
Electrical Engineering and Computer Science Department

Technical Report
Number: NU-EECS-16-14

October, 2016

New findings on the use of static code attributes for

defect prediction

Muhammed Maruf Öztürk, Ahmet Zengin

Abstract

Defect prediction includes tasks that are based on methods gener ated using software fault data
sets and requires much effort to be completed. In defect prediction, although there are methods to
conduct an analysis involving the classification of data sets and localisation of defects, those
methods are not sufficient without eliminating repeated data points. The NASA Metrics Data
Program (Nasa MDP) and Software Research Laboratory (SOFTLAP) data sets are frequently
used in this field. Here, we present a novel method developed on the Nasa MDP and SOFTLAB
data sets that detects repeated data points and analyses low level metrics. Also, a framework and
an algorithm are presented for the proposed method. Statistical methods have been used for
detecting repeated data points. This work sheds new lights on the extent to which repeated data
adversely affects defect prediction performance, and stresses the importance of using low level
metrics.

Keywords

Defect prediction · Software metrics · Software quality · Machine

learning

Noname manuscript No.
(will be inserted by the editor)

New findings on the use of static code attributes for
defect prediction

Muhammed Maruf Öztürk · Ahmet
Zengin

Received: date / Accepted: date

Abstract Defect prediction includes tasks that are based on methods gener-
ated using software fault data sets and requires much effort to be completed. In
defect prediction, although there are methods to conduct an analysis involving
the classification of data sets and localisation of defects, those methods are not
sufficient without eliminating repeated data points. The NASA Metrics Data
Program (Nasa MDP) and Software Research Laboratory (SOFTLAP) data
sets are frequently used in this field. Here, we present a novel method devel-
oped on the Nasa MDP and SOFTLAB data sets that detects repeated data
points and analyses low level metrics. Also, a framework and an algorithm
are presented for the proposed method. Statistical methods have been used
for detecting repeated data points. This work sheds new lights on the extent
to which repeated data adversely affects defect prediction performance, and
stresses the importance of using low level metrics.

Keywords Defect prediction · Software metrics · Software quality · Machine
learning

1 Introduction

In the software development process, 50 percent of the development time is
spent on software testing. Defect prediction is generally used for reduction of
the allocated time for testing and effort. Defect severity and defect count are
basic terms for applying methods developed for defect prediction on source
codes. If the budget required for testing processes is not sufficient, testers
should focus on a specific part of the system. If the specific part tends to
be more defect-prone than other parts of the software, it is an indicator of a

Department of Computer Engineering
Faculty of Computer and Information Science, Sakarya University
54187, Sakarya, Turkey Tel.: +90-2642956909
E-mail: muhammedozturk@sakarya.edu.tr · Science Institute of Sakarya University, Turkey

2 Muhammed Maruf Öztürk, Ahmet Zengin

well-distributed budget. Therefore detecting defect-prone parts accurately is
an important aspect that needs to be checked in detail and researched (Zim-
mermann et al., 2009; Elish and Elish, 2008; Succi et al., 2003). Most works in
literature include remaining defects, relations of defects, and classifying defect-
prone parts (Song et al., 2011); however, in this work, we dealt the approach
based on the classification of defects.

To classify software modules, some notions such as defect-prone and not
defect-prone are commonly determined. Static code metrics are decisive factors
while determining these properties. A reasonable data quality is required for
successful defect prediction (Shepperd et al., 2013; Liebchen and Shepperd,
2008). However, it is difficult to acquire fault data sets. Commercial software
developers generally do not have any report of defect detection results. In
addition, such results are generally not shared with public, for obvious reasons.
It is acceptable to hide results if the defect severity is close to level of high;
however, if these results are shared with researchers, there is a chance to
prevent these defects.

Open source systems are frequently used by researchers to generate defect
data sets (Rajesh Vasa and Jones, 2010; Keivanloo et al., 2012; Linstead et al.,
2009). One of the issues is whether defect information is correct and consistent.
In this respect, the main reasons for the encountered problems include inad-
equate documentation before preprocessing, showing little effort to improve
skewed data while applying machine learning methods, and lack of reporting
(Czibula et al., 2014). As these processes require to human intervention, they
are time consuming, and it is difficult to obtain defect data information from
these data sets. Sometimes, this task might be impossible to accomplish pre-
cisely due to project sizes and flow speeds of defect information. After the
verification of defect information, defect data are entered in to the version
control comments. Thus, defect data become more reliable than originally.

The NASA PROMISEDATA and SOFTLAB data sets are commonly cho-
sen for defect prediction. This is the reason we chose these data sets in this
study (Menzies, 2015). In addition, our inspiring paper (Gray, 2013) clearly
depicted that these data sets need further investigation to figure out the effects
of repeated data points in classification. Although repositories include various
data sets that are generated using a specific layout, they do not require a pre-
processing prior to the its analysis. The use of detailed metrics alleviates the
investigation of a software system. When researchers use NASA MDP data
sets, it is assumed that these data sets have a certain quality level. However,
new data acquired during the preprocessing stage can cause an undesirable
result (Herzig et al., 2013). At this point, the proposed framework and algo-
rithm draw attention to data quality in classification problems and encourage
researchers to verify data quality level.

The NASA and SOFTLAB data sets used in the experiment were obtained
from software modules. Modules refer to software notions, such as class, func-
tion and procedure. The question that should be asked here is whether avail-
able metrics are sufficient for defect prediction. Though available metrics are
sufficient for defect prediction, hiding source codes causes unverified codes that

New findings on the use of static code attributes for defect prediction 3

complicate understanding defect prediction results. To extract static code at-
tributes, LOC (line of Code), Halstead, and McCabe are widely used standards
(Halstead, 1977), (McCabe, 1976). Due to the similar metrics of SOFTLAB
and NASA data sets, we used these data sets with combined. It is not a must
to process data that are generated using same metric tables. However, it is eas-
ier to handle with the data that are generated using same metric tables. For
instance the pc4 data set obtained from the NASA MDP repository includes
the ar1 data set obtained from SOFTLAB, however the pc4 data set has ad-
ditional metrics, such as Essential Complexity and Percent Comments. Thus,
we extended the experimental data sets, and the data sets were suitable for
the developed algorithm. The data sets are also suitable for binary classifica-
tion. While classifying part of the data sets that are divided into training and
testing, an effort was made to increase correct labelling of the data. However,
a major shortcoming of labelling is disregarding defect severity.

Most works dealing with defect prediction take data quality issues into
account to obtain reliable prediction results. In order to cope with such cases,
it is desirable to detect noisy instances precisely (Verma and Gupta, 2012; Kim
et al., 2011; Hall et al., 2012). Thus, defect data sets need to be eliminated
regardless of their metric types are either static code metrics or process metrics
(Bell et al., 2013). Despite the fact that process metrics yielded promising
results in recent years (He et al., 2015; Madeyski and Jureczko, 2015), there
is a strong need to develop defect prediction methods which use static code
metrics (Madeyski and Jureczko, 2015). Defect prediction methods employing
static code attributes have yet to be fully explored.

Our base research is Gray et al.’s work to compare with our study in
terms of contributing defect prediction literature on the basis of data quality
(Gray et al., 2012; Gray, 2013). Their approach is to develop a novel cleansing
method to reduce repeated data points in 15 NASA data sets (Menzies, 2015).
These data sets retrieved from promise repository are publicly available. The
method was employed successfully which means that repeated data can have
a significant impact on the performance of classifiers including Bayes, naive
Bayes, random forest, and j48. One of the challenges in detecting repeated
data is that NASA data sets are not based on open-source. So it is difficult to
validate the reality of repeated data points. Further, metrics describing each
software module can be expressed with simple equations that are constituted
with other metrics.

To overcome this problem, low level metrics have potentially favourable
effects on detecting repeated data points in defect data sets that leads to
achievement of remarkable classification performance. This motivates us to
derive low level metrics and apply them to NASA data sets. We can list the
reasons why this work was chosen for comparing as: focus on pre-processing
instead of machine learning algorithms and using NASA MDP data sets. The
effects of using low level metrics and repeated data point analysis are as yet
unknown. This can be regarded as our motivation throughout the paper. Due
to the similar metrics of SOFTLAB and NASA data sets, we used these data
sets with combined. It is not a must to process data that are generated using

4 Muhammed Maruf Öztürk, Ahmet Zengin

same metric tables. However, it is easier to handle with the data that are
generated using same metric tables.

The contributions of the paper can be summarised as follows: 1) a novel
framework including a performance evaluation module, preprocessing module
and metric extraction module, 2) determining whether repeated data points
are general in all data sets, 3) observing the effect of repeated data points in
classification, 4) evaluation of the effect of prediction accuracy using low level
metrics.

The rest of the paper is organised as follows. Section 2 includes similar
works and stresses the difference of our work. The framework and proposed
preprocessing algorithm is explained in Section 3. Section 4 provides informa-
tion regarding how the prediction performance is evaluated and which methods
are generally used. In addition, experimental design and performance param-
eters of proposed methods are seen in Section 4. The comparison of our work
and Gray’s work is detailed in Section 5, and Section 6 includes conclusion
and future works.

2 Background

2.1 Defect Prediction

The first step in predicting defects consists of determining which historical
data to use and choosing the size for each data set. Note that unless the first
step is completed, other processes should not be performed. The key factor is
which data should be chosen for defect prediction. This depends on the works
that will be compared with our work. However, initially a learning scheme
must be generated. The structure of this scheme changes depending on the
metric tables utilized. Further, the selection of public data is a fundamental
step while using a learning scheme. Thus, the success of the learning method
can be accurately evaluated.

2.2 Related Works

Various works related to defect prediction are available in the literature. One
of them is Fenton et al.’s work (Fenton and Neil, 1999). In this work, defect
prediction is handled with Bayes statistical methods. Twenty-two classifica-
tion algorithms were applied with NASA MDP data sets, consequently linear
models such as LogReg and LP produced similar results (Wang and Yao,
2013). In another work including class imbalance (Wang and Yao, 2013) five
different class-imbalance learning methods were applied to ten data sets that
AdaBoost.NC produced best results. However, using C4.5 demonstrates that
further investigation is required. Another issue is the effect of developers on
generation of defects. In Menzies and Koru’s work published in 2011 (Menzies
and Koru, 2013) it is illustrated that it is useful to know how many developers

New findings on the use of static code attributes for defect prediction 5

are on the revised files, it is not important to know which developer made
these changes. The ship of the system access information of developers with
defect severity was investigated in another work (Weyuker et al., 2008), and
this work also stressed that detecting high level defects using an automated
test tool results in new directions to defect prediction works.

In Li et al.’s work (Li et al., 2012) which used sample-based data rather
than historical data, include five PROMISE data sets. The hardship of us-
ing historical data in quickly changing projects was highlighted, and to solve
this problem, AcoForest classifier was developed. The proposed method with
0.685 F-measure yielded better results than Logistic Regression, naive Bayes,
decision tree and CoForest.

If a defect prediction is to be performed using static code attributes, data
mining methods should be well known. Menzies et al.’s paper published in
2007 is one of the most cited papers regarding how machine-learning methods
and performance analyses should be performed (Menzies et al., 2007). This
work especially stressed the importance of selected attribute set on prediction
performance rather than the predictor. The results obtained performing ten
repeats on ten data sets illustrated that naive Bayes classifier was better than
J48 with 71% probability of detection. This is the reason naive Bayes was the
chosen predictor in our work.

It may not yield good result to apply all learning methods on each data set.
For instance Song et al. developed a novel defect prediction framework (Song
et al., 2011) and defended this opinion. In addition to this, the differences of
their work from Menzies et al.’s work (Fenton and Neil, 1999) were presented.
One of them Son’s framework seems to be more consistent than Menzies et
al.’s framework in terms of results that change according to the selected data
sets. Further, it was concluded that the learning scheme should be selected
according to the data sets. It may not be the right step to insert defect results
in the prediction model. Prior to the prediction, a data cleansing may increase
the success of the predictor. In this respect, Kim and Kim’s work (Kim et al.,
2013) presented a two-phase prediction model. In first phase, deficient reports
were eliminated and roughly 70% of the predictions were accurate. This work
also encouraged us to perform preprocessing of data.

To measure performance results, Receiver Operator Characteristic (ROC)
curves (Fawcett, 2006) and some paramteres obtained from ROC are used
for binary classification problems (Wang et al., 2011; Calikli et al., 2009).
While performing these operations, our base work is Davis and Goadrich’s
work (Davis and Goadrich, 2006). The NASA MDP provides a great number
of modelling techniques. It is the reason we use NASA MDP data sets while
developing the proposed framework. However, limited access of source codes
causes constraints for comprehensive research (Ren et al., 2014). At this point,
it may be necessary to manually examine defect reports. Herzig et al. (Herzig
et al., 2013) investigated the projects and their work showed that 39% of
all projects were wrongly labeled as defect-prone. To examine defect reports
more accurately, they proposed that projects should be open source. It is
called as class imbalance if a great number of defects are on a specific part

6 Muhammed Maruf Öztürk, Ahmet Zengin

of the software. Ren et al. proposed a solution (Ren et al., 2014) including
two classifiers to cope with this problem, and NASA MDP and SOFTLAP
were used for the experimental design. The algorithm AKPCAC produced
better results than the others when it was compared in terms of F-measure
and Freidmans and Tukey tests.

Area under the curve (AUC) is commonly used for comparing the success
of predictors. For instance in Lessman et al.’s work (Lessmann et al., 2008), 20
classifiers were compared with AUC values, and it was concluded that AUC
was distinguishing. Linear models especially such as LogReg and LP, produced
similar results. They also concluded that if an evaluation were conducted only
on the basis of predictor performance, it would be insufficient and that it is
necessary to assess the process metrics for evaluation in addition to this, new
metrics should be designed.

One of the works that used NASA MDP data sets was Gray et al.s work
(Gray et al., 2012). This work focused on data cleansing where some attributes
of the metrics obtained from 13 different data sets were removed to make the
metrics more suitable for binary classification. If a value was missing, it was
replaced with zero. The first results were that data sets should be extended.
Thus, it can be discovered whether data points are in general. The second is
to determine the repeated data points, using low level metrics. The third is
the unknown effect of the repeated data points in classification. Briefly, all of
them should be clarified in the future works.

3 Defect Prediction Framework Using
Statistical Analysis

3.1 Overview of the Framework

If a defect prediction framework is to be developed, some requirements must
be fulfilled. One of them is feature extraction. Therefore, metric values of
data sets are prepared prior to the prediction that there are a lot of software
to complete this process. However, to compare our work with prior similar
works, the same metrics should be generated. Another requirement is that the
proposed framework includes learning algorithms depending on the method of
the predictor. In addition to these notions, methods and evaluation techniques
that increase the success of the predictor should be available.

The proposed framework has three main functions. First, a module that
is able to evaluate NASA MDP and SOFTLAB data sets is needed as well
as a module of repeated data analysis using statistical methods and a final
module that includes data cleansing and performance evaluation. As seen from
Fig. 1, feature extraction related to the metrics was completed in the first
phase, the obtained metrics are used for repeated data analysis in phase 2,
and by producing low level metrics, a performance evaluation is run on the
four predictors. These predictors are Bayes.net, naive Bayes, random forest,
and J48.

New findings on the use of static code attributes for defect prediction 7

Fig. 1. Outline of the framework

Fig. 2. Default form of the framework

Default form of the framework is seen in Fig. 2. Main screen includes various
operations including ROC analysis, statistical tests, feature extraction, and
classification. ROC data can be selected through Open File menu from the top
left corner of the form. CSV and excel-formatted files are supported. For ROC,
user can determine specifications such as count of points and threshold. The
frame input values have two columns namely predicted and actual. The ROC
curve has various evaluation measures including also precision, sensitivity, and
specificity as in Figure 3. Prediction process is conducted via Fig. 4.

3.2 Statistical Methods

During the experiment, it was necessary to use statistical methods that were
compatible with the proposed cleansing algorithm. These methods are ANOVA,
t-test and chi-square test. If there is a great number of data that will be exam-
ined to discover whether the groups of data show a significant difference, the
ANOVA method should be used. Generally, ANOVA is used for comparing the

8 Muhammed Maruf Öztürk, Ahmet Zengin

Fig. 3. Roc analysis details

Processing

bar

Setting data

set
Prediction

results

Fig. 4. Default prediction screen

prediction performances of the learning algorithms in defect prediction works
(Song et al., 2011; Lessmann et al., 2008; He et al., 2015). Each square of the
groups is calculated as:

SSA = n
∑

(Y .j − Y ..)
2 (1)

The mean of a particular group is represented by Y.j . Here Y..refers to the
means of the full data. The count of the observations is represented by n. Sum
of squares of the groups is formulated as:

SST = SSA + SS S
A

(2)

While calculating the sum of squares, some errors may be observed. These
errors (called as variations) can be defined as:

SS S
A

=
∑∑

(Y ij − Y .j)
2 (3)

dfA = a− 1, df S
A

= a(n− 1) = N − a (4)

As shown in the Eq. 4, each sum of squares has a degrees of freedom that
is unique. Here, number of groups is a. The variable n refers to the number

New findings on the use of static code attributes for defect prediction 9

Table 1. ANOVA

SSA dfA MSA F
SS S

A
df S

A
MS S

A

SST

of observations that are computed in each group. The F score is obtained by
dividing the variance of between groups by the variance of within groups, as
in the Eq. 5.

F =
MSA

MS S
A

(5)

The table of ANOVA was arranged as in Table 1 If ANOVA is applied on ony
two groups of the data sets, it becomes t-test. Details of t-test are:

a11= mean of sample 1, a22= mean of sample 1,
n1= number of subjects in sample 1,
n2= number of subjects in sample 2 where

s21 = (
∑

(a1 − a11)2/n1) (6)

is the variance of sample 1 (6), and

s22 = (
∑

(a2 − a22)2/n2 (7)

is the variance of sample 1 (7), where

t =
x1 − x2√

s21
n1

+
s22
n2

− 2r[s1√
n1

][s2√
n2

]
(8)

The chi-square test is simply used for the determination of the association
between two categorical variables. In defect prediction, defect-prone and not
defect-prone are our categories. To specify whether there is an association
between our categories, we used the formula as follows:

x2 =
∑ (valueObserved− valueExpected)

valueExpected
(9)

While deciding whether our hypothesis is acceptable, we used a probability
level of 0.05 as our critical value.

10 Muhammed Maruf Öztürk, Ahmet Zengin

3.3 Feature Extraction

Feature extraction is obtaining properties of software modules on the basis of
certain standards (Halstead, 1977; McCabe, 1976). The most used ones are
LOC, McCabe, and Halstead. Also, our experimental data sets were retrieved
from NASA MDP and SOFTLAB generated metrics using these standards. In
our proposed framework, the metrics of projects can be extracted regardless
of programming languages, such as C, C++, Java, and C#. However, we have
used NASA MDP and SOFTLAB data sets rather than the untested metrics
of arbitrary selected software to compare our work with Gray’s work.

3.4 Data Removal

While predicting defects the quality of data must be at a specific level. If the
quality level is not at least at the desired level, various problems occur. These
problems affect the success of the classification and prediction results. Class
Imbalance, unsuitable data for classification and same data sets in metrics
are considered some of the problems. For instance, the KC4 data of NASA
MDP have metrics that have similar meaning to row count, such as number
of lines and loc total. If one of these values is not removed from the metrics,
the results of classification will be incorrectly obtained for a specific ratio.
A metric representing either defect-prone or not is available in NASA MDP
and SOFTLAB. This metric is called as ”defects” and has been made more
suitable for binary classification by assigning false and true values. We have
two hypotheses to describe defect data sets:H0: If p is greater than 0.05, then
data sets are not different, Ha: If p is not less than 0.05, then data sets are
different.

We can explain data preprocessing as two phases. In the first phase, sta-
tistical operation is conducted on data. These operations include vectorial
calculation of all the data samples with the help of some statistical tests such
as t-test and chi-square.

One of the test methods for data sets was the t-test. While using this test,
it is checked that whether means of our hypothesis are different from the actual
means. If a significant difference is discovered, operations of prediction have
been carried out. Otherwise, samples have been removed prior to the usage of
data samples in the prediction model.

Our last test is the chi-square. In this test, we attempted to discover
whether the two groups are different from each other. If the obtained p-value is
less than 0.05, it is figured out that the two groups are not different; therefore,
they can be utilised for prediction. Public availability of defect data sets and
detailed examination of defect comments provide more accurate results regard-
ing data sets. In addition to this, data sets are not open source, which causes
various obstacles in situations that requires manual examination. Gray’s the-
sis stressed that using low level metrics facilitates to differentiating modules

New findings on the use of static code attributes for defect prediction 11

Table 2. Details of NASA MDP and Softlab data sets

Name Language Attributes Instances Defective Instances% Missing Values

ar1 C 29 241 8 -
ar3 C 29 125 12 -
ar4 C 29 213 18 -
ar5 C 29 71 21 -
ar6 C 29 201 14 -
cm1 C 40 327 12 -
jm1 C 21 10878 19 25
kc1 C++ 21 2107 15 -
kc2 C++ 21 521 20 -
kc3 Java 40 458 9 -
pc1 C 40 1107 7 -
pc2 C 40 5589 0.4 -
pc3 C 40 1563 10 -
pc4 C 40 1458 12 -
pc5 C++ 39 17186 3 -

(Gray, 2013). However, this process should be done very carefully because
reduction of input space may adversely affect the classification.

Our developed preprocessing algorithm includes deriving the character
count. The metric table has been extended in this way. On the manual ex-
amination of 15 data sets, we have detected the relationship that character
count is roughly 30 times of that of the value loCode. We have unveiled and
implemented the formulation on all data sets as follows:

cCount = lCode ∗ 30

cS = totalnumber of operations

Our data sets have metrics including missing values. We have assigned zero
to missing values instead of reducing them (Gray, 2013). The proposed data
cleansing algorithm was carried out in three phases. In the first phase chi-
square and t-test are applied to all data sets. These tests are needed due en-
tirely to the verification of repeated data points that are consisted of numbers
suitable for a statistical operation. This operation facilitates distinguishing
the effects of metric values. Class size (cS) is also a low level metric but it
is not available in our experimental data sets before preprocessing. We added
character counts and cS to the data, which passed through the first phase
successfully, the extension of metrics was implemented, and finally missing
values were filled with zero afterwards. The algorithm is seen in Algorithm
1. Initially, required statistical test are applied on data sets to determine the
weights of the metrics. In the Step 8, all the instances are converted to the
vectorial format by giving weighting to the each metrics. Step 9 is for the
calculation of the euclidean distances of the instances which is measured by
using Equation 11 where e is euclidean distance and pi/j(x) is the distribution
function (Helén and Virtanen, 2007).

e(x)i..j =

∫ ∞
−∞

[p1(x) − p2(x)]2dx (10)

12 Muhammed Maruf Öztürk, Ahmet Zengin

Algorithm 1 Cleansing of Repeated Data

1: procedure Clean(Data) . The Data:NASA, Softlab
2: N:ar1,ar2,ar3,ar4,ar5,ar6,cm1,jm1,kc1,kc2,kc3
3: Xi : Dataset selected from N
4: while i 6= 15 do
5: xi ← N
6: Chi− square(xi)
7: T − Test(xi)
8: Binary Combination (vi ← xi)
9: e(vi)i..j =

∫∞
−∞[pi(x)− pj(x)]2dx

10: vi+ = Lmetrics(xi)
11: M = Count(xi) . Calculate count of instance
12: for j=0 to M do
13: if xij ==′ Missing′ then
14: xij = 0
15: end if
16: end for
17: end while
18: return Data
19: end procedure

Perfect point

Worst point

Fig. 5. Details of the ROC curve

4 Evaluation of the Framework

4.1 Data Sets

Our data sets, as described in the prior sections, are comprised of NASA MDP
and SOFTLAB repositories. The count of attributes of the data sets changed
between 21 and 40. Even though NASA MDP data sets vary according to
the type of the project, McCabe and Halstead-based metric tables are similar.
While using data sets we have observed the same case in the data retrieved
from SOFTLAB. This incident complicates the conducting of experimental
design. If the data of projects that were prepared for prediction of defects
were accepted as a common standard, works related to prediction of defects
would speed up. Sample and attribute count of the data sets are shown in
Table 2. Before the use of statistical tests, all the data sets were exposed

New findings on the use of static code attributes for defect prediction 13

Table 3. Confusion matrix

PREDICTED
nfp fp

REAL
nfp TN FP
fp FN TP

to normalization that normalizes all numeric values in the data sets. This
process was conducted by using smallest and the largest value of the data sets
depending on the scale and transition parameters. Defect prediction data sets
can be selected through writing its name as shown in Fig. 4.

4.2 Evaluation Parameters

Since prediction of defects is on the basis of binary classification, if any eval-
uation of performance is conducted, initially the confusion matrix should be
built (Weyuker et al., 2008; Caglayan et al., 2015). While predicting, some
definitions are created such as fault prone(fp) and not fault prone (nfp). If any
module of software does not include defect, and the bias is correct, the module
is labeled as TN. If any module of software includes defects that are wrongly
biased, the module is labeled as FN, otherwise modules that do not include
any defect and wrongly biased, are labeled as FP. If the module includes a
defect and is correctly biased, then it is labeled as TP. After these definitions
Table 3 was generated.

Precision =TP/TP + FP;
Recall =TP/TP + FN; TPR = (TP/TP + FN)
FPR = (FP/FP + TN)

Details of ROC that measures the effectiveness of the classification are seen
in Fig. 5. The y-axis records recall calculated by the formula TP/TP+FN. In
the same way the value expressed in the x axis is calculated by the formula
TP/TP+FN. It is understood that values used for the search effectiveness,
including recall and FPR, are also used in ROC. The area under the curve is
AUC. The best point of the curve is (1,0) and that means there is no wrong
prediction. The worst point of the curve is (0,1) and that means there is no
right prediction. The area that is above the diagonal is generally the desired
result. The other area is under the diagonal means the success of classification
is not at sufficient level. There is an inverse relationship between precision and
recall and the general result is the F-measure, calculation of these two values
using harmonic means a value is obtained as in Fig. 6. As the F-measure
becomes closer to one better performance is acquired.

14 Muhammed Maruf Öztürk, Ahmet Zengin

Fig. 6. Correlation between Precision and Recall

Table 4. Changes of precision of all data sets

Name Bayes% naive Bayes% J48% RandomForest%

ar1 -3 +2 +7 -12
ar3 +15 +5 0 0
ar4 +8 +17 +9 +9
ar5 0 0 0 0
ar6 0 0 +3 -3
cm1 -9 +6 +2 -1
jm1 -3 0 +2 -6
kc1 0 0 0 0
kc2 -4 0 +5 +1
kc3 -8 +3 +12 +4
pc1 +22 +3 -8 -1
pc2 +2 -4 +14 +4
pc3 -3 +24 -1 -11
pc4 -2 -5 0 -8
pc5 -1 0 0 0

4.3 Experimental Design

4.3.1 Experimental Conditions

We have investigated on 15 data sets, as seen in Table 2. These data were
prepared with the compliance of Weka used for data mining operations as
the format arff. Before the experimental design, preprocessing data sets were
run on the four different classifiers including Bayes, naiveBayes, J48 and ran-
domforest, consequently the results obtained from Weka were saved for the
comparison of with our algorithm. It is hard to investigate data sets as arff
due to the file format, so we have converted file formats to txt. Thus, using
parsing methods on the data sets, all operations specified in preprocessing have
been correctly conducted. Prior to the preprocessing predictor, performances
of the classifiers are seen in Table 7.

In binary classification problems, data sets are generally divided into 66%
training and 34% testing sets, or 10 fold cross-validation is used. Prior to
the preprocessing, selected algorithms yielded results using 66% training and
34% testing sets. This allocation changes depending on the size of the data
sets and the selection of the correct ratio is important in terms of prediction
performance. Performance of our proposed preprocessing algorithm has been

New findings on the use of static code attributes for defect prediction 15

measured with developed framework coded with C# that includes the Weka
library. The graphs of the analyses have been drawn with ZedGraph. Character
counts of all data sets were calculated; afterward all of them were added to
the metrics adding an attribute with the label ”cCount”.

4.4 Results

This section explores the ability of the classifiers to predict defects when ap-
plied not only on large data sets but also on data sets with few samples. After
applying the preprocessing algorithm to data sets presented in Fig. 4, the per-
formances of the predictors, including Bayes, naive Bayes, random forest and
J48 have been observed. As seen from Table 4, naive Bayes yielded a precision
enhancement of 0.24 on the data set of pc3. Due to the 40 attributes of pc3
from 1563 samples, we obtained better results than the first situation. Like-
wise, although jm1 data set includes 10878 samples, it did not have increased
success of predictors due to an insufficient number of attributes (for instance
20). This reveals the importance of attributes in the case of performance, while
predicting defects.

As the samples of data sets used in the experimental design reduce, the
reliability of the results of the analysis decreases. For instance, one of the data
sets is ar3 which has 63 samples. After preprocessing, this data set did not
produce a reliable result (100%) due to lack samples, as seen from Table 4.

Values of precision are shown from Fig. 7. In all these figures, the varia-
tion in the lines represents the changes of precision value across the data sets.
The precision scores of the data sets prior to the preprocessing and after the
preprocessing are recorded by a straight line and a dashed line respectively. In
such graphs, it would be desirable to overlap two lines. It is clear that naive
Bayes has yielded the best result in terms of overlapping. Bayes classifier in-
creased success of predictors on pc1, pc2, ar3, and but did not demonstrate
consistency in general. The best improvement on data sets resulted from using
random forest with 4% pc2 after preprocessing. Even though J48 had differ-
ent situations on all data sets, note that this algorithm features the minimum
breaking points when compared with others. Table 7 and Table 6 show the
AUC and error values of all data sets on four predictors before and after pre-
processing respectively. The overall AUC has been increased 3.91% on average.

In addition, all data sets were analyzed to understand how correlated
metric values might be. This analysis Spearman’s correlation measures the
strength of linear relationship of desired pairwise value. Correlation coefficient
rs changes between -1 and 1. If obtained result is close to ±1, this means
there is a strong monotonic relationship. Spearman correlation is a prefer-
able evaluation parameter for defect prediction works (Caglayan et al., 2015).
Complexity parameters cyclomatic complexity and v(g) were selected to in-
vestigate a pairwise analysis with cS to find out how effective low level metrics
on the defect-proneness of data sets. The results presented in Fig. 9-10 show
that the correlation between cS and complexity is monotonically increasing.

16 Muhammed Maruf Öztürk, Ahmet Zengin

Table 5. Split rates of the samples and F-Scores

Name Samples Count of values Set of training Set of Testing F-score

ar1 121 7471 79 42 0.873
ar3 63 3596 41 22 0.939
ar4 107 6603 70 37 0.757
ar5 36 2201 23 13 0.752
ar6 101 6231 66 35 0.766
cm1 327 12426 215 112 0.812
jm1 10885 500710 7184 3701 0.754
kc1 2109 96991 1391 718 0.798
kc2 522 23989 344 178 0.817
kc3 458 37515 302 156 0.845
pc1 1109 51014 731 378 0.754
pc2 5589 424726 3688 1901 0.978
pc3 1563 59394 1031 532 0.787
pc4 1458 113685 962 496 0.864
pc5 17186 1374840 11342 5844 0.963

Fig. 7. Comparison of all data sets for predictors

Rs values of the experiment change between 0.5-0.9. Obtained results are a
good indicator of the significance of class design in the density of defects.

5 Discussion

While performing the investigation, one of the discussion points was whether
repeated data of NASA MDP were in general. Results of the analysis show
that all data have roughly 66% repeated data points. However, it may not be
sufficient to say that there is a general bias on all data sets of NASA MDP
and SOFTLAB. It is difficult to validate our method so that NASA data sets

New findings on the use of static code attributes for defect prediction 17

Table 6. Results of AUC of four predictors after preprocessing

Data set Bayes naive Bayes RandomForest J48

Ar6 0,5 ± 0,131 0,563 ± 0,133 0,563 ± 0,133 0,58 ± 0,13
Cm1 0,514 ± 0,09 0,279 ± 0,09 0,27 ± 0,094 0,09 ± 0,06
Jm1 0,764 ± 0,01 0,569 ± 0,01 0,569 ± 0,01 0,58 ± 0,012
Kc1 0,571 ± 0,02 0,61 ± 0,02 0,61 ± 0,02 0,59 ± 0,02
Kc2 0,715 ± 0,051 0,65 ± 0,05 0,65 ± 0,05 0,71 ± 0,05
Kc3 0,64 ± 0,08 0,65 ± 0,08 0,65 ± 0,08 0,63 ± 0,08
Pc1 0,54 ± 0,012 0,56 ± 0,01 0,56 ± 0,01 0,58 ± 0,012
Pc2 0,66 ± 0,094 0,63 ± 0,09 0,63 ± 0,09 0,5 ± 0,09
Pc3 0,59 ± 0,0376 0,67 ± 0,03 0,67 ± 0,03 0,56 ± 0,03
Pc4 0,64 ± 0,04 0,68 ± 0,03 0,68 ± 0,03 0,72 ± 0,03
Pc5 0,86 ± 0,01 0,71 ± 0,02 0,71 ± 0,02 0,65 ± 0,02

Table 7. Results of AUC of four predictors before preprocessing

Data set Bayes naive Bayes RandomForest J48

Ar6 0,5 ± 0,131 0,58 ± 0,133 0,58 ± 0,133 0,58 ± 0,13
Cm1 0,542 ± 0,075 0,58 ± 0,07 0,58 ± 0,07 0,54 ± 0,07
Jm1 0,44 ± 0,013 0,18 ± 0,011 0,18 ± 0,011 0,16 ± 0,01
Kc1 0,582 ± 0,002 0,60 ± 0,02 0,60 ± 0,02 0,59 ± 0,02
Kc2 0,727 ± 0,05 0,65 ± 0,05 0,65 ± 0,05 0,71 ± 0,05
Kc3 0,15 ± 0,07 0,35 ± 0,09 0,35 ± 0,09 0,28 ± 0,08
Pc1 0,722 ± 0,05 0,46 ± 0,06 0,46 ± 0,06 0,29 ± 0,06
Pc2 0,75 ± 0,08 0,31 ± 0,13 0,31 ± 0,13 0-0
Pc3 0,732 ± 0,03 0,53 ± 0,04 0,53 ± 0,04 0,2 ± 0,03
Pc4 0,647 ± 0,04 0,68 ± 0,03 0,68 ± 0,03 0,72 ± 0,03
Pc5 0,86 ± 0,01 0,73 ± 0,02 0,73 ± 0,02 0,65 ± 0,02

are not representative for real world situations. We addressed this problem by
using SOFTLAB data sets that its data are from communication industry. In
this respect, our proposed method should attempt to validate on open source
of projects. To compare our work with Grays wok, data sets of other open
source modules were not involved to the experimental design.

Even though researches published in last five years are focused on process
metrics that yielded promising results (Rahman and Devanbu, 2013; Wiese
et al., 2014), code metrics have some gaps that are worthy to explore (Oliveira
et al., 2014; Zhang et al., 2014). One of them is the quality of defect data
sets. This quality is associated with the way of data collection. As the defect
data sets are generally prepared by combining all related developer’s com-
ments, they may have missing or noisy data points. In order to cope with
this problem, the data are re-sampled or reduced by using particular prepro-
cessing techniques. SMOTE is one of the widely used sampling strategies for
defect prediction (Pears et al., 2014). However it is sensible to combine a sam-
ple reduction method with an over-sampling technique (Chen et al., 2015). In
this respect, our method is distinctive that combines metric derivation with
cleansing of repeated data. Table 5 which indicates details of the experiment,
has similar F-scores yielded from the classification. F-scores are the mean of
weighted averages of the algorithms including Bayes, naive Bayes, Random-

18 Muhammed Maruf Öztürk, Ahmet Zengin

Fig. 8. Proportion of repeated data in experimental data sets

Table 8. One-way ANOVA results of the predictors.

ANOVA SS DF F P

Between 0,198033 3 3,432675 0,022828
Within 0,360567 25

Forest, and J48. This evaluation parameter is the harmonic mean of precision
and recall. These tests appear to be adequate to determine the difference of
samples both between each other and outside of groups. However, if the range
of attributes of the data sets changes, a different statistical method may be
required to trying.

ANOVA results of the experimental predictors are presented in Table 8.
Looking these results ((p = 0.02) < 0.05), we have noticed that all predictors
Bayes, naive Bayes, random forest, and J48 yielded different results.

6 Conclusion and Future Works

Regardless of the attributes of the data sets and their generation method, they
have repeated data points at a certain ratio. To detect these repeated data,
data sets should be exposed to a preprocessing prior to the prediction. Inher-
ently performed methods for defect prediction should be completed regarding
essential properties of binary classification. Removal of unsuitable data for bi-
nary classification may be a solution. However, every new data to be added to
data sets creates an adverse impact that leads to overfitting. This reduces the
success of learning.

It still remains unclear that whether data sets of other open source projects
have similar repeated data points, as in NASA MDP. We have detected in the
experimental design that all data set of NASA MDP and SOFTLAB have
repeated data points in a specific ratio. This ratio changes depending on the
type of the data set but was roughly detected as 17% on average as in Fig. 8.

New findings on the use of static code attributes for defect prediction 19

(a) ar1 (b) ar3

(c) ar4 (d) ar5

(e) ar6 (f) cm1

Fig. 9. Spearman correlations of data sets I

The use of low level metrics facilitates the detection of more data points
than the approach that uses traditional metrics. Therefore, the differential
capability of the used metrics has been increased. If defect data sets are not
derived from open source of projects, extending software metrics becomes dif-
ficult. At this point, new metrics can be derived by investigating relationships
of old metrics. We have added cS and cCout to the metrics using the LOC
total through the formula stated as in Section 3.3. Thus, we have unveiled
more repeated data points than after the preprocessing.

Using ANOVA, chi-square and t-test on data sets that were compared with
both in groups and out of groups, the extension of metrics was completed with
data that passed from these tests. Values of data sets having under a p-value
of 0.05 have been approved to our hypothesis.

The values of AUC of the proposed method with post preprocessing values
on four classifiers are shown from Table 6. These results indicate that the
cleansing-based approach outperforms the one without preprocessing. It is

20 Muhammed Maruf Öztürk, Ahmet Zengin

(a) jm1 (b) kc1

(c) kc2 (d) kc3

(e) pc1 (f) pc2

Fig. 10. Spearman correlations of data sets II

important to note that AUC figures of Bayes, random forest and J48 are
similar. However, the success of prediction has been increased in the pc3 data
set using naive Bayes with the ratio of 24%. This ratio is high when compared
with other predictors.

The success of the preprocessing affects classifying. Differentiating and
comprehending software modules more clearly provides precise training and
testing data sets. Future works may include new methods to derive of low
level metrics, and the proposed methods should be validated on open source
systems with manual examination.

References

Bell, R. M., Ostrand, T. J., and Weyuker, E. J. (2013). The limited impact of
individual developer data on software defect prediction. Empirical Software

New findings on the use of static code attributes for defect prediction 21

Engineering , 18(3), 478–505.
Caglayan, B., Turhan, B., Bener, A., Habayeb, M., Miransky, A., and Cialini,

E. (2015). Merits of organizational metrics in defect prediction: an industrial
replication. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, volume 2, pages 89–98. IEEE.

Calikli, G., Tosun, A., Bener, A., and Celik, M. (2009). The effect of granularity
level on software defect prediction. In Computer and Information Sciences,
2009. ISCIS 2009. 24th International Symposium on, pages 531–536. IEEE.

Chen, L., Fang, B., Shang, Z., and Tang, Y. (2015). Negative samples reduction
in cross-company software defects prediction. Information and Software
Technology , 62, 67–77.

Czibula, G., Marian, Z., and Czibula, I. G. (2014). Software defect prediction
using relational association rule mining. Information Sciences, 264, 260–
278.

Davis, J. and Goadrich, M. (2006). The relationship between precision-recall
and roc curves. In Proceedings of the 23rd international conference on Ma-
chine learning , pages 233–240. ACM.

Elish, K. O. and Elish, M. O. (2008). Predicting defect-prone software modules
using support vector machines. Journal of Systems and Software, 81(5),
649–660.

Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters,
27(8), 861–874.

Fenton, N. E. and Neil, M. (1999). A critique of software defect prediction
models. Software Engineering, IEEE Transactions on, 25(5), 675–689.

Gray, D., Bowes, D., Davey, N., Sun, Y., and Christianson, B. (2012). Reflec-
tions on the nasa mdp data sets. Software, IET , 6(6), 549–558.

Gray, D. P. H. (2013). Software defect prediction using static code metrics:
formulating a methodology.

Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. (2012). A sys-
tematic literature review on fault prediction performance in software engi-
neering. Software Engineering, IEEE Transactions on, 38(6), 1276–1304.

Halstead, M. H. (1977). Elements of software science, volume 7. Elsevier New
York.

He, P., Li, B., Liu, X., Chen, J., and Ma, Y. (2015). An empirical study on
software defect prediction with a simplified metric set. Information and
Software Technology , 59, 170–190.

Helén, M. and Virtanen, T. (2007). Query by example of audio signals using
euclidean distance between gaussian mixture models. In Acoustics, Speech
and Signal Processing, 2007. ICASSP 2007. IEEE International Conference
on, volume 1, pages I–225. IEEE.

Herzig, K., Just, S., and Zeller, A. (2013). It’s not a bug, it’s a feature:
how misclassification impacts bug prediction. In Proceedings of the 2013
International Conference on Software Engineering , pages 392–401. IEEE
Press.

Keivanloo, I., Forbes, C., Hmood, A., Erfani, M., Neal, C., Peristerakis, G., and
Rilling, J. (2012). A linked data platform for mining software repositories. In

22 Muhammed Maruf Öztürk, Ahmet Zengin

Mining Software Repositories (MSR), 2012 9th IEEE Working Conference
on, pages 32–35. IEEE.

Kim, D., Tao, Y., Kim, S., and Zeller, A. (2013). Where should we fix this bug?
a two-phase recommendation model. Software Engineering, IEEE Transac-
tions on, 39(11), 1597–1610.

Kim, S., Zhang, H., Wu, R., and Gong, L. (2011). Dealing with noise in
defect prediction. In Software Engineering (ICSE), 2011 33rd International
Conference on, pages 481–490. IEEE.

Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. (2008). Benchmarking
classification models for software defect prediction: A proposed framework
and novel findings. Software Engineering, IEEE Transactions on, 34(4),
485–496.

Li, M., Zhang, H., Wu, R., and Zhou, Z.-H. (2012). Sample-based software
defect prediction with active and semi-supervised learning. Automated Soft-
ware Engineering , 19(2), 201–230.

Liebchen, G. A. and Shepperd, M. (2008). Data sets and data quality in
software engineering. In Proceedings of the 4th international workshop on
Predictor models in software engineering , pages 39–44. ACM.

Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., and Baldi, P.
(2009). Sourcerer: mining and searching internet-scale software repositories.
Data Mining and Knowledge Discovery , 18(2), 300–336.

Madeyski, L. and Jureczko, M. (2015). Which process metrics can significantly
improve defect prediction models? an empirical study. Software Quality
Journal , 23(3), 393–422.

McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE
Transactions on, (4), 308–320.

Menzies, T., K. R. P. D. (2015). The promise repository of empirical software
engineering data.

Menzies, T. and Koru, G. (2013). Predictive models in software engineering.
Empirical Software Engineering , 18(3), 433.

Menzies, T., Greenwald, J., and Frank, A. (2007). Data mining static code
attributes to learn defect predictors. Software Engineering, IEEE Transac-
tions on, 33(1), 2–13.

Oliveira, P., Valente, M. T., and Paim Lima, F. (2014). Extracting relative
thresholds for source code metrics. In Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-
IEEE Conference on, pages 254–263. IEEE.

Pears, R., Finlay, J., and Connor, A. M. (2014). Synthetic minority over-
sampling technique (smote) for predicting software build outcomes. arXiv
preprint arXiv:1407.2330 .

Rahman, F. and Devanbu, P. (2013). How, and why, process metrics are
better. In Proceedings of the 2013 International Conference on Software
Engineering , pages 432–441. IEEE Press.

Rajesh Vasa, M. L. and Jones, A. (2010). Helix - Software Evolution Data
Set.

New findings on the use of static code attributes for defect prediction 23

Ren, J., Qin, K., Ma, Y., and Luo, G. (2014). On software defect prediction
using machine learning. Journal of Applied Mathematics, 2014.

Shepperd, M., Song, Q., Sun, Z., and Mair, C. (2013). Data quality: Some
comments on the nasa software defect datasets. Software Engineering, IEEE
Transactions on, 39(9), 1208–1215.

Song, Q., Jia, Z., Shepperd, M., Ying, S., and Liu, S. Y. J. (2011). A gen-
eral software defect-proneness prediction framework. Software Engineering,
IEEE Transactions on, 37(3), 356–370.

Succi, G., Pedrycz, W., Stefanovic, M., and Miller, J. (2003). Practical as-
sessment of the models for identification of defect-prone classes in object-
oriented commercial systems using design metrics. Journal of Systems and
Software, 65(1), 1–12.

Verma, R. and Gupta, A. (2012). Software defect prediction using two level
data pre-processing. In Recent Advances in Computing and Software Sys-
tems (RACSS), 2012 International Conference on, pages 311–317. IEEE.

Wang, H., Khoshgoftaar, T. M., and Seliya, N. (2011). How many software
metrics should be selected for defect prediction? In Twenty-Fourth Interna-
tional FLAIRS Conference.

Wang, S. and Yao, X. (2013). Using class imbalance learning for software
defect prediction. Reliability, IEEE Transactions on, 62(2), 434–443.

Weyuker, E. J., Ostrand, T. J., and Bell, R. M. (2008). Do too many cooks
spoil the broth? using the number of developers to enhance defect prediction
models. Empirical Software Engineering , 13(5), 539–559.

Wiese, I. S., Côgo, F. R., Ré, R., Steinmacher, I., and Gerosa, M. A. (2014).
Social metrics included in prediction models on software engineering: a map-
ping study. In Proceedings of the 10th International Conference on Predictive
Models in Software Engineering , pages 72–81. ACM.

Zhang, F., Mockus, A., Keivanloo, I., and Zou, Y. (2014). Towards building
a universal defect prediction model. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 182–191. ACM.

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., and Murphy, B. (2009).
Cross-project defect prediction: a large scale experiment on data vs. domain
vs. process. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering , pages 91–100. ACM.

