUF, PATF, BCHF.

* SNLP-FF, in which filter conditions are used in the action representations and
are used to guide the search (see section 4.2). The statistics resulting from this
algorithm are CPUFF, PATFF, BCHFF.

* SNLP-SP, in which the algorithm is modified to use secondary preconditions.
The statistics resulting from this algorithm are CPUSP, PATSP, BCHSP.

We also show for each problem the least number of steps in a plan that solves the
problem. The number of goal conditions is shown in the first part of the the prob-
lem’s identifying number. A statistic in italics denotes that the relevant algorithm
failed to solve the problem within the time limit.

54

C.1 Problems with one goal condition

Prob

Plan

cPUB

CPUF

10 [staps CPUFF | CPUSP PATB PATF { PATFF| PATSP BCHB BCHF | BCHFF| BCHSP
1-1 0 13 10 94 52 1 1 1 1| 7.000| 7.000(7.000| 2.000
1-2 0 15 6 6 4 1 1 1 1| 1.000| 1.000(1.000| 1.000
1-3 1 453 225 37 23 24 24 4 3| 1.958| 1.042| 2500 1.333
1-41 0O 12 18 13 6 1 1 1 1| 7.000(7.000{ 7.000| 2.000
1-5 3| 25112 25011 2777 368 509 2523 53 15| 2.413| 1.071| 5.151| 1.800
1-6 0 6 7 6 5 1 1 1 1] 1.000| 1.000| 1.000(1.000
1-7 0 6 8 7 4 1 1 1 1] 1.000| 1.000| 1.000| 1.000
1-8 3| 3199| 5825 2793 362 89 407 53 15| 3.876| 1.526] 5.151| 1.800
1-9 3| 25100| 25003 2678 458 521| 2524 53 16| 2.342| 1.071| 5.170| 1.800

1-10 2 1682 1114 505 100 61 101 18 8| 2902 1.574| 5.000| 1.625
1-11 3| 25186 6254| 2804 346 378 498 53 15| 3.365| 1.428|(5.151| 1.800
1-12 0 6 14 6 4 1 1 1 1| 1.000| 1.000; 1.000| 1.000
1-13 3| 3307| 5728, 279 359 95 416 53 15 3.758| 1.514| 5.170| 1.800
1-14 2 1792 1318 574 109 71 134 18 8| 2.704| 1.396(5.000| 1.625
1-15 1 343 172 37 22 16 16 4 3| 2.062| 1.188| 2.500| 1.333
1-16 0 11 13 13 5 1 1 1 1| 7.000{ 7.000(7.000| 2.000
1-17 0 14 12 96 5 1 1 1 1| 7.000| 7.000| 7.000(2.000
1-18 3| 25220 25013 2962 350 547 2750 53 15| 2.289| 1.066| 5.151| 1.800
1-19 3| 25194| 25004| 2736 342 542| 2758 53 15| 2.378| 1.066| 5.151| 1.800
1-20 0 6 7 7 5 1 1 1 1| 1.000| 1.000| 1.000| 1.000
1-21 0 6 6 6 4 1 1 1 1| 1.000| 1.000| 1.000| 1.000
1-22 0 79 9 13 6 1 1 1 1| 7.000f 7.000| 7.000| 2.000
1-23 1 51 110 8¢9 65 4 4 4 3| 3.000| 2.500| 2.500| 1.333
1-24] 2 1040 837 527 103 46 73 18 8| 3.022(1.863| 5.000| 1.625
1-25 0 93 10 12 5 1 1 1 1} 7.000| 7.000| 7.000{ 2.000

55

Plan

CPUB

CPUF

p’oig Stops CPUFF [CPUSP PATB PATF | PATFF| PATSP BCHB BCHF [BCHFF| BCHSP
1-26 1 261 169 115 23 12 12 4 3| 2.167| 1.333| 2.500| 1.333
1-27 1 259 154 38 55 12 12 4 3| 2.167| 1.333| 2.500| 1.333
1-28 0 12 9 13 5 1 1 1 1| 7.000{ 7.000(7.000| 2.000
1-29 o 27 10 20 6 1 1 1 1] 7.000| 7.000| 7.000(2.000
1-30 2| 2716 1630 520 103 100 178 18 8| 2.540(1.258| 5000 1.625
1-31 3| 25181| 25002| 2810 345 943 2536 53 151 1.655| 1.070| 5.151| 1.800
1-32 3| 25205| 25019 2705 385 559| 2752 53 15 2.315| 1.066] 5.151| 1.800
1-33 0 12 9 12 6 1 1 1 1| 7.000| 7.000{ 7.000(2.000
1-34 2 639 672 560 117 30 54 18 8| 3.733| 2.222| 5.000(1.625
1-35 2 1584 970 492 109 59 98 18 8| 2.949| 1.602| 5.000| 1.625
1-36 2 1664 978 536 107 61 78 18 8| 2.951| 1.808| 5.000| 1.625
1-37 1 365 193 37 53 20 20 4 3| 2.000] 1.100| 2.500| 1.333
1-38 2| 2718 1949 557 107 112 214 18 8| 2.429| 1.187(5.000| 1.625
1-39 0 6 5 6 4 1 1 1 11 1.000! 1.0001 1.000! 1.000
1-40 0 14 9 14 6 1 1 1 1| 7.000| 7.000| 7.000(2.000
1-41 0 9 88 21 7 1 1 1 1] 7.000] 7.000| 7.000(2.000
1-42 1 263 147 113 25 12 12 4 3| 2.167; 1.333| 2.500| 1.333
1-43 0 6 6 7 42 1 1 1 1| 1.000f 1.000| 1.000| 1.000
1-44 0 11 18 13 4 1 1 1 1| 7.000| 7.000] 7.000| 2.000
1-45 0 14 11 25 5 1 1 1 1| 7.000| 7.000{ 7.000| 2.000
1-46 1 408 196 125 22 20 20 4 3| 2.000| 1.100| 2.500| 1.338
1-471 3| 25184 25005| 2792 357 528| 2519 53 15} 2356| 1.071| 6.151| 1.800
1-48 0 20 22 14 6 1 1 1 1| 7.000| 7.000| 7.000| 2.000
1-49 3| 25037 25018 2724 397 510 2539 53 15| 2.420| 1.070| 5.170| 1.800
1-50 2] 1282 1517 508 129 68 165 18 8| 2485 1.285(5.000(1.625

56

C.1 Problems with two goal conditions

Prob

Plan

CcPUB

29 staps CPUF| CPUFF| CPUSP PATB PATF | PATFF| PATSP BCHB BCHF | BCHFF| BCHSP
2-1 3| 23784 | 25057 1181 670 694 642 26 23| 2.905| 3.234| 3.846| 1.783
2-2 2 1703 1526 628 301 38 57 13 7| 4.868(3.193| 4.692| 1.714
2-3 2 1039 441 358 218 38 25 17 10| 4.211| 1.840) 2.294| 1.700
2-4 1 483 352 183 129 31 31 6 6 1.935] 1.226| 3.000| 1.500
2-5 0 17 32 20 11 2 2 2 2| 4.000; 4.000| 4.000| 1.500
2-6 2| 7519 3863 852 306 234 228 26 13| 2.744} 2.000(4.000| 1.462
2-7 2| 25115| 3583 644 369 520 82 14 8| 2.904) 3.890(4.500| 1.750
2-8 0 22 33 27 12 2 2 2 2| 7.000| 7.000| 7.000| 2.000
2-9 2| 25068 13751 631 405 614 279 14 8| 2704 4.039| 4500| 1.750

2-10 2 997 728 329 221 38 51 9 10| 4.132| 1.647| 3.556| 1.700
2-11 2| 25040 22377 681 380 704 498 14 8| 2396 4.118| 4.500| 1.750
2-12 0 15 27 159 10 2 2 2 21 4.000| 4.000| 4.000; 1.500
2-13 2| 1677 1454 383 258 74 142 17 10| 2.892| 1.380| 2.294| 1.700
2-14 2| 45037 2381 781 253 170 316 33 13| 2.253| 1.130| 3.182| 1.615
2-15 3| 11148 25063| 1186 831 300 604 26 23| 3.573| 3.233| 3.846| 1.783
2-16 3| 25016 25007| 2428 803 510 746 49 19| 3.075| 3.083| 4.041| 1.632
2-17 2| 7452| 4994 593 329 149 189 13 71 4342 2.884| 4.692| 1.714
2-18 3] 12864 | 25007 1110 733 350 604 26 23| 2.8564| 3.233| 3.846| 1.783
2-19 3| 25316 21541 3377 688 501| 1518 52 14| 2.667| 1.424| 5346 1.786
2-20| 3| 25021| 25048] 3963 807 332 354 69 26| 5.479| 5511| 4.884| 1.654
2-21 0 33 22 139 11 2 2 2 2| 7.000| 7.000(7.000(2.000
2-22 2| 2530 949 538 311 58 37 13 7| 3.5634| 3.189) 4.692| 1.714
2-23 2 896 930 770 326 29 32 26 13| 4.069| 3.594| 4.000| 1.462
2-24 0 32 38 42 18 2 2 2 2| 7.000| 7.000| 7.000| 2.000
2-25 1 1446 486 213 190 49 25 5 4| 2.837| 2.280| 3.400(1.500

57

Plan

CPUB

CPUF

P?g Stops CPUFF [CPUSP PATB PATF | PATFF| PATSP BCHB BCHF [BCHFF | BCHSP
2-26 2| 16388| 13771 742 449 441 301 14 8| 2492 4130 4.500| 1.750
2-27| 2 880 912 823 352 29 32 26 13| 4.069| 3.594(4.000| 1.462
2-28| 4, 25085| 25068| 25092| 14434 515 455 398 214 3.819| 4.308| 4.344| 1.421
2-29 4| 25067 25014| 25036| 13253 354 354 317 198| 5.797| 5.797| 5.508| 1.591
2-30 5| 25063| 25006 25101 25171 344 340| 282| 251| 5.326| 5.444| 5.489| 1.606
2-31 4| 25062| 25006| 15776| 13219 354 355 233 198 | 6.797| 5.797| 5.240; 1.591
2-32| 5| 25129 25068| 25079| 25211 344 341 295 263| 5326| 5446| 5512| 1.601
2-33| 2| 25080| 14803 603 375 646| 318 14 8| 2550 4.110] 4.500| 1.750
2-34| 2} 7402 2269 352 184 221 293 23 10| 2.416| 1.154| 1.739| 1.600
2-35\ 3| 6637| 25058| 1540 638 175 632 67 23| 2.777| 3.242| 2.104| 1.783
2-36 2| 2457 2276 357 178 105 221 10 11 2.448| 1.208| 3.300| 1.636
2-37| 3| 25077| 25661| 3364 621 425 1727 52 141 2.807| 1.405| 5.346| 1.786
2-38| 2| 2710| 1393 702 247 86 141 20 13| 2.651| 1.426] 4.650| 1.615
2-39| 3| 25019 25081 4990 728 352 351 160 26, 65509, 5507 2662; 1654
2-40| 3| 25014| 25003| 3760 645 420| 2773 90 25| 2.650| 1.071 3.467| 1.640
2-41 2| 25026 13959 724 352 599 279 14 8| 2.691| 4.039| 4.500| 1.750
2-42| 3| 25078 25059| 4024 780 354 354 70 26(5511, 5511| 4.829| 1.654
2-43 0 236 25 41 117 2 2 2 2| 7.000] 7.000| 7.000(2.000
2-44| 4| 25051| 25159| 25071| 12235 372 370 328 198 | 5.806] 5.805| 5.524| 1.591
2-45 0 16 27 18 115 2 2 2 2| 4.000(4.000(4.000| 1.500
2-46 1 453 244 158 38 21 21 5 5| 2.238| 1.381(3.400(1.600
2-47 1 588 408 227 209 13 13 5 4| 5.846(5.385(5.600| 1.750
2-48 0 25 132 120 11 2 2 2 2| 4.000(4.000| 4.000| 1.500
2-49| 2| 5186| 5193 537 333 230 626 14 8! 1.896(1.035| 3.857| 1.875
2-50| 3| 25032| 25082 3777 783 349 348 62 24| 5.605| 5.603| 5.306| 1.708

58

C.3 Problems with three goal conditions

Plan

CcPUB

Prc?g Fans CPUF | CPUFF| CPUSP PATB PATF | PATFF| PATSP BCHB BCHF | BCHFF| BCHSP
3-1 2| 25009 25044 1400 678 604 988 28 22| 2.613| 1.910| 4.071| 1.864
3-2 2| 25022| 25097 1234 659 635 804 22 10| 2.913] 2.238| 5.682(1.900
3-3 5| 25005\ 25062| 25099| 25012 624 285 331 197| 2.628) 4.589| 4.598| 1.635
3-4 1 1697 383 86 252 66 30 6 6 2.439| 1.300| 3.167| 1.667
3-5 4| 25092 25001| 25080| 25091 278 289 336 355| 5.644| 5.633| 4.943| 1.546
3-6 2| 5678 5324 703 313 236 632 20 10| 2.025| 1.092| 4.800| 1.900
3-7 3| 25058| 25016 1331 957 411 591 19 13| 4.290f 3.129} 4.842| 1.923
3-8 3| 25102 25027| 4383 876 705 917 75 21| 2407 1.949| 4.413| 1.667
3-9 3| 25011 25002, 3192 909 435 1548 46 18| 3.3713| 1.553| 5587 | 1.833
3-10 3| 25014| 25075| 1284 10831 432 602 19 13| 4.285) 3.108| 4.842| 1.923
3-11 0 34 177 127 24 3 3 3 3| 8.000; 3.000| 3.000| 1.333
3-12 2| 4096 11223 1150 601 160 280 28 16| 2.088| 3.321| 4.071| 1.625
3-13 4| 25070| 25051 25135| 25003 444 466 371 403| 4.385| 4.343| 4.580| 1.467
3-14(© 37 38 163 24 3 3 3 3| 7.000| 7.000| 7.000| 2.000
3-15 1 840 1730 311 285 28 148 7 6| 4.036| 1.419| 5.143| 1.667
3-16 51 25042 25018| 25039| 25119 283 296 240 262| 5.880| 5.885| 5.883| 1.595
3-17 2| 13235 1885 975 287 302 261 45 16| 2.606} 1.218| 2.622| 1.562
3-18 3| 9542| 11915 6571 1036 167 607 89 19| 4.605| 1.857| 5.978| 1.842
3-19 2| 4586 2597 859 527 185 400 40 21| 2.011| 1.108| 2.825| 1.619
3-20 4| 25017 | 25104| 25089 25187 299 298 373 371| 56.301| 5.299{ 4.416| 1.523
3-21 3| 25067 25149 4193 1114 313| 1068 54 15| 3.470| 1.550| 5.519| 1.867
3-22 3| 25004| 25005 1597 819 493 1075 4 29| 3.8396| 1.702| 3.683| 1.690
3-23 1 1784 669 208 158 62 30 6 5| 2.935(3.067(4.000(1.600
3-24| 3| 25063 25012 2548 1000 667| 588 165 26| 3.0817| 3.709| 1.448| 1.769
3-25 3| 25016 25057| 3959 1128 363| 2064 90 28| 2.848| 1.278| 3.633| 1.571

59

Pr?g Etlggs cPuUB CPUF| CPUFF| CPUSP PATB PATF | PATFF | PATSP BCHB BCHF | BCHFF| BCHSP
3-26 4| 25073 25035| 25005| 25018 287 370 584 362| 6.000| 4.616| 2.366| 1.561
3-271 3| 25062| 25048| 6865| 1284 558| 1755 131 28| 2.523| 1.382| 4.382| 1.679
3-28 4| 25002| 25004| 18016 7977 349 304 217 80| 5.140) 5941| 5.406| 1.912
3-29| 2| 25058 8705| 1119 558 629 235 28 16| 2.405| 3.166; 4.071| 1.625
3-30 7| 25070| 25573| 25062 25075| 268 276 422 247| 5239 5217| 4.408| 1.538
3-31 4| 25091 25010| 25092| 25222 562 490 409 426| 3.254| 3.757| 3.819| 1.318
3-32| 3| 25152| 25023| 6568 896 628 843 105 251 2.393| 2.163| 4.667| 1.600
3-33 0 217 45 46 27 3 3 3 3| 5.000| 5.000| 5.000| 1.667
3-34) 4| 25049| 25021| 25241| 7923 350 304 269 80| 5.146| 5941 5803 1.912
3-35| 3| 25038| 25003{ 4171 867 416 2009 89 18| 2.887| 1.285| 3.562| 1.722
3-36 5| 25136 25016| 25129] 25363 399| 390 306 226| 3.845| 3.733| 4.261| 1.473
3-37| 3| 25118| 25019] 2640 667 540 850 149 22| 3.196| 2.065| 1.570| 1.864
3-38| 4| 25052| 25017| 25018| 14299 439 405 370 188| 4.084| 4.514| 4.492| 1.617
3-38, 2| 25181 4998 512 307 322 863 15 9 3.478, 1.045; 3.800; 2.000
3-40| 3| 25008 25023 1078| 1293 375 944 20 20| 4.107| 2.140| 4.200| 1.850
3-41 3| 25047| 25165 4176 1103 457 908 54 15| 4.022| 1.707| 5.519| 1.867
3-42| 2| 25114 25025 760 440 365| 567 15 9| 3.603| 3.780(4.733| 1.889
3-43| 3| 25006| 25059 1272 1272 766 749 20 20| 2.201| 2.501| 4.200| 1.850
3-44 1 1077 441 270 142 34 18 6 5| 3.069| 3.222; 4.000(1.600
3-45| 4| 25159 25023 18617 | 3265 317 362 236 421 5539 5.022| 5242 1.762
3-46 4| 25032| 25016| 25106| 6210 700 417| 371 78| 2.8394| 4.156| 4.175| 1.590
3-47 3| 25040| 25015| 1977 828 565| 1249 74 26| 2.660| 1.606| 2.486| 1.769
3-48| 2| 5550| 4268 680 386 114 170 15 11| 3.974| 2.518| 4.267| 1.636
3-491 5| 25018| 25043 25065 25010 466 466 398 314| 3.803| 3.803] 3.854| 1.475
3-501 4, 25045 25133| 25112 1950 368 755 347 31| 4.818| 1.962| 3.092} 1.839

60

