
!

Electrical Engineering and Computer Science Department 

Technical Report 
Number: NU-EECS-16-04 

March 23, 2016 

Dark Shadows: User-level Guest/Host Linux Process Shadowing 

Peter Dinda  Akhil Guliani 

Abstract 

The concept of a shadow process simplifies the design and implementation of virtualization 
services such as system call forwarding and device file-level device virtualization. A shadow 
process on the host mirrors a process in the guest at the level of the virtual and physical address 
space, terminating in the host physical addresses. Previous shadow process mechanisms have 
required changes or additions (modules) to the guest and host kernels. We describe a shadow 
process technique that is implemented entirely at user level in both the guest and the host. In our 
technique, we refer to the host shadow process as a dark shadow as it arranges its own elements to 
avoid conflicting with the guest process’s elements. We demonstrate the utility of dark shadows 
by using our implementation to create system call forwarding and device file-level device 
virtualization tools that are compact and simple. Our implementation of dark shadows will be 
made available and should be readily applicable to most hypervisors or container systems.  

Keywords

Virtual machines, shadow processes, system call forwarding, GPU virtualization

This project is made possible by support from the United States National Science Foundation through 
grant CCF- 1533560 and from Sandia National Laboratories through the Hobbes Project, which is 
funded by the 2013 Exascale Operating and Runtime Systems Program under the Office of Advanced 
Scientific Computing Research in the United States Department of Energy’s Office of Science.  



Dark Shadows: User-level Guest/Host
Linux Process Shadowing

Peter A. Dinda Akhil Guliani

Department of Electrical Engineering and Computer Science

Northwestern University

pdinda@northwestern.edu

akhilguliani2016@u.northwestern.edu

ABSTRACT
The concept of a shadow process simplifies the design and
implementation of virtualization services such as system call
forwarding and device file-level device virtualization. A shadow
process on the host mirrors a process in the guest at the
level of the virtual and physical address space, terminat-
ing in the host physical addresses. Previous shadow process
mechanisms have required changes or additions (modules)
to the guest and host kernels. We describe a shadow pro-
cess technique that is implemented entirely at user level in
both the guest and the host. In our technique, we refer to
the host shadow process as a dark shadow as it arranges its
own elements to avoid conflicting with the guest process’s
elements. We demonstrate the utility of dark shadows by
using our implementation to create system call forwarding
and device file-level device virtualization tools that are com-
pact and simple. Our implementation of dark shadows will
be made available and should be readily applicable to most
hypervisors or container systems.

1. INTRODUCTION
The term shadow process has been coined in several do-

mains, most notably in intrusion detection (e.g., [6, 8]), and
in distributed computing environments (e.g., [13]). As one
might guess, in all these domains, the concept is that of a
process that replicates some aspects of an original process.
In this paper, we define a shadow process as one that repli-
cates the virtual and physical address space of the original
process while also allowing the inclusion of additional code
and data, and having an independent control flow. And
in particular, we are interested in cases where the original
process is a guest process running within a guest OS in a
virtual machine, and the shadow process runs within a the
host operating system. More specifically, we consider a guest
process running in a Linux (or Linux-like) guest OS running
under a VMM that is embedded in a Linux-like host OS.1

This project is made possible by support from the United
States National Science Foundation through grant CCF-
1533560 and from Sandia National Laboratories through the
Hobbes Project, which is funded by the 2013 Exascale Oper-
ating and Runtime Systems Program under the O�ce of Ad-
vanced Scientific Computing Research in the United States
Department of Energy’s O�ce of Science.
1Our proof of concept uses the Palacios VMM [7] embedded
in a stock Red Hat 6.5 environment (Linux 2.6.32 kernel) and
running a Linux guest. This arrangement is quite similar to
KVM and our results would be immediately applicable there
as well. It would be even more straightforward to apply to

In this kind of virtualization context, shadow processes
have considerable utility because they make it possible to se-
lectively grant the guest process access to features available
to a host process without requiring a massive development
e↵ort. This makes it possible to implement quite powerful
services for a guest, again without requiring a massive de-
velopment e↵ort. Perhaps the best example is Sani et al’s
work on device file virtualization, which we elaborate on in
Section 6. For the high perfomance computing community,
their demonstration of how to provide access to a black-box
GPU to a guest process without any special hardware sup-
port, porting of drivers, etc, is the most intriguing. It is
quite common in applying virtualization in the HPC con-
text to have either (a) no way to make a device visible to
the guest in a controlled way, and/or (b) no drivers for the
device in the guest. A core idea in device file virtualization
is that interactions with the device, at the level of system
calls, are forwarded to a shadow process on the host, which
executes them. The drivers are available in the host, access
to the device is controlled by normally available mechanisms
in the host, and yet the guest can use the device seamlessly.

Previous shadow process work of this kind has required
modifications, or at least kernel modules, within host and
the guest kernels. Since the shadow process concept requires
the inspection of guest page tables and the creation of page
tables for the shadow process that mirror those of the guest
process, it might appear that this is a hard requirement. In
this paper, we show how to implement the shadow process
concept using entirely user-level means, and no modifica-
tions to the guest and host kernels.

Why is this useful? First, in principle it would allow the
creation of services that are independent of any particular
VMM or other virtualization model (e.g., containers [2] or
a partitioned host [9]). Second, it would ease the devel-
opment of services for virtual machines as these could be
implemented at user-level within a shadow process. Finally,
it would ease the practical deployment of shadow process-
based services, particularly in HPC environments.2 It is well
known how challenging it can be to get kernel-level work de-
ployed within a supercomputer or data center. A purely
user-level shadow process mechanism avoids this issue.

Our user-level shadow process technique produces dark
shadows. A dark shadow shares the virtual and physical ad-
dress space of its guest process. The techniques for achieving

a shared-kernel environment (e.g., containers).
2The dark shadow technique and implementation would be
readily deployable in Linux-like host environments such as
CNL [5], for example.



this simply require the ordinary system call interface, ac-
cess to introspection mechanisms (specifically /proc), and
the ability to mmap() physical memory, all of which can be
controlled and secured using standard Unix mechanisms.
The shadow is dark in that it appears to contain nothing
other that the mirrored address space. A key contribution
is achieving this behavior while allowing a service to run
within the shadow. This is accomplished by compile-, link-
, and run-time techniques that encapsulate the service and
make it mobile within the address space, and thus make it
possible for the service to be located at unused addresses,
and thus avoiding causing a conflict.

Our contributions are as follows:

• We describe the underlying mechanisms of the dark
shadow technique and how they fit together to create
the dark shadow technique. (Section 2)

• The technique depends on the tractability of recreating
page tables using the mmap() mechanism. We present
an empirical study of over 1.2 million processes on pro-
duction machines that argues for its tractability. (Sec-
tion 3)

• We analyze the security and trust aspects of the dark
shadow technique and argue that access control and
security can be achieved using standard Unix mecha-
nisms. (Section 4)

• We describe the design and implementation of a system
call forwarding service that allows guest processes to
make host system calls, even those involving direct and
indirect pointer arguments. The hardest part of this
service in the dark shadow context is intercepting the
system calls. (Section 5)

• We describe the design and implementation of a user-
level device file virtualization service using an NVIDIA
GPU as our example. (Section 6)

2. MECHANISMS
The overview of the dark shadow model and technique is

given in Figure 1. The goal is to map the user portion of
a guest process’s virtual address space into a host process’s
address space with the invariant that both the physical and
virtual addresses match in both processes. This is achieved
by in part by making the host process’s own components
(e.g., code, data, stack, heap), mobile. This set of compo-
nents, which we call the dark shadow capsule, then moves out
of the way of any given guest process mapping. A service is
then implemented in the capsule with the assumption that
it has the virtual address space of the process at its disposal.
The implementation of this model from guest page table

discovery, to translation, to construction of the host page
tables, to the mobile capsule, has been designed with the
requirement that no host or guest kernel changes are to be
made, including no kernel modules. The sole exception is
the VMM itself, which we assume can perform guest physi-
cal adress to host physical address translation for us. This
is enabled by the Linux’s page table introspection mecha-
nism and the ability to mmap() physical memory. Using the
points of the figure, we describe how (1) the guest page ta-
ble is discovered, (2) translated to be usable in the host, (3)
mapped into the host process, and (4) how the dark shadow

capsule’s migratory capability works. We also describe the
requirements for services.

2.1 Guest process page table discovery
We extract the salient information in the guest’s process’s

page table, namely the guest virtual to guest physical ad-
dress mapping (GVA!GPA), using the guest Linux’s mem-
ory map and abstract page table mechanism. This mapping
is then compactly represented by run-length-encoding simul-
taneous runs of virtually and physically contiguous pages.
The mapping itself is designed to be readily transportable
and to itself be easily mapped into an address space for use.

For a process with process id pid, Linux provides an easily
parsed representation of its memory map in /proc/pid/maps.
We iterative over the regions of the memory map. For each
page within a region, we consult /proc/pid/pagemap, which
is the abstract virtual to physical mapping of the process.
We join this information with that in /proc/kpageflags

and /proc/kpagecount, which describe the properties of the
physical pages, as well as additional attributes the guest ker-
nel has given them. The outcome is the (GVA!GPA) page
mapping we need, at the granularity of the smallest page
size (4 KB for x64).

We next compactly represent the page mapping and make
it suitable for reconstruction in the host. This is achieved
through run-length encoding (RLE). We scan the mapping,
finding runs in which both virtual page numbers (VPN) and
physical page numbers (PPN) are consecutive. This readily
detects both “natural” contiguity in the mappings and “arti-
ficial” contiguity that results from the guest kernel promot-
ing a mapping to large or huge pages. Each run is encoded
with its starting VPN, starting PPN, length, and physical
page attributes. The entire GVA!GPA mapping is reduced
to an array of these runs. We refer to such an array as the
GVA!GPA map for the process. The array can easily be
written to a file or otherwise transported since it is a pointer-
free blob.

Our tool that implements this process can be used either
as a user-level library, for example linked into an LD PRELOAD
library that implements part of a service or as a user-level
command-line tool in the guest. In either case, the only re-
quirement in the guest is that the LD PRELOAD library
or the command-line tool is executed with su�cient priv-
ileges to read the elements of the /proc filesystem noted
above. By default, our tool considers all mapped regions
in /proc/pid/maps that are within the “user half” of the
virtual address space (i.e., the canonical lower half of the
x64 address space), except for the VDSO. However, this can
easily be restricted to specific mapped regions, for example
if the service we are building needs access only to specific
regions.

2.2 Translation and transport
The GVA!GPA map is not su�cient to construct the

shadow process on the host, and must be translated into
a GVA!HPA map, where HPA refers to host physical ad-
dresses. The VMM maintains the GPA!HPA mapping,
so it can perform this translation for us. In our Palacios
VMM, while the GPA!HPA mapping can be arbitrary,
it is most commonly the case that the guest physical ad-
dress space is mapped using a small number of contiguous
chunks of host physical addresses, typically conforming to
the NUMA boundaries of the host. As a consequence, the



Text/Code)
(w/Service))

Data+BSS)

Stack)

Heap)

Host)
Kernel)

Dark%Shadow%
Capsule%

Guest&Process&
Fragment&

Guest&Process&
Fragment&

Guest&Process&
Fragment&

Guest&Process&
Fragment&

Host&Virtual&
Address&Space&

Host&Physical&
Address&Space&

Guest)
Kernel)

Guest&Process&
Fragment&

Guest&Process&
Fragment&

Guest&Process&
Fragment&

Guest&Process&
Fragment&

Guest&Virtual&
Address&Space&

Guest&Physical&
Address&Space&

1.&GVA<>GPA&
&
Guest&page&tables&
captured&using&
Linux&abstract&
page&table&
inspecAon&and&
converted&to&
mmap&mappings&&

2.&GVA<>HPA&
&
VMM’s&GPA<>GVA&
representaAon&used&
to&transform&mmap&
mappings&from&
guest&to&mmap&
mappings&in&host&

3.&HVA<>HPA&
&
Mmap&mappings&
used&to&map&
host’s&/dev/mem&
into&host&shadow&
process&

4.&Host&shadow&process&
now&has&same&virtual&
address&space&and&
physical&address&space&as&
the&guest&process.&
&
Dark&shadow&capsule&
moves&itself&to&non<
conflicAng&virtual&
addresses&and&conAnues&
running&
&

Dark&Shadow&
Capsule&Layout&

Figure 1: Overview of model. The host virtual address (HVA) space of the shadow process mirrors the guest virtual address
(GVA) of the guest process, and the HVA!HPA mapping mirrors the GVA!HPA mapping. The shadow processes’s service
resides in a mobile “dark shadow capsule” that moves to non-conflicting addresses in the host virtual address space.

resulting GVA!GPA map typically is the same size as the
GVA!GPA map produced in the guest.

Existing mechanisms within the VMM allow us to trans-
port the GVA!HPA map to the host. In our case, our
in-guest tool or library can either hypercall Palacios to do
so, or it can simply place the map on a filesystem shared
with the host.

It is important to note that at any time, it is straightfor-
ward to validate a GVA!HPA map with the VMM. The
core invariant to check is whether any HPA in the map ex-
tends outside the HPAs allocated to the guest by the VMM,
which is readily done.

2.3 Shadow process page table instantiation
Once the GVA!HPA map is available in the host, the

shadow process instantiates it by using the mmap() system
call to map the specified regions of /dev/mem into its host vir-
tual address (HVA). An mmap() call is made for each region
in the GVA!HPA map. The host kernel will instantiate
page table entries to reflect these mappings on an as-needed
basis. The e↵ect is the same as if we had built page tables
directly in the host kernel ourselves.

The result is that the GVA!HPA map is merged with
the shadow process’s original HVA!HPA map. As a conse-
quence any valid pointer in the guest (a GVA) is now a valid
pointer in the host. Furthermore, since it maps identically
to the ultimate hardware physical addresses, it can also be
passed directly or indirectly to host device drivers that use
DMA. No pointer swizzling or data copying is needed.

2.4 Making the shadow process dark
The heart of the dark shadow technique lies in the merger

of the GVA!HPAmap and the shadow processs’s own HVA!HPA
map. Simply put, there must be no conflict for virtual ad-
dresses in the shadow process between the two maps—the

two maps must mesh without overlap.
The dark shadow technique achieves this by making it pos-

sible for the shadow process to dynamically reconfigure itself
at runtime to avoid overlap. When given a new GVA!HPA
map, the dark shadow relocates its code, data, stack, etc,
to non-conflicting addresses, and continues running in the
new location. In this way, a service can run within the dark
shadow alongside the guest process’s memory and address
space while able to operate directly on it.

Dark shadowing is accomplished by a combination of com-
pile, link, and runt-time mechanisms. In our implementa-
tion, the dark shadow code is a template that at its core
invokes the service. Much of the complexity of dark shad-
owing is hidden from the service developer provided a small
set of requirements, given later, is maintained.

The entry point for the dark shadow executable (e.g.,
_start()) goes directly into our bootstrap code to assure
it runs prior even to the C runtime. This allows it to know
the precise execution conditions (the starting page of the
kernel supplied stack, where the _start() code itself is lo-
cated within the current page, etc). Additional invariants
are guaranteed by the use of a custom linker script that re-
sults in the initial code, data, and bss locations being clear.
All code is compiled with position independence, resulting
in all control flow and data access being PC-relative. This
allows for relocation of the code and data as we execute it.
During bootstrap, the process uses a hand-coded assembly
interface to invoke system calls, and has only a small set of
C library functions that are built in.

Using this minimal and clear execution environment, the
dark shadow executable then maps in or otherwise acquires
the GVA!HPA map. It then builds up its own map, using
/proc/self/maps to determine where the host kernel has
placed its initial heap, stack, VDSO, and other run-time el-
ements. Note that with address space randomization these



elements can change from run to run and so cannot be de-
termined statically. Combining the two maps, the process
computes a new mapping of its own elements that will not
conflict. This mapping constitues a contiguous capsule in
which the text, data, and bss are sandwiched between the
heap (which grows to higher addresses above them) and the
stack (which grows to lower addresses below them).

To instantiate this mapping, the dark shadow code first
allocates space for the destination using mmap(). Next, it
copies its text, data, bss, and stack to the new addresses.
It then performs a stack switch using custom assembly that
resembles that of a thread context switch in a threading
package. At this point, by construction, the code is aware
that it is on the very first page of the stack, which simplifies
this initial stack switch, as well as subsequent ones. In the
next step, we compute and execute an indirect jump to get
to the next instruction within the new copy of the text.
This completes the dynamic relocation of the dark shadow
capsule.

Now that the dark shadow is executing in the relocated
code using the relocated data, bss, stack, and heap, it dis-
cards the originals. It does this by using munmap() to remove
all user-space (lower-half) memory mappings that were orig-
inally enacted by the kernel. This amounts to removing the
original text, data/bss, stack, heap, and VDSO mappings.
At this point, the only mappings in the user-space are the
dark shadow capsule and the GVA!HPA map. The latter
is then also relocated if it conflicts. We do not make it part
of the dark shadow capsule since subsequent updates may
change its size. Conceptually, an update may require us to
find new homes for the capsule and the map. Both can live
at any address, so the main thing we need to know on an
update is how large the capsule currently is and the size of
the new map. The new map can be temporarily placed into
memory at any non-conflicting location.

The next step is for the dark shadow to instantiate the
GVA!HPA map.. It does this simply by opening /dev/mem

and then mmap()ing each entry in the map using MAP_FIXED

That is, the GVA in the entry provides the target virtual
address, the HPA provides the o↵set into /dev/mem, the run
length provides the length, and the MAP_FIXED option forces
to kernel to use our target virtual address. By virtue of the
dark shadow’s relocation, nothing else is mapped at our tar-
get virtual address, and so the mmap() request will succeed.
After all the entries are completed, the address space of the
dark shadow consists of the user address space of the guest
process, the capsule, and the map.

Control is now passed to the service, which is a part of the
capsule. The service can now use any virtual address that
is valid in the guest process (and that has an instantiated
page table entry in the guest), and it will refer to the same
ultimate memory location.

The service will check to see if maintenance is needed. If
so, it obligated to call back to the relocation code to allow
it to examine the new map and dynamically relocate the
capsule if needed.

2.5 Service requirements
The service embedded in the dark shadow template must

currently have the following properties:

• It and any libraries it depends on must be statically
linked with the dark shadow template.

• It and any libraries it depends on must be compiled
with position independence (e.g., -fPIC in gcc).

• It must never store pointers into the stack. Handles
are acceptable.

• If it must use the heap, it must do so with handles.

The static linkage requirement may be lifted at some point
as there is no intrinsic limitation. Our current implementa-
tion uses a single capsule. Dynamic linkage would require
multiple capsules.

The requirements for using handles are due to potential
future relocations. If the service developer knows future re-
locations cannot happen (i.e, if the map never changes), they
can use pointers without concern. Otherwise, before calling
back to the relocation code, the service should disassociate
all handles. After the relocation completes, the service can
then reassociate them. It is important to understand that
this handle requirement applies only to pointers within the
capsule that point to code or data within the capsule. Point-
ers within the capsule to guest process code or data outside
the capsule can never change due to relocation.

2.6 Map maintenance
It is important to point out that a GVA!HPA map re-

flects the state of the guest page tables at the time the map
was acquired. A memory mapping may exist in the guest,
but not yet have a page table entry. This page table en-
try may be created later. Similarly, a memory mapping
may added, removed, or updated, resulting in changes to
the page table entries.

It is the service’s responsibility to detect changes in the
guest and forward them to the shadow process for instantia-
tion. This can be done by construction. For example, in an
HPC environment, the guest process may already have in-
voked mlockall() to pin its memory before the initial map is
extracted. Alternatively, a LD PRELOAD library might be
a component of the service, and it might use mlock() to as-
sure any arguments about to be made visible to the shadow
process are pinned, then forward an updated map. Of note,
the mechanism of Section 5.2 could be used to intercept all
mmap() system calls and edit them to add the MAP_POPULATE
flag. This forces the eager creation of the page table entries
implied by the mmap(). The VMM itself could also deter-
mine updates to the map by monitoring guest page tables
themselves, as is already done for shadow paging, for exam-
ple.

3. EVIDENCE OF MAP FILE WORKABIL-
ITY

Our mechanism relies on the tractability of reconstructing
the virtual address to physical address mapping of the page
table of the guest process using the mmap() system call. Of
course, this is not at all the purpose of mmap() nor the map
region data structure that underlies it in the kernel. We now
describe the issue in more detail and report on a study that
provides empirical evidence that suggests our technique is
tractable almost all of the time.

3.1 Issue
The main purpose of mmap() is to associate runs of vir-

tual addresses with either runs of o↵sets within a file or



with anonymous memory. The map region data structure
can be thought of as a list of such associations. The kernel
then incrementally builds page table entries from this list.
It is critical to understand that a single memory region in
a process may translate to a large number of page table en-
tries that map to non-contigious physical pages. In the dark
shadow technique, we attempt to represent a large number
of page table entries using memory regions, the opposite of
the normal usage. We could conceivably need to have as
many memory region (mmap() requests) as there are page
table entries.

The key to tractability is to be able to exploit runs of page
table entries that represent virtual to physical mappings that
are both virtually and physically contiguous. For example,
consider the sequence of mappings (1 ! 5, 2 ! 6, 3 ! 7).
This sequence of three page table entries can be run-length-
encoded as (1 ! 5⇥ 3). That encoding can then be imple-
mented as a single mmap() request (a single map region). If
the page table entries of the guest process (the GVA!GPA
mapping) can be practically compressed in this way, the re-
sult would be arguably tractable numbers of map regions in
the shadow process (which produce the HVA!HPA map-
ping3

3.2 Study
To study this issue, we evaluated the page tables produced

by Linux in production environments. We developed a tool
that periodically dumps the page tables of all of the pro-
cesses on a machine, and then attempts to compress them
using the run-length-encoding technique described above.
That is, for each process, we can compare the raw page ta-
ble representation of the virtual to physical address mapping
with the best mmap()-based reconstruction of it.

We ran our tool every 15 minutes for a period of 19 days
on two heavily used servers in our department.

Murphy is a Dell R410 server equipped with 128 GB of
memory. It runs Red Hat 6.7 (stock Red Hat-provided 2.6.32
kernel) and Oracle 11g Enterprise 11.2, as well as Apache
and other tools needed to build Oracle-based web applica-
tions. During the time of the study it was being used to
teach a databases course in which 50 students were simul-
taneously developing applications based on running analysis
queries on FEC political contribution data. No throttling
was involved. Murphy gives an example in which there are
simultaneously many users and processes that have vast vir-
tual address spaces. Each Oracle process on the machine has
over 50 GB of mapped memory. At peak utilization, there
are over 150 of these processes (which have many shared
mappings).

Hanlon is a Dell T620 server equipped with 128 GB of
memory, and NVIDIA K20 and Intel Phi co-processors. It

3An astute reader will note that the GPA!HPA mapping
of the VMM is also critical, since we are really trying to
represent the whole GVA!HPA mapping in the shadow
process. Our VMM, Palacios, is typically configured to do
GPA!HPA mapping using large contiguous chunks, and
so the additional layer of translation does not appreciably
change the compression problem. Other VMMs can be con-
figured similarly. It is also important to note that VMMs
like Palacios can use large (2MB), huge (1 GB), and will use
future gigantic (512 GB) nested page table entries in order
to reduce TLB pressure. The use of these larger pages also
reduces the amount of physical non-contiguity that can be
introduced by the GPA!HPA mapping.

100 102 104 106 1080

0.2

0.4

0.6

0.8

1

Number of PTEs or Mmaps

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

murphy: Raw and Compressed: 770983 page tables

 

 

Number of PTEs
Number of Mmaps

(a) Murphy

100 102 104 106 1080

0.2

0.4

0.6

0.8

1

Number of PTEs or Mmaps

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

hanlon: Raw and Compressed: 484536 page tables

 

 

Number of PTEs
Number of Mmaps

(b) Hanlon
Figure 2: Comparison of page table entry representation of
address space and compressed mmap representation needed
to reconstruct it.

runs Red Hat 6.7 (stock Red Hat-provided 2.6.32 kernel) and
the toolchains needed to support the coprocessors. During
the study, it was extensively used in an introductory com-
puter systems course by about 150 students.

3.3 Results
We collected the page tables and statistics of over 770,000

processes on Murphy, and over 480,000 processes on Hanlon.
Figure 2 compares the distributions of the sizes of the

raw page table representations4 and the compressed mmap
representations. The most important things to observe is
that the compressed mmap representation is typically two
orders of magnitude smaller than the raw page table entry
representation, and that the mmap representation is almost

4That is, the number of 4KB page table entries marked as
present. Regardless of which page sizes are used, Linux’s
abstract page table mechanism shows us behavior at 4KB
granularity.



10−5 1000

0.2

0.4

0.6

0.8

1

Compression Ratio (Compressed/Original)

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y
murphy: Compression Ratios: 770983 page tables

(a) Murphy

10−4 10−3 10−2 10−1 1000

0.2

0.4

0.6

0.8

1

Compression Ratio (Compressed/Original)

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

hanlon: Compression Ratios: 484536 page tables

(b) Hanlon
Figure 3: Distribution of achieved compression ratios.

always compact in absolute terms.
On Murphy, the 95th percentile mmap representation is

5430 mmap entires. Even the 99th percentile is about 88000
entires. Hanlon’s processes can be represented even more
compactly—the 95th and 99th percentiles are 2389 and 9751
entries, respectively. Linux maintains the mmap entries in
a red-black tree that can easily support these numbers of
entries e�ciently.

Figure 3 shows the distribution of the compression ratios
(defined as the ratio of the number of mmap entries to the
number of raw page table entries). On Murphy, the 95th
and 99th percentiles are 0.0844 and 0.2315, respectively.
On Hanlon, compression is typically even better—these per-
centiles are 0.0777 and 0.1274.

This data is quite promising for our purposes, but it could
be that “large” processes, those with many raw page table
entries, achieve less compression. This is fortunately not the
case. Figure 4 plots compression ratios versus size (number
of raw page table entries). There is little relationship be-
tween the two. In fact, the coe�cient of correlation in both

(a) Murphy

(b) Hanlon
Figure 4: Compression ratios versus original size.

cases is actually slightly negative (-0.097), suggesting that if
anything, compression gets slightly better with size.

The extreme of this can be seen by considering the“notch”
at the extreme right of the CDF for Murphy (Figure 2(a)).
This is due to the Oracle processes. These are actually
compressed extensively as Oracle and Linux are using large
pages, which guarantee at least 2 MB regions of virtually
and physically contiguous addresses. In Figure 4(a), these
are the small set of points at the extreme right, which show
very high levels of compression.

Our conclusion is that in practice the virtual address to
physical address mapping of a Linux process in a guest can
be reconstructed with a tractable number of mmap() requests
mapping /dev/mem in the shadow process running in the
host. Even in the worst case we examined, 95% of pro-
cesses could be represented with fewer than 6,000 mmap()s.
There are rare exceptions to this, but they do not stem from
size. Indeed, larger processes typically use larger page sizes,
creating more opportunities for compression in the mmap()

representation.

4. SECURITY AND TRUST
The dark shadow mechanism can be secured using existing

Linux mechanisms.



Guest process page table discovery (Section 2.1) is already
limited to those users and groups that have permissions on
its /proc/pid/ entries, which is based on the e↵ective user
id of the guest process within the guest. That is, some-
one in the guest can access the guest process page tables
only if they can access the guest process itself. The guest-
wide information in /proc/kpagemap and /proc/kpageflags

requires more privileged access, but the page table extrac-
tion code can itself be encapsulated in a setuid executable
through which the guest administrator provides the needed
privileges, while maintaining the permissions check on the
process-specific data, and restricting GVA!GPA transla-
tions to only those GVAs deemed legitimate.

Translation and transport (Section 2.2) is governed by the
VMM. The VMM can simply refuse to do any GPA!HPA
translation for a GPA that is invalid for the guest. In this
way, no map can be conveyed to the dark shadow process
that addresses host physical addresses outside of the guest.

The VMM (or host kernel) as a trusted party can pro-
vide a binding mechanism between guest processes and host
dark shadow implementations. In essence, the guest process
and dark shadow process are cooperative and thus can share
a secret which the VMM or host kernel can then validate.
For example, the VMM could associate hashes of the dark
shadow implementations with hashes of the guest executa-
bles. Alternatively, the VMM can just provide a commu-
nication channel between the two so that the secret can be
validated by internal means.

The heart of security and trust in the system is in shadow
process page table instantiation (Section 2.3). As described,
the dark shadow must be able to mmap() segments of /dev/mem,
the physical address space of the host. Palacios (and other
tools) configure the kernel to allow this, and the translation
and transport mechanism can readily guarantee it provides
a safe list of regions to map (none with HPAs outside of
the guest), but we trust the dark shadow not to make other
mappings.

The mechanism of conferring trust on a dark shadow exe-
cutable is based on the fact that root privileges are needed to
mmap() /dev/mem. The system administrator can thus select,
by making them setuid root, which specific executables are
given this privilege. As we describe later, dark shadow-based
services can often be extremely compact given the address
space invariants, so in practice the amount of code to trust
will be small. Alternatively, a trust framework, with the
dark shadow executable signed with a trust chain, could be
used to determine whether the executable could be trusted
on the specific system based on its validated provenance.

If a non-trust-based approach is needed, a tiny host ker-
nel module, similar to that described in Section 5.5, could
be introduced whose sole purpose would be to validated all
mmap() calls from a dark shadow process, comparing notes
with the VMM to discard spurious mmap()s.

Another approach to assuring that the dark shadow pro-
cess never mmap()s to disallowed host physical addresses is to
use a mechanism identical to that described in Section 5.2 to
intercept mmap() system calls made by it. This would con-
sititute an LD_PRELOAD library that the host administrator
would require. The library would transform llegal mmap()
system calls into noops (and alert the administrator).

The other aspects of the dark shadow mechanism (Sec-
tion 2.4 through Section 2.6) do not require further consid-
eration since they are either internal to the dark shadow

process itself or already encompassed in the above analysis.

5. SERVICE: SYSTEM CALL FORWARD-
ING

In this service, the guest process has selective access to
system calls within the host via the shadow process running
on top of the host. That is, some of the guest process’s
system calls are resolved using the guest while others are
forwarded to the shadow process and executed by it. Note
that no modifications to the guest kernel, host kernel, or the
VMM are made to implement this service.

5.1 Dark shadow’s simplifications
Because the dark shadow mechanism allows the shadow

process to precisely mirror the user-level virtual address ad-
dress space of the guest process and its mapping to physical
addresses, the construction of a system call forwarding ser-
vice is greatly simplified. Consider, for example, forwarding
a write(int fd, void *buf, size_t n) system call. Exe-
cuting this forwarded call requests that the host kernel read
GVAs buf through buf+n Without dark shadow, the buf ar-
gument will have to be translated to its corresponding HVA
in the shadow. Furthermore, if the range of addresses spans
a page boundary, and the GVA!HPA mapping is not con-
tiguous across the page boundary, the write will need to be
sharded. With the dark shadow mechanism, on the other
hand, the write() call can simply be executed as is, with no
translation. Another way to think about this is that sys-
tem call forwarding without the dark shadow mechanism is
much like an RPC mechanism—we need what amounts to
an RPC stub to do translation and/or copy out, sharding,
reassembly, and copy in. With the dark shadow mechanism,
in comparison, it is much like any function call—we just
need to get control flow to the dark shadow and back.

Where the dark shadow mechanism comes particularly
into its own is in dealing with system calls that have opaque
arguments, for example the ioctl() system call. This call
includes on opaque argument which can be a pointer which
can in turn point to a pointer-based data structure. The se-
mantics of an ioctl(), indeed even of its arguments, depend
on the system and the type of object (e.g., file, device, etc)
on which ioctl() is being invoked. For this reason, build-
ing RPC-like stubs for ioctl() is extremely challenging and
programmer-intensive. In comparison, with the dark shadow
mechanism, we can simply use the opaque arguments verba-
tim. If they happen to be GVAs, directly or indirectly, these
will just be valid in the shadow, since the shadow’s HVAs
and HVA!HPA mappings will be identical to the guest’s
GVA!HPA mappings.

Given how the dark shadow mechanism lets the service de-
veloper simply assume that shadow process HVAs and guest
process GVAs are identical, the only remaining elements of
the system call forwarding service are control flow, as we
describe below.

5.2 System call interception in the guest pro-
cess

To intercept system calls from the guest process, we have
developed a LD_PRELOAD library that comprises about 500
lines of C. This uses the GCC/ld.so constructor mechanism
to force the execution of an initialization function at library
load time, which occurs well before even other shared li-
braries are loaded, and well before the user’s main() begins.



The initialization function creates a child thread, directly
using Linux’s clone() system call for general compatibility.
The child thread, called the monitor, then uses the kernel’s
ptrace interface to attach itself to the parent. The ptrace

interface is intended to support the construction of debug-
gers. We use it to intercept system call events. One event,
the syscall entry, is sent to the monitor just before a sys-
tem call starts in the guest kernel, and another, the syscall
exit, is sent to it just before it returns from the guest ker-
nel. At each of these events, the monitor can modify the
system call that the guest kernel sees. Note that a system
call comprises the values in seven well-known registers, one
indicating the system call number, and the others being up
to six arguments to the system call.

The monitor sees all system calls, including invocations
of clone() that the guest process may make, for exam-
ple as the underlying mechanism for library functions like
pthread_create() It detects these and also attaches itself
to the newly created threads. Invocations of clone() or
fork() that create separate processes are not followed. In
this way, we observe all system calls made by all threads
within the guest process.5

On a syscall entry for a system call that we want to inter-
cept, the monitor modifies the system call number register to
the getpid() number, an idempotent noop. It then forwards
the original system call (the contents of the seven registers)
to the dark shadow using a transfer mechanism we describe
later. It then waits until the transfer mechanism indicates
completion of the forwarded system call. At this point, it
issues the noop system call in the guest, and waits for a
syscall exit. The syscall exit handler then patches the re-
turn value of the noop guest system call with the completion
value of the real forwarded system call, and allows the guest
thread to continue. From the guest thread’s perspective, the
original system call it launched has now returned.

5.3 System call execution in the shadow pro-
cess

The other end of the transfer mechanism resides in the
dark shadow capsule. The code here waits for a system
call, in the form of a message containing the seven register
values that define it, to arrive. When a message arrives,
an assembly stub is called that unpacks the register values
into their corresponding actual registers, and then issues a
syscall instruction, which causes the system call to launch
on the host kernel. The next instruction, executed after
the kernel executes its corresponding sysret simply stores
the return value (i.e., RAX). The capsule then hands this
completion message back to the transfer mechanism.
The system call forwarding service code in the dark shadow

capsule comprises about 160 lines of C and assembly, of
which 30 is simply the system call assembly stub. This ex-
treme economy is possible because the dark shadow mecha-
nism creates and maintains a virtual address space and map-
ping to physical addressees within the dark shadow that is
identical to those in the guest process.
5It is important to point out that it is not su�cient to simply
use the shared library preload mechanism to intercept the
standard shared library’s stubs for system calls as in many
cases these are not used or are inlined from header files even
in dynamically linked code. Furthermore, this mechanism
would simply not work statically linked code. The mecha-
nism described here will intercept all system calls that make
it to the guest kernel, regardless of source or calling model.

5.4 Transfer mechanism
To transfer system calls and responses, we leverage an ex-

isting Palacios mechanism originally developed for GEARS
called the host hypercall interface [4]. This interface allows
a hypercall (a call from the guest to the VMM) to be im-
plemented in the host kernel or host user space instead of
directly in the VMM. We do the latter. When the dark
shadow process starts in host user space, the capsule uses
the host hypercall interface to register itself as the imple-
menter of a specific hypercall number on the specific guest.
The capsule then iterates a select()/read()write() cycle
to wait for a hypercall, fetch its content (the seven regis-
ters of the system call), and then write the result (the one
register indicating the return value).

The monitor transfers a system call simply by copying
the seven registers of the system call to the argument reg-
isters defined for a Palacios hypercall, and then invoking it.
Two versions of the hypercall are available. One is blocking,
meaning the hypercall hangs until the system call ultimately
returns. The other is nonblocking, meaning the monitor
needs to check for completion. The nonblocking configu-
ration is preferable as a hypercall blocking looks from the
guest’s perspective looks like a stuck core.

There is perhaps 100 lines of C and assembly code in-
volved in the transfer mechanism between the capsule and
the LD_PRELOAD library.

5.5 Alternatives
The transfer mechanism could be changed to one using a

mechanism like Xen’s I/O rings [1] in which memory shared
between the guest process and the dark shadow process
would be designated for communication. In this way, no
hypercalls would be needed, eliminating the latency of go-
ing through the VMM for an intercepted system call. The
latency would be that of a memory-based synchronization.
Since the entire user portion of the guest process’s address
space is already in the dark shadow process, all that is
needed is a mechanism to agree on an address.

Our design is entirely user-level. If we allow ourselves a
guest kernel module, we could avoid the ptrace mechanism
using the fast selective system call interception module de-
scribed elsewhere [4]. With this module, there is e↵ectively
zero overhead for system call interception. This module
could be injected without guest cooperation and even pro-
tected from the guest [3]. These mechanisms are already
available in the public Palacios codebase.

6. SERVICE: DEVICE FILE VIRTUALIZA-
TION

Device file virtualization is a technique for allowing the
guest access to devices for which drivers exist only for the
host. The concept was proposed and developed by Sani, et al
in the Paradice system [10] and extended by them for mobile
computing access to remote devices in the Rio system [11].
Our implementation leverages our dark shadow technique
and is influenced by an early design of Paradice, particularly
its hybrid address space [12]. The service we describe here
di↵ers in that it does not require any guest or host kernel
changes. We use the dark shadow technique to create a
hybrid address space at user level and implement our system
at user level in the host and guest. Our intent here is to
demonstrate the utility of the dark shadow technique, not



to innovate in device virtualization.

6.1 Basic concept
The basic premise of device file virtualization is that for

a Unix-like guest OS (e.g., Linux) running on top of a simi-
lar Unix-like host OS (e.g., Linux), a device—and its device
driver—in the host can be made accessible to a process in
the guest via the device file boundary. Consider a device
such as an NVIDIA GPU. The device driver in the host cre-
ates the device special file /dev/nvidia0 within the host. A
user application, for example one produced using the CUDA
toolchain, then interacts with device file to execute code on
the GPU. This is done via a CUDA library that is linked
with the user’s code as part of the CUDA compilation pro-
cess. The device file is the interface to device driver that
resides in the host kernel.

In device file virtualization, this device file is projected
via straightforward means6 into the guest. Now a guest
user application linked with the CUDA library can attempt
to interact with the projected device file. Each of these
interactions is a system call, and each is intercepted and
forwarded to the VMM which in turn forwards it to a dark
shadow process on the host. This dark shadow process then
executes the system call, and the result is returned.

To be clear, the above process is virtually identical to the
system call forwarding service we described in Section 5, and
thus can take identical advantage of the fact that the dark
shadow mechanism keeps the shadow’s virtual and physi-
cal user address spaces and mappings identical to that of
the guest process. Like the system call forwarding service,
the guest-side component is an LD_PRELOAD library that in-
tercepts all system calls, filters them, and forwards some
to the shadow. The only real di↵erence in the implemen-
tation is in how to filter system calls. Here, we intercept
open(), stat(), close(), and similar system calls based on
the path name (e.g., /dev/nvidia0) involved. We also track
the file descriptors returned by open() calls (and destroyed
by corresponding close() calls) for the device file path, and
then intercept all other system calls that involve these file
descriptors. A file descriptor mapping table is also main-
tained so that we can merge file descriptors supplied by the
guest kernel with those supplied by the host kernel without
overlap.

6.2 mmap()ing the device
The above is su�cient for most devices and/or device

drivers that do support mmap()ing of the device file into the
user address space. It is important to note that includes
DMA to and from user addresses within the guest process.
Recall that the user portion of the dark shadow address
space is both virtually and physically identical to the guest
process’s address space. Therefore, any DMA made by a
driver to support a system call made by the shadow process
on the guest process’s behalf will land in exactly the right
“place” in the guest.

However, some devices and drivers do support and rely on
mmap()ing of their device files. For example, the NVIDIA
GPU kernel driver supports mmap() to map memory that is
shared between the driver and the userspace CUDA library.
Beyond memory, portions of the hardware device itself (e.g.,

6For example by using a preload library, or by simplifying
creating an identical device special file in the guest using
standard tools (e.g., mknod).

the portions exposed by the PCI BARs) are mapped into the
userspace by the CUDA library, via the device file, so that
it can talk directly to the device.7

In our service as explained so far, such mmap() calls are
correctly forwarded from the guest process to the shadow
process, and are correctly executed there, but the result is
that the correct mappings exist only within the shadow pro-
cess. Hence, when the guest process attempts to access the
mapped device, it fails.

To solve this problem, we handle such mmap() requests
in a special way. When this system call is executed in the
dark shadow, the handler there records both its return value
(the virtual address in the shadow where the device state is
being mapped) and also the physical address it is mapped
to—it returns both the HVA and the HPA. The physical ad-
dress can be determined by examining the shadow process’s
/proc/pid/maps after the mmap() has returned. The system
call forwarding hypercall now completes, and the virtual and
physical addresses of the mmap() are returned to the guest
process, namely to the device file virtualization preload li-
brary. At this point, the mapping is valid and correct within
the dark shadow, but not within the guest process.

The preload library now needs to create an equivalent
mapping within the guest. However, at this point, the HPA
that the shadow supplied does not exist within the guest.
The library issues a hypercall that requests access to the
the HPA. Palacios validates the request and then attempts
the mapping. This uses an existing mechanism in Palacios
that most VMMs also have. It maps the HPA into an iden-
tical GPA. Recall that this is a device that is being mapped.
This mapping will almost certainly succeed because this is a
device, and it is not (yet) in the guest physical address space,
and therefore there is most probably nothing mapped at the
destination address yet. After this step finished, the device
is mapped into the guest physical address space at the same
address at which it is mapped into the host physical address
space.

The preload library now plays exactly the same trick that
the dark shadow uses to set up its address space—it issues
an mmap() (which will not be forwarded) that maps the rele-
vant chunk (that at the HPA/GPA) of /dev/mem (the guest
physical address space) into the guest virtual address space.
Here it uses a MAP_FIXED request and supplies the HVA that
was returned by the hypercall as the required target address.
This mmap() must succeed since if the corresponding mmap()

succeeded in the shadow (and it did), then it cannot be the
case that there was some overlapping memory region in the
guest. The end result is that the device is now mapped into
the guest at precisely the same virtual address where it was
mapped in the shadow. At this point any reads or writes
carried out by library or application code in the guest will
correctly be made on the device.

Our prototype implementation of this technique comprises
about 800 lines of C for the preload library, and 300 lines of
C for the service implementation in the dark shadow frame-
work.

6.3 Dark shadow’s simplifications
It is important to understand that while the above suc-

7What resides within the driver or the GPU at those ad-
dresses and the semantics of accessing it is opaque as far
as we understand. Large components of both the CUDA
library and the device driver are distributed as blobs.



cession of events may seem complicated, they occur at user-
level in the guest and host, with the sole exception of the
VMM editing the guest physical address space, a mechanism
that already exists in all VMMs. This is made possible by
the fact that the user portion of the address spaces of the
guest and shadow processes can be kept identical, both phys-
ically and virtually, via the dark shadow technique. This in
turn makes it possible to propagate mappings from one to
the other without translation. The typical direction is from
guest to host. To support the mmap()ing of devices, the di-
rection is simply reversed.

7. CONCLUSIONS AND FUTURE WORK
We have described a technique for enabling shadow pro-

cesses in a virtual machine monitor through user-level mech-
anisms that require no changes to the guest and host kernels.
Shadow processes in turn simplify the creation of services
such as system call forwarding and device file virtualization.
The core aspect of our dark shadow technique is that the ser-
vice is embedded in a mobile “capsule”which can place itself
into the virtual address space of the shadow so that it does
not conflict with any virtual address used by the guest pro-
cess we are shadowing. The dark shadow proof-of-concept
implementation will be made available at publication time.

We are considering the construction of other services around
dark shadow. For example, a shadow process could run an
intrusion detection service that continuously scans the guest
process’s memory looking for evidence of an attack. While
such a service could run against the physical memory of the
VM, but running it within a shadow, the semantic informa-
tion of the guest process (dynamic linking state) would be
preserved and available. We are also considering extending
dark shadow implementation to containers.

8. REFERENCES
[1] Barham, P., Dragovic, B., Fraser, K., Hand, S.,

Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
and Warfield, A. Xen and the art of virtualization.
In ACM Symposium on Operating Systems Principles
(SOSP) (2003), pp. 164–177.

[2] Felter, W., Ferreira, A., Rajamony, R., and
Rubio, J. An updated performance comparison of
virtual machines and linux containers. Tech. Rep. IBM
Research Technical Report RC25482 (AUS1407-001),
IBM, July 2014.

[3] Hale, K., and Dinda, P. Guarded modules:
Adaptively extending the vmm’s privileges into the
guest. In Proceedings of the 11th International
Conference on Autonomic Computing (ICAC 2014)
(June 2014).

[4] Hale, K., Xia, L., and Dinda, P. Shifting GEARS
to enable guest-context virtual services. In Proceedings
of the 9th International Conference on Autonomic
Computing (ICAC 2012) (September 2012).

[5] Kaplan, L. Cray CNL. In FastOS PI Meeting and
Workshop (June 2007).

[6] Kourai, K., and Chiba, S. Hyperspector: Virtual
distributed monitoring environments for secure
intrusion detection. In Proceedings of the 1st
ACM/USENIX International Conference on Virtual
Execution Environments (VEE 2005) (June 2005).

[7] Lange, J., Pedretti, K., Hudson, T., Dinda, P.,
Cui, Z., Xia, L., Bridges, P., Gocke, A.,
Jaconette, S., Levenhagen, M., and
Brightwell, R. Palacios and kitten: New high
performance operating systems for scalable virtualized
and native supercomputing. In Proceedings of the 24th

IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2010) (Apr. 2010).

[8] Liu, L., and Chen, S. Malyzer: Defeating
anti-detection for application-level malware analysis.
In Proceedings of the 7th International Conference on
Applied Cryptography and Network Security (ACNS
2009) (June 2009).

[9] Oayang, J., Kocoloski, B., Lange, J., and
Pedretti, K. Achieving performance isolation with
lightweight co-kernels. In Proceedings of the 24th
International ACM Symposium on High Performance
Parallel and Distributed Computing, (HPDC 2015)
(June 2015).

[10] Sani, A. A., Boos, K., Qin, S., and Zhong, L. I/o
paravirtualization at the device file boundary. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2014) (March 2014).

[11] Sani, A. A., Boos, K., Yun, M. H., and Zhong, L.
Rio: A system solution for sharing i/o between mobile
systems. In Proceedings of the 12th International
Conference on Mobile Systems, Applications, and
Services (MobiSys 2014) (June 2014).

[12] Sani, A. A., Nair, S., Zhong, L., and Jacobson,
Q. Making i/o virtualization easy with device files.
Tech. Rep. 2013-04-13, Rice University, 2013.

[13] Zandy, V. C., Miller, B. P., and Livny, M.
Process hijacking. In Proceedings of the 8th
International Symposium on High Performance
Distributed Computing (HPDC 1999) (June 1999).


