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ABSTRACT
OP-TEE is a secure Trusted Execution Environment (TEE)
designed to run alongside the normal OS on ARM platforms.
Trusted Applications in OP-TEE, while offering many advan-
tages to securely process information, are not well suited
to support deep learning due to very limited memory con-
straints. To date, there have been many proposed methods
to limit the size of deep-learning models. In this paper, we
explore the overhead of running a fully connected neural
network in the TEE. We also analyze the performance trade-
off of a layer-based partitioning method used to reduce the
memory footprint of deep learning models. As a means to
benchmark the performance of Trusted Applications, we
implement a low-overhead benchmarking framework across
the Normal world and Secure world via the system call in-
terface. Our results reveal that while the TEE itself presents
limited overhead, layer-based partition brings about a sig-
nificant slowdown to the model’s computation time while
resulting in only marginal benefits to typical memory con-
sumption.

CCS CONCEPTS
• Security and privacy → Trusted computing; • Com-
puting methodologies → Neural networks.

KEYWORDS
OP-TEE, neural networks, layer-based partitioning, trusted
application

1 INTRODUCTION
The deployment of Deep Neural Networks (DNNs) on edge
devices such as smartphones has been made possible as the
memory and processing resources improve and advance.
However, as DNNs become more popular on edge devices,
privacy risks arise from the fact that DNN models are not
encrypted or secured. For a pre-trained model stored on an
edge device, the confidential and private information stored
in amodel can be exploited byMembership Inference Attacks

This project was supported by the United States National Science Foun-
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(MIAs). These attacks can have severe privacy consequences
that have already motivated researchers to develop and de-
ploy unique and innovative systems to counterattack.

Open Portable Trusted Execution Environments (OP-TEE)
is an open-source Trusted Execution Environments (TEE)
implementing the Arm TrustZone technology. OP-TEE can
run as a companion to a non-secure Linux operating system
to allow applications to run inside the TEE. These applica-
tions are referred to as Trusted Applications (TAs) and they
are isolated and protected by the TEE from the non-secure
main operating system. Based on this secure execution en-
vironment, it is possible to hide network layers in the TEE.
In fact, it is necessary in many situations to store the model
fully inside the TEE to isolate all sensitive data from the
non-secure environments, such as the main operating sys-
tem, hence the attacks. This optimal approach theoretically
addresses privacy issues.

While TAs offer security from the real execution environ-
ment (REE), the trusted applications in OP-TEE are, however,
severely limited both in terms of memory as well as per-
formance, thus making it not particularly suitable for Deep
Neural Networks. In fact, it is estimated that the maximum
default TA size on the Raspberry Pi 3b is 30 MB [1]. That
said, the performance of deep learning models stored and
running in a secure but limited environment is a topic worth
investigating. Furthermore, various methods of model size
reduction in the TA are also an area of active research [7].
In particular, in this paper, we will focus on layer-based par-
titioning as a means to reduce the model size, as well as the
performance impacts of such an approach.

In Section 2, we will first discuss in more detail the existing
work to run DNNs in a secure and trusted environment and
the context surrounding them. We will then delve into the
specifics of the fully connected neural network with layer-
based partitioning we implemented for the project in Section
3. Section 4, will explore the motivation and implementation
of a framework to benchmark neural-network performance
in the TA. In Section 5, we set up and perform experiments
to answer the aforementioned questions on neural-network
performance in TAs. We then analyze the results in Section
6 and summarize our findings in Section 7.



2 BACKGROUND
2.1 OP-TEE
Open Portable Trusted Execution Environment (OP-TEE) is
a Trusted Execution Environment (TEE) that implements
an API for running trusted applications. It is a companion
operating system (OS) running alongside a non-secure OS.
The non-secure OS is also called Rich Execution Environment
(REE) where it communicates with TEE through TEE Client
API. The TEE is for running and storing Trusted Applications
(TA). TAs are isolated and protected by the TEE from the REE.
For a platform without hardware security measures, OP-TEE
is able to provide the security it lacks. However, OP-TEE has
very limited memory, only around 30 MB on Raspberry Pi
3B is available to trusted applications by default [1], limiting
the utility of TA.

2.2 Existing Works
Running machine learning models in a trusted environment
is nothing new. In fact, layer-based partition itself in OP-TEE
was first proposed by VanNostrand et. al. [7] along with other
partitioning methods such as sub-layer partitioning where
each layer in a DNN model is further divided into sub-layers
to perform the computation, as well as branched partitioning
where layers in a DNN model can be vertically partitioned
into separate, mutually independent sub-networks.
Aside from methods to reduce network size in the TEE,

there have been various works that implement neural net-
works that run partially in trusted applications [5][4]. In par-
ticular, DarkneTZ is a deep learning framework that builds on
top of the Darknet [6] deep learning framework to train and
perform inference using deep learning models in a trusted
application environment. In particular, the trusted applica-
tion has the ability to run several layers of a DNN model in
the TrustZone, and it can be used to train several types of
DNNs, such as VGG-7, AlexNet, Resnet-50, with layers in
both the REE and TEE. Furthermore, like Darknet, DarkneTZ
can also load pre-trained models for inference.

While DarkneTZ provides a convenient interface to train
and execute deep learning models that are only partially
loaded inside a trusted execution environment, it, however,
lacks the function to dynamically load layers in and out of
storage in the TA during training and inference. As such,
we decided against using DarkneTZ for the implementation
of the neural network and implemented our own neural
network detailed in the next few sections.

3 LAYER-BASED PARTITIONING
To reduce memory usage of neural networks in trusted appli-
cations, layer-based partitioning breaks up the network into
individual layers where only a single layer may be loaded
into the TA at any given time while the other unused layers

will be stored encrypted in the real execution environment
until it is needed, where the encrypted layer will then get
passed into the TA, decrypted, and deserialized. The process
of storing and loading a neural network, especially fully con-
nected layers in a neural network, naturally lends itself to
this type of partitioning as inputs and outputs of a single
layer come only from the outputs of the previous layer and
act as the inputs to the next layer respectively [8].
In this paper and in our implementation, we will further

generalize the idea of layer-based partitioning to multiple
layers. That is, multiple layers in the network can be grouped
together to act as a single partition stored and loaded into
the TA as needed.

3.1 Fully Connected Neural Networks
Our neural network implementation has a special focus on
fully connected neural networks (FCNNs) as they often ap-
pear in other network models and intuitively allow for layer-
based partitioning. FCNNs have a topology where each neu-
ron in a layer is connected to every neuron in the following
layer. The input of the FCNN takes in features and performs a
feature transformation to obtain outputs. By tuning weights
and biases at each layer in the network, or in the feature
transformation, we can change how the input space gets
mapped to the output space.

Figure 1: Example of a fully connected neural network
with an input (3 neurons), an output layer (2 neurons),
and a single hidden layer (5 neurons).

As an example, consider figure 1 where we have a simple
network composed of an input and output layer, as well as a
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single hidden layer. The output of each neuron in the hidden
and output layer are functions of all values of neurons in
the previous layer, transformed by weights located along the
edges connecting the neurons and a bias. For instance, the
output of neuron 3 in the hidden layer of the shown FCNN
can be expressed as

𝑓
(1)
3 (x) = 𝑎(𝑤 (1)

3,1 𝑥1 +𝑤
(1)
3,2 𝑥2 +𝑤

(1)
3,3 𝑥3 + 𝑏

(1)
3 ) (1)

With 𝑎 as the activation function and where the super-
scripts on the transformation, weights, and biases represent
the layer number. The first subscript on the same terms
represents the neuron in the current layer, and the second
subscript, if one exists, represents the neuron from the pre-
vious layer. In general, given an 𝐿 − 𝑙𝑎𝑦𝑒𝑟 FCNN, we can
express the output of the nth neuron in the 𝐿𝑡ℎ layer using
the same notation as above to be
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where𝑈𝐿−1 is the number of neurons in the previous layer
and consequently,𝑈𝐿 is the number of neurons in the current
layer 𝐿. The expression above can also be compactly written
in matrix notation
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in which W𝐿 is a𝑈𝐿−1 ×𝑈𝐿 matrix,
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b(𝐿) is a𝑈𝐿 × 1 vector, and f (𝐿−1) is a𝑈𝐿−1 × 1 vector.
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3.2 Secure Storage
OP-TEE implements GlobalPlatform Technology’s TEE Inter-
nal Core Trusted Storage API via secure storage. The purpose
of such an API is to allow users to store general-purpose data
objects as well as cryptographic objects securely and to al-
low users to modify stored data atomically [3][2]. OP-TEE
actually has two implementations of secure storage. The
first makes use of the Linux file system in the REE while
the second uses the Replay Protected Memory Block (RPMB)

partition of eMMC storage to store data [3]. In our implemen-
tation, we stored the serialized layer as data objects using
the REE file system secure storage implementation.

Table 1 shows the trusted storage API endpoints that were
used to store and retrieve layer data. We designed the storage
of layers such that every layer in an FCNN will have its cor-
responding layer object in secure storage, identified by the
layer number. For example, layer 0 will have a corresponding
layer object with ID 0x00000000. The corresponding layer
objects are first created during network initialization and fu-
ture retrieval and modification operations will occur during
forward propagation and backpropagation.

Future modifications such as storing multiple layers in one
secure storage object can perhaps be made to more efficiently
retrieve and store layers when multiple layers are part of a
single partition. Now, instead of an object for every layer,
there will only be an object for every partition of the network,
reducing the number of trusted storage API calls.

3.3 Layer Serialization
Layers in the network must be stored and retrieved by writ-
ing to and reading from a shared buffer given to the trusted
storage API from the TA. However, in our implementation,
layers are represented as C structures of integers and matri-
ces. This requires us to serialize and deserialize layers to and
from byte arrays. These byte arrays will then act as buffers
for storing and reading layer data objects to and from the
secure storage.
To perform the marshaling and unmarshalling of layer

structures, we first defined a serialization scheme for dif-
ferent fields, integers, and matrices, in a layer structure. As
shown in figure 2, serialization for integers contains only
the type metadata followed by the integer value, while, also
in figure 2, serialization for matrices contains additional
metadata/data about the dimensionality of the matrix. The
dimensionality of the matrix must be known before reading
the values of the matrix to prevent overflowing the buffer
and to help with initializing a new matrix. Using these two
primitive serialization schemes, all the fields of a layer can
be marshaled into a single-byte array suitable for storage
and retrieval.

3.4 Forward Propagation with Layer-Based
Partitioning

Forward propagation of input data through the network oc-
curs both during training as well as during inference. Using
the same notation as described in section 3.1, forward prop-
agation of an 𝐿 − 𝑙𝑎𝑦𝑒𝑟 fully connected neural network can
be written compactly as

𝑚𝑜𝑑𝑒𝑙 (x,Θ) = 𝑎(b(𝐿) +W𝑇
𝐿𝑎(. . . 𝑎(b

(1) +W𝑇
1 x))) (6)
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Table 1: Trusted Storage API endpoints used to implement layer-based partitioning [2]

Endpoint Use

TEE_CreatePersistentObject Called each time to store a serialized layer from
a buffer in the TA. This endpoint is also used to
delete previously stored layer information.

TEE_OpenPersistentObject Obtain a persistent layer object handle.
TEE_GetObjectInfo1 Retrieve stored size of persistent layer object.
TEE_ReadObjectData Read serialized layer object data to a buffer in the

TA.
TEE_CloseObject Close the layer object handle.

Figure 2: Serialization of integers and matrices in C.

Depicted from the expression and as noted above, outputs
of one layer become inputs of the next layer. The result of
this is that layer-based partitioning of the FCNN is relatively
straightforward as we can load subsequent layers one after
the other into TA memory. When a single partition involves
𝑛 layers, forward propagation will attempt to iterate through
all layers in batches of 𝑛-sized partitions. It is entirely pos-
sible for the last partition to have less than 𝑛 layers. In that
case, the last partition loaded into the TA will just have the
remaining layers.
Aside from this, it is important to note that the outputs

of one layer partition must be stored temporarily before
getting fed as inputs to the subsequent layer partition after
it is retrieved from storage. Consequently, the minimum
memory amount required by the TA to run the model must
also take into account the dimensionality of input data and
mini-batch size.

3.5 Backpropagation with Layer-Based
Partitioning

The main goal of backpropagation is to find the gradient of
the cost function with respect to the weights of the network.
With the gradient, we are able to train and optimize themodel
through gradient descent in an iterative fashion. In particular,
the gradients of the cost with respect to the weights and

biases of a single layer 𝐿 for a fully connected neural network
can be expressed as the following

∇W𝐿
𝐶 = (f (𝐿−1) (x))𝑇𝛿 (𝐿) (7)

∇b(𝐿)𝐶 = 𝛿 (𝐿) (8)

where 𝐶 is the cost function and 𝛿 (𝐿) is

𝛿 (𝐿) = 𝑎′(f (𝐿) (x)) ⊙
{
𝛿 (𝐿+1)W𝑇

𝐿+1, 0 < 𝐿 < 𝑁

𝐶 ′(f (𝐿) (x), y), 𝐿 = 𝑁
(9)

in which x is the feature, y is the label, and 𝑁 is the total
number of layers in this network.
As seen from the above expression for computing the

gradients, backpropagation requires us to iterate through the
layers in reverse order. In terms of layer-based partitioning,
this would mean we have to load layer partitions into the
TA in reverse order. For example, suppose we have an FCNN
with three layers in total but specified we only want two
layers loaded into the TA at once. This would mean the last
two layers will first be loaded into the TA as a single partition,
followed by the first layer when computing the gradient of
the cost w.r.t. the weights and biases in layer one.
Furthermore, as noted in the above expressions for com-

puting gradients, we must also store the input and output of
each layer in the layer structure during forward propagation
for reference to use in backpropagation. In addition, we also
store ∇W𝐿

𝐶 and ∇b(𝐿)𝐶 in the layer struct for use during
gradient descent to update the weights. Overall, the mem-
ory footprint of the network is not simply the weights and
biases of the network, but also must take into consideration
additional fields if one wants to train the networks inside
the TEE.

4 BENCHMARKING
To collect performance data of DNNs in trusted applications
as well as to measure the induced overhead of layer-based
partitioning, we wrote a custom benchmarking framework
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Table 2: Benchmark Framework API

Endpoint Use

TEE_InitSctrace Sets initial benchmark context.
TEE_AddSctrace Adds new trace to existing traces.
TEE_GetSctrace Writes all existing traces to a CSV file.
TEE_ResetSctrace Clears the existing traces.

similar to [1] that leverages system calls from both the REE
and the TEE to add, get, and reset performance traces.

4.1 Motivation
We needed a benchmarking framework that gives us very
fine control over the portion of code in the TEE that we
want to measure the performance. Furthermore, since we are
also measuring the memory footprints of the network and
memory is valuable in trusted applications, it is a good idea
to store the trace history outside of the TEE and in the REE.
As a result, trace data from within the TA must be forwarded
via a series of system calls and RPCs into the normal world.

4.2 Design
The overall implementation of the benchmark has four func-
tions that were appended to OP-TEE’s global API as noted in
table 2. TEE_InitSctrace initializes the values in the bench-
marking context, TEE_AddSctrace is called from within a
TA with an integer ID to get the time delta and amount of
allocated memory in the TA. TEE_GetSctrace takes in an
integer once again and stores all existing traces as a CSV file
in the REE on the Linux file system. The prefix is set to the
integer passed in. Note that TEE_GetSctrace does not reset
the existing traces in the REE, but the overhead of this call
is accounted for. Finally, TEE_ResetSctrace is used to clear
all existing traces in the REE.
As mentioned before, trace values in the TA are sent to

the REE and stored via a series of system and RPC calls.
In particular, when a TEE_<Verb>Sctrace function (except
TEE_InitSctrace) gets invoked, it will first make an OP-
TEE system call. The OP-TEE system call will construct and
make an RPC call to the OP-TEE driver in Linux. Upon re-
ceiving the RPC message, the driver, which is now in Linux
kernel mode, will invoke a Linux system call to pass in the
received data and add a new trace entry to the existing traces
already in the REE.
Existing traces are stored in the REE as a global variable

in the form of a doubly-linked list of sctrace_t structures:
typedef struct sctrace
{

unsigned long id;
unsigned long delta;

unsigned long allocated;
long ree_time;
struct sctrace* next;
struct sctrace* prev;

} sctrace_t;

The field id is the value of the parameter passed into the
TEE_AddSctrace function, delta is the time in microsec-
onds between the previous and current TEE_AddSctrace
calls, allocated is the number of bytes currently allocated
in the TA, and ree_time is the current time of the REE in
nanoseconds.

4.3 Overhead

Figure 3: Using system calls to store traces in the nor-
mal world adds additional overhead from the bench-
mark. To account for such overhead, we calculate the
execution time between TEE_AddSctrace calls as the
delta between the start of the current call and the end
of the previous call.

The use of system calls to pass traces from within the TEE
to the REE is useful for isolating the memory used by the
benchmark itself. However, system calls that we invoke to
add traces will take time to complete both in OP-TEE and in
Linux, resulting in additional time overhead. As alluded to
before in section 4.2, we use time deltas in the TA to address
this issue. Consider figure 3 which depicts the overall sketch
of the problem and solution. To account for the issue of
additional overhead from TEE_AddSctrace, we can calculate
the time between such calls as the difference between the
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start of the current call and the end of the previous call.
This forces us to use TEE_AddSctrace in a particular way.
Suppose we wanted to find the execution time of a block
of code. We will first need to surround that block with two
TEE_AddSctrace calls. Then to read the execution time, we
must look at the time delta of the second TEE_AddSctrace
call. While this seems complicated at first, we can also easily
integrate over the time deltas in a list of trace entries to get
the actual time. Using the integrated times, we can simply
subtract the times at the first add trace call from the time at
the second add trace call to get the execution time.

The actual implementation of the time delta calculation is
done via a global time_context_t structure in the TEE:

typedef struct time_context
{

uint64_t start;
uint64_t end;
uint64_t overhead;

} time_context_t;

The start field stores the start time of a TEE_AddSctrace
call while the end field stores the time right before a call
to TEE_AddSctrace returns. overhead is an added field to
account for the overhead of calling TEE_GetSctrace in be-
tween TEE_AddSctrace calls. All fields in the time_context_t
structure are in units of microseconds.

As briefly mentioned before, TEE_InitSctrace is initially
called, it sets the value of time_context_t.end to be the
current time. Afterward, whenever TEE_AddSctrace is in-
voked, it will first set time_context_t.start to be the cur-
rent time. Next, it will calculate the time delta as

𝑑𝑒𝑙𝑡𝑎 = 𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑛𝑑 − 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (10)

While we have accounted for the major overheads of send-
ing traces via system calls, there is yet another system call
that we did not account for. That is, the syscall to obtain
the current time in microseconds in OP-TEE. We, however,
measured the additional overhead of this syscall to be quite
small at around 5.5`𝑠 on average.

5 EXPERIMENTAL SETUP
5.1 Platform
We chose to run our experiments on the Raspberry Pi 3Model
B due to an abundant array of related literature that already
uses this platform [7][1][4]. Furthermore, there has been a
thorough performance characterization of OP-TEE on the
Pi 3B [1]. As mentioned before, performance and available
memory in the TA is quite limited. In terms of performance,
trusted applications do not have multi-threading. Thus, our
FCNN implementation runs on only one thread in the TA.
Considering memory, the memory size set aside for trusted
applications on the platform is quite small defaulting at 30

Table 3: OP-TEE memory-related settings changed.

Setting Value

CFG_SHMEM_SIZE 0x02000000
CFG_TZDRAM_SIZE 0x04000000

CFG_TEE_RAM_VA_SIZE 0x00200000
PGT_CACHE_SIZE 70
TA_STACK_SIZE (60 * 1024 * 1024)
TA_DATA_SIZE (1 * 1024 * 1024)

MB. However, we were able to expand the heap size of the
TAs with the largest we tested being 250 MB. In this experi-
ment, however, we configure the TA heap size to be 60 MB
and the stack size to be 1 MB.

Increasing the heap size of the TA can be done by config-
uring a higher trust-zone DRAM size via CFG_TZDRAM_SIZE,
changing CFG_TEE_RAM_VA_SIZE, increasing PGT_CACHE_SIZE
to be a bit more than half of CFG_TZDRAM_SIZE in MB, and
in the trusted application, increasing TA_STACK_SIZE as well
as TA_DATA_SIZE [9]. TA_DATA_SIZE is what ultimately de-
termines the heap size of the trusted application.

Aside from the TA heap size, there were also other settings
that we changed for this experiment. Table 3 gives a list of
all OP-TEE memory-related settings we changed to run this
experiment.

Figure 4: Frequency of each class in the MNIST hand-
written dataset used. There are a total of 3000 images.

5.2 Dataset
The dataset we selected for this experiment is the MNIST
hand-written digits obtained from DarkneTZ [5]. In total,
there are 3000 examples, all of which we used for training.
Each example is a 28 x 28 x 1 monochrome image. The pixel
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Table 4: FCNN Architecture

Layer Neurons

Input 784
Hidden layer 1 64
Hidden layer 2 32
Output layer 10

values of the image are rescaled to be between values of 0 and
1. There are a total of 10 classes for these examples, ranging
from a digit of 0 to 9. The overall dataset appears to be fairly
balanced as shown in Figure 4. The class of digit 8 has the
lowest number of samples at 261 while the class of digit 1
has the highest number of samples out of any class at 339.
Validation and test sets of the data were not split out from the
3000 samples as we are mostly concerned with the memory
and CPU performance of the model in trusted applications;
however, it is certainly something worth considering doing
in the future.

Due to the overall structure of FCNNs, each 2-dimensional
example must be flattened into a 1-dimensional input vector
of size 784 x 1. Furthermore, since there are 10 classes, we
encoded the labels of every example in one-hot encoding,
with the "hot" index corresponding with the value of the
digit.

5.3 Network Architecture and Parameters
Our primary focus here is on fully connected neural net-
works. The particular 3-layer network architecture that we
used is summarized by Table 4. The activation function used
is the Rectified Linear Unit (ReLU), the loss function is Cross-
Entropy loss, our optimizer is Gradient Descent, and we set
the learning rate of the model to be a constant 0.03. We var-
ied the mini-batch size to be 50 and 100 samples as well as
the number of layers in each partition for layer-based parti-
tioning to be 1, 2, and 3 layers. 3 layers in a partition in our
architecture means all layers are in the TA at once; in other
words, no layer-based partitioning. Finally, for the sake of
time, we only trained the model each time for 10 epochs.

6 RESULTS AND ANALYSIS
In this section, we will first introduce the accuracy results
achieved by the aforementioned model on the MNIST dataset
in Section 6.1. We will then depict the impact on execution
time from running the model under varying conditions such
as TEE versus REE, mini-batch size, and layers in a partition
in Section 6.2. Finally, we examine the memory performance
impacts of the model also under varying mini-batch sizes
and layers per partition in Section 6.3.

6.1 Model Accuracy

Figure 5: Training loss and accuracy of model over 10
epochs on MNIST for mini-batch sizes of 50 and 100,
and 1, 2, and 3 layers per partition.

From our initial test and experimentation, our model was
able to get around a 93% training accuracy when trained for
50 epochs with a mini-batch size of 100 samples. However,
due to limited time, we had to run most of our experiments
with 10 epochs only. Figure 5 gives the training loss and
accuracy over 10 epochs for different combinations of batch
size and layers loaded.

Overall, it appears that a batch size of 50 results in faster
convergence for the model compared to a mini-batch size of
100. In addition, as expected, the training accuracies between
the number of layers in a partition for a given mini-batch
size are relatively similar. This is because changing layer-
based partitioning does not have an effect on the input or
parameters of the model.

6.2 Execution Time
The overall execution times of training the model are sum-
marized in Table 5. As depicted, there appears to be around a
10-14% decrease in performance when executing the model
in the TEE compared to the REE. This is perhaps due to
OP-TEE using the powersave CPU governor in Linux, caus-
ing decreased CPU frequency speeds [1]. Additionally, we
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Table 5: Execution Time of Training for 10 Epochs

Layers Loaded at Once Mini-batch Size Time Elapsed (s)

3 (REE) 100 352.2
3 (REE) 50 365.7
3 (TEE) 100 399.5
3 (TEE) 50 405.4
2 (TEE) 100 8409.7
2 (TEE) 50 12629.0
1 (TEE) 100 5972.2
1 (TEE) 50 8947.3

noticed a very substantial increase in executing time once
layer-based partitioning was enabled in the TEE. In fact, the
maximum drop in performance we experienced was over
30x compared to executing without layer-based partitioning
in the TEE or executing in the REE. This suggests that the
overall overhead of swapping layers in and out of permanent
secure storage during training is quite substantial.
To further investigate the actual cost of swapping layers

in and out of secure storage, Figure 6 plots the distribution
of store layer operation times, read layer operation times for
when a layer-based partition includes only one layer and the
mini-batch size is 100. The time distribution to read read and
store layers both appear to be a bimodal distribution. We
suspect this distribution to be caused by the fact that the first
layer has substantially more weights compared to that of the
second and third layers. For example, the weight matrix for
layer one is 784 × 64 with 50,176 values while the weight
matrix for layers two and three contain only 2,048 and 320
values respectively.

Another interesting observation is that the overall read
layer times are significantly faster than store layer times.
We have determined that it does not come from layer serial-
ization and deserialization and instead, comes from the API
call to TEE_CreatePersistentObject being much slower
than TEE_ReadObjectData. This is probably because we are
using TEE_CreatePersistentObject to overwrite existing
data. In other words, the TEE_DATA_FLAG_OVERWRITE flag
ensures that existing objects will get deleted and re-created
atomically [2].
Next, comparing the actual time for each batch, Figure 7

plots the distribution of the batch times (the time for one
batch to complete) for the model trained without layer-based
partitioning as well as with layer-based partition when each
partition contains one or two layers - all in the TEE. While
the batch times without layer-based partitioning appear to
resemble a skew-right distribution with only one peak, both
batch times with layer-based partitioning appear bimodal

with a few outliers. Regarding the distributions with layer-
based partitioning, we discovered that most of the data points
in the second, lower peak come from batches in the first 1 to
2 epochs while the first, high peak comes from the other 8 to
9 epochs. We are uncertain of this anomaly and is, therefore,
certainly an area of further investigation.
Aside from the shape of the batch times distributions, it

is expected to see that the batch times for models run with
layer-based partitioning be greater than without the parti-
tioning.What is surprising, however, is batch times of models
trained with 2-layer partitions are on average higher than
batch times of models trained with only 1-layer partitions.
This turns out to be caused by an inefficiency in our layer-
partitioning implementation where layers are being swapped
in and out of the TA when it is not actually necessary. This
therefore also explains the performance penalty between
1 and 2 layers loaded at once as seen in Table 5. If this in-
efficiency were to be corrected, we suspect the batch time
as well as training time to be very similar between the two
models run with layer-based partitioning.
While we only showed results for a mini-batch size of

100, results for a mini-batch size of 50 follow a very similar
pattern, albeit with lower times (approximately 80% that
of mini-batch size 100). However, the reason the total time
taken when training the model is greater compared to mini-
batch size 100, as seen in table 5, is due to the 100% increase
in the number of batches.

6.3 Memory Performance
The initial goal of layer-based partitioning is to reduce the
memory footprint of executing DNNs in the TEE. However,
its actual implementation brings about a certain level of
unforeseen complexity. For example, we had to correct for
extra memory taken up in the TA as a result of loading all
training examples into the TA at initialization. Its total size
is 3000 images * (28 * 28) pixels/image * 8 bytes/pixel, which
is approximately 18 MB in total. While we could have loaded
the examples in batches during training, this would involve
the additional overhead of sending data from the client to
the TA via RPC calls.
Table 6 summarizes the actual as well as corrected mem-

ory usage of different model configurations including layers
loaded in the TA as well as mini-batch size. In general, de-
creasing batch size results in lower maximum and average
memory usage. Things, however, are more complicated when
comparing the number of layers loaded into the TA at once.
While the overall average memory usage does decrease with
the number of layers loaded, the variance does increase with
layer-based partitioning, actually resulting in higher maxi-
mum utilization as well as lower minimum utilization.
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Figure 6: For a layer-based partitioning of a single layer and mini-batch size of 100, shows the (Left) times to read
layer and (Right) times to write layer.

Figure 7: Batch times (Left) without layer-based partitioning in the TEE, (Center) with layer-based partitioning
of 2 layers, and (Right) with layer-based partition of a single layer. Mini-batch size of 100 for all 3.

Table 6: Actual and Corrected Memory Usage of FCNN in TEE

Setting Actual Memory Usage (MB) Corrected Memory Usage (MB)
Layers Loaded at Once Mini-batch Size ` 𝜎 min max ` 𝜎 min max

3 100 20.63 0.29 18.80 21.19 2.69 0.29 0.85 3.25
3 50 19.93 0.14 18.80 20.21 1.98 0.14 0.85 2.26
2 100 19.95 0.98 18.42 22.45 2.00 0.98 0.47 4.51
2 50 19.38 0.74 18.40 21.20 1.44 0.74 0.45 3.25
1 100 19.61 0.91 18.42 22.45 1.67 0.91 0.47 4.51
1 50 19.13 0.68 18.40 21.20 1.19 0.68 0.45 3.25

Figure 8 depicts the average memory utilization of a single
batch during training for various layers loaded and mini-
batch size configurations. Broadly speaking, it can be seen
that these figures match the values in Table 6 and that the
variance in memory utilization increases once layer-based
partitioning is used. A distinct feature in the plots with layer-
based partitioning, also the main culprit of variance in the
graph, is the various tall plateaus in the graph that mark the
events where layers are being stored and retrieved to and
from the secure storage. This is because whenever a layer is
stored or retrieved from the secure storage, an array buffer
at least the size of the transferred layer will be allocated as a

medium to transport data to and from the secure storage and
the TA. As a result, this effectively doubles the size of the
layers stored or retrieved, bringing about these large, long
durations of high TA memory usage.
An obvious method to reduce the memory footprint of

these load and store memory operations is to transfer the
layer in sections. For example, we can allocate smaller buffers
to transfer different fields in the layer one at a time. This, how-
ever, will result in the additional time overhead of multiple
TEE_CreatePersistentObject and TEE_ReadObjectData
calls to transfer a single layer. Another potential method
that builds on top of the previous idea is to store fields in
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Figure 8: TA memory usage during a single batch. (Top) mini-batch size 100, (Bottom) mini-batch size 50, (Left)
without layer-based partitioning, (Center) 2 layers per partition, (Right) 1 layer per partition.

the layer only when necessary or when they are modified;
a technique that may also improve execution time since it
is the TEE_CreatePersistentObject operation that is the
main bottleneck. This, however, will require additional infor-
mation on which fields have been modified. In general, there
are many ways to go about this problem and it is certainly
something worth considering in the future.

As an aside from memory utilization, the implementation
inefficiency as described in Section 6.2 also manifests itself
in the center plots with 2 layers loaded. As can be seen, there
appear to be extra load and store layer operations compared
to only one layer loaded, when there should be less.
Overall, with our current implementation of layer-based

partitioning andmodel configuration, it appears that decreas-
ing the batch size is an even more effective way of reducing
the memory footprint when training neural networks in a
trusted execution environment. This, however, should be
considered with caution as the batch size can affect the per-
formance of the trained model.

7 CONCLUSION
We have implemented layer-based partitioning for securely
running DNNs with OP-TEE. We have also demonstrated
the time and memory performance of the technique to in-
vestigate the utility of such a security approach. Overall,
our results indicate that the trade-off between security and
performance is unavoidable as it took 10 to 14 percent more

time to run an FCNN in the TEE given the same parameters.
Aside from the additional performance overhead, we see
that layer-based partitioning for the memory-constrained
TEE can increase maximum memory usage while offering
only marginal improvements to average memory usage, di-
minishing the utility of the technique. However, there is
room for future improvements in performance and memory
consumption. Faster implementations for matrix operations
can be written to increase temporal performance. Address-
ing the aforementioned layer-swapping inefficiencies in our
implementation can further reduce the additional memory
overhead. When considering maximum memory utilization,
themain culprit for poor performance is the variance inmem-
ory consumption that comes with layer-based partitioning
due to buffered data transfers to and from the secure storage.
As such, carefully storing only necessary and modified fields
in layers can be considered and may even improve run time.
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