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ABSTRACT
We address the problem of efficient maintenance of Continu-
ous Maximizing Range-Sum (Co-MaxRS) query for moving
objects trajectories. The traditional MaxRS problem aims
at finding a placement for a given (axes-parallel) rectangle R
so that the number—or the sum of the weights—of objects
(points) from a given set O in the interior of R is maximized.
However, in the context of spatio-temporal data, due to the
objects continuously changing their locations over time, the
MaxRS solution for a particular time instant need not be
a solution at another time instant. In this paper, we take
a first step towards effective algorithmic solutions for this
dynamic case. We devise the conditions under which a par-
ticular MaxRS solution may cease to be valid and propose
efficient pruning strategies to speed-up the process of main-
taining the correctness of the Co-MaxRS solution. We prove
the correctness of our method and demonstrate via experi-
ments, performed over both real and synthetic datasets, the
benefits of the proposed methods in terms of efficiency and
scalability in dealing with larger datasets.

1. INTRODUCTION
Moving Objects Databases (MOD) [8] are enabling tech-

nology for a wide range of applications that may de-
mand some type of Location Based Services (LBS) [21]
for mobile entities. Their applications include tracking
in ecology and environmental monitoring, traffic manage-
ment and online/targeted marketing, and military applica-
tions. The advances in sensing and communications tech-
nologies have generated large quantities of (location, time)
data (O(Exabyte) [13]). Researchers in the spatio-temporal
and MOD communities have focused on methods for efficient
storage and retrieval of the whereabouts-in-time data, and
on efficient approaches for processing various queries of in-
terest, e.g., range, (k) nearest neighbor, alibi-queries, reverse
nearest-neighbor, skyline, etc. Many of these queries have
had their “predecessors” in traditional relational database
settings, as well as in spatial databases [22] – however, due

to the movement of objects over time, their spatio-temporal
variants became continuous (i.e., the answer-sets change
over time) and even persistent (i.e., the answers not only
change over time, but also depend on the history of the evo-
lution/motion).

More recent research has addressed variants of the facility
location problem and spatial preference queries in spatial
databases [20, 26, 29] and, in particular, the efficient pro-
cessing of the Maximizing Range Sum query (MaxRS) [5, 6].
Given a collection of weighted spatial points O and a rect-
angle R with fixed dimensions, MaxRS finds the location
of R that maximizes the sum of the weights of the objects
in its interior. Note that, contrary to the traditional range
query, in the MaxRS setting one needs to determine the lo-
cation where the sum of the weights (or the value of another
objective function) is maximized. Originally, the MaxRS
problem was tackled by the researchers from the field of
computational geometry [11, 16] – however, motivated by
its important LBS-applications (e.g., best location for a new
franchise store with a limited delivery range, most attrac-
tive place for a tourist with a limited reachability range)
more recent works have proposed scalable efficient solution
for MaxRS in spatial databases [5, 6].

At the heart of the motivation for this work is the obser-
vation that in many applications involving mobile entities,
a continuous variant of the MaxRS is paramount. Exam-
ples include: identifying the regions with highest density
of tracked animals (e.g., gazelles) in different times; de-
tecting ranges with densest traffic between noon and 6PM;
(re)positioning of a drone-based camera to a location that
maximizes its field of view coverage with respect to a set of
mobile objects; etc. The Continuous MaxRS (Co-MaxRS)
variant is also important in applications involving “interest-
ing regions” for trajectories pattern mining, hotspots de-
tection, etc. [25, 27]; many video games (e.g., World of
Tanks) need to determine a position of maximal coverage
in dynamic scenarios involving change of locations of play-
ers. The fundamental difference between MaxRS and Co-
MaxRS is illustrated in Figures 1a and 1b. An instance of
the MaxRS problem over a spatial database (assuming that
the weights of all the objects are 1) is shown in Figure 1a,
and the placement of the rectangle R indicated in solid line
is the solution (count = 6). Other suboptimal solutions are
shown in dashed lines. However, when objects are mobile,
the placement of R at different time instants may need to
be changed – as shown in Figure 1b for three different times
(t0, t and tmax).
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(a) (b)

Figure 1: (a) An example of the MaxRS problem (b) An example of the Co-MaxRS problem, i.e., changing
MaxRS solutions at different times for moving objects trajectories.

The main contributions of our work can be summarized
as follows:
• We formally define the Co-MaxRS problem, and identify
criteria (i.e., the critical times) under which a particular
MaxRS solution may no longer be valid, and present algo-
rithms for calculating such time instants and maintaining
the correct Co-MaxRS solution.
• We propose two kinds of efficient pruning strategies to
avoid expensive recomputation of Co-MaxRS solutions at
certain critical times. The first strategy eliminates the re-
computation altogether and the second strategy reduces the
number of objects needed to be considered when recomput-
ing the Co-MaxRS solution.
•We experimentally evaluate our proposed approaches using
both real and synthetic datasets, and demonstrate that the
pruning strategies yield much better performance than the
worst-case theoretical bounds of the Co-MaxRS algorithm—
e.g., we can eliminate 80-90% of the critical times events and
prune around 70% objects when recomputing Co-MaxRS.

The rest of this paper is organized as follows. Section 2
presents the basic technical background used in the rest of
the paper. Secion 3 formalizes the Co-MaxRS problem
and the main data structures, and discusses the basic al-
gorithm and the special case of Static-MaxRS, i.e., deter-
mining the static position which will maximize the number
of objects passing through a rectangle over an entire time-
interval. Section 4 presents our pruning strategies aiming at
improved performance, along with the detailed algorithmic
specifications. Section 5 presents the quantitative observa-
tions from our experiments. Section 6 positions the work
with respect to the related literature, and Section 7 offers
conclusions and directions for future work.

2. PRELIMINARIES AND PROBLEM FOR-
MULATION

We now give an overview of the MaxRS problem and the
existing solutions in static contexts, and introduce the con-
cept of Kinetic Data Structures (KDS) used in the solution
of Co-MaxRS.

2.1 MaxRS for Static Objects
Given a set of objectsO and a query rectangleR, a MaxRS

query finds a position of R within the specified space that

maximizes the sum of (the weights of) all the objects covered
by R. Let C(p,R) denote the region covered by R placed at
a particular point p. We have:

Definition 1. (MaxRS) Given a set O of n points O =
{o1, o2, . . . on}, each oi associated with a weight wi and
bounded within a rectangular area F, the MaxRS query re-
trieves a position p within F for an isothetic rectangle R of
size d1 × d2 such that

∑
{oi∈ O ∩ C(p,R)} wi is maximal.

We define
∑

{oi∈ O ∩ C(p,R)} wi as the score of R located

at p. If wi = 1, ∀oi ∈ O, we refer the sum of weights as
the count. An instance of the MaxRS problem (counting)
is shown in Figure 1a. Note that there may be multiple
solutions to the MaxRS problem and in case of ties, one is
chosen randomly.

Figure 2: Transforming MaxRS problem into rect-
angle intersection problem.

To compute MaxRS for static objects, in-memory algo-
rithms of O(n logn) time-complexity were proposed in [16].
More recently, a solution to the MaxRS problem in large-
scale spatial databases, reducing the number of I/O’s was
presented in [6].

To illustrate the main idea, consider the counting variant
of MaxRS where ∀oi ∈ O : wi = 1, and R has size d1×d2. An
example of this is shown in Figure 2 where we have five ob-
jects (black-filled circles). This problem is transformed into
a “dual” rectangle intersection problem (cf. [16]) as follows.
We first draw a rectangle of size d1 × d2 centered at each of
the objects in O (see Figure 2). R covers oi if and only if its
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center is within the dual rectangle for oi. Thus a rectangle
covering the maximum number of points can be centered at
any location within the maximum intersection of the dual
rectangles (gray-filled area in Figure 2). The problem there-
fore becomes finding the area where the maximum number
of rectangles intersect. Define a rectangle graph (RG), where
vertices corresponds to the dual rectangles and an edge ex-
ists between two vertices if and only if the corresponding
dual rectangles overlap. An area of maximum overlap in
the dual representation corresponds to a maximum clique in
RG.

Using the findings of [11] and the transformation de-
scribed above, [16] provided an in-memory algorithm to
solve the MaxRS problem in O(n logn) time and O(n) space.
Regarding the top and bottom edges of the rectangles as hor-
izontal intervals, an interval tree—i.e., a binary tree on the
intervals—was constructed in [16] and a horizontal line was
swept in a bottom-up manner. The algorithm maintains the
count for each interval currently residing in the tree, where
the count of an interval represents the number of overlap-
ping rectangles within that interval. When the sweep-line
meets the bottom (top) edge of a rectangle, the correspond-
ing interval is inserted to (deleted from) the interval tree
and the count of each interval is updated accordingly. An
example is shown in Figure 2. When the horizontal sweep-
line is at position l, there are 9 intervals: [−∞, x0], [x0, x1],
[x1, x2], [x2, x4], [x4, x5], [x5, x6], [x6, x8], [x8, x9], and
[x9, +∞]—with the count of the intervals being 0, 1, 2, 1, 0,
1, 2, 1, and 0 respectively. An interval with the maximum
count during the whole sweeping process is returned as the
final solution. Events in this algorithm are the top and bot-
tom edges for the n rectangles. As there can be at most 2n
events and each event takes O(logn) processing time, the
whole algorithm takes O(n logn) time to complete.

2.2 Kinetic Data Structures
Kinetic data structures (KDS) are used to track attributes

of interest in a geometric system. KDS is effective on sys-
tems where there is a set of values (e.g., location—x and y
coordinate values) that are changing as a function of time
in a known manner. KDS allows queries on a system at the
(virtual) current time t, and additionally, two more opera-
tions: 1) advance the system to t; and 2) alter the trajectory
values to f(t), e.g., location at time t. Initially, an instance
of the data structure at t is stored (i.e., current values of
the attributes of interest), which is augmented with a set of
certificates proving its correctness at t. The failure times for
each certificates are called events, which indicate that the
data structure may no longer be an accurate representation
of the state of the system. Thus, the next step is to com-
pute the failure time of each certificate, a.k.a. events, and
store the events in a priority queue sorted by their failure
times. To advance to a future time t+ δ, we have to pop all
the events having failure times ≤ t + δ from the queue in-
order, and fix the data structure so that it is accurate at that
particular time and update the related certificates. In this
paper, we utilize KDS to correctly maintain the Co-MaxRS
answer-set over time and only perform certain tasks at the
critical times (events) when a current MaxRS solution may
change.

3. COMPUTING CO-MAXRS

In this section, we first discuss why a straightforward
adaptation of the techniques used in MaxRS for spatial ob-
jects is not a viable option for Co-MaxRS and present a spe-
cial case—Static-MaxRS, i.e., a static rectangle over moving
objects. Subsequently, we address the Co-MaxRS problem.

Unless stated otherwise, for simplicity, the remainder of
this paper will deal with the counting variants of the pro-
posed problems. All of the techniques and algorithms pre-
sented can be adapted in a straightforward manner for the
general nonnegative weight case.

Both [16] and [6] used interval trees as the underlying data
structure of the planesweep algorithm. However, using only
an interval tree to maintain MaxRS solutions continuously
is inadequate because:
(1) Interval tree needs to be built on the x-coordinate values
of all the vertices of the dual rectangles. As the objects
move, the interval tree has to be rebuilt at each time-instant,
an O(n logn) operation.
(2) We want to use the underlying data structure in an in-
cremental manner in mobile settings. This is not possible
in the case of interval trees as the plane-sweep procedure
must sweep through all the top and bottom edges of the
rectangles whenever there is a change in the interval tree.

3.1 Static-MaxRS Over Moving Objects
Instead of continuously tracking the MaxRS solutions over

an entire time-period, one approach is to retrieve only the
location within F having the highest score or count during
the whole time-period. We define Static-MaxRS as follows:

Definition 2. (Static-MaxRS) Given a set OM of n
moving objects OM = {o1, o2, . . . on}, where each oi =
[(xi1, yi1, ti1), . . . , (xi(k+1), yi(k+1), ti(k+1))] has a trajectory
within a rectangular area F; and a time-interval T =
[t0, tmax], Static-MaxRS retrieves a location p of query rect-
angle R that covers the maximum number of objects over the
entire time interval T , i.e., the number of objects intersect-
ing the region C(p,R) at least once is maximum throughout
T .

For the example given in Figure 1b, the location of the
MaxRS solution at tmax is a Static-MaxRS solution for the
time-period [t0, tmax] as 5 objects—o1, o2, o3, o4, o5—are
in that region (dotted rectangle in Figure 1b) at some time
instant between [t0, tmax]. If we have the Static-MaxRS so-
lution for a given period T , we can return that location as
an approximate answer for the Co-MaxRS problem for T ,
the intuition being that MaxRS solutions may be likely to
revolve around static hotspots in real life data.

Assume for the time being, that for the given interval
T = [t0, tmax], t0 and tmax are consecutive sample time-
points, i.e., each oi ∈ O, moves along a single line-segment.
For a query rectangle R of size d1× d2, let ri be the rectan-
gle centered at oi, and Si be the area swept by ri over the
given time-interval. Si will be a rectangle if oi is station-
ary or moves parallel to one of the axes, otherwise it will
be a convex hexagon and can be computed in O(1) time.
We can derive an algorithm to compute Static-MaxRS com-
bining the sweep-line approach of [16] and the subdivision
overlay algorithm [3]. In our proposed sweep line algorithm,
the event points will be the vertices of the Si’s and the in-
tersections of their edges. The status structure, denoted as
ST , maintains the edges intersected by the sweep line and
the count of the window to the right of each edge. The event
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queue, denoted as Q, maintains the set of all the vertices of
Si and intersections above the sweep line of line-segments
currently adjacent in ST in order from bottom to top.
Analysis and Discussion: We can handle each event point
in O(logn) time by using balanced binary search trees for
ST and Q. Thus the algorithm runs in O((n + I) logn)
time where I is the number of intersection, and I = O(n2).
Static-MaxRS has its own applications, e.g., finding the area
where maximum number of vehicles cross throughout an en-
tire day. However, it has no notion of duration, i.e., the
algorithm is blind to how long each point is inside R. Also,
it may not be a very good approximation of the Co-MaxRS
problem, as MaxRS solutions at two different time-instants
can vary significantly. Recall the example in Figure 1b,
Static-MaxRS returns the dotted rectangle as the query an-
swer for the time-period [t0, tmax]. But, this is the MaxRS
solution only at time tmax. At t0 and t, the actual MaxRS
solution has counts of 3, whereas the count of the Static-
MaxRS solution is only 1—o2 at t0 and o3 at t (cf. Fig-
ure 1b).

3.2 Computing Co-MaxRS: Basic Approach
Formally, the Continuous MaxRS (Co-MaxRS), is defined

as follows:

Definition 3. (Co-MaxRS) Given a set OM of n
moving points OM = {o1, o2, . . . on}, where each
oi = [(xi1, yi1, ti1), . . . , (xi(k+1), yi(k+1), ti(k+1))] is associ-
ated with a trajectory within a rectangular area F; and a
time-interval T = [t0, tmax], Co-MaxRS returns a sequence
of MaxRS solutions (i.e., a list of collections of objects) for
a query rectangle R throughout the time-period T . Specif-
ically, the Co-MaxRS answer-set contains a time-ordered
sequence of pairs (lobj , trange), where for any time instant
ti ∈ trange ⊆ T , the objects in lobj determine possible loca-
tion(s) for R that is a MaxRS at ti.

We note that we discuss the entire volume swept by the in-
stantaneous MaxRS’s throughout each trange in Section 4.3.

Figure 3: Optimal location of R changes from t1 to
t2, although the objects in the solution (O1, O2, O3)
are the same.

Instead of maintaining a centroid-location (equivalently,
a region) as a MaxRS solution, we maintain a list of ob-
jects that are located in the interior of the optimal rectangle

placement. The rationale is two-fold: (1) even for small ob-
ject movements, the optimal location of the query rectangle
can change while objects participating in the MaxRS solu-
tion stay the same; (2) the set of the objects that form the
MaxRS solution can only change at certain time instants
and, thus, can be tracked more efficiently. An example is
shown in Figure 3. At time t1, objects o1, o2, and o3 fall
in the interior of the MaxRS solution. At t2, although the
same objects are within the MaxRS solution, the optimal lo-
cation itself has shifted due to the movement of the objects.
Suppose, there are m objects in the lobj list at a particu-
lar time instant. Using the ideas described in Section 2, we
only need to find the intersection of m rectangles to retrieve
the optimal MaxRS location. Thus, both the location and
count/score of MaxRS solutions can be retrieved from lobj
when needed in O(m) time. For the example given in Fig-
ure 1b, Co-MaxRS answer-set is: {((o6, o7, o8), [t0, t− 1]),
((o1, o2, o3), [t, tmax − 1]), ((o1, o3, o7, o8), [tmax, tmax])}.

We now describe our proposed solution for the Co-MaxRS
problem, aiming at identifying when recomputation of the
MaxRS may be needed due to the possibility of a change
in the solution. We consider the dual rectangle intersection
problem under the mobile settings and consequently, keep
track of the area of maximum overlap given moving rectan-
gles.

Consider the example in Figure 4, with 10 objects:
{o1, o2, . . . , o10}. Let ri denote the dual rectangle for an
object oi. Assume that only o2 and o5 are moving: o2 is
moves west, and o5 is moves north (orange rectangles and
arrows). Figure 4a, shows the locations of objects at t1 and
the MaxRS solution is comprised of o1, o2, o3, and o4 (blue
colored objects in Figure 4a). In this setting, r2 and r5 do
not overlap. Figure 4b shows the objects locations and their
corresponding rectangles at t2 (> t1). Due to the move-
ment of o2 and o5, the maximum overlapped area changed
at t2 (blue-shaded region). But, as r2 and r5 still do not
overlap, the objects comprising the MaxRS solution are still
the same as t1. Finally, Figure 4c represents the objects
locations at a later time t3, where r2 and r5 are overlap-
ping. This causes a change in the list of objects making up
the MaxRS solution, and o5 is added to the previous so-
lution. We observe that the MaxRS solution changed only
when two disjoint rectangles began to overlap. If we con-
sider the example in reverse temporal order, i.e., assuming
t3 < t2 < t1, then the MaxRS solution changed only when
two overlapping rectangles became disjoint. Thus, the solu-
tion of Co-MaxRS changes only when two rectangles change
their topological relationship from disjoint to overlapping
( ~DO), or from overlapping to disjoint ( ~OD). Note that we
consider the objects along the boundary of the query rectan-
gle R as being in its interior, i.e., rectangles having partially
overlapping sides and/or overlapping vertices are considered
to be overlapping.

3.2.1 Kinetic Maintenance of Co-MaxRS
To maintain the correct Co-MaxRS solution over time,

we use the Kinetic Data Structure (KDS) paradigm. Recall
that when an object/rectangle moves there are two kinds of
changes:
(1) Continuous Deformation: As the location of the mov-
ing rectangles change, the region of maximum overlap may
change but the set of objects constituting the Co-MaxRS
solution stay the same.
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(a) (b) (c)

Figure 4: Co-MaxRS answer can only change when two rectangles’ relationship changes from overlap to
disjoint (or, vice-versa). Object locations at: (a) t1 (b) t2 (c) t3.

(2) Topological Change: Due to the movement of the rectan-

gles, a ~DO or ~OD transition occurs for a pair of rectangles.
Thus, the Co-MaxRS answer-set can be kinetically main-

tained by tracking only the topological changes using the
KDS framework, with a set of certificates (overlap/disjoint)
proving the correctness of the Co-MaxRS solution at a par-
ticular time instant. Recall that, in KDS parlance, events
(i.e., the failure times for the certificates) indicate a topo-
logical change, and are maintained in a priority queue in the
order of their time of occurrence.

In the case of Co-MaxRS, the only two kinds of events
that can cause a topological change are (1) ~DO and (2) ~OD,
each associated with a pair of moving rectangles. Assuming
a straight-line motion, in [t0, tmax], there could be at most

one ~DO and one ~OD event between each pair of moving
rectangles—shown in Figure 5. Initially at t0, rectangle r1
(blue-colored) and r2 (orange-colored) do not overlap. As
they move along the straight-line, at time t1, they begin
overlapping, i.e., ~DO. Moving further along the line, near
time t2, r1 and r2 become disjoint again, i.e., ~OD. A pair
of moving rectangles may also have one or zero ~DO or ~OD
events. Given the moving objects trajectories, we can com-
pute the times of occurrence of ~DO (resp. ~OD) in constant
time.

Figure 5: Possible events between two different mov-
ing rectangles: ~DO and ~OD.

3.2.2 Data Structures and Basic Algorithm

Figure 6 depicts the underlying data structures used to
maintain Co-MaxRS answer-set using KDS.
Object List (OL): A list for each object oi ∈ O, stores
its current trajectory Troi (i.e., snapshots of location at t0
and tmax), its number of neighbors N(oi) in the rectangle
graph, and whether or not the object is part of the MaxRS
solution.
Kinetic Data Structures (KDS): Figure 6 illustrates the
underlying KDS (event queue), and its relation with the OL.
Each event Ei is associated with a time ti, where t0 < ti <
tmax. KDS maintains an event queue, where the events are
sorted according to the time, i.e., t1 < t2 < t3 < · · · < tn.
An event Ei has pointers to its related objects—two object
ids, and the type of the event—( ~DO or ~OD).

Suppose we have n objects in OL. Initially at t0, we can
determine the time of ~DO and/or ~OD events between a
pair of rectangles in constant time. If an event time falls
within the time-period T , we insert that event into the
KDS event queue. There are O(n2) pairs of rectangles,
thus this step would take O(n2) time and produces at most
O(n2) event points. Next, we process the events from the
KDS in order of their occurrence time. At each event Ei,
we recompute the current MaxRS on the snapshot of the
moving objects database at ti; compare with the previous
MaxRS solution to check if we have a change or not; and
update the Co-MaxRS answer-set accordingly. The recom-
putation is bounded by O(n logn) time. Thus, the total
time-complexity of our proposed algorithm to maintain Co-
MaxRS is O(n3 logn) for single line trajectories.

4. EFFICIENT MAINTENANCE OF CO-
MAXRS

We now present the details of our approach to efficiently
process Co-MaxRS. First, we discuss two strategies which,
although do not improve the worst-case time complexity of
the Co-MaxRS computation, may significantly reduce com-
putational overheads. We aim to: (1) reduce the number of
recomptuations of a MaxRS; and (2) reduce the total num-
ber of objects required when recomputing a MaxRS solution.
Subsequently, we present and analyze the corresponding al-
gorithms.

4.1 Pruning KDS Events
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Figure 6: Data structures used in maintaining Co-MaxRS.

The MaxRS problem amounts to retrieving the maximum
clique in the rectangle graph RG—i.e., a complete subgraph
RG′ ⊂ RG. In Section 3, we have shown that when the
objects are moving, the rectangles around them can alter-
nate between overlap/disjoint, which means that edges are
dynamically added and removed to RG. One intuition then
is to use the procedures of dynamic clique maintenance pro-
posed in [23] and [18] incrementally to improve the efficiency
of the Co-MaxRS base algorithm. These works propose effi-
cient incremental algorithms to maintain the list of all max-
imal cliques in dynamic graphs. This is not suitable in our
context for two reasons: (1) [16] proved that there could
be O(n2) maximal cliques in RG. Maintaining a list of all
maximal cliques would therefore amount to a space overhead
of O(n2); (2) [16, 18] have not proposed a suitable exten-
sion to dynamically track a maximum clique ([23] proposes
a method to dynamically track a multiple clique given either
edge insertions or deletions but not both). In our settings,
dynamic additions and removals of edges in RG happen at
events in KDS, and a naive approach would compute the
maximum clique at a given time instant from the list of all
maximal cliques—however, the time complexity for that is
O(n2). The following properties allow us to filter out ~DO

and ~OD events where recomputing the MaxRS is unneces-
sary.
~DO: Call oj a neighbor of oi at a time t, if they are neighbors
in RG. Let N(oi) denote the current number of neighbors
of an object oi, and let countmax denote the size of the
maximum clique. Note that N(oi) is exactly the number of
dual rectangles that intersect the dual rectangle of oi and
countmax is the maximum overlap.

Lemma 1. Consider the event ~DOij for two objects oi
and oj. Let lobj be a MaxRS solution before ~DOij. If one of
the following two inequalities holds:

(1) N(oi) + 1 ≤ countmax

(2) N(oj) + 1 ≤ countmax

then lobj remains a MaxRS solution after ~DOij.

Proof. An intersecting event is equivalent to adding an
edge in RG. A new clique after ~DOij in RG must contain oi
and oj . Without loss of generality, assume that N(oi) + 1 ≤
countmax. The upper bound on the size of the maximum
possible clique containing oi is N(oi) + 1 (including itself).
Thus, if the size countmax of lobj is at least N(oi) + 1, then
we can choose lobj as the MaxRS solution, as in the case of
a tie we can choose any solution arbitrarily.

~OD: In case of ~OD, the intuition is much simpler—the
count of a MaxRS solution can only decrease. Thus, we
have:

Lemma 2. Consider the event ~ODij for two objects oi
and oj. Let lobj be a MaxRS solution before ~ODij. If one of
the following two conditions holds:

(1) oi /∈ lobj
(2) oj /∈ lobj

then lobj remains a MaxRS solution after ~ODij.

Proof. We again use the ideas of RG and maximum
cliques to prove this lemma. An ~ODij event amounts to
removing an edge in RG. Without loss of generality, assume
that oi /∈ lobj . By assumption, lobj is a maximum clique and

thus a maximal clique before ~ODij . lobj remains a maximal

clique after ~ODij as it is still connected and no new vertex
can become connected to all vertices in lobj . For the sake

of contradiction, assume that some l′obj after ~ODij has size
strictly greater than |lobj |. As l′obj must have been a clique

before ~ODij , this contradicts the optimality of lobj before
~ODij . It follows that lobj is a MaxRS solution after the
~ODij event.

To utilize Lemma 1 and 2, we maintain for each oi ∈ O the
number of neighbors N(oi), and whether or not the object
is part of the current MaxRS solution. In Figure 6, two
variables inSolution and N(oi) are used for this purpose,

updated accordingly during the processing of ~DO and ~OD
events.

4.2 Objects Pruning
Although we can filter-out many of the recomputations

using Lemma 1 and 2, we may have to recompute the MaxRS
solution at certain qualifying time instants. In such cases, it
is desirable to reduce the number of objects considered in the
recomputation. Using similar reasoning as in Section 4.1,
we can prune objects based on the following observations:
(1) N(oi) + 1 is a upper bound on possible MaxRS counts
containing oi; (2) countmax, the current MaxRS count, is a

lower bound on possible MaxRS counts after a ~DO event;
and (3) countmax − 1 is a lower bound on possible MaxRS

counts after a ~OD event. Thus, we have:

Lemma 3. For an event Ei,j involving two objects oi and
oj, an object ok can be pruned before recomputing MaxRS if
one of the following two conditions holds:

(1) Ei is a ~DO event and N(ok) + 1 ≤ countmax

(2) Ei is a ~OD event and N(ok) + 2 ≤ countmax

Proof. For an object ok, the upper bound of the maxi-
mum possible clique size including itself is N(ok) + 1. For a
~DO event, the original maximum clique remains complete.
Thus, the size of the original maximum clique is a lower
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(a) (b) (c)

Figure 7: An example showing the objects pruning scheme: (a) Objects locations and N(oi) values at t (b)

Grey objects can be pruned using Lemma 3 in a ~DO event (c) Remaining objects after pruning at a ~DO event.

bound for the new maximum clique. Thus, we can prune all
the objects ok for which N(ok) + 1 ≤ countmax. For an ~OD
event, the size of the original maximum clique can decrease
by at most one; this is lower bound on the size of the new
maximum clique. Thus, we can prune all the objects ok for
which N(ok) + 2 ≤ countmax.

Example 1. Figure 7a demonstrates an example scenario
with 46 objects. The number of neighbors (i.e., N(oi)) for
each object is shown as a label, and the current MaxRS
solution is illustrated by a solid rectangle where countmax =
6. Members of lobj are colored purple in Figure 7. In this

scenario, suppose a new ~DO event is processed for one of the
objects for which N(oi) ≤ 6. Then that event will be pruned
after updating the appropriate N(oi) and inSolution values.

Similarly, any ~OD event involving an object other than the
purple ones would be filtered out. Figure 7b illustrates the
application of Lemma 3, based on which all the objects in
grey can be pruned during an ~DO event before recomputing
MaxRS. Thus, after applying Lemma 3, we can prune 26
objects in linear time, i.e., going through the set of objects
once and checking the respective conditions. After pruning,
20 objects will remain (cf. Figure 7b)—only 43% of the total
objects.

4.3 KDS Properties and Algorithmic Details
Instead of a single line-segment, moving objects trajecto-

ries are typically poly-lines with vertices at actual location-
samples. To handle this, we introduce another kind of event,
pertaining to an individual object— line-change event at a
given time instant, denoted as Elc(oi, tli). Suppose, for a
given object oi, we have k+1 time-samples during the period
T as ti1, ti2, . . . , ti(k+1), forming k line-segments. Note that
the frequency of location updates may vary for different ob-
jects; even for a single object, the consecutive time-samples
may have different time-gap. Initially, we insert the second
time-samples for all the objects into the KDS as line-change
events (cf. Figure 6). When processing (Elc(oi, tli)) we need

to compute: (a) next ~OD events with the neighbors; and (b)

next ~DO events with other non-neighboring objects. Addi-
tionally, we insert a new line-change event at tl(i+1) for oi
into the KDS. Thus, processing a line-change event takes
O(n) time, and we can use similar ideas to even handle
newly appearing and/or disappearing objects. The worst-
case time-complexity of our proposed algorithm in case of
poly-line trajectories is O(kn3 logn).

We now proceed with briefly analyzing the properties of
our proposed KDS-like structure (cf. [1, 2]).
(1) Number of certificates altered during an event:
This property of a KDS is called “Responsiveness”. Recall
that we have two kinds of core events:
~DO Event: At such an event we need to compute the time of
the next ~OD event between the two objects and insert that
to KDS if it falls within the given time-period T . Thus, only
one new event (certificate) is added.
~OD Event: For these events, we just need to process them,
and no new certificate is inserted into KDS. In both cases,
the number is constant—conforming with the desideratum.
(2) The size of KDS: In case of our adaptation of the

KDS, we can have at most O(n2) ~DO and ~OD events at
once. If we consider the additional line-change event for
the poly-line moving object trajectories, there can be one
such event for each object at any particular time, i.e., O(n)
such events. Thus, the size of KDS at a particular time is at
most O(n2). However, as we will see in Section 5, in practice
the size (total events) can be significantly smaller than this
upper-bound.
(3) The ratio of internal and external events: In our

KDS, the ~DO and ~OD events are external events (i.e., caus-
ing topological changes), and the line-change events are ex-
ternal. According to the discussion above, the ratio between

total number of events and external events is O(n2)+O(n)

O(n2)
,

which is relatively small. This is a desired property of
KDS [2].
(4) Number of certificates associated with an object:
The number of events associated with an object is O(n), as

an object can have n− 1 ~DO and ~OD events with the other
objects, and 1 line-change event at a particular time instant.

4.3.1 Processing Algorithms
In Algorithm 1, we present the detailed method for main-

taining Co-MaxRS for a given time period [t0, tmax]. For
each object, we keep track of: the number of its neighbors;
whether an object is in the current MaxRS solution or not;
and the list of current neighbors (needed for line-change and
disappearing event). After initialization (line 1 and 2), the
KDS is populated with all the events that fall within the
given time-period (line 3)—a step taking O(n2) time. Then,
we retrieve the current solution, i.e., the list of objects, and
create a new time-range trange in lines 4-6. We update the
inSolution values of related objects whenever we compute
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Algorithm 1 Co-MaxRS (OL, t0, tmax)

1: KDS ← An empty priority queue of events
2: AnswerSet← An empty list of answers
3: Compute next event Enext, ∀oi ∈ OL and push to KDS
4: current ← Snapshot of object locations at t0
5: (locopt, countmax, lobj)←Modified-MaxRS (current)
6: trange.begin← t0
7: Update inSolution variable for each oi in lobj
8: while KDS not EMPTY do
9: Ei,j ←KDS.Pop()

10: (l′obj , countmax) ← EventProcess(Ei,j ,KDS, lobj ,
countmax)

11: if lobj 6= l′obj then
12: trange.end← ti
13: AnswerSet.Add(lobj , trange)
14: trange.begin← ti
15: Update inSolution variable for each oi in lobj
16: Update inSolution variable for each oi in l′obj
17: lobj ← l′obj
18: end if
19: end while
20: trange.end← tmax

21: AnswerSet.Add(lobj , trange)
22: return AnswerSet

a new MaxRS solution, and discard an old one (lines 7, 15,
and 16). Lines 8-19 process all the events in the KDS in
order of their time, and maintain the Co-MaxRS answer-
set throughout. The top event from the KDS is selected
and processed using the function EventProcess (cf. Algo-
rithm 2). After checking whether a new solution has been
returned from EventProcess, the answer-set, trange, and lobj
are adjusted accordingly. A modified version of the MaxRS
algorithm from [16] is used where, in addition to the count,
the list of objects that are covered by the optimal location of
R are also returned. Note that, the condition check at line
11 in implementation actually takes constant time, which we
detect via setting a boolean variable during MaxRS compu-
tation.

The processing of a given KDS event Ei,j is shown in
Algorithm 2. In line 1, the N(oi) value and list of neighbors
of the relevant objects are updated. Lines 2-7, compute new
~OD events and update the KDS. Lines 8 - 13 implement the
ideas of Lemma 1 and Lemma 2. Lines 14 - 17 implement
the ideas of objects pruning (Lemma 3), which takes O(n)
time. Finally, MaxRS is recomputed in lines 20 - 21 based on
the current snapshot of the remaining moving objects. Note
that, we omitted handling line-change events in Algorithm 2
for brevity.
Discussion: To return to the spatio-temporal domain, we
may want to construct a Co-MaxRS path — a path for the
center of R such that at each time instant, R is a MaxRS.
This path will inherently be disjoint. We show that there
exists a Co-MaxRS path of constant combinatorial complex-
ity.

In the worst-case, Co-MaxRS for n trajectories with k seg-
ments each throughout the query time-interval has O(kn2)
events. This can be seen as O(n2) events are added at the
beginning, then at each of the O(kn) line change events,
O(n) new events may be created. This results in a total of
O(kn2) events.

Algorithm 2 EventProcess (Ei,j , KDS, lobj , countmax)

1: Update N(oi) and neighbors of oi and oj accordingly

2: if Ei,j .T ype = ~DO then
3: Compute Enext for objects oi and oj
4: if Enext 6= NULL AND Enext.t ∈ [t0, tmax] then
5: KDS.Push(Enext)
6: end if
7: end if
8: if Ei,j .T ype = ~DO and (N(oi) + 1 ≤ countmax or
N(oj) + 1 ≤ countmax) then

9: return (lobj , countmax)
10: end if
11: if Ei,j .T ype = ~OD and (oi.inSolution = false or

oj .inSolution = false) then
12: return (lobj , countmax)
13: end if
14: for all oi in OL do
15: if (Ei,j .T ype = ~DO and N(oi) + 1 ≤ countmax) or

(Ei,j .T ype = ~OD and N(oi) + 2 ≤ countmax) then
16: Prune oi
17: end if
18: end for
19: current ← Snapshot of unpruned object locations at ti
20: (locopt, countmax, lobj)←Modified-MaxRS(current)
21: return (lobj , countmax)

Between consecutive event points t1, t2, there is a Co-
MaxRS path of constant complexity. We see this as follows.
In the dual interpretation, a Co-MaxRS solution lobj for the
interval [t1, t2] is a maximum intersection of sheared-boxes
(the dual rectangles moving through time). As the inter-
section of convex solids is convex, the intersection of the
dual sheared-boxes of lobj is convex. A path in this convex
solid is a Co-MaxRS path. It follows that for any position
of R that covers lobj at time t1 and any position of R that
covers lobj at time t2, R can cover lobj over the entire time
interval by moving along the path between the two positions
at constant speed, and there is a path of constant complex-
ity. Thus, there exists a Co-MaxRS path with combinatorial
complexity O(kn2).

We close this section with a note that a typical query pro-
cessing would involve filtering prior to applying pruning—
for which an appropriate index is needed. Spatio-temporal
indexing techniques abound, since the late 1900s, e.g., exten-
sions of R-tree or Quadtree variants, combined subdivisions
in spatial and temporal domains, etc. [15, 17, 24]. A par-
ticular structure that may be applicable to Co-MaxRS set-
tings is HBSTR-tree—a hybrid index structure consisting
of spatio-temporal R-tree, B*-tree and Hash table [12]—
however, throughout this work we focus on efficient pruning
strategies and the incorporation of access methods for sec-
ondary storage is a subject of the future work.

5. EXPERIMENTAL OBSERVATIONS
We now present the detailed setup of our experiments and

the results of evaluating the proposed approaches.

5.1 Setup
Datasets: We used both real-world and synthetics datasets
during our experiments. The first dataset we used is a real-
world bicycle GPS dataset (BIKE-dataset) collected by the
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researchers from University of Minnesota [9], containing 819
trajectories from 49 different participant bikers, and 128,083
GPS points. A second real dataset is obtained from [28]
(MS-dataset), which contains GPS-tracks from 182 users in
a period of over five years collectd by researchers at Mi-
crosoft. Although this dataset contains 17,621 trajectories,
we pruned long trajectories (>2 hours) and selected only
the ones within a selected rectangular bound (near Beijing
metro area). This reduced the dataset to 169 users and
5,887 trajectories. To demonstrate the scalability of our
approach, we also used a larger synthetic dataset (MNTG-
dataset) generated using Minnesota Web-based Traffic Gen-
erator [14]. The generated MNTG-dataset contains 3,500
moving objects, having 10 trajectories each, while we set
the available options such that the objects were placed
randomly—not constrained by the underlying network. For
every data object in the synthetic dataset, we generated its
weight uniformly in the range from 1 to 50.
Machine and Tools: We implemented our proposed algo-
rithms in Python 2.7, aided by powerful libraries, e.g., Scipy,
Matplotlib, Numpy, etc. We conducted all the experiments
on a machine running OS X El Capitan, and equipped with
Intel Core i7 Quad-Core 3.7 GHz CPU and 16GB memory.
Measurements and Default Values: For each of the
dataset used in the experiments, we considered one trajec-
tory per object at a run. We performed 20 such runs for
each experiment (unless explicitly indicated otherwise) to
get more valid representative-observations. The default val-
ues of the number of objects for BIKE, MS, and MNTG
dataset are 49, 169, and 3500 respectively. The query
time is set to the whole time-period (lifetime of trajec-
tories) during a particular run for all the datasets, and
the base value of range area for BIKE, MS, and MNTG
dataset is 500000, 100000, and 400000 m2 respectively
(denoted X). We note that all the datasets and the
source code of the implementations are publicly available
at: http://www.cs.northwestern.edu/vmmh683/project-
works/.

Figure 8: Running-time in different datasets.

5.2 Results
We now discuss the experimental results, starting with the

running time of different algorithms, and the errors obtained
by Static-MaxRS (with respect to Co-MaxRS). Finally, we
evaluate the performance of pruning strategies, and analyze
the impact of cardinality and the range (R) size.

5.2.1 Running Time Comparison
We ran the algorithms over the three datasets and the

result is shown in Figure 8: Base, (Base+E),(Base+E+O),

Figure 9: Cardinality impact on Static-MaxRS er-
ror.

and Static denote the base Co-MaxRS, base+events prun-
ing, base+both events and objects pruning, and Static-
MaxRS algorithms, respectively. The base Co-MaxRS is the
slowest among these algorithms, as it recomputes MaxRS
at each event. The effect of both events and objects prun-
ing schemes on running time is prominent, although events
pruning exhibits a bigger impact (preventing unnecessary
recomputations). In the case of MNTG-dataset, we used
a query time-period of 60 seconds instead of the whole
trajectory-lifetime. For this reason, we omitted the data of
Static-MaxRS for this dataset as its running time is not de-
pendent on query time (rather than it depends on the num-
ber of objects and intersections among them). On the other
hand, even in this restricted setting for MNTG-dataset, run-
ning time of base Co-MaxRS was very large (approximately
980s) – thus, not included in Figure 8 as it will skew the
graph. Naturally, as the number of objects increases, so
does the running times of all the algorithms.

5.2.2 Error in Static-MaxRS

Figure 10: Duration impact on Static-MaxRS error.

We now illustrate the errors induced by using Static-
MaxRS to approximate Co-MaxRS. In Figure 9, the be-
havior of the error with increasing the number of objects
is shown over both the real-world datasets. As cardinality
of the dataset increases, the absolute error also grows, al-
beit slowly. Note that, we exclude performing Static-MaxRS
related experiments on the large synthetic dataset (MNTG-
dataset), as the correctness, rather than scalability, is a con-
cern. We detect similar trend when comparing the induced
error against growing query time-range in Figure 10. As the
query time-period expands, the error-percentage grows at a
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Figure 11: Events pruning over different datasets.

Figure 12: Objects pruning over different datasets.

rapid rate. This shows that although Static-MaxRS has its
own merits, it is not suitable to use in place of Co-MaxRS
for mobile objects. In the next parts of the experimental
observations, we mainly focus on the benefits of pruning
strategies in all the datasets.

5.2.3 Performance of Pruning Strategies
Figure 11 illustrates the effectiveness of our events prun-

ing strategy over both the real and synthetic datasets. The
most amount of pruning is obtained in MS-dataset, while the
other two datasets also show more than 80% pruning. Note
that, we can also deduce that the number of events grows
as the dataset becomes larger, but the number of actual
recomputation-events are well within the worst-case theo-
retical upper-bound. Similar results are obtained for the
objects pruning scheme, as demonstrated in Figure 12 – in-
dicating that the pruning schemes perform nearly equally
well in all three datasets.

5.2.4 Impact of Cardinality
Figure 13 illustrates the impact of the cardinality on our

pruning methods. In Figure 13a, from the experiment done
on the BIKE-dataset, we can deduce an interesting relation:
as the dataset increases, more ~OD kind of events are pruned,
whereas (cf. Figure 13b), objects pruning slightly decreases

for ~OD as the dataset increases. On the other hand, ~DO
events exhibit completely opposite behavior. This, in a
sense, neutralizes the overall impact of the increase in cardi-
nality for our pruning scheme. Figure 13c demonstrates the
effect of increasing the cardinality of objects on the pruning
schemes for all the dataset – hence, the label on the X-axis
indicates the percentage of all the objects for the respective

datasets.

5.2.5 Influence of Range Size
The final experiment was designed to observe the effect

of different range sizes, i.e., the area of R—d1 × d2 over the
pruning strategies. As we found out in Figure 14, increasing
range area results in fewer portion of events pruned. This
occurs because as the area of R grows, there is more prob-
ability of overlapping rectangles within the moving objects.
Similarly, the growing rectangle size had adverse effects on
the objects pruning scheme as well. But, in practice, the
area of R should be quite smaller than the overall bounding
space. Even with quite large values of R (e.g., 50000 m2) we
have more than 50-60% of pruning through our methods.

6. RELATED WORKS
There are several bodies of research results that are closely

related, and were used as foundation throughout our work.
As mentioned, the problem of MaxRS was first studied

in the Computational Geometry community, and [11] pro-
posed an in-memory algorithm to find a maximum clique
of intersection graphs of rectangles in the plane. Subse-
quently, [16] devised a new algorithm based on the interval
tree data structure to locate both (i) the maximum- and (ii)
the minimum-point enclosing rectangle of a given dimension
over a set of points. Although both of these works provide
theoretically optimal bound, they are not practically suit-
able to be directly applied in large spatial databases. In
this work, we used the method of [16] to recompute MaxRS
only at certain KDS events, however, we proposed pruning
strategies to reduce the number of such invocations.

The MaxRS problem in spatial databases was investi-
gated in [5], where a scalable external-memory algorithm
that is optimal in terms of the I/O complexity was pro-
posed. Extended versions of this work also deal with (1−ε)-
approximate MaxRS and All-MaxRS problems [6]. Essen-
tially, [5] and [6] divide the space recursively into m ver-
tical slabs until the count of objects within a slab is such
that it can be processed in memory. However, in the con-
text of spatio-temporal data, due to the movement of ob-
jects between different slabs, a slab which has few objects
at one time, can have a lot of objects at a later time—which
may render the processing of the objects within a given slab
impossible in memory. In other words, any kind of static
sub-division of the space is likely not to be useful in spatio-
temporal databases.

Recent works have investigated variants of the MaxRS
problem, e.g., in [19] an algorithm to process MaxRS queries
when the locations of the objects are bounded by an under-
lying road network is presented. Complementary to this,
in [4] the solution is proposed for the rotating-MaxRS prob-
lem, i.e., allowing non axis-parallel rectangles. Although
both [19] and [4] deal with couple of interesting variants of
the traditional MaxRS problem, they do not consider the
settings of mobile objects. More recently, [10] demonstrated
an implementation of a system that uses an in-network algo-
rithm to process MaxRS queries in wireless sensor networks
(WSN). Specifically, the individual static sensor nodes were
considered as objects for which the weights corresponded to
the values of the underlying sensed phenomenon (e.g., light,
temperature, etc.). In these settings, the weights of the ob-
jects may change with time, although the location is static
throughout.
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(a) (b) (c)

Figure 13: Impact of cardinality on the pruning schemes: (a) Different events pruning (BIKE-dataset) (b)
Objects pruning (BIKE-dataset) (c) Overall objects and events pruning (all datasets).

In this work, we did rely on the concept of a kinetic data
structure (KDS) framework introduced and practically eval-
uated in [1] and [2]. The KDS-like data structure was used
to process critical events at which the current MaxRS solu-
tion may change. To measure the quality of a KDS, both [1]
and [2] considered performance measures such as the time-
complexity of processing KDS events and computing cer-
tificate failure times, the size of KDS, and bounds on the
maximum number of events associated with an object—and
we used the same measures to evaluate the quality of our
approach.

7. CONCLUSION AND FUTURE WORKS

Figure 14: Effectiveness of events pruning strategy
against varying range sizes.

Figure 15: Effectiveness of objects pruning scheme
against varying range sizes.

We addressed a novel spatio-temporal variant of the
MaxRS problem – determining the location of a given rect-
angle R that covers the maximum number of points from a
given set – in the setting of moving objects trajectories. In
contrast to the MaxRS problem first studied by the com-
putational geometry community [11, 16], the Continuous
MaxRS (Co-MaxRS) solution may change with time. As
a “transition” step, we analyzed the Static-MaxRS variant
where a static position for the range (a rectangle R) is picked
for the entire duration of interest, with maximum number
of moving objects intersecting R a some time instant. How-
ever, this variant does not guarantee maximality at every
time instant. To avoid checking the validity of the answer-
set at every clock-tick, we identified the critical times at
which the answer to Co-MaxRS may need to be re-evaluated
– i.e., when the collection of objects constituting the (cur-
rent) answer changes. These critical points (event points)
occur when the “dual-rectangles” (i.e., rectangles ri identi-
cal to R centered at each moving object oi) changed their
topological relationship. To maintain the needed informa-
tion at each event point, we used a Kinetic Data Struc-
tures (KDS) paradigm, where information was updated at
each event point. While the sequence of all the transitions
(overlap-to-disjoint ( ~OD) and disjoint-to-overlap ( ~DO)) de-
fines the upper-bound, we also proposed two pruning heuris-
tics – one to eliminate events from KDS and one to eliminate
the number of actual objects – when the re-computation of
the Co-MaxRS can be avoided. We also demonstrated that,
while our algorithms focused on the moving objects (resp.
rectangles), the possible volume(s) (in terms of 2D space +
time) swept by the Co-MaxRS can be straightforwardly de-
rived. Our experiments, over both real and synthetic data
sets, demonstrated that the heuristics enabled significant
speed-ups in terms of the overall computation time from
the upper bound on the time complexity.

There are numerous avenues of extending our work. In
the spirit of [5, 6], one task is to devise a suitable indexing
structure that will minimize the I/O overheads when tra-
jectories data sets is large enough and needs to reside on a
secondary storage or even on cloud [7]. Similarly, we plan
to investigate the trade-offs between the gains in processing
time vs. approximate answer to Co-MaxRS – a challenge of
its own being to properly formalize the notion of “approxi-
mate” in continuous settings. A specific example of the last
claim stems from the fact that in our solution, there may
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be cases where Co-MaxRS has discontinuities – i.e., the cur-
rent MaxRS needs to instantaneously change its location.
Clearly, one may want to sacrifice the precision of the an-
swer for the benefit of having a realistic time-budget for
the MaxRS to “travel” from one such location to another.
Complementary to this is the investigation of the k-variant
of Co-MaxRS – i.e., the case of having multiple mobile cam-
eras whose fields of view should jointly guarantee a maximal
coverage of mobile entities.
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