NORTHWESTERN
UNIVERSITY

Electrical Engineering and Computer Science Department

Technical Report
Number: NU-EECS-16-03

March, 2016
Automatic Hybridization of Runtime Systems
Kyle C. Hale, Conor Hetland, and Peter Dinda

Abstract

The hybrid runtime (HRT) model offers a plausible path towards high performance and
efficiency. By integrating the OS kernel, parallel runtime, and application, an HRT allows the
runtime developer to leverage the full privileged feature set of the hardware and specialize OS
services to the runtime’s needs. However, conforming to the HRT model currently requires a
complete port of the runtime and application to the kernel level, for example to our Nautilus
kernel framework, and this requires knowledge of kernel internals. In response, we developed
Multiverse, a system that bridges the gap between a built-from-scratch HRT and a legacy
runtime system. Multiverse allows existing, unmodified applications and runtimes to be brought
into the HRT model without any porting effort whatsoever. Developers simply recompile their
package with our compiler toolchain, and Multiverse automatically splits the execution of the
application between the domains of a legacy OS and an HRT environment. To the user, the
package appears to run as usual on Linux, but the bulk of it now runs as a kernel. The developer
can then incrementally extend the runtime and application to take advantage of the HRT model.
We describe the design and implementation of Multiverse, and illustrate its capabilities using the
Racket runtime system.

Keywords: Multiverse, runtime systems, Hybrid Runtimes, operating systems

This project is made possible by support from the United States National Science Foundation through grant CCF-1533560 and
from Sandia National Laboratories through the Hobbes Project, which is funded by the 2013 Exascale Operating and Runtime

Systems Program under the Office of Advanced Scientific Computing Research in the United States Department Of Energy’s
Office of Science.

Automatic Hybridization of Runtime Systems

Kyle C. Hale

Conor Hetland

Peter A. Dinda

{kh,ch}@u.northwestern.edu, pdinda@northwestern.edu
Department of Electrical Engineering and Computer Science
Northwestern University

ABSTRACT

The hybrid runtime (HRT) model offers a plausible path to-
wards high performance and efficiency. By integrating the
OS kernel, parallel runtime, and application, an HRT al-
lows the runtime developer to leverage the full privileged
feature set of the hardware and specialize OS services to the
runtime’s needs. However, conforming to the HRT model
currently requires a complete port of the runtime and ap-
plication to the kernel level, for example to our Nautilus
kernel framework, and this requires knowledge of kernel in-
ternals. In response, we developed Multiverse, a system that
bridges the gap between a built-from-scratch HRT and a
legacy runtime system. Multiverse allows existing, unmodi-
fied applications and runtimes to be brought into the HRT
model without any porting effort whatsoever. Developers
simply recompile their package with our compiler toolchain,
and Multiverse automatically splits the execution of the ap-
plication between the domains of a legacy OS and an HRT
environment. To the user, the package appears to run as
usual on Linux, but the bulk of it now runs as a kernel.
The developer can then incrementally extend the runtime
and application to take advantage of the HRT model. We
describe the design and implementation of Multiverse, and
illustrate its capabilities using the Racket runtime system.

1. INTRODUCTION

Runtime systems can gain significant benefits from execut-
ing in a tailored software environment. In previous work, we
proposed one such specialized environment called the Hybrid
Runtime (HRT) [19, 20]. In an HRT, a light-weight kernel
framework (called an AeroKernel), a runtime, and an ap-
plication coalesce into a single entity in which the runtime
can enjoy full access to the underlying hardware, including
features typically reserved for a privileged OS.

An AeroKernel can export functionality to runtimes through

a standard interface such as POSIX or through a custom in-
terface. However, it exists solely for convenience, and the
runtime may not even leverage the mechanisms it provides.
Ultimately, the choices of proper execution model and ab-
stractions to the hardware are left to the runtime. The
runtime developers can build or choose the kernel abstrac-
tions they need. The motivation for an AeroKernel draws
from the reliable performance of light-weight kernels [25, 23,
17], the philosophy regarding kernel abstractions of Exoker-
nel [13], new techniques and ideas developed in multi-core
OS research [26, 14], and the simplicity of other experimen-
tal OSes from previous decades [22, 33]. In this paper, we
use our Nautilus AeroKernel, which we describe in more de-

tail in Section 2.

Prior to the work and system we describe here, the im-
plementation of an HRT consisted entirely of manual pro-
cesses. HRT developers needed first to extend an AeroKer-
nel framework such as Nautilus with the functionality the
runtime needed. The HRT developers would then port the
runtime to this AeroKernel manually. Readers interested in
finer detail regarding this process can refer to our technical
report [20]. While a manual port can produce the highest
performance gains, it requires an intimate familiarity with
the runtime system’s functional requirements, which may
not be obvious. These requirements must then be imple-
mented in the AeroKernel layer and the AeroKernel and
runtime combined. This requires a deep understanding of
kernel development. This manual process is also iterative:
the developer adds AeroKernel functionality until the run-
time works correctly. The end result might be that the Aero-
Kernel interfaces support a small subset of POSIX, or that
the runtime developer replaces such functionality with cus-
tom interfaces.

While such a development model is tractable, and we have
transformed three runtimes to HRT's using it, it represents
a substantial barrier to entry to creating HRTs, which we
seek here to lower. The manual porting method is additive
in its nature. We must add functionality until we arrive at
a working system. A more expedient method would allow
us to start with a working HRT produced by an automatic
process, and then incrementally extend it and specialize it
to enhance its performance.

The Multiverse system we describe in this paper supports
just such a method using a technique called automatic hy-
bridization to create a working HRT from an existing, un-
modified runtime and application. With Multiverse, runtime
developers can take an incremental path towards adapting
their systems to run in the HRT model. From the user’s per-
spective, a hybridized runtime and application behaves the
same as the original. It can be run from a Linux command
line and interact with the user just like any other executable.
But internally, it executes in kernel mode as an HRT.

Multiverse bridges a specialized HRT with a legacy envi-
ronment by borrowing functionality from a legacy OS, such
as Linux. Functions not provided by the existing Aero-
Kernel are forwarded to another core that is running the
legacy OS, which handles them and returns their results.
The runtime developer can then identify hot spots in the
legacy interface and move their implementations (possibly
even changing their interfaces) into the AeroKernel. The
porting process with Multiverse is subtractive in that a de-

veloper iteratively removes dependencies on the legacy OS.
At the same time, the developer can take advantage of the
kernel-level environment of the HRT.

To demonstrate the capabilities of Multiverse, we auto-
matically hybridize the Racket runtime system. Racket has
a complex, JIT-based runtime system with garbage collec-
tion and makes extensive use of the Linux system call inter-
face, memory protection mechanisms, and external libraries.
Hybridized Racket executes in kernel mode as an HRT, and
yet the user sees precisely the same interface (an interactive
REPL environment, for example) as out-of-the-box Racket.

Our contributions in this paper are as follows:

e We introduce the concept of automatic hybridization
for transforming runtime systems and their applica-
tions into HRT's, enabling them to run in kernel mode
with full access to hardware features and the ability to
adapt the kernel to their needs.

e We describe the design of Multiverse, an implementa-
tion of automatic hybridization that combines compile-
time, link-time, run-time, and virtualization-based tech-
niques.

e We outline three usage models (native, accelerator,
and incremental) supported by Multiverse, as well as
AeroKernel overrides, a mechanism by which develop-

ers can override legacy functionality with high-performance

variants.

e We demonstrate automatic hybridization with Mul-
tiverse by transforming the Racket runtime into an
HRT.

e We evaluate the performance of Multiverse.

Multiverse, and the implementations of the techniques
and underlying technologies describe here either are or will
be publicly available within the open source codebases of the
Nautilus AeroKernel and the Palacios VMM.

2. HRT AND HVM

Multiverse builds on our previously described work and
systems [19, 20, 18] to define and support the hybrid run-
time (HRT) model. We describe the key salient findings and
components here.

The core premise of the HRT model is that by moving the
parallel runtime (and its application) to the kernel level, we
enable the runtime developer to leverage all hardware fea-
tures (including privileged features), and to specialize kernel
features specifically for the runtime’s needs. These capabil-
ities in turn allow for greater performance or efficiency than
possible at user-level. We have developed a kernel frame-
work, named the Nautilus AeroKernel, to facilitate doing
exactly this. Nautilus runs on bare metal or under virtual-
ization on x64 machines and the Intel Xeon Phi. It is open
source (MIT) and its repository is accessible from our web
site.

We have previously hand-ported three runtimes to Nau-
tilus, namely Legion [4], the NESL VCODE interpreter [9],
and the runtime of a home-grown nested data parallel lan-
guage. Using the HPCG (High Performance Conjugate Gra-
dients) benchmark [11, 21] developed by Sandia National
Labs and ported to Legion by Los Alamos National Labs, we
demonstrated speedups over Linux of up to 20% for the Intel

Xeon Phi, and up to 40% for a 4-socket, 64-core x64 AMD
Opteron 6272 machine. Nautilus provides basic primitives,
for example thread creation and events, that outperform
Linux by orders of magnitude because we designed them to
support runtimes in lieu of general-purpose computing, and
because there are no kernel/user boundaries to cross. This
combined with hardware and software capabilities available
only in kernel mode, for example complete interrupt control
and runtime-specific scheduling, leads to these performance
gains in applications.

Multiverse also builds on the Hybrid Virtual Machine (HVM),
an extension to the open source (BSD) Palacios VMM [25],
available in its repository, and also accessible from our web
site. HVM allows for the creation of a VM whose mem-
ory, cores, and interrupt logic are segregated so that one
VM simultaneously runs two operating systems, the “Reg-
ular Operating System” (ROS) (e.g., Linux) and an HRT-
based OS (e.g., Nautilus). The ROS runs on a partition of
the cores and sees and can touch only the ROS cores and
the ROS subset of physical memory. In contrast, the HRT,
while only allowed to run on its own distinct partition of the
cores, has full access to all the memory, cores, and interrupt
logic of the entire VM. The ROS and HRT can be booted
and rebooted independently.

Because in Palacios, as in most VMMSs, the storage of vir-
tualization state and handling of VM exit events are carried
out on a per-virtual core basis, the segregation of ROS cores
and HRT cores allows for distinct policies to be applied to
the ROS and the HRT, and for each to have distinct fea-
tures. We use this fact to make the virtualization layer for
the HRT much “thinner” than for the ROS. For example,
because the HVM and HRT collaborate on establishing a
simple address space, exits for page faults in either nested
or shadow paging are rare. Because typical I/O devices are
handled by the ROS, the HRT never sees their interrupts
(or exits relating to their underlying physical devices). The
HRT can even avoid exits attributable to timer interrupts
if it does not use a timing device. Finally, Palacios’s ex-
isting memory management allows for the physical memory
underlying the HRT to be mapped to appropriate NUMA
zones that can be segregated from those used by the ROS.
A rudimentary cache partitioning mechanism also exists if
it is necessary to share the last-level cache in a socket. For
this reason, during normal operation and when running out
of HRT-only memory, a Nautilus-based HRT can achieve
essentially the same performance as it would natively.

The HVM portion of Palacios provides hypercall and shared
memory-based mechanisms for the ROS and HRT to com-
municate and for both to communicate to the HVM. HVM
supports both asynchronous and synchronous communica-
tion models, as well as signaling. On the previously men-
tioned x64 hardware, asynchronous communication latency
and signaling latency is about 11 us, while synchronous com-
munication latency is 359-482 ns depending on the distance
between physical cores in the machine structure.

On the ROS side, the communication endpoint is the user
application, not the ROS kernel. That is, the HRT acts
as an extension of the application, which is important for
Multiverse, as we describe below. Due to a specialized boot
protocol, an extension of the multiboot2 standard, the HRT
can be booted or rebooted in just milliseconds, putting HRT
boot at a cost on par with a process fork()+exec() in the
ROS. The HVM allows a user-level ROS application to sup-

ply the HRT image via a hypercall, much like an exec().

Asynchronous HRT-to-ROS signaling bypasses the ROS
kernel. The ROS application registers a signal handler func-
tion and stack with the HVM, similar to how the canonical
signal() library function is used. When the HRT raises
a signal, the HVM records the signal raise and begins to
watch for an opportunity to inject it. When handling an
entry is about to occur in user-mode context, and with CR3
set to the registering process’s CR3 value, the HVM builds
what looks like an interrupt frame on the supplied stack, and
then reenters the guest with the instruction pointer point-
ing at the supplied handler and stack pointer pointing at
the supplied stack. In effect, this is an “interrupt to user”
construct which is lower priority than any actual exception
or interrupt, and lower priority than the guest’s own signals.
In contrast, asynchronous ROS-to-HRT signaling occurs via
exception injection and hence signaling from the ROS appli-
cation takes highest precedence within the HRT.

3. MULTIVERSE

We designed the Multiverse system to support automatic
hybridization of existing runtimes and applications that run
in user-level on Linux platforms.

3.1 Perspectives

The goal of Multiverse is to ease the path for develop-
ers of transforming a runtime into an HRT. We seek to
make the system look like a compilation toolchain option
from the developer’s perspective. That is, to the greatest
extent possible, the HRT is a compilation target. Compil-
ing to an HRT simply results in an executable that is a
“fat binary” containing additional code and data that en-
ables kernel-mode execution in an environment that sup-
ports it. An HVM-enabled virtual machine on Palacios is
the first such environment. The developer can then extend
this incrementally—Multiverse facilitates a path for runtime
and application developers to explore how to specialize their
HRT to the full hardware feature set and the extensible ker-
nel environment of the AeroKernel.

From the user’s perspective, the executable behaves just
as if it were compiled for a standard user-level Linux environ-
ment. The user sees no difference between HRT execution
and user-level execution.

3.2 Techniques

The Multiverse system relies on three key techniques: state
superpositions, split execution, and event channels. We now
describe each of these.

Split execution

In Multiverse, a runtime and its application begin their ex-
ecution in the ROS. Through a well-defined interface dis-
cussed in Section 3.3, the runtime on the ROS side can spawn
an execution context in the HRT. At this point, Multiverse
splits its execution into two components, each running in a
different context; one executes in the ROS and the other in
the HRT. The semantics of these execution contexts differ
from traditional threads depending on their characteristics.
We discuss these differences in Section 4. In the current
implementation, the context on the ROS side comprises a
Linux thread, the context on the HRT side comprises an
AeroKernel thread, and we refer to them collectively as an

N,
,I' merged address space R
1 1
: L i
! Parallel App Parallel App 1
i 83 i
1 1
i i 2l
i Parallel Runtime Parallel Runtime 83 : :
3 : i
i _>() HVM Library i HVM Library % ¥

\~ _______________ e p— __il_ﬁi’

General Purpose OS : AeroKernel

@ (Linux) | (Nautilus) ne i

@) :

()
VMM o

Figure 1: Split execution in Multiverse.

[Ttem Cycles Time |
Address Space Merger ~33 K 1.5 us
Asynchronous Call ~25 K 1.1 us
Synchronous Call (different socket) ~1060 48 ns
Synchronous Call (same socket) ~790 36 ns

Figure 2: Round-trip latencies of ROS<+HRT interactions.

execution group. While execution groups in our current sys-
tem consist of threads in different OSes, this need not be
true in general. The context on the HRT side executes until
it triggers a fault, a system call, or other event. The exe-
cution group then converges on this event, with each side
participating in a protocol for requesting events and receiv-
ing results. This protocol exchange occurs in the context of
HVM event channels, which we discuss below.

Figure 1 illustrates the split execution of Multiverse for
a ROS/HRT execution group. At this point, the ROS has
already made a request to create a new context in the HRT,
e.g. through an asynchronous function invocation. When
the HRT thread begins executing in the HRT side, excep-
tional events, such as page faults, system calls, and other
exceptions vector to stub handlers in the AeroKernel (1).
The AeroKernel then redirects these events through an event
channel (2) to request handling in the ROS. The VMM then
injects these into the originating ROS thread, which can
take action on them directly (3). For example, in the case
of a page fault that occurs in the ROS portion of the virtual
address space, the HVM library simply replicates the access,
which will cause the same exception to occur on the ROS
core. The ROS will then handle it as it would normally.
In the case of events that need direct handling by the ROS
kernel, such as system calls, the HVM library can simply
forward them (4).

Event channels

When the HRT needs functionality that the ROS imple-
ments, access to that functionality occurs over event chan-
nels, event-based, VMM-controlled communication channels
between the two contexts. The VMM only expects that the
execution group adheres to a strict protocol for event re-
quests and completion.

Figure 2 shows the measured latency of event channels
with the Nautilus AeroKernel performing the role of HRT.
Note that these calls are bounded from below by the latency

ROS Virtual Physical HRT Virtual
Address Address Address
—Space L Space Space
Canonical ROS Kernel | :
“higher '::>€?) HRT Private
half” (Linux) : ROS + HRT
: Shared
0x0000° k
I) A
. Application ¥ Application
Canonical + Runtime - + Runtime
“lower Code and HRT Private Code and
half”
Data ROS + HRT Data
Shared

Figure 3: Merged address space between ROS and HRT.

of hypercalls to the VMM.

State superpositions

In order to forego the addition of burdensome complexity
to the AeroKernel environment, it helps to leverage func-
tions in the ROS other than those that lie at a system call
boundary. This includes functionality implemented in li-
braries and more opaque functionality like optimized system
calls in the vdso and the vsyscall page. In order to use this
functionality, Multiverse can set up the HRT and ROS to
share portions of their address space, in this case the user-
space portion. Aside from the address space merger itself,
Multiverse leverages other state superpositions to support a
shared address space, including superpositions of the ROS
GDT and thread-local storage state.

In principle, we could superimpose any piece of state vis-
ible to the VMM. The ROS or the runtime need not be
aware of this state, but the state is nonetheless necessary
for facilitating a simple and approachable usage model.

The superposition we leverage most in Multiverse is a
merged address space between the ROS and the HRT, de-
picted in Figure 3. The merged address space allows exe-
cution in the HRT without a need for implementing ROS-
compatible functionality. When a merged address space
takes effect, the HRT can use the same user-mode virtual
addresses present in the ROS. For example, the parallel run-
time in the ROS might load files and construct a complex
pointer-based data structure in memory. It can then invoke
a function within its counterpart in the HRT to compute
over that data.

3.3 Usage models

The Multiverse system is designed to give maximum flex-
ibility to application and runtime developers in order to en-
courage exploration of the HRT model. While the degree
to which a developer leverages Multiverse can vary, for the
purposes of this paper we classify the usage model into three
categories, discussed below.

Native In the native model, the application/runtime is
ported to operate fully within the HRT/AeroKernel setting.
That is, it does not use any functionality not exported by the
AeroKernel, such as glibc functionality or system calls like
mmap (). This category allows maximum performance, but

requires more effort, especially in the compilation process.
The ROS side is essentially unnecessary for this usage model,
but may be used to simplify the initiation of HRT execution
(e.g. requesting an HRT boot). The native model is also
native in another sense: it can execute on bare metal without
any virtualization support.

Accelerator In this category, the app/runtime developer
leverages both legacy (e.g. Linux) functionality and Aero-
Kernel functionality. This requires less effort, but allows
the developer to explore some of the benefits of running
their code in an HRT. Linux functionality is enabled by the
merged address space discussed previously, but the devel-
oper can also leverage AeroKernel functions.

static voidx*

routine (void * in) {
void * ret = aerokernel_func();
printf (, ret);

int main (int argc, char *x argv) {
hrt_invoke_func(routine);
return O;

}

Figure 4: Example of user code adhering to the accelerator
model.

Figure 4 shows a small example of code that will create
a new HRT thread and use event channels and state super-
position to execute to completion. Runtime initialization is
opaque to the user, much like C runtime initialization code.
When the program invokes the hrt_invoke_func() call, the
Multiverse runtime will make a request to the HVM to run
routine() in a new thread on the HRT core. Notice how
this new thread can call an AeroKernel function directly,
and then use the standard printf () routine to print its re-
sult. This printf call relies both on a state superposition
(merged address space) for the function call linkage to be
valid, and on event channels, which will be used when the
C library code invokes a system call (e.g. write()).

Incremental The application/runtime executes in the
HRT context, but does not leverage AeroKernel function-
ality. Benefits are limited to aspects of the HRT enwviron-
ment. However, the developer need only recompile their
application to explore this model. Instead of raising an ex-
plicit HRT thread creation request, Multiverse will create
a new thread in the HRT corresponding to the program’s
main() routine. The Incremental model also allows paral-
lelism, as legacy threading functionality automatically maps
to the corresponding AeroKernel functionality with seman-
tics matching those used in pthreads. The developer can
then incrementally expand their usage of hardware- and
AeroKernel-specific features.

While the accelerator and incremental usage models rely
on the HVM virtualized environment of Palacios, it is im-
portant to note that they could also be built on physical
partitioning [29] as well. At its core, HVM provides to Mul-
tiverse a resource partitioning, the ability to boot multiple
kernels simultaneously on distinct partitions, and the ability
for these kernels to share memory and communicate.

3.4 AeroKernel Overrides

One way a developer can enhance a generated HRT is
through function overrides. The AeroKernel can implement

functionality that conforms to the interface of, for example,
a standard library function, but that may be more efficient
or better suited to the HRT environment. This technique
allows users to get some of the benefits of the accelerator
model without any explicit porting effort. However, it is up
to the AeroKernel developer to ensure that the interface se-
mantics and any usage of global data make sense when using
these function overrides. Function overrides are specified in
a simple configuration file that is discussed in Section 4.

static voidx*
routine (void * in) {
void * ret = aerokermnel_func();
printf (, ret);
}

int main (int argc, char ** argv) {
pthread_t t;
pthread_create(&t, NULL, routine, NULL
);
pthread_join(t, NULL);
return O;

}

Figure 5: Example of user code adhering to the accelerator
model with overrides.

Figure 5 shows the same code from Figure 4 but using
function overrides. Here the AeroKernel developer has over-

ridden the standard pthreads routines so that pthread_create()

Virtual address space
for control process (ROS core)

HRT core physical memory

stack

libs

AeroKernel-managed

heap memory

 AeroKernel binary | .

data

text
Figure 6: AeroKernel boot process.

Our toolchain inserts program initialization hooks before
the program’s main () function, which carry out runtime ini-
tialization.

Initialization tasks include the following:

e Registering ROS signal handlers

Hooking process exit for HRT shutdown
e AeroKernel function linkage
e AeroKernel image installation in the HRT

e AeroKernel boot

will create a new HRT thread in the same way that hrt_invoke_func()

did in the previous example.

3.5 Toolchain

The Multiverse toolchain consists of two main compo-
nents, the runtime system code and the build setup. The
build setup consists of build tools, configuration files, and
an AeroKernel binary provided by the AeroKernel devel-
oper. To leverage Multiverse, a user must simply integrate
their application or runtime with the provided Makefile and
rebuild it. This will compile the AeroKernel components
necessary for HRT operation and the Multiverse runtime
system, which includes function overrides, AeroKernel bi-
nary parsing routines, exit and signal handlers, and initial-
ization code, into the user program.

4. IMPLEMENTATION

We now discuss implementation details for the runtime
components of the Multiverse system. This includes the por-
tion of Multiverse that is automatically compiled and linked
into the application’s address space at build time and the
parts of Nautilus and the HVM that support event channels
and state superpositions. Unless otherwise stated, we as-
sume the Incremental usage model discussed in Section 3.3.

4.1 Multiverse runtime initialization

As mentioned in Section 3, a new HRT thread must be
created from the ROS side (the originating ROS thread).
This, however, requires that an AeroKernel be present on
the requested core to create that thread. The runtime com-
ponent (which includes the user-level HVM library) is in
charge of booting an AeroKernel on all required HRT cores
during program startup. They can either be booted on de-
mand or at application startup. We use the latter in our
current setup.

e Merging ROS and HRT address spaces

AeroKernel Boot Our toolchain embeds an AeroKer-
nel binary into the ROS program’s ELF binary. This is the
image to be installed in the HRT. At program startup, the
Multiverse runtime component parses this embedded Aero-
Kernel binary and sends a request to the HVM asking that
it be installed in physical memory, as shown in Figure 6.
Multiverse then requests the AeroKernel be booted on that
core. The boot process, which we described in detail previ-
ously [20], brings the AeroKernel up into an event loop that
waits for HRT thread creation requests.

The above initialization tasks are opaque to the user, who
needs (in the Accelerator usage model) only understand the
interfaces to create execution contexts within the HRT.

4.2 Execution model

To implement split execution, we rely on HVM’s ability
to forward requests from the ROS core to the HRT, along
with event channels and merged address spaces.

The runtime developer can leverage two mechanisms to
create HRT threads, as discussed in Section 3.3. Further-
more, two types of threads are possible on the HRT side:
top-level threads and nested threads. Top-level threads are
threads that the ROS explicitly creates. A top-level HRT
thread can create its own child threads as well; we classify
these as nested threads. The semantics of the two thread
types differ slightly in their operation. Nested threads re-
semble pure AeroKernel threads, but their execution can
proceed in the context of the ROS user address space. Top-
level threads require extra semantics in the HRT and in the
Multiverse component linked with the ROS application.

Threads: Multiverse pairs each top-level HRT thread
with a partner thread that executes in the ROS. The pur-
pose of this thread is two-fold. First, it allows us to preserve

‘:. Nested
} HRT
" 1L thread

1
i 'E‘. (@)
1

.

s

.
.
RASIPL M
)
o @

Partner . HRT
thread ** '® thread

2 @ L JE) :

Main 1

thread :

1)@ 4 i
ROS i| HRT

I

1

Figure 7: Interactions within an execution group.

join semantics. Second, it gives us the proper thread con-
text in the ROS to initiate a state superposition for the HRT.
Figure 7 depicts the creation of HRT threads and their inter-
action with the ROS. First, in (1) the main thread is created
in the ROS. This thread sets up the runtime environment
for Multiverse. When the runtime system creates a thread,
e.g. with pthread_create() or with hrt_invoke_func(),
Multiverse creates a corresponding partner thread that ex-
ecutes in the ROS (2). It is the duty of the partner thread
to allocate a ROS-side stack for a new HRT thread then in-
voke the HVM to request a thread creation in the HRT using
that stack (3). When the partner creates the HRT thread, it
also sends over information to initiate a state superposition
that mirrors the ROS-side GDT and ROS-side architectural
state corresponding to thread-local storage (primarily the
%fs register). The HRT thread can then create as many
nested HRT threads as it desires (4). Both top-level HRT
threads and nested HRT threads raise events to the ROS
through event channels with the top-level HRT thread’s cor-
responding partner acting as the communication end-point
(5).

As is typical in threading models, the main thread can
wait for HRT threads to finish by using join() semantics,
where the joining thread blocks until the child exits. While
in theory we could implement the ability to join an HRT
thread directly, it would add complexity to both the HRT
and the ROS component of Multiverse. Instead, we chose
to allow the main thread to join a partner thread directly
and provide the guarantee that a partner thread will not
exit until its corresponding HRT thread exits on the remote
core. When an HRT thread exits, it signals the ROS of the
exit event. When Multiverse creates an HRT thread, it keeps
track of the Nautilus thread data (sent from the remote core
after creation succeeds), which it uses to build a mapping
from HRT threads to partner threads. The thread exit sig-
nal handler in the ROS flips a bit in the appropriate partner
thread’s data structure notifying it of the HRT thread com-
pletion. The partner can then initiate its cleanup routines
and exit, at which point the main thread will be unblocked
from its initial join().

Disallowed functionality: Because of the limitations of
our current AeroKernel implementation, we must prohibit
the ROS code executing in HRT context from leveraging

certain functionality. This includes calls that create new
execution contexts or rely on the Linux execution model
such as execve, clone, and futex. This functionality could,
of course, be provided in the AeroKernel, but we have not
implemented it at the time of this writing.

Function overrides: In Section 3.3 we described how
a developer can use function overrides to select AeroKer-
nel functionality over default ROS functionality. The Mul-
tiverse runtime component enforces default overrides that
interpose on pthread function calls. All function overrides
operate using function wrappers. For simple function wrap-
pers, the AeroKernel developer can simply make an addition
to a configuration file included in the Multiverse toolchain
that specifies the function’s attributes and argument map-
pings between the legacy function and the AeroKernel vari-
ant. This configuration file then allows Multiverse to auto-
matically generates function wrappers at build time.

When an overridden function is invoked, the wrapper runs
instead, consults a stored mapping to find the symbol name
for the AeroKernel variant, and does a symbol lookup to
find its HRT virtual address. This symbol lookup currently
occurs on every function invocation, so incurs a non-trivial
overhead. A symbol cache, much like that used in the ELF
standard, could easily be added to improve lookup times.
When the address of the AeroKernel override is resolved,
the wrapper then invokes the function directly (since it is
already executing in the HRT context where it has appro-
priate page table mappings for AeroKernel addresses).

4.3 Event channels

The HVM model enables the building of essentially any
communication mechanism between two contexts (in our
case, the ROS and HRT), and most of these require no spe-
cific support in the HVM. As a consequence, we minimally
define the basic communication between the ROS, HRT, and
the VMM using shared physical memory, hypercalls, and in-
terrupts.

The user-level code in the ROS can use hypercalls to
sequentially request HRT reboots, address space mergers
(state superpositions), and asynchronous sequential or par-
allel function calls. The VMM handles reboots internally,
and forwards the other two requests to the HRT as special
exceptions or interrupts. Because the VMM and HRT may
need to share additional information, they share a data page
in memory. For a function call request, the page contains a
pointer to the function and its arguments at the start and
the return code at completion. For an address space merger,
the page contains the CR3 of the calling process. The HRT
indicates to the VMM when it is finished with the current
request via a hypercall.

After an address space merger, the user-level code in the
ROS can also use a single hypercall to initiate synchronous
operation with the HRT. This hypercall ultimately indicates
to the HRT a virtual address which will be used for future
synchronization between the HRT and ROS. They can then
use a simple memory-based protocol to communicate, for
example to allow the ROS to invoke functions in the HRT
without VMM intervention.

4.4 Merged address spaces

To achieve a merged address space, we leverage the canon-
ical 64-bit address space model of x64 processors, and its
wide use within existing kernels, such as Linux. In this

model, the virtual address space is split into a “lower half”
and a “higher half” with a gap in between, the size of which
is implementation dependent. In a typical process model,
e.g., Linux, the lower half is used for user addresses and the
higher half is used for the kernel.

For an HRT that supports it, the HVM arranges that the
physical address space is identity-mapped into the higher
half of the HRT address space. That is, within the HRT, the
physical address space mapping (including the portion of the
physical address space only the HRT can access) occupies
the same portion of the virtual address space that the ROS
kernel occupies, namely the higher half. Without a merger,
the lower half is unmapped and the HRT runs purely out
of the higher half. When the ROS side requests a merger,
we map the lower half of the ROS’s current process address
space into the lower half of the HRT address space. For an
AeroKernel-based HRT, we achieve this by copying the first
256 entries of the PML4 pointed to by the ROS’s CR3 to
the HRT’s PML4 and then broadcasting a TLB shootdown
to all HRT cores.

Because the runtime in the ROS and the HRT are co-
developed, the responsibility of assuring that page table
mappings exist for lower half addresses used by the HRT
in a merged address space is the runtime’s. For example,
the runtime can pin memory before merging the address
spaces or introduce a protocol to send page faults back to
the ROS. The former is not an unreasonable expectation in
a high performance environment as we would never expect
a significant amount of swapping.

Nautilus additions

In order to support Multiverse in the Nautilus AeroKernel,
we needed to make several additions to the codebase. Most
of these focus on runtime initialization and correct operation
of event channels. When the runtime and application are
executing in the HRT, page faults in the ROS portion of the
virtual address space must be forwarded. We added a check
in the page fault handler to look for ROS virtual addresses
and forward them appropriately over an event channel.

One issue with our current method of copying a portion of
the PML4 on an address space merger is that we need to keep
the PML4 synchronized. We must account for situations in
which the ROS changes top-level page table mappings, even
though these changes are rare. We currently handle this
situation by detecting repeat page faults. Nautilus keeps
a per-core variable keeping track of recent page faults, and
matches duplicates. If a duplicate is found, Nautilus will
re-merge the PML4 automatically. More clever schemes to
detect this condition are possible, but unnecessary since it
does not lie on the critical path.

For correct operation, Multiverse requires that we catch
all page faults and forward them to the ROS. That is, if we
collect a trace of page faults in the application running na-
tive and under Multiverse, the traces should look identical.
However, because the HRT runs in kernel mode, some pag-
ing semantics (specifically with copy-on-write) change. In
default operation, an x86 CPU will only raise a page fault
when writing a read-only page in user-mode. Writes to pages
with the read-only bit while running in ring 0 are allowed
to proceed. This issue manifests itself in the form of myste-
rious memory corruption, e.g. by writing to the zero page.
Luckily, there is a bit to enforce write faults in ring 0 in the
cr0 control register.

SLOC
C | ASM | Perl | Total
Multiverse runtime 2232 65 0| 2297

Component

Multiverse toolchain 0 0] 130 130
Nautilus additions 1670 0 0| 1670
HVM additions 600 38 0 638
Total 4502 103 | 130 | 4735

Figure 8: Source Lines of Code for Multiverse.

Before we built Multiverse, Nautilus lacked support for
system calls, as the HRT operates entirely in kernel mode.
However, a legacy application will leverage a wide range of
system calls. To support them, we added a small system
call stub handler in Nautilus that immediately forwards the
system call to the ROS over an event channel. There is
an added subtlety with system calls in HRT mode, as they
are now initiating a trap from ring 0 to ring 0. This con-
flicts with the hardware API for the SYSCALL/SYSRET pair
of instructions. We found it interesting that SYSCALL has no
problem making this idempotent ring transition, but SYSRET
will not allow it. The return to ring 3 is unconditional for
SYSRET. To work around this issue, we must emulate SYSRET
and execute a direct jmp to the saved rip stashed during the
SYSCALL.

While we can build a particular runtime system with the
Multiverse toolchain using custom compilation options, this
is not possible for the legacy libraries they rely on. We are
then forced into supporting the compilation model that the
libraries were initially compiled with. While arbitrary com-
pilation does not typically present issues for user-space pro-
grams, complications arise when executing in kernel mode.
One such complication is AMD’s red zone, which newer ver-
sions of GCC use liberally. The red zone sits below the cur-
rent stack pointer on entry to leaf functions, allowing them
to elide the standard function prologue for stack variable al-
location. The red zone causes trouble when interrupts and
exceptions operate on the same stack, as the push of the
interrupt stack frame by the hardware can destroy the con-
tents of the red zone. To avoid this, kernels are typically
compiled to disable the red zone. However, since we are ex-
ecuting code in the ROS address space with predetermined
compilation, we must use other methods.

In Nautilus, we address the red zone by ensuring that
interrupts and exceptions operate on a well known interrupt
stack, not on the user stack. We do this by leveraging the
x86 Interrupt Stack Table (IST) mechanism, which allows
the kernel to assign specific stacks to particular exceptions
and interrupts by writing a field in the interrupt descriptor
table. SYSCALL cannot initiate a hardware stack switch in
the same way, so on entry to the Nautilus system call stub,
we pull down the stack pointer to avoid destroying any red
zone contents.

4.5 Complexity

Multiverse development took roughly 5 person months of
effort. Figure 8 shows the amount of code needed to support
Multiverse. The entire system is compact and compartmen-
talized so that users can experiment with other AeroKernels
or runtime systems with relative ease. While the codebase
is small, much of the time went into careful design of the
execution model and working out idiosyncrasies in the hy-
bridization, specifically those dealing with operation in ker-

nel mode.

5. EVALUATION

In this section we evaluate Multiverse using microbench-
marks and a hybridized Racket runtime system running a
set of benchmarks from The Language Benchmark Game.
We ran all experiments on a Dell PowerEdge 415 with 8GB
of RAM and an 8 Core 64-bit x86_64 AMD Opteron 4122
clock clocked at 2.2GHz. Each CPU core has a single thread
with four cores per socket. The host machine has stock Fe-
dora Linux 2.6.38.6-26.rc1.fc15.x86_64 installed. Benchmark
results are reported as averages of 10 runs.

Experiments in a VM were run on a guest setup which
consists of a simple BusyBox distribution running an un-
modified Linux 2.6.38-rc5+ image with two cores (one core
for the HVM and one core for the ROS) and 1 GB of RAM.

Microbenchmarks

We first evaluate the latency of system call execution in a
VM and in a VM with Multiverse. We tested 9 widely used
system calls, some of which leverage the Linux vdso mech-
anism. For the fwrite(), read(), and mmap() calls, the
functions operate on 1MB of data. Figure 9 shows the re-
sults. We can see that the two vdso system calls, getpid()
and gettimeofday() both perform slightly better in Mul-
tiverse, and we suspect that this slight improvement may
come from a sparsely populated TLB on the HRT core.
Overall, forwarding the system call events through the
HVM event channel introduces overheads, but these over-
heads are less important than the utilization of a particular
system call, as the ultimate goal is to end up with an HRT in
the Native mode of operation. To save development effort,
rarely used system calls that are not performance critical can
continue to leverage the legacy OS version of the function.

Racket

Racket [16, 15] is the most widely used Scheme implemen-
tation and has been under continuous development for over
20 years. It is an open source codebase that is downloaded
over 300 times per day.' Recently, support has been added
to Racket for parallelism via futures [35] and places [36].

The Racket runtime is a good candidate to test Multi-
verse, particularly its most complex usage model, the incre-
mental model, because Racket includes many of the chal-
lenging features emblematic of modern dynamic program-
ming languages that make extensive use of the Linux ABI,
including system calls, memory mapping, processes, threads,
and signals. These features include complex package man-
agement via the filesystem, shared library-based support for
native code, JIT compilation, tail-call elimination, live vari-
able analysis (using memory protection), and garbage col-
lection.

Our port of Racket to the HRT model takes the form of
an instance of the Racket engine embedded into a simple
C program. Racket already provides support for embed-
ding an instance of Racket into C, so it was straightforward
to produce a Racket port under the Multiverse framework.
This port uses a conservative garbage collector, the Senor-
aGC, which is more portable and less performant than the
default, precise garbage collector. The port was compiled
with GCC 4.6.3. The C program launches a pthread that in

Thttp:/ /racket-lang.org

50,

Figure 11: Utilization of system calls in the Racket runtime
without any benchmark.

Figure 12: Utilization of system calls in the Racket runtime
for a run of the binary-tree-2 benchmark.

turn starts the engine. Combined with the incremental us-
age model of Multiverse, the result is that the Racket engine
executes in the HRT.

When compiled and linked for regular Linux, our port
provides either a REPL interactive interface through which
the user can type Scheme, or a command-line batch interface
through which the user can execute a Scheme file (which can
include other files). When compiled and linked for HRT use,
our port behaves identically.

To evaluate the correctness and performance of our port,
we tested it on a series of benchmarks submitted to The
Computer Language Benchmarks Game [1]. We tested on
seven different benchmarks: a garbage collection benchmark
(binary-tree-2), a permutation benchmark (fannkuch), two
implementations of a random DNA sequence generator (fasta
and fasta-3), a generation of the mandelbrot set (mandelbrot-
2), an n-body simulation (n-body), and a spectral norm al-
gorithm. Figure 10 characterizes these benchmarks from
the low-level perspective. Note that while this is an imple-
mentation of a high-level language, the actual execution of
Racket programs involves many interactions with the oper-
ating system. These exercise Multiverse’s system call and

1x10% ¢

Virtual .
- Multiverse
1x10"
8 x10®t
[$]
>
)
o 100000 ¢
£
§ 10000
o
1000
100

Figure 9: Latency in cycles for system calls running virtual and in Multiverse. These numbers represent round-trip latencies
for forwarding system calls from the HRT to the ROS and back. Frequent use of a particular call will suggest a target for
transitioning that call to a custom implementation within the AeroKernel.

Benchmark System Calls Time (User/Sys) (s) Max Resident Set (Kb) Page Faults Context Switches
fannkuch-redux 1279 2.73/0.01 21284 5358 33
binary-tree-2 1260 31.98/0.10 82072 31082 491
fasta 29989 12.23/0.10 43568 14956 627
fasta-3 35115 31.28/0.17 80492 25418 1075
n-body 18763 41.15/0.19 152300 45064 1430
spectral-norm 23800 39.39/0.24 182300 51452 1695
mandelbrot-2 3667 7.76/0.05 43600 14250 291

Figure 10: System utilization for Racket benchmarks. A high-level language has many low-level interactions with the OS.

fault forwarding mechanisms. We ran all tests using the
hardware setup described at the beginning of this section.
Figure 12 describes the number and type of system calls
the Racket runtime invoked while running binary-tree-2, a
benchmark which creates and traverses trees. This bench-
mark makes extensive use of garbage collection. We can see
the majority of calls are those made in service of the Racket
runtime’s garbage collection. For example, the rt_sigaction
and rt_sigreturn system events involve setting up for re-
ceiving SIGSEGV signals due to page faults that drive the

garbage collector. The timer, getrusage() calls, and polling

activity is used to support Scheme-level cooperative threads
in the run-time. mmap(), munmap(), and mprotect(), ar-
range memory protections to create SIGSEGVs for the garbage
collector. Figure 11 gives a similar breakdown of system
calls incurred when setting up the garbage collection en-
vironment, as calls to mmap() and munmap() dominate the
system calls for the creation of the heap. This is also seen in
Figure 12, as small sections of the heap are frequently freed
with calls to munmap ().

Figure 13 compares the performance of the Racket bench-
marks run natively on our hardware, under virtualization,
and as an HRT that was created with Multiverse. The over-
head of the Multiverse case compared to the virtualized and
native cases is due to the frequent interactions, such as those
described above, with the Linux ABI. From the small sys-
tem times in Figure 10, we can surmise that a large portion
of the interactions in these cases likely arise from page faults
rather than system calls. In the Multiverse case, these are

forwarded from the HRT to the ROS to be handled instead
of being handled locally.

One should understand that these results constitute an
initial baseline of performance. It is worth reflecting on what
exactly has happened here: we have taken a complex run-
time system off-the-shelf, run it through Multiverse without
changes, and as a result have a version of the runtime sys-
tem that correctly runs in kernel mode and behaves identi-
cally. To be clear, all of the Racket runtime except Linuz
kernel ABI interactions is seamlessly running as a kernel.
This represents a starting point for HRT development in the
incremental model. The next steps would be to port bot-
tleneck functionality, for example the mmap(), mprotect(),
and signal mechanisms the garbage collector depends on,
to kernel mode via AeroKernel, perhaps using AeroKernel
overrides. In effect, these comprise page table edits com-
bined with page faults, all of which can occur hundreds of
times faster within the kernel instead of behind a system call
interface.

6. RELATED WORK

Work on specialized kernels goes back decades, and the
design of Nautilus is heavily influenced by much of this early
work, including Exokernels [12, 13], SPIN [8], Scout [28],
KeyKOS [10], and ADEOS [38].

In a similar vein to Nautilus, Arrakis [31] allows appli-
cations full access to hardware through library operating
systems linked into their address space. However, Arrakis
aims to reduce OS overhead related to I/O, and does not al-

Native ——
80 Virtual .
Multiverse =

70 |
60
50

Runtime (s)

S & &
N
N AN
3 Q
X
& S
g &

Figure 13: Performance of Racket benchmarks running Native, Virtual, and in Multiverse. Note that the Multiverse result is
the result of Multiverse’s automatic hybridization of Racket—it is the starting point for incremental enhancement within the

HRT model.

low users to boot an application or runtime into an entirely
specialized OS environment.

The nonkernel [7] similarly enables unprivileged user ap-
plications to access hardware directly using virtualization
support, but targets fine-grained resource provisioning rather
than runtime system performance and support. Uniker-
nels [27] and OSv [24] also rely on thin hypervisor layers
to achieve low latency and predictability for cloud applica-
tions.

Drawbridge [32] introduces a lightweight picoprocess model
wherein sandboxed applications run within a Windows li-
bOS. The picoprocess interacts with a virtualization layer
through a thin and highly abstracted ABI that simplifies
the implementation of OS code in the picoprocess.

While the above systems explore aspects of specialized op-
erating systems, none of them provide a mechanism by which
an application can leverage both existing OS functionality
and functionality from a specialized kernel.

The Dune system [6] allows a special kernel module to
promote selected processes to ones that can access privi-
leged CPU features on a legacy Linux system. Dune lever-
ages virtualization support to give applications the ability
to access, for example, page tables and protection hardware.
While Dune gives applications access to previously unavail-
able hardware, it does so from within the context of a Linux
process. Unlike Multiverse, Dune does not give the applica-
tion the capability to run in an entirely separate OS.

Libra [3] bears similarities to our system in its overall ar-
chitecture. A Java Virtual Machine (JVM) runs on top of
the Libra libOS, which in turn executes under virtualization.
A general-purpose OS runs in a controller partition and ac-
cepts requests for legacy functionality from the JVM/Libra
partition. This system involved a manual port, much like
our previous paper. However, the HVM gives us a more
powerful mechanism for sharing between the ROS and HRT
as they share a large portion of the address space. This
allows us to leverage complex functionality in the ROS like
shared libraries and symbol resolution. Furthermore, the Li-
bra system does not provide a way to automatically create

these specialized JVMs from their legacy counterparts.

The Blue Gene/L series of supercomputer nodes run with
a Lightweight Kernel (LWK) called the Blue Gene/L Run
Time Supervisor (BLRTS) [2] that shares an address space
with applications and forwards system calls to a special-
ized 1/O node. While the bridging mechanism between the
nodes is similar, there is no mechanism for porting a legacy
application to BLRTS. Others in the HPC community have
proposed similar solutions that bridge a full-weight kernel
with an LWK in a hybrid model. Examples of this approach
include mOS [37], ARGO [5], and IHK/McKernel [34]. The
Pisces Co-Kernel [30] treats performance isolation as its pri-
mary goal and can partition physical hardware between en-
claves, or isolated OS/Rs that can involve different special-
ized OS kernels.

In contrast to the above systems, our HRT model is the
only one that allows a runtime to act as a kernel, enjoying
full privileged access to the underlying hardware. Further-
more, as far as we are aware, none of these systems provide
an automated mechanism for producing an initial port to
the specialized OS/R environment.

7. CONCLUSIONS AND FUTURE WORK

We introduced Multiverse, a system that implements au-
tomatic hybridization of runtime systems in order to trans-
form them into hybrid runtimes (HRTs). We illustrated the
design and implementation of Multiverse and described how
runtime developers can use it as a tool for incremental port-
ing of runtimes and applications from a legacy OS to a spe-
cialized AeroKernel.

To demonstrate its power, we used Multiverse to auto-
matically hybridize the Racket runtime system, a complex,
widely-used, JIT-based runtime. With automatic hybridiza-
tion, we can take an existing Linux version of a runtime or
application and automatically transform it into a package
that looks to the user like it runs just like any other program,
but actually executes on a remote core in kernel-mode, in the
context of an HRT, and with full access to the underlying
hardware. We evaluated the performance overheads of an

unoptimized Multiverse hybridization of Racket and showed
that performance varies with the usage of legacy function-
ality. Runtime developers can leverage Multiverse to start
with a working system and incrementally transition heavily
utilized legacy functions to custom components within an
AeroKernel.

We plan to extend Multiverse to work with a wider range
of real-world runtime systems, especially parallel runtime
systems like Legion. We also intend to explore the tran-
sition between our Incremental model and the Accelerator
model, using Multiverse to identify bottlenecks and replace
legacy functionality with optimized versions in the Nautilus
AeroKernel. Finally, we hope to investigate radically differ-
ent execution groups that include execution contexts other
than threads.

8. REFERENCES

[1] The computer language benchmarks game.
http://benchmarksgame.alioth.debian.org/.

[2] G. Almési, R. Bellofatto, J. Brunheroto, C. Cascaval,
J. Castanos, L. Ceze, P. Crumley, C. C. Erway,

J. Gagliano, D. Lieber, X. Martorell, J. E. Moreira,
A. Sanomiya, and K. Strauss. An overview of the blue
gene/l system software organization. In Proceedings of
the Euro-Par Conference on Parallel and Distributed
Computing (EuroPar 2003), Aug. 2003.

[3] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva,
D. Grove, K. Kawachiya, O. Krieger, B. Rosenburg,
E. V. Hensbergen, and R. W. Wisniewski. Libra: A
library operating system for a jvm in a virtualized
execution environment. In Proceedings of the 3™
International Conference on Virtual Execution
Environments (VEE 2007), pages 44-54, June 2007.

[4] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: Expressing locality and independence with
logical regions. In Proceedings of Supercomputing (SC
2012), Nov. 2012.

[5] P. Beckman. Argo: An exascale operating system.
http://www.mcs.anl.gov/project/
argo-exascale-operating-system.

[6] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,

D. Mazieres, and C. Kozyrakis. Dune: Safe user-level
access to privileged CPU features. In Proceedings of
the 10" USENIX Conference on Operating Systems
Design and Implementation (OSDI 2012), pages
335-348, Oct. 2012.

[7] M. Ben-Yehuda, O. Peleg, O. Agmon Ben-Yehuda,

I. Smolyar, and D. Tsafrir. The nonkernel: A kernel
designed for the cloud. In Proceedings of the 4"
Asia-Pacific Workshop on Systems (APSYS 2013),
July 2013.

[8] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility, safety and performance in the
SPIN operating system. In Proceedings of the 15"
ACM Symposium on Operating Systems Principles
(SOSP 1995), pages 267-283, Dec. 1995.

[9] G. E. Blelloch, S. Chatterjee, J. Hardwick,

J. Sipelstein, and M. Zagha. Implementation of a
portable nested data-parallel language. Journal of
Parallel and Distributed Computing, 21(1):4-14, Apr.
1994.

[10] A. C. Bomberger, W. S. Frantz, A. C. Hardy,

N. Hardy, C. R. Landau, and J. S. Shapiro. The
KeyKOS nanokernel architecture. In Proceedings of
the USENIX Workshop on Micro-kernels and Other
Kernel Architectures, pages 95-112, Apr. 1992.

[11] J. Dongarra and M. A. Heroux. Toward a new metric
for ranking high performance computing systems.
Technical Report SAND2013-4744, Sandia National
Laboratories, June 2013.

[12] D. R. Engler and M. F. Kaashoek. Exterminate all
operating system abstractions. In Proceedings of the
5" Workshop on Hot Topics in Operating Systems
(HotOS 1995), pages 78-83, May 1995.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An operating system architecture for
application-level resource management. In Proceedings
of the 15" ACM Symposium on Operating Systems
Principles (SOSP 1995), pages 251-266, Dec. 1995.

[14] D. G. Feitelson and L. Rudolph. Gang scheduling
performance benefits for fine-grain synchronization.
Journal of Parallel and Distributed Computing,
16(4):306-318, Dec. 1992.

[15] M. Felleisen, R. B. Findler, M. Flatt,

S. Krishnamurthi, E. Barzilay, J. McCarthy, and

S. Tobin-Hochstadt. The Racket Manifesto. In T. Ball,
R. Bodik, S. Krishnamurthi, B. S. Lerner, and

G. Morrisett, editors, Ist Summit on Advances in
Programming Languages (SNAPL 2015), volume 32 of
Leibniz International Proceedings in Informatics
(LIPIcs), pages 113—-128, Dagstuhl, Germany, 2015.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[16] M. Flatt and PLT. Reference: Racket. Technical
Report PLT-TR-2010-1, PLT Design Inc., 2010.
https://racket-lang.org/trl/.

[17] M. Giampapa, T. Gooding, T. Inglett, and R. W.
Wisniewski. Experiences with a lightweight
supercomputer kernel: Lessons learned from Blue
Gene’s CNK. In Proceedings of Supercomputing (SC
2010), Nov. 2010.

[18] K. Hale and P. Dinda. Enabling hybrid parallel
runtimes through kernel and virtualization support. In
Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments (VEE 2016), April 2016. In Submission.

[19] K. C. Hale and P. A. Dinda. A case for transforming
parallel runtimes into operating system kernels. In
Proceedings of the 24" ACM Symposium on
High-performance Parallel and Distributed Computing
(HPDC 2015), pages 27-32, June 2015.

[20] K. C. Hale and P. A. Dinda. Details of the case for
transforming parallel runtimes into operating system
kernels. Technical Report NWU-EECS-15-01,
Department of Computer Science, Northwestern
University, Apr. 2015.

[21] M. A. Heroux, J. Dongarra, and P. Luszczek. HPCG
technical specification. Technical Report
SAND2013-8752, Sandia National Laboratories,
October 2013.

[22] G. C. Hunt and J. R. Larus. Singularity: Rethinking
the software stack. SIGOPS Operating Systems
Review, 41(2):37-49, Apr. 2007.

[23] S. M. Kelly and R. Brightwell. Software architecture

http://www.mcs.anl.gov/project/argo-exascale-operating-system
http://www.mcs.anl.gov/project/argo-exascale-operating-system

[24]

[26]

[27]

[28]

[29]

[30]

of the light weight kernel, Catamount. In Proceedings
of the 2005 Cray User Group Meeting (CUG 2005),
May 2005.

A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El,
D. Marti, and V. Zolotarov. OSv—optimizing the
operating system for virtual machines. In Proceedings
of the 2014 USENIX Annual Technical Conference
(USENIX ATC 2014), June 2014.

J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui,
L. Xia, P. Bridges, A. Gocke, S. Jaconette,

M. Levenhagen, and R. Brightwell. Palacios and
kitten: New high performance operating systems for
scalable virtualized and native supercomputing. In
Proceedings of the 24" IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2010),
Apr. 2010.

R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovi¢,
and J. Kubiatowicz. Tessellation: Space-time
partitioning in a manycore client OS. In Proceedings of
the 1% USENIX Conference on Hot Topics in
Parallelism (HotPar 2009), pages 10:1-10:6, Mar.
2009.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and

J. Crowcroft. Unikernels: Library operating systems
for the cloud. In Proceedings of the 18" International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2013),
pages 461-472, Mar. 2013.

A. B. Montz, D. Mosberger, S. W. O’Malley, L. L.
Peterson, and T. A. Proebsting. Scout: A
communications-oriented operating system. In
Proceedings of the 5" Workshop on Hot Topics in
Operating Systems (HotOS 1995), pages 58—-61, May
1995.

J. Oayang, B. Kocoloski, J. Lange, and K. Pedretti.
Achieving performance isolation with lightweight
co-kernels. In Proceedings of the 24th International
ACM Symposium on High Performance Parallel and
Distributed Computing, (HPDC 2015), June 2015.

J. Ouyang, B. Kocoloski, J. R. Lange, and K. Pedretti.
Achieving performance isolation with lightweight
co-kernels. In Proceedings of the 24" International

(31]

(32]

33]

(34]

(35]

(36]

37]

(38]

Symposium on High-Performance Parallel and
Distributed Computing, pages 149-160, June 2015.

S. Peter and T. Anderson. Arrakis: A case for the end
of the empire. In Proceedsings of the 14" Workshop
on Hot Topics in Operating Systems (HotOS 2013),
pages 26:1-26:7, May 2013.

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky,
and G. C. Hunt. Rethinking the library OS from the
top down. In Proceedings of the 16t International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2011),
pages 291-304, Mar. 2011.

T. Roscoe. Linkage in the Nemesis single address
space operating system. ACM SIGOPS Operating
Systems Review, 28(4):48-55, Oct. 1994.

T. Shimosawa, B. Gerofi, M. Takagi, G. Nakamura,
T. Shirasawa, Y. Saeki, M. Shimizu, A. Hori, and

Y. Ishikawa. Interface for heterogeneous kernels: A

framework to enable hybrid os designs targeting high
performance computing on manycore architectures. In

Proceedings of the IEEE International Conference on
High Performance Computing (HiPC 2014), Dec.
2014.

J. Swaine, K. Tew, P. Dinda, R. Findler, and M. Flatt.
Back to the futures: Incremental parallelization of
existing sequential runtime systems. In Proceedings of
the ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2010), October 2010.

K. Tew, J. Swaine, M. Flatt, R. Findler, and

P. Dinda. Places: Adding message passing parallelism
to racket. In Proceedings of the 2011 Dynamic
Languages Symposium (DLS 2011), October 2011.

R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty,
and R. Riesen. mOS: An architecture for
extreme-scale operating systems. In Proceedings of the
4" International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS 2014),
pages 2:1-2:8, June 2014.

K. Yaghmour. Adaptive domain environment for
operating systems.
http://www.opersys.com/ftp/pub/Adeos/adeos.pdf.

http://www.opersys.com/ftp/pub/Adeos/adeos.pdf

