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Abstract. We address the problem of balancing trade-off between the (im)precision of the answer to evolving
spatial queries and efficiency of their processing in Wireless Sensor Networks (WSN). Specifically, we focus
on scenarios where, in addition to simple measurements one is also interested in the boundaries of a shape in
which all the sensors’ readings satisfy a certain criteria. Given the evolution of the underlying phenomenon
being tracked/monitored, the changes of the corresponding sensed values imply that the boundaries of the
shape(s) will also evolve over time. To avoid sending constant updates of the individual sensor-readings to a
dedicated sink – and yet provide certain guarantees on the answer to user’s queries posed to the server which
stores the spatial data pertaining to the evolving shapes – we propose a methodology where the accuracy
of the answer is guaranteed within certain probabilistic bounds. Towards that, we devised both linguistic
constructs for the user to express the desired probabilistic guarantees as part of the query’s syntax, along
with the corresponding algorithmic solutions and system aspects of their implementation. Our experiments
demonstrate that the proposed methodology provides over 25% savings in energy spent on communication in
the WSN.

1 Introduction

A Wireless Sensor Network (WSN) consists of hundreds, even thousands of tiny devices, called nodes, which are
capable of sensing a particular environmental value (temperature, humidity, etc.), performing basic computations
and communicating with other nodes via wireless medium [1]. WSNs have become an enabling technology for
applications in various domains of societal relevance, e.g., environmental monitoring, health care, structural safety
assurances, tracking – to name but a few. Given that the nodes (also called motes) may be deployed in harsh or
inaccessible environments, the efficient use of their battery power is one of the major objectives in every applica-
tion/protocol design, in order to prolong the operational lifetime of the WSN.

The problem of efficient processing of continuous queries has been addressed in the database literature [4, 15,
17, 23], and the distinct context of WSNs had its impact on what energy-efficient processing of such queries is
about [16, 24]. However, previous research attempts trying to tackle spatial queries pertaining to two-dimensional
evolving shapes are underwhelming. A few research attempts propose temporal boundary detection schemes [3,9,25],
however, although there is a consensus that one needs to be aware of the uncertainty – there are no systematic
approaches that will capture the notion of uncertainty and couple it with the (energy) efficient processing of
detecting/tracking evolving spatial shape.

When users pose continuous queries to a system where data source is a WSN, answering the query with the
maximum precision while using least amount of system resources is a paramount. In traditional TinySQL systems,
users indicate with the query-syntax what kind of data they would like to fetch, what sort of functions to apply on
the data and, most importantly, how frequently they would like to retrieve the relevant information [16]. If query is
responded too frequently, network resources are drained quicker – but if query responses are returned infrequently,
then the user’s view of the (evolution of the) phenomenon may be obsolete. In addition, quite often the users are
interested to know the ”map” of the spatial distribution of the underlying phenomenon, instead of a collection of
individual sensor readings at selected locations [21].

Numerous works have tried to tackle the problem of efficient incorporation and management of uncertainty
in WSN queries [6, 8], along with the continuity aspect of the changes in the monitored phenomena [16, 17].
Complementary to these, there are works related to 2D boundary detection, both from the perspective of iso-
contour of values read, as well as communication holes [5,7,12]. The main motivation for this work is based on the
observation that, to the best of our knowledge, there has been no work that would seamlessly fuse the probabilistic
aspects of the sensed data and the boundary of the evolving shapes representing contiguous regions in which
sensors reading exceed a desired threshold with a certain probability. Towards that, our main contribution can be
summarized as follows:



– we develop a shape detection scheme for spatial data summaries with probabilistic bounds by discretizing the
space and applying Bayesian filtering.

– we provide both linguistic constructs and efficient in-network algorithmic implementation for processing the
novel predicates. We enable users to choose adaptive update frequencies and data granularity in our query
model.

– we present a query management scheme that achieves a balance between responding to queries more frequently
if underlying phenomena are changing rapidly or by responding with a predefined interval, where query answer
is valid for a longer period of time.

The rest of the paper is structured as follows. Section 2 lays out the preliminary notation and introduces the
syntactic elements of the query language. Section 3 explains the details of the system design and provides the
methodology for detecting the boundaries that is amenable to efficient probabilistic updates. Section 4 presents the
experimental evaluation of our work. Finally, Section 5 gives the conclusion and outlines the possible directions for
future work.

2 Preliminaries

We now present the data collection scheme for the WSN that monitors the environment, where the number of
phenomena that are being simultaneously sensed can vary (depending on a particular application). Then, we
introduce a query language that enables user to pose the queries to the WSN with explicit specification of the
probabilistic bounds.

We assume that a WSN consists of a collection SN = {sn1, sn2, . . . , snk} of k nodes, each of which is aware of
its location in a suitably selected coordinate system [1]. spatial queries.

2.1 Query Model

Several aspects of spatial queries pertaining to 2D shapes boundary detection have been tackled in the literature:
boundary detection [7], isocontour construction [5], hole detection [12], etc. Our main focus is on detecting the
boundary of “important events” spanning a 2D region, where parameters of the event is specified by the users
queries. Given the energy limitations of the sensor motes, no WSN query is truly continuous in the absolute sense,
but is rather a sequence of discrete snapshots over time. When users pose a query to a WSN, they specify a certain
sampling period for the desired frequency. The basic methodology for SQL-like querying in WSNs is provided by
the TinySQL [16] and it caters to two basic scenarios: (1) periodic sampling – as indicated in line #5 in Listing 2.1;
and (2) event-based queries, provided by the TinyDB approach for more efficient query processing, when the code
that generates the events is compiled into the sensor nodes beforehand – shown in Listing 2.2.

Listing 2.1. Continuous Query

SELECT count (∗ )
FROM sensor s , r l i g h t
WHERE s e n s o r s . nid = r l i g h t . nid AND

s e n s o r s . l i g h t < r l i g h t . l i g h t
PERIOD 2 s

Listing 2.2. Event-based Query

ON EVENT rad ia t i on−l e ak ( l o c )
SELECT Sensor . value , Sensor . l o c
FROM Sensors
WHERE Sensors . va lue > 1200
PERIOD 100 s

The sampling period imposes a natural trade-off: more frequent samplings (and reporting) deplete the energy
faster, while less frequent ones may render the data obsolete and miss some significant changes. However, there
is the orthogonal aspect of the frequency of changes in the monitored phenomenon. For instance, the information
gain from reporting that the temperature readings are 20 +/- 0.5◦C every 10 seconds for 10 minutes – if the
acceptable level of uncertainty is +/− 3◦C – is same as sending only two readings – at the beginning and the end
of the 10 minutes interval, thereby saving 598 transmissions. Thus, by incorporating an extra, explicitly specified
parameter of a (relative) “significant change”, our approach dynamically adapts the consumption of resources to
the fluctuations in the sensed values.

We re-iterate that our objective is to efficiently detect contiguous regions in which the measurements exceed
certain threshold, and efficiently track their evolution in response to events corresponding to change of the sensed
values. In our earlier work, we proposed predicates pertaining to shapes and objects trajectories along with their
in-network detection [3, 20]. In a similar fashion, our focal point in this work is spatial events that are covering



a two dimensional regions. The set of queries we handle refer to these types of events under the consideration of
uncertainty. At this stage, one can observe that a query language that is closest to our desiderata is the Event
Query Language (EQL) [2], defined by separating the event query to several statements:

– Event Statement: conditions to recognize events and values returned by the event
– Detection Statement: rules specifying how and where to detect an event
– Tracking Statement: rules specifying how to track an event
– Query Statement: syntax for expressing queries on events.

An example of EQL syntax is shown in Listing 2.3, corresponding to a scenario for tracking a gas cloud, initiated
by detecting a composite event corresponding to three phenomena (light gas, temperature and oxygen). In this
work we provide a few modifications and propose the language Evolving Shapes Event query Language (ES-EQL).
The main modifications are two-fold: Firsly, ES-EQL does not use an explicit Tracking Statement since, by default,
we make the WSN track the events of interest. Moreover, our detection methodology differs from what is proposed
in [2] significantly enough so that we cannot adopt the tracking statement component as such. Secondly, we augment
the Detection Statement with a clause called EVOLUTION, which defines the update interval in conjunction with
EVERY clause, and a WITH GRANULARITY clause for users to specify the data granularity. An exemplary
ES-EQL query that can be compared EQL syntax is shown in Listing 2.4.

Listing 2.3. Sample EQL Statement

DEFINE EVENT GasCloud
SIZE : 3hops
AS: Avg( Light ) as lightGasAvg ,
WHERE: lightGasAvg < 50 AND tempAvg >40

AND oxygenAvg < 60

DEFINE DETECTION f o r GasCloud
ON REGION: Explos ion
EVERY: 1000

DEFINE TRACKING f o r GasCloud
EVOLUTION: 1hop
EVERY: 1000
TIMEOUT: 5m

SELECT Pos i t ion , Speed , oxygenAvg
FROM GasCloud
WHERE oxygenAvg >50

Listing 2.4. Modified Version

DEFINE EVENT Fire
SIZE 500
AS Min( Pr o b a b i l i t y ) as MinCe l lProbab i l i ty
WHERE Temperature > 200

AND P r o ba b i l i t y > 0 .7

DEFINE DETECTION f o r F i re
ON REGION Al l
WITH GRANULARITY 256
EVERY 60
EVOLUTION 0.2

SELECT EventImage
FROM Fire
WHERE MinCe l lProbab i l i ty < 0 .75

The first statement in Listing 2.4 defines a fire event with the parameters being: size of the event is 500ft2,
temperature readings for each unit cell above 200◦F , and the probability of each cell readings being above 200◦F
is 0.7. In other words, if multiple sensors are located within a particular cell (for a given granularity of the division
of space of interest) then the probability of the temperature value being ≥ 200◦F in an infinitesimally small region
within that cell is > 0.75. Then the detection scheme is defined for the Fire event as the detection will be carried
out on the whole field with data granularity of 256 cells. Afterwards, reporting interval is specified as 60 seconds.
Next, the evolution parameter is given as 20%, which will instruct system to report to update the answer to the
query either regularly within 60-second intervals or in case of occurrence of 20% change in the event. Finally a
query statement is issued, with fetching an image of the event (in fact a 2D data structure that can be converted
to binary image), from the fire regions where the minimum probability in a unit cell is at most 0.75.

Now the challenge becomes how to identify what constitutes a significant change (evolution) in an event. As
sensor networks sample the environment and communicate in discrete time intervals called epochs [16], evolution of
the shapes between epochs are also discrete. Significant change, or evolution, can be attributed to several aspects
of an existing shape: its probability, its size (area), or a combination of both. First, the evolution in the probability
of a shape is the positive or negative change in its certainty. If a shape becomes more certain in average than its
last-reported version by queried amount, then it means that it has evolved. Another source of a significant change is



(a) Quad-tree Decomposition (b) Granularity Level and Separation of Leaders

Fig. 1. Separation of the sensing field and quad-tree hierarchy

the area evolution. When the area of the shape (regardless of its probability-value) changes by a certain percentage
– stated in the respective query – then that shape is considered to have significantly changed. Lastly, over time
both the boundaries of the shape as well as the confidence in their existence may change, so the evolution would
be progressing on two aspects simultaneously. Implementation details of all 3 schemes are discussed in Section 3.
In terms of ES-EQL query syntax, the change in the area can be specified with AREA EVOLUTION, the change
in the certainty of the shapes with PROBABILITY EVOLUTION, and the combined/overall change with only
EVOLUTION clause.

When comparing two shapes for evolution, the problem of shape identification arises, since data collection/pro-
cessing are discrete in terms of time, and are done in predefined intervals. However, two subsequent calculations
of a 2D shape brings another level of uncertainty: do these two shapes really refer to the same event? One may
resort to defining possible worlds and exploring all the possibilities for identification of shapes is a way to handle
this aspect of a problem. However, this ready-made approach makes the evolution calculations computationally
expensive, and its investigation is beyond the scope of this work. Instead, we explore spatio-temporal relationships
such as split and merge, the details of which (i.e. comparing last-reported shape and the new shape) are discussed
in Section 3.

2.2 Data and Network Model

Before we introduce our network model, we will briefly mention the data decomposition since it couples with the
network model as well. We discretize the space into cells and split the whole monitored field to hierarchical raster-
like structure, decompose it into n by n grid, and each cell is recursively decomposed further into equally-sized
grids. One of the most popular way to do this is by using a quadtree [18], illustrated in Figure 1(a). At the top
level we have a single cell which represents the whole sensing field, then we build the quadtree by splitting the
sensing field into 4 sub-fields of equal size. We note that the depth of the quadtree in our current implementation
(although it can handle any arbitrary depth), is 4 – thereby providing 256 leaf-level cells.

At any given level, each cell has a designated/elected leader for data collection and processing. Depending on the
queries, these leaders collect data from the sensor nodes in their cell and relay the processed data to their parent,
which is the leader of the parent cell in the quadtree. However, electing a dedicated leader for data collection
creates unbalanced energy drainage in the network, reducing the network lifetime. Therefore, we apply rotating
leader scheme [19] to distribute the load among every node in the network. Therefore, all nodes in the network
form a tree as in Figure 1(b).



With different levels, data can be defined in different granularity. When continuous spatial queries are posted
to the system, the sensor nodes start sensing the environment and send their sensed value to their cell leaders.
Then, at each level of the hierarchy, sensed data is aggregated to lower granularities if need be. Finally, the sink
(root of the tree) streams the query update from the network to the querying users. In order for the system to
respond to the queries that are based on certain thresholds, each cell at each level aggregates its data with respect
to the given threshold(s) and forwards it for shape detection in the higher levels. When data is aggregated enough,
in other words, data granularity has been lowered to user needs, shape detection schemes start on elected leaders.

When queries are posed to the system, the task for each sensor node may be different. Since WSNs have very
limited energy budget, it is important to minimize the communication overhead and ensure the execution of the
query in the meantime. The most straightforward technique would be that each sensor senses the phenomena and
sends their data to their cell leader. Recursively, that leader would aggregate the data in an uncertainty frame and
forward it to the leader of the higher-level cell in quad tree, while maintaining the highest possible data granularity.
However, this approach does not entail any communication savings. What we propose is event-based propagation
of data while taking advantage of evolution, granularity, probability and threshold parameters.

Nodes will have different tasks depending on the parameters of query, such as query area, granularity etc. and
each task requires different set of parameters. Mainly nodes carry out aggregating or detecting in addition to sensing
depending on their level in the tree structure. To re-iterate, we have following parameters for an event:

– γ: threshold for sensing values for event detection.
– p: probability threshold for cell.
– A: area parameter for a connected shape.

and following parameters for their detection:

– P : time period for update frequency.
– c: parameter defining significant change (evolution).
– g: number of unit cells in desired granularity level.
– R: query area.

We discretize the space into equally-sized cells, and the size of the unit cell is specified by the user query via
granularity parameter. Then, the level of unit cells in the quad-tree is identified. For example, if g is 256, then
the unit cells are at level 4, because 44 = 256. Unit cell, as the name suggests, is the smallest piece of a grid that
collectively makes up the shape with its neighboring cells. Hence, sensing data is aggregated until the phenomenon
can be represented with a collection of unit cells. Following the data aggregation, shape detection scheme is executed
in the higher levels of the tree without merging cells any further. The cell leaders in the quad-tree are horizontally
split into two set of nodes in terms of their participation role for handling the query: aggregation nodes, and shape
detection nodes as in Figure 1(b).

When a query is posed and the level in the quad-tree satisfying g cells is identified, which portions of the
tree has an intersection with the query region are calculated. Because, users can specify a query region that is
different than the whole sensing field. The management of any arbitrary query region is very straightforward: if a
cell intersects with the query region, then it is included in the detection/reporting. Moreover, all parameters are
pushed down to the leaders in the tree structure until the query reaches the desired granularity level, call G. Since
any leader below level G governs an area smaller than unit cell, they don’t need to receive detection parameters.
Therefore, all nodes below G are only equipped with the task of uncertain data aggregation. Figure 1(b) shows the
tree hierarchy and the separation of nodes with respect to their duties.

2.3 Aggregation

Uncertainty in the data is a fact of life and there are numerous reasons causing the data uncertainty such as
imprecise or malfunctioning sensors, mis-calibration etc. Handling the uncertainty in WSNs has been tackled in
different aspects for various applications. However, uncertainty in spatial data, where the aim is to detect/track
two-dimensional shapes brings its own set of challenges and has not been addressed yet.

One of the main challenges in WSNs is the discrete nature of the data. When constructing spatial summaries
and responding to spatial queries, set of discrete-in-space samplings should usually be converted to 2D regions.
Converting discrete data points to continuous regions brings an intermediate approximation step in the represen-
tation of spatial data. There are mainly 2 methods to achieve filling between discrete data points: (1) converting



data to rectangular cells as raster data type, (2) approximating a polygon as a set of vectors. As mentioned in our
data model discussion, we maintain a quad-tree structure with square grids. Next, the challenge becomes how to
aggregate the cell-wide uncertain data.

In order to aggregate uncertain sensor readings within a cell, we assume each node senses the same phenomenon
instance. In other words, each sensor reading is treated as different samplings of the same true phenomenon value,
which is assumed to be the same through the whole cell. Now the problem becomes similar to the problem of
sensor fusion. Fusing a set of uncertain data sources can be achieved with means of Central Limit Theorem (CLT),
Kalman filter, Dempster-Shafer methods etc. CLT states that the arithmetic mean of a large number of samplings
– each sensor reading is a sampling of the phenomenon value – follows a Gaussian distribution regardless of the
distribution of random variables. However, each cell in the network may not consist of large number of sensors,
where a safe assumption for the large considered to be ≥ 30. However, the number of nodes in a grid cell may
be smaller, hindering CLT. Moreover, evidential belief reasoning methods, such as Dempster-Shafer, rely on a set
of probability masses and weighted prior beliefs, which can be quite expensive to store for sensor network nodes.
Dempster-Shafer methods can leverage from heterogeneous information, which we wish to explore in the future.
Hence, we decided to apply Bayes filter [10] for our fusion technique since it is the simpler version of univariate
Kalman filter without the control system and our noise is assumed to be normal and mean around 0.

Z = X +N (0, σ)

where Z is the observed random variable (sensor reading), X is the phenomenon value and N (0, σ) is the noise
factor.

Bayes’ rule provides a means to make inferences about the true state of the environment x and the observation z.
In our framework, true state is the true phenomenon value and observation is the sampling of the phenomenon by a
sensor node. The terms true state and phenomenon value, observation and sensed value can be used interchangeably
throughout the rest of the text.

Pr(x|z) =
Pr(z|x) Pr(x)

Pr(z)
(1)

The interpretation of each term provides the purpose of using Bayes’ theorem. Our main aim is to determine the
true state x, which is the phenomenon value for the cell, given observations z, sensed values by the nodes within that
cell. Since our true state is a continuous random variable, we would like to get the probability density for it and this
probability density function (pdf) is encoded in the posterior: Pr(x|z). Our prior beliefs about the phenomenon is
encoded in the prior: Pr(x). Observations are made to obtain the true state x, and these observations are modeled
with Pr(z|x). Given an observation, z, we would like to get the true value, x, that resulted in this observation. This
is called the likelihood and can be represented as Λ(x). Finally, marginal probability Pr(z) serves as normalization
factor for the posterior.

With multiple sources of sensing data, Zn = z1, z2, ..., zn, the posterior probability becomes:

Pr(x|Zn) =
Pr(Zn|x) Pr(x)

P (Zn)
=

Pr(z1, z2, ..., zn|x) Pr(x)

Pr(z1, z2, ..., zn)
(2)

Instead of calculating and/or storing the joint distribution Pr(z1, z2, ..., zn|x), we apply recursive Bayes updating.
Updating the posterior after a set of observations ensures that all the past information is contained under the
Markov assumption, only if previous posterior takes the place of the prior in the next iteration when the next
observation arrives. Formally,

Pr(x|Zn) =
Pr(zn|x) Pr(x|Zn−1)

Pr(zn|Zn−1)
(3)

Note that Pr(x|Zn−1) is the posterior from the previous iteration, Pr(zn|x) is the likelihood for the new sens-
ing observation and Pr(zn|Zn−1) is the normalization term. Thus, when a new observation comes, probability
distribution for the true value can be calculated with the formula:

Pr(x|Zn) = αΛn(x) Pr(x|Zn−1) (4)

where α is the normalization factor to make
∫

Pr(x|Zn)dx = 1.
Having established the structure for the probability densities for the true value of the sensed phenomenon, we

now explore the calculation of the pdf and the probability of the true value being above the queried threshold. First



of all, the likelihood function, Λ(x) can also be interpreted as sensor model. Another translation of the function
would be: “given the actual value of the phenomenon, what is the probability that this node will sense the value
z?”. It basically means probability distribution for the range of the values a sensor can generate. To this end, we
first identify the distribution for the likelihood function as a Gaussian distribution around the true value as per
Z = X +N (0, σ) and as previously explained in the literature [14]. Posterior, then, can be calculated as:

Pr(zn|x) = Λ(x) =
1√

2πσ2
exp

(
−1

2

(zn − x)2

σ2

)
(5)

Pr(x|Zn−1) =
1√

2πσ2
prio

exp

(
−1

2

(xprio − x)2

σ2
n−1

)
(6)

Pr(x|Zn) = α
1√

2πσ2
exp

(
−1

2

(zn − x)2

σ2

)
.

1√
2πσ2

prio

exp

(
−1

2

(xprio − x)2

σ2
n−1

)
(7)

=
1√

2πσ2
post

exp

(
−1

2

(xpost − x)2

σ2
n

)
(8)

The final probability distribution is also a Gaussian with mean xpost and standard deviation σpost, since the
product of two Gaussians is also another Gaussian. The resulting pdf can easily be calculated by substituting these
terms as following:

xpost =
σ2
prio

σ2
prio + σ2

zn +
σ2

σ2
prio + σ2

xprio (9)

σpost =
σ2σ2

prio

σ2 + σ2
prio

(10)

Finally, the probability of the phenomenon value being above the queried threshold should be calculated, given
the pdf. When the final posterior (pdf for the true value) is calculated after merging all of the readings in a given
sensing epoch, the calculation of Pr(x > threshold) is very easy since posterior pdf is a Gaussian. As can be seen
in Figure 2, the area under the curve where left side is bounded by the threshold line represents the cumulative
probability that phenomenon value is above the threshold.

Fig. 2. Normal Distribution with a Threshold

The area under the curve can be calculated by subtracting the cumulative probability density of the threshold
from 1, formally 1− φ(threshold). Hence, the probability can be calculated easily by:

1− 1

2
[1 + erf(

γ − xpost
σ
√

2
)] (11)



(a) Probability values in the cell (b) Binary image of the cell after the cut

Fig. 3. Taking a horizontal slice of the probabilities

where erf represents the error function.
Moreover, data aggregation is a recursive process in the quad-tree, which requires each parent in the tree to

fuse the data coming from each child. This process is called distributed Bayes updating and can be handled in 2
different ways: (1) sending the likelihood functions from the children and having parent apply recursive Bayes filter,
(2) sending the local posteriors and calculating the global posterior by dividing each local posterior with global
prior. We follow the first approach since synchronization of global priors and posteriors among the nodes creates
extra communication overhead. Basically, each node sends their likelihood function to be fused to the aggregation
point, which is the cell leader or the parent in the quad-tree hierarchy.

2.4 Detection

In this section, we first establish a formal definition for event shapes. As outlined in our previous work [3], a spatial
event can be represented with a predicate:

Definition 1. A predicate Q(A, p, γ, t) holds if there exists a connected 2D shape when:

– Readings for each part of the shape is > γ with at least p probability.
– Area of the shape is > A.
– Time of occurrence of shape is > t.

And predicates are part of the query along with other parameters such as granularity and evolution etc. Cell
leaders gather the data from the nodes in their vicinity to aggregate and to forward it to their parent in the
tree hierarchy. However, propagating probabilistic data poses several challenges: emph’when the data transmission
should be avoided?’, ‘which nodes should detect the shape?’ etc.

Before we explain shape detection procedure within the network, we state how detection can be done in a
centralized manner if data were accumulated at the sink. When cells calculate the probability density function
of the phenomenon value and the probability of phenomenon being above the threshold, each unit cell can be
represented as a single value in [0, 1] interval pertaining to the given query (predicate) parameters. When all cells
are represented with a single probability value, the whole map can be plotted as Figure 3(a), where the bars represent
the probability values. If we take a horizontal slice of this whole map with the queried probability parameter, p,
then we would be getting a binary image, which can be seen in Figure 3(b). Each dark unit cell represents a region
satisfying the query parameters. Using a simple breadth-first search algorithm, we can successfully calculate the
shapes S1 and S2.

However, shape detection process is distributed within the network, where each leader node in the levels higher
than the granularity level can participate. As mentioned before, shape detection follows the data aggregation step
and it is assumed that the data has been aggregated until the desired granularity. This implies that all the ancestral



leaders in the quad-tree do not aggregate the data any further but rather try to detect a shape in its region of
governance and maintain the data granularity. In addition, since quad-tree splits the field into 4 equally-sized grids
at each step, cell leaders govern more sensing field as data propagates towards the root. For example, leader of
a unit cell would be responsible for only a single cell, while its grandparent would be responsible for detecting a
shape in 16 unit cells. Finally, root would be able to see the whole field and can detect a shape in g number of
cells. At each level, the group(s) of connected cells are calculated and areas of these shapes are computed. Then,
A parameter is checked for each shape. If total area of any individual shape exceeds A, then it is reported to
the querying user. Otherwise, the data transmission is halted from this cell, since there is nothing to report with
respect to the query.

Note that when shape-related data are propagated towards the root, each leader recursively sends their data to
their parent. If any leader in the hierarchy detects a shape that is touching the boundary of its governance region,
then it forwards all of its data to its parent without concluding that shape to be detected since the event causing
that partial shape may be split into neighboring cells. Leaders will be able to see 4 times the area its child can
see, having the ability to detect a shape if it is split between its children. This way, no valid shape is discarded
prematurely for not satisfying the A parameter.

In summary, a detection scenario starts with nodes sensing a phenomenon and sending their data to their cell
leader. Cell leader, then, aggregates the data using Bayesian filter mentioned above and calculates the probability
density function of phenomenon value of the cell. At the consecutive levels, posterior pdf is calculated using
distributed Bayesian updating. At the leaders at G, if the area under the probability density curve, which is left-
bounded by the threshold, is greater than p parameter, then it is concluded that this cell satisfies the predicate.
Afterwards, cell leader forwards the detection notification – with probability – to its parent cell leader. For the cells
sensing below the γ, data transmission is ceased. Basically, only the nodes satisfying both γ and p parameters send
their information in the quad tree hierarchy. The information they send can be seen as a binary image representing
their cell. At the higher levels, pixels are merged to make up a bigger image and shape detection scheme is initiated.
If there exists regions not satisfying A parameter, then they are pruned. When all cell leaders forward their part
of the image, a full image with desired resolution is created at the root and returned to the querying user.

2.5 Temporal Detection

The area of effect for the events exhibits variation over time. This variation can be attributed to shrinking, expansion,
moving etc. As we discussed earlier, the problem of handling temporal aspect of systems in WSNs has its own set
of challenges, especially in terms of limited network resources. Our proposed system enables users to specify their
evolution-based adaptive update interval via the queries they pose so that the updates for the temporal variation
of shapes can be expressed with a user-defined frequency. This section first describes how the data for each unit
cell is updated at each epoch, then lays out the techniques for temporal management of shapes.

Unit Cell Update Since data aggregation is being performed until the data reaches to granularity level as
illustrated in Figure 1, all sensing data are supposed to be regularly transmitted in the quad-tree hierarchy. For
each epoch, all nodes do their regular sensing and send their data to their respective leaders. Then, Bayesian filter
is applied at the leaders in the quad-tree and probability densities are propagated in the network hierarchy until
the granularity level nodes. This means that a new probability value is calculated for each unit cell every epoch.

Although absence of data contradicts with Bayesian update, there is still a chance to reduce communication
overhead. In the literature, there have been works proposing to block transmission of a newly sensed data because of
temporal, spatial, and spatio-temporal correlations [22]. Since we are treating each sensor value within the same cell
as sampling the same phenomenon, blocking data transmission based on the spatial correlation hurts the certainty
of the data and each sensor may have different probability models. Having more data reduces the uncertainty. For
the same reason, blocking because of spatio-temporal correlation hampers the data certainty as well. However,
we can utilize from temporal correlation because sensing values remains to be the same in a steady environment.
Therefore, if nodes make the exact same sampling, then they do not need to send their new data as it is assumed
to be the same by the parent unless noted otherwise. Similarly, if aggregated value of any cell exhibits the same
probability distribution – having the same mean and variance, then the transmission is blocked in the next epoch.

Query Response Update When shapes are detected, tracking their evolution is essential as per query require-
ments. Evolution of a shape may refer to change in its probability of occurrence, its area of effect, or a combination
of both. The challenge now becomes how to calculate the evolution for each defined metric. Since unit cells are



updated regularly in each sensing epoch, it is rather straightforward to calculate the new shapes and send the
information to querying user without calculating the evolution treating the data from consecutive epochs inde-
pendent. However, this approach does not entail any communication savings. What we propose is to send updates
upon satisfying the evolution parameter. In this sub-section we explore what kind of temporal changes can happen
to the shape, then give techniques for the calculation of evolution based on all 3 metrics: area, probability, and
combination of both.

Events change their location in both spacial and probabilistic dimensions. A single event can move to any
arbitrary direction while maintaining its boundary, shrinking, or expanding. Tracking the evolution of a single
event can be achieved via calculating the boundary and probabilities of each unit cell for the shape in each epoch,
then comparing the new shape against the last-reported shape based on the desired metric. For example, calculating
the evolution between two shapes Snew and Sold can be done as follows:

– Area Evolution: There are a few possible metrics for comparing two shapes: Jaccard and Sorensen, etc. Since
it is relatively simple and satisfies the triangle inequality, we rely on the Jaccard similarity coefficient for the
previously-reported shape and the current one. Namely, two shapes are compared using Jaccard index and if
the new shape is less than 1 − c, where c is the evolution parameter, similar to the old shape, then it means

it evolved. Formally, the statement
(
J(Sold, Snew) = |Snew∩Sold|

|Snew∪Sold|

)
< 1 − c must be true in order to satisfy the

queried evolution.
– Probability Evolution: Each unit cell that makes up the shape has a probability value associated with it.

Therefore, the probability of a shape is calculated via taking the average of all unit cell probability values. As
the event becomes more certain, average probability values increase, consecutively decreasing the uncertainty,
1 − p. The evolution in probability refers to change in the average uncertainty. Given new and last-reported
shapes, if the uncertainty of new shape is c or 1 − c times the last-reported shape, then the new shape is
considered evolved.

– Area-Probability Evolution: In order for our system to combine two different aspects of a shape, we first
define a property for the shapes called Presence. Presence combines the area and probability of a shape S in a
single value and can be calculated as follows:

Presence(S) =
∑
i∈S

pi ×Ai

where i is a cell that is part of S, pi is the probability in that cell, and Ai is the area of the cell. Therefore,
when the new shape is calculated at the most recent epoch, all parts of the shape may indicate a probability
change from its last-reported version. First, we calculate the net change per cell in the new shape. For each
cell in the intersection, net probability change is calculated via |pnew − pold|. For the parts of the new shape
that was not part of the old shape (or vice versa) (Snew \ Sold), net probability change is defined as pnew (or
pold) treating the pold (or pnew) as 0. After calculating the net probability change for each part of the union
Snew ∪ Sold, total presence value is calculated and this is denoted as presence change. Afterwards, presence
change is compared against the presence of Sold. If Presence(Snet)/Presence(Sold) is greater than queried c,
then it means that the shape has evolved.

However, one cannot enforce on a sensing field to have only a single event at any point in time. There can be
multiple events spanning the portions of monitored are. Moreover, these events also move and change their shape
over time. The problem of tracking the changes in multi-shape settings is more challenging than the basic case
mentioned above, since shapes may take place of each other, merge, split etc. Also, ground knowledge about the
actual transformation is unknown because of discrete sensing and calculation. Hence, we derived a heuristic-based
technique for calculating the evolution of shapes between snapshots for all three metrics.

First, we briefly re-iterate the data propagation model for continuous tracking of shapes. When new data is
aggregated by the leaders below the granularity level G and the detection initiated at the leaders at G and up. As
also explained in Section 3, a leader above G basically delegates its shape detection duties to its parent since it
cannot fully detect a shape touching borders. When a cell leader governs an area that is large enough to detect
the shape, it may also consist of multiple shapes in the same area. In addition, a cell leader sends a message only
if there is enough evolution has happened in this sampling interval, or propagating the detected shapes from the
lower levels. This means that if any one of the shapes evolve, all shape related data is sent since our data format is
raster-like and sending the updated shape for a cell leader means sending the whole governed map (of sub-cells).
Sending everything or not sending at all allows us to speed up evolution calculation process which is explained
next.



After updating the pdfs and data transmission to a leader that detects a shape, leader then tries to calculate
the evolution based on the current map and the last sent map. New map contains a set of shapes, all of which
may have evolved. In order to calculate the evolution for all the shapes individually, the challenge is to identify
which shape it has evolved from. To this end, we apply a shape matching scheme to elect a candidate shape in the
last-sent map. In summary, for all shapes in the new map, a matching shape is found from the last-sent map, then
the evolution is calculated via between the new shape and matched shape.

Shape Matching: Our matching method relies on a very straightforward heuristics:

Smatch = argmax
Sx

(|Presence(Sx ∩ Snew)|)

Fig. 4. Shape Matching

The shape in the previous epoch that shows the biggest intersection presence is regarded as the matching shape.
Given a set of old shapes and a set of new shapes, we can form a bipartite graph where nodes represent the shapes
and edges represent the matchings between new and old shapes. Matching each shape in the new map to another
shape in the last-reported map enables us to track shapes between epochs. In the very same way, we can calculate
the evolution between all of the new shapes and their matching counterpart in the last-reported map. An example
matching can be seen in Figure 4.

The property of the bipartite graph we form in the matching stage is that some shapes on the old set may
connect to more than 1 shapes in the new set, even though the reverse of this property is not possible. Also, a
number of shapes in the old set may not be connected to any of the shapes in the new set. Likewise, a number of
shapes in the new set may not be connected to any shape in the old set. All of these properties of our bipartite graph
imply a spatio-temporal relationship between two regions [11]. These relationships entail several consequences in
terms of evolution. If there is a node on the old set that is connected to two shapes in the new set, this implies that
the shape represented by this node has been split in this epoch. If there is a disconnected node on the old set, it
means either it has merged with another shape or the shape has disappeared. Similarly if there is a disconnected
node in the new set, then it means the new shape represents a newly occurring event or a shape that has moved
enough that it completely shifted its boundary. All of these spatio-temporal events indicate report-worthy evolution
regardless of the c parameter since all of them indicate 100% evolution for at least one of the shapes.

Now we present techniques to detect the evolution implied by these special cases of spatio-temporal relationships,
where Presence-based method mentioned above comes short.

Split: In the case of split, there will be more than 1 new shapes and a corresponding old shape. If both of the new
shapes have substantial overlap with the old shape, there is chance that for them to individually not satisfy the
evolution parameter.



Merge: If multiple shapes merge in the next epoch, only one of them will be matched to the new one as per our
shape matching method. Even though the new shape had absorbed another shape, there is a possibility that it
may fail to satisfy c parameter.

Disappearance: If a shape disappears from the map, then it is not detected with the method because our methods
goes through the new shapes and calculates the evolution based on the new shape and its corresponding shape in
the old set.

Appearance: The case where a new event happens and a new shape occurs in the next epoch is not handled with
the above method either.

These undetected evolution events can be detected via processing the bipartite graph and identifying whether
graph contains any:

– Disconnected node on the new set (Appearance).
– Disconnected node on the old set (Disappearance, Merge).
– A node on the old set connecting to two nodes in the new set (Split).

Our overall temporal management of shapes consists of several steps and at the end of each epoch, cell leaders
decide whether or not to send the updated data. To re-iterate, if a leader decides that any of the shapes in its cell
exhibit evolution, then the leader sends the whole cell information since our data model is raster-like and sending a
single shape is as costly as sending the whole map. This gives us a leverage in terms of computation. If evolution is
detected at any point in the calculation process, then the rest of the operations are omitted and the new cell data
is sent to the parent. Therefore, our evolution detection starts by updating the unit cells and detecting the queried
shapes along the hierarchy. As soon as a shape is detected at any leader, it initiates the shape matching process
for all the shapes. Then for all the [Smatch, Snew] pairs, evolution is calculated with respective methods for single
shape cases. If no evolution is detected for any of the pairs, bipartite graph is analyzed for special spatio-temporal
cases. Finally, if none of the special cases are detected, time elapsed since the last update is checked whether it is
greater than frequency parameter P or not. If not, then the leader does not send anything at this sampling interval.
Otherwise, sends the cell it is managing and updates the last-sent map with the new map.

3 Experimental Analysis

In this section we present the experimental evaluations of our methods. We analyze the effects of in-network
continuous query processing for various aspects.

Experiment Setup: We conducted our experiments on a WSN simulator, called SID-net Swans [13]. We formed a
WSN consisting of 800 homogeneous nodes, having capabilities to sense the phenomenon at its location with a
discrepancy-controlled random placement. Nodes report with a sampling frequency of 10 seconds. Sensing field is set
to be 1000 meters by 1000 meters, and each node having the communication range as 50 meters. We used synthetic
phenomenon for the experiments. Synthetic phenomenon is built by generating 8 by 8 grids, where each grid cell is
assigned a random temperature between 0◦C and 100◦C, for every 20 minutes and linearly morphing the old grid
to the new grid. Also, sensing value for any point in the field is calculated via bilinear interpolation. Moreover,
each sensor readings is perturbed with white Gaussian noise with mean being equal to 0 and standard deviation is
a random number between 0 and 20. Finally, all of the results we present are the average of 3 independent runs.

First set of experiments were aimed to highlight the communication expenditure difference between in-network
and centralized query processing. The queries posed in this set of experiments are below:

DEFINE EVENT Heat
SIZE 300
AS Min( P r o ba b i l i t y ) as MinCe l lProbab i l i ty
WHERE Temperature > 80 AND P ro b a b i l i t y > 0 .7

DEFINE DETECTION f o r Heat
ON REGION Al l
WITH GRANULARITY 256
EVERY 60

SELECT EventImage
FROM Heat



Fig. 5. Communication Expenditure (Centralized vs In-network)

(a) Snapshot of the Network and the
Phenomenon

(b) Ground Truth for the Event Con-
tours

(c) Output Image from Our Method

Fig. 6. Shape Approximation

For our first setup, we evaluated the query at the sink in a post-processing manner. The query was evaluated
within the network in the second setup. There was no evolution involved in this set of experiments in order to
purely identify the impact of in-network processing. Figure 5 compares the communication overhead between the
two in terms of total message hops exchanged in the network.

Next, we evaluated the effectiveness of the Bayes filter and our shape detection scheme. Figure 6(a) shows the
snapshot of the heatmap generated by our simulator with the location of the nodes (white disks) interpolated on
top. For our query, event contours are extracted as ground truth in Figure 6(b). Lastly, the output of our scheme
can be seen in Figure 6.

Our last set of experiments illustrate the impact of the evolution property on the network resources. When the
evolution parameter is set to 0.3 – 30% – AREA EVOLUTION, the communication expenditure difference between
the constant and evolution-based reporting is shown in Figure 7. The red line indicates the total message hops
over time for evolution-based reporting and the gold line shows the scheme with constant reporting. At the start of
the experiments, both techniques need to report the detected shapes, however, evolution-based reporting reduces
substantial communication overhead after the initial detection reports.



Fig. 7. Communication Expenditure (Constant (No Evolution) vs Evolution-based Reporting )

4 Conclusion and Future Work

In this paper we proposed a shape detection scheme with probabilistic bounds for Wireless Sensor Networks. In
addition, we enhance users’ control over the network by allowing them to define their update frequency and data
granularity. To the best of our knowledge, our shape detection in presence of data uncertainty and adaptive update
frequency are new in the literature. As our experiments indicate, our approach is effective for the detection of the
event and saves significant energy in comparison to centralized processing at the same time.

For future work, we are aiming to incorporate mobile nodes where nodes move freely, join and leave the network
at will. Besides, we would like to extend our framework to capture belief-based data fusion methods with a semi-
supervised belief updating protocol. Finally, we would like to explore co-occurrence of shapes with probabilistic
bounds.
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