
Electrical Engineering and Computer Science Department

Technical Report
NU-EECS-16-12

September 8, 2016

Hybrid Runtime Systems

Kyle C. Hale

Abstract

As parallelism continues to increase in ubiquity—from mobile devices and GPUs to
datacenters and supercomputers—parallel runtime systems occupy an increasingly impor-
tant role in the system software stack. The needs of parallel runtimes and the increasingly
sophisticated languages and compilers they support do not line up with the services pro-
vided by general-purpose OSes. Furthermore, the semantics available to the runtime are
lost at the system-call boundary in such OSes. Finally, because a runtime executes at user-
level in such an environment, it cannot leverage hardware features that require kernel-mode
privileges—a large portion of the functionality of the machine is lost to it. These limita-
tions warp the design, implementation, functionality, and performance of parallel runtimes.
I make the case for eliminating these compromises by transforming parallel runtimes into

This work was made possible by support from the United States National Science Foundation through grants
CCF-1533560 and CNS-0709168, from the United States Department of Energy through grant number DE-
SC0005343, and from Sandia National Laboratories through the Hobbes Project, which is funded by the
2013 Exascale Operating and Runtime Systems Program under the Office of Advanced Scientific Computing
Research in the DoE’s Office of Science.

hybrid runtimes (HRTs), runtimes that run as kernels, and that enjoy full hardware access
and control over abstractions to the machine. The primary claim of this dissertation is
that the hybrid runtime model can provide significant benefits to parallel runtimes and the
applications that run on top of them.

I demonstrate that it is feasible to create instantiations of the hybrid runtime model by
doing so for four different parallel runtimes, including Legion, NESL, NDPC (a home-
grown language), and Racket. These HRTs are enabled by a kernel framework called
Nautilus, which is a primary software contribution of this dissertation. A runtime ported
to Nautilus that acts as an HRT enjoys significant performance gains relative to its ROS
counterpart. Nautilus enables these gains by providing fast, light-weight mechanisms for
runtimes. For example, with Legion running a mini-app of importance to the HPC commu-
nity, we saw speedups of up to forty percent. We saw further improvements by leveraging
hardware (interrupt control) that is not available to a user-space runtime.

In order to bridge Nautilus with a “regular OS” (ROS) environment, I introduce a con-
cept we developed called the hybrid virtual machine (HVM). Such bridged operation allows
an HRT to leverage existing functionality within a ROS with low overheads. This simplifies
the construction of HRTs.

In addition to Nautilus and the HVM, I introduce an event system called Nemo, which
allows runtimes to leverage events both with a familiar interface and with mechanisms that
are much closer to the hardware. Nemo enables event notification latencies that outperform
Linux user-space by several orders of magnitude.

Finally, I introduce Multiverse, a system that implements a technique called automatic
hybridization. This technique allows runtime developers to more quickly adopt the HRT
model by starting with a working HRT system and incrementally moving functionality from
a ROS to the HRT.

Keywords: Hybrid Runtimes, Parallelism, Operating Systems, High-Performance Com-
puting

NORTHWESTERN UNIVERSITY

Hybrid Runtime Systems

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Kyle C. Hale

EVANSTON, ILLINOIS

August 2016

2

c© Copyright by Kyle C. Hale 2016

All Rights Reserved

3

Thesis Committee

Peter A. Dinda
Northwestern University

Committee Chair

Nikos Hardavellas
Northwestern University

Committee Member

Russ Joseph
Northwestern University

Committee Member

Fabián E. Bustamante
Northwestern University

Committee Member

Arthur B. Maccabe
Oak Ridge National Laboratory

External Committee Member

4

Abstract

Hybrid Runtime Systems

Kyle C. Hale

As parallelism continues to increase in ubiquity—from mobile devices and GPUs to

datacenters and supercomputers—parallel runtime systems occupy an increasingly impor-

tant role in the system software stack. The needs of parallel runtimes and the increasingly

sophisticated languages and compilers they support do not line up with the services

provided by general-purpose OSes. Furthermore, the semantics available to the runtime

are lost at the system-call boundary in such OSes. Finally, because a runtime executes

at user-level in such an environment, it cannot leverage hardware features that require

kernel-mode privileges—a large portion of the functionality of the machine is lost to it.

These limitations warp the design, implementation, functionality, and performance of

parallel runtimes. I make the case for eliminating these compromises by transforming

parallel runtimes into hybrid runtimes (HRTs), runtimes that run as kernels, and that enjoy

full hardware access and control over abstractions to the machine. The primary claim

5

of this dissertation is that the hybrid runtime model can provide significant benefits to

parallel runtimes and the applications that run on top of them.

I demonstrate that it is feasible to create instantiations of the hybrid runtime model

by doing so for four different parallel runtimes, including Legion, NESL, NDPC (a home-

grown language), and Racket. These HRTs are enabled by a kernel framework called

Nautilus, which is a primary software contribution of this dissertation. A runtime ported

to Nautilus that acts as an HRT enjoys significant performance gains relative to its ROS

counterpart. Nautilus enables these gains by providing fast, light-weight mechanisms

for runtimes. For example, with Legion running a mini-app of importance to the HPC

community, we saw speedups of up to forty percent. We saw further improvements by

leveraging hardware (interrupt control) that is not available to a user-space runtime.

In order to bridge Nautilus with a “regular OS” (ROS) environment, I introduce a

concept we developed called the hybrid virtual machine (HVM). Such bridged operation

allows an HRT to leverage existing functionality within a ROS with low overheads. This

simplifies the construction of HRTs.

In addition to Nautilus and the HVM, I introduce an event system called Nemo, which

allows runtimes to leverage events both with a familiar interface and with mechanisms

that are much closer to the hardware. Nemo enables event notification latencies that

outperform Linux user-space by several orders of magnitude.

Finally, I introduce Multiverse, a system that implements a technique called automatic

hybridization. This technique allows runtime developers to more quickly adopt the HRT

model by starting with a working HRT system and incrementally moving functionality

from a ROS to the HRT.

6

Acknowledgments

When I first embarked on the road to research, I considered myself an ambitious individual.

Little did I know that personal ambitions and aspirations comprise a relatively minor

fraction of the conditions required to pursue an academic career. I have found that the

incredible amount of support so generously offered by my mentors, my friends, and my

family has been far more important than anything else. I cannot hope to thank everyone

who has shaped me as an individual and led me to where I am, but I will attempt here to

name a few that stand out.

I first thank my advisor, Professor Peter Dinda, for his encouragement and advice

during my studies at Northwestern. I find it inadequate to just call him my advisor, as it

understates the role he has played in guiding my development, both intellectually and per-

sonally. Peter embodies all the qualities of a true mentor, from his seemingly inexhaustible

supply of patience to his extraordinary ability to cultivate others’ strengths. Before meet-

ing him, I had never encountered a teacher so genuinely dedicated to advocating for his

students and their success. I can only hope to uphold the same standards of mentorship.

I would also like to thank my other dissertation committee members. Nikos Hardavellas

has always had an open door for brainstorming sessions and advice. Russ Joseph similarly

7

has always been willing to take the time to help, always with an uplifting note of humor

and a smile. Fabián Bustamante has throughout been a source of candid conversation and

genuine advice. Barney Maccabe has been an indispensable colleague and has always

made me feel welcome in the HPC community.

Two very important people who gave me the benefit of the doubt when I started doing

research deserve special thanks. Steve Keckler and Boris Grot not only advised me as an

undergraduate, they also helped me discover confidence in myself that I never thought I

had. I also owe thanks to Calvin Lin and the Turing Scholars Program at The University of

Texas for planting the seeds for my interest in research in computer systems.

To FranCee Brown McClure and all of the other Ronald E. McNair scholars, I could not

have made it to this point without you.

I must also thank Kevin Pedretti and Patrick Bridges for helping make my stint in New

Mexico an enjoyable one, and for making me feel at home in the Southwest. To Jack Lange

I am grateful for being able to enjoy the solidarity of a fellow Texan who also braved the

cold Chicago winters to earn a doctorate.

Several members of the Prescience Lab, both former and present, deserve thanks for

their assistance, including Conor Hetland, Lei Xia, and Chang Bae.

While the friends that have supported me through the years are too numerous to name,

some stand out in helping me survive graduate school. I have Leonidas Spinoulas, Luis

Pestaña, Armin Kappeler, and Jaime Espinosa to thank for broadening my horizons and

bringing me out of my shell. I am ever grateful to John Rula for being a fantastic roommate,

a loyal friend, and a willing participant in what others would consider outlandish intel-

lectual discussions. Office life in graduate school would not have been the same without

Maciek Swiech and Marcel Flores, who were both crucial sources of lighthearted antics,

8

fascinating discussions, and delicious Matt Newtons. I will sincerely miss having you all

around. I have to thank Jose Rodriguez, Spencer Cook, and Trevor Cook as well for their

friendship and for expanding my intellectual horizons to radically different areas.

My family has been instrumental in their constant encouragement and unyielding

confidence in me. I am truly lucky to have such unwavering support, and no words are

enough to thank them. I am ever grateful to my mother, Mary Catherine Hale, who always

seemed to guide me in the right direction and who believed in me even when I could

not believe in myself. To my father, Chris Hale, who taught me to be curious and how to

appreciate the value of hard work and determination. To my sister Stacy Hale, who colored

my imagination and instilled in me a sense of wonder. To my grandmother Catherine Hill,

who has always been a voice of comfort, and who incidentally helped me write my first

research paper. To my uncle, Mark Hill, who first introduced me to computers and likely

brought out the nerd in me.

Finally, I would like to thank Leah Pickett for her unconditional love and support, her

profound kindness, and her steadfast encouragement, without which I could not have

finished the long journey towards a Ph.D.

9

Preface

At the time of this writing, the United States Department of Energy (DoE) had begun

to take significant steps to catalyze research and development focused on realizing a

supercomputer system operating at an ExaFLOP (1018 FLOPs), with the intention of

having the machine come online roughly in the 2020 time frame. This effort is now

colloquially referred to as “Exascale.” The work described in this dissertation largely fits

within the context of that effort. The DoE determined that focus in various sub-areas in

high-performance computing would be necessary to make this goal possible. Researchers

in one such area were given the task of exploring new system software directions—mainly

at the level of the operating system and runtime system (OS/R)—for the Exascale machine.

The work on hybrid runtimes discussed in this text was primarily carried out with funding

from the Hobbes project1 (one of the large multi-institutional projects in the OS/R group)

and with funding from the National Science Foundation2. Readers aware of other lines

of investigation within Hobbes will find that this work lies on the more exploratory side

of that effort. I will note that it began as a toy project, and only started in earnest as a
1Provided from Sandia National Laboratories and funded by the 2013 Exascale Operating and Run-

time Systems Program under the Office of Advanced Scientific Computing Research in the United States
Department of Energy’s Office of Science, http://hobbes.xstack.sandia.gov

2United States National Science Foundation, grant number CCF-1533560

http://hobbes.xstack.sandia.gov

10

research project after a rather fortuitous, ad hoc brainstorming session with my advisor.

The earlier work described in the appendices was carried out within the context of the

V3VEE project3, an effort targeted at building a modern virtual machine monitor (VMM)

framework for high-performance systems. Both the GEARS and guarded module systems

were developed with support from the NSF4 and the DoE5.

This dissertation will be of broad interest to those interested in the structure of system

software aimed at massive parallelism. While the supercomputing arena has faced the

significant challenges of parallelism for some time now, parallelism has already become

pervasive in commodity devices, including desktop machines and mobile devices. Con-

temporary desktop and server machines often employ eight or more CPU cores. High-end

servers available on the market now have more than one hundred cores. I expect the trend

of increasing levels of parallelism to continue, along with the need for exploratory efforts

in system software targeting parallelism.

This text may also be useful as a reference for those interested in low-level benchmark-

ing of kernel components and for those intrigued by the role of the runtime systems in the

context of the larger system software stack.

The contents of Chapter 3 were published in the proceedings of the 24th International

ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC) in

June of 2015. The contents of Chapter 5 appeared originally in the proceedings of the 12th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments in

April of 2016. A portion of the work that appears in that chapter was carried out with the

help of Madhav Suresh and Conor Hetland, and the design of the hybrid virtual machine
3http://v3vee.org
4NSF grant number CNS-0709168
5DoE grant number DE-SC0005343

http://v3vee.org

11

is primarily due to my advisor, Peter Dinda. The material in Chapter 7 was first published

in the proceedings of HPDC 2016, and was co-authored with Conor Hetland. The contents

of Appendix B first appeared in the proceedings of the 9th ACM International Conference

on Autonomic Computing (ICAC) in September of 2012, and was carried out with the

assistance of Lei Xia. The work on guarded modules, which appears in Appendix C, was

first published in the proceedings of ICAC in June of 2014.

12

List of Abbreviations

ABI Application Binary Interface

ACPI Advanced Configuration and Power Interface

ADT Action Descriptor Table

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

AVX Advanced Vector Extensions (Intel ISA)

BAR Base Address Register

BIOS Basic Input/Output System

BSP Bootstrap Processor

CDF Cumulative Distribution Function

CMP Chip Multiprocessor

CPU Central Processing Unit

CUDA Compute Unified Device Architecture (NVIDIA)

DMA Direct Memory Access

DOE Department of Energy

DVFS Dynamic Voltage and Frequency Scaling

13

ELF Executable and Linkable Format

FLOPS Floating Point Operations Per Second

GDT Global Descriptor Table

GEARS Guest Examination and Revision Services

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HAL Hardware Abstraction Layer

HPC High-Performance Computing

HPET High-Precision Event Timer

HRT Hybrid Runtime

HVM Hybrid Virtual Machine

ICR Interrupt Command Register

IDT Interrupt Descriptor Table

IOAPIC I/O Advanced Programmable Interrupt Controller

IOMMU Input-Output Memory Management Unit

IPC Inter-Process Communication

IPI Inter-Processor Interrupt

IRQ Interrupt Request

IST Interrupt Stack Table

JIT Just-in-Time (compilation)

LWK Lightweight Kernel

MPI Message Passing Interface

MPSS Manycore Platform Software Stack (Intel Xeon Phi)

MSI Message Signaled Interrupt

14

MSR Model-Specific Register

MTU Maximum Transmission Unit

NIC Network Interface Card

NPTL Native POSIX Thread Library

NUMA Non-Uniform Memory Access

OS Operating System

PC Program Counter

PCI Peripheral Component Interconnect

PDE Partial Differential Equation

PGAS Partitioned Global Addres Space

POSIX Portable Operating System Interface

RAM Random Access Memory

RDMA Remote Direct Memory Access

ROS Regular Operating System

RTM Restricted Transactional Memory (Intel ISA)

SASOS Single Address Space Operating System

SIMD Single Instruction Multiple Data

SIPI Startup Inter-Processor Interrupt

TCP Transmission Control Protocol

TLB Translation Lookaside Buffer

TSC Time Stamp Counter

TSS Task State Segment

TSX Transactional Synchronization Extensions (Intel

ISA)

15

UDP User Datagram Protocol

VM Virtual Machine

VMM Virtual Machine Monitor

16

Dedication
To all who inspired me.

Sine te nihil sum.

17

Table of Contents

Table of Contents 17

List of Figures 23

1 Introduction 27

1.1 Runtime Systems . 29

1.2 Regular Operating Systems . 31

1.3 Lightweight Kernels . 32

1.4 Issues with Runtimes, ROSes, and LWKs . 33

1.5 Hybrid Runtimes . 35

1.6 Benefits and Drawbacks of HRTs . 37

1.7 Systems to Support and Evaluate the HRT Model 38

1.7.1 Nautilus . 39

1.7.2 Hybrid Virtual Machines . 39

1.7.3 Nemo Event System . 40

1.7.4 Multiverse Toolchain . 40

1.8 Results . 41

18

1.9 Outline of Dissertation . 42

2 Regular Operating Systems 44

2.1 ROS Kernels . 45

2.2 ROS Kernel Architecture . 47

2.2.1 Ringed Organization . 49

2.2.2 Architecture Independence . 49

2.2.3 Modules and Drivers . 50

2.3 Kernel Abstractions . 51

2.3.1 Processes . 51

2.3.2 Address Spaces . 53

2.3.3 Threads . 54

2.3.4 Files and Directories . 55

2.3.5 Communication . 56

2.3.6 Synchronization and Mutual Exclusion Primitives 58

2.4 Operation . 60

2.5 Lightweight Kernels . 62

2.6 Virtualization . 64

2.7 Limitations . 66

3 Hybrid Runtime Model 69

3.1 Argument . 69

3.2 Nautilus . 73

3.3 Example: Legion . 75

3.3.1 Evaluation . 77

19

3.3.2 Legion Circuit Simulator . 79

3.3.3 Legion HPCG . 81

3.4 Example: NESL . 82

3.5 Example: NDPC . 84

3.6 Conclusions . 86

4 Nautilus Aerokernel Framework 88

4.1 Nautilus . 89

4.2 Design . 90

4.2.1 Threads . 91

4.2.2 Synchronization and Events . 92

4.2.3 Topology and Memory Allocation . 93

4.2.4 Paging . 94

4.2.5 Timers . 96

4.2.6 Interrupts . 96

4.2.7 API for Porting . 96

4.3 Xeon Phi . 97

4.4 Microbenchmarks . 97

4.4.1 Threads . 98

4.4.2 Events . 102

4.5 Conclusion . 104

5 Hybrid Virtual Machines 105

5.1 Deployment . 106

5.2 Model . 107

20

5.3 Protection . 109

5.4 Merged Address Space . 110

5.5 Communication . 111

5.6 Boot and Reboot . 113

5.7 Conclusion . 116

6 Nemo Event System 117

6.1 Limits of Event Notifications . 119

6.1.1 Runtime Events . 120

6.1.2 Microbenchmarks . 121

6.1.3 Discussion . 126

6.2 Nemo Events . 127

6.2.1 Kernel-mode Condition Variables . 129

6.2.2 IPIs and Active Messages . 133

6.3 Towards Improving the Hardware Limit . 137

6.4 Conclusions . 144

7 Multiverse Toolchain 146

7.1 Multiverse . 148

7.1.1 Perspectives . 148

7.1.2 Techniques . 148

7.1.3 Usage models . 151

7.1.4 Aerokernel Overrides . 154

7.1.5 Toolchain . 155

7.2 Implementation . 155

21

7.2.1 Multiverse Runtime Initialization . 155

7.2.2 Execution Model . 157

7.2.3 Event Channels . 160

7.2.4 Merged Address Spaces . 161

7.2.5 Nautilus Additions . 162

7.2.6 Complexity . 164

7.3 Evaluation . 165

7.3.1 Racket . 165

7.4 Conclusions . 170

8 Related Work 172

8.1 Hybrid Runtimes . 172

8.1.1 Kernel Design . 172

8.1.2 Revival of Exokernel Ideas . 179

8.1.3 Operating Systems Targeting HPC . 180

8.1.4 Parallel Languages and Runtimes . 180

8.2 Nemo Event System . 184

8.3 HVM and Multiverse . 185

9 Conclusion 188

9.1 Summary of Contributions . 190

9.2 Future Work . 194

9.2.1 Hybrid Runtimes . 194

9.2.2 Nautilus . 195

9.2.3 OS Architectures . 196

22

9.2.4 Languages . 197

References 198

Appendices 216

A OS Issues as Stated by Legion Runtime Developers 217

B GEARS 222

B.1 Guest-context Virtual Services . 224

B.2 GEARS Design and Evaluation . 227

B.3 VNET/P Accelerator . 231

B.4 MPI Accelerator . 234

B.5 Conclusions . 239

C Guarded Modules 240

C.1 Trust and Threat Models; Invariants . 242

C.2 Design and Implementation . 244

C.3 Evaluation . 249

C.4 Selectively Privileged PCI Passthrough . 252

C.5 Selectively Privileged MWAIT . 256

C.6 Conclusions . 258

23

List of Figures

1.1 Typical system organization . 34

1.2 HRT system organization . 35

2.1 Ringed architecture . 48

2.2 Architecture independence . 50

2.3 Address space of a Linux process . 52

3.1 Overview of hybrid runtime (HRT) approach . 72

3.2 Lines of code in Nautilus for Legion, NDPC, and NESL 74

3.3 Legion architecture . 76

3.4 Running time of Legion circuit simulator . 78

3.5 Legion circuit simulator speedup in Nautilus . 79

3.6 Legion circuit speedup with interrupt control . 80

3.7 Nautilus speedup of Legion HPCG . 82

3.8 Source lines of code for NESL . 82

3.9 Source lines of code for NDPC . 84

4.1 Structure of Nautilus . 90

24

4.2 TLB misses for HPCG . 95

4.3 Thread creation latency . 98

4.4 Thread context switch latency . 100

4.5 Event wakeup latency . 101

4.6 CDF of IPI one-way latencies . 103

5.1 Merged address space . 110

5.2 Round-trip latencies of ROS↔HRT interactions (x64) 112

5.3 HRT reboot latencies in context (x64) . 114

6.1 Unicast event wakeups . 121

6.2 Broadcast event wakeups . 124

6.3 Broadcast deviations vs. IPIs (x64) . 125

6.4 Broadcast deviations vs. IPIs (phi) . 126

6.5 CDF of unicast IPI latency (x64) . 127

6.6 CDF of unicast IPI latency (phi) . 128

6.7 Nemo unicast event mechanisms (x64) . 130

6.8 Nemo unicast event mechanisms (phi) . 131

6.9 Nemo broadcast events (x64) . 132

6.10 Nemo broadcast events (phi) . 133

6.11 CDF of Nemo broadcast wakeups (x64) . 134

6.12 CDF of Nemo broadcast wakeups (phi) . 135

6.13 Nemo Active Message event wakeups . 135

6.14 CDF of Nemo unicast Active Message events (x64) 137

6.15 CDF of Nemo unicast Active Message events (phi) 138

25

6.16 Broadcast latency of Nemo Active Message events 139

6.17 CDF of Nemo broadcast Active Message events (x64) 139

6.18 CDF of Nemo broadcast Active Message events (phi) 140

6.19 CDF of unicast IPIs vs. memory polling (x64) . 141

6.20 IPI cost breakdown (x64) . 141

6.21 CDF of “remote syscall” mechanism . 143

7.1 Split execution in Multiverse . 150

7.2 Round-trip latencies of ROS↔HRT interactions 150

7.3 User code in the accelerator model . 152

7.4 Accelerator model code with overrides . 154

7.5 Nautilus boot process . 156

7.6 Interactions within an execution group . 158

7.7 Source Lines of Code for Multiverse . 164

7.8 System utilization for Racket benchmarks . 165

7.9 Performance of Racket benchmarks . 167

7.10 Multiverse event forwarding overheads . 169

7.11 Performance of nbody and spectral-norm benchmarks 169

B.1 GEARS services in two parts . 226

B.2 Selective exiting syscall latency (getpid) . 229

B.3 GEARS implementation complexity . 230

B.4 Implementation of prototype VNET/P Accelerator 232

B.5 Implementation complexity of VNET/P Accelerator 233

B.6 VNET/P Accelerator results . 233

26

B.7 Implementation of MPI Accelerator for co-located VMs 236

B.8 Performance of MPI Accelerator . 237

B.9 Implementation complexity of MPI Accelerator 238

C.1 Guarded module big picture . 245

C.2 Guarded module operation . 247

C.3 Entry wrapper for valid entry point . 248

C.4 Border Control . 249

C.5 Privilege change cost with stack integrity checks 250

C.6 Selectively privileged operation of PCI device . 253

C.7 Border crossings for NIC example . 255

C.8 Direct access to MWAIT . 257

27

Chapter 1

Introduction

Modern parallel runtimes are systems that operate in user mode and run above the system

call interface of a general-purpose kernel. While this facilitates portability and simplifies

the creation of some functionality, it also has consequences that warp the design and

implementation of the runtime and affect its performance, efficiency, and scalability. First,

the runtime is deprived of the use of hardware features that are available only in kernel

mode. This is a large portion of the machine. The second consequence is that the runtime

must use the abstractions provided by the kernel, even if the abstractions are inadequate.

For example, the runtime might need subset barriers, and be forced to build them out of

mutexes. Finally, the kernel has minimal access to the information available to the parallel

runtime or to the language implementation it supports. For example, the runtime might

not require coherence, but get it anyway.

The complexity of modern hardware is rapidly growing. In high-end computing, it is

widely anticipated that Exascale machines will have at least 1000-way parallelism at the

node level. Even today’s high-end homogeneous nodes, such as the one used for several

evaluations in this dissertation, have 64 or more cores or hardware threads arranged on

28

top of a complex intertwined cache hierarchy that terminates in 8 or more memory zones

with non-uniform access. Today’s heterogeneous nodes include accelerators, such as the

Intel Xeon Phi, that introduce additional coherence domains and memory systems. Server

platforms for cloud and datacenter computing, and even desktop and mobile platforms are

seeing this simultaneous explosion of hardware complexity and the need for parallelism

to take advantage of the hardware. How to make such complex hardware programmable,

in parallel, by mere humans is an acknowledged open challenge.

Some modern runtimes, such as the Legion runtime [21, 189], already address this chal-

lenge by creating abstractions that programmers or the compilers of high-level languages

can target. Very high-level parallel languages can let us further decouple the expression of

parallelism from its implementation. Parallel runtimes such as Legion, and the runtimes

for specific parallel languages share many properties with operating system (OS) kernels,

but suffer by not being kernels. With current developments, particularly in virtualization

and hardware partitioning (discussed in Section 8.1.1), we are in a position to remove

this limitation. In this dissertation, I make the claim that transforming parallel runtime

systems into kernels can be advantageous for performance and functionality. I report

on a new model called the hybrid runtime (HRT), which is a combination of a parallel

runtime, the applications it supports, and a kernel, which has full access to hardware and

control over abstractions to that hardware. This dissertation focuses on the claim that the

hybrid runtime model can provide significant benefits, both in terms of performance and

functionality, to parallel runtimes.

29

1.1 Runtime Systems

Ambiguities in the naming of system software layers warrant a clear, succinct definition for

the term runtime system, as much of this dissertation depends on not just what a runtime

system is, but also on the issues that arise in its design and implementation.

I will use the following definition throughout this text:

Definition 1.1.1. A runtime system is a user-level software component that mediates

between a user-supplied program and its execution environment (namely, the OS and the

hardware). It may or may not implement features of a high-level programming language.

It may be invoked explicitly by a user program or implicitly via invocations inserted by a

compiler.

This definition deserves some elaboration. Note that I have inserted the term user-level

here. This is primarily for precision, and to eliminate the inclusion of operating systems

in the same category, as they share many attributes with runtimes. One simple way to

differentiate them is to realize that—barring the presence of virtualization—there is one

operating system present on the machine, but there may be many runtime systems. Exam-

ples include the Python runtime system and Java’s runtime system. Both of these runtimes

mediate interactions with the operating system by issuing system calls based on invoca-

tions in the program—for example, opening a file. Both also implement features of the

programming languages they support—for example, by managing memory automatically.

Both also implement an execution model distinct from the underlying OS.

The last point of Definition 1.1.1 is instructive in understanding the confusion attached

to runtime systems, as they are, in most cases, implicitly invoked. That is, the programmer

30

need not be aware of the details of the runtime system’s operation, or in many cases even

its presence. This is the case for the C runtime system, which is primarily invoked via the

operating system or via invocations inserted at the binary level by the C compiler. Other

runtimes like Legion [21] execute only after being explicitly invoked by the programmer.

Using this definition, the underlying machinery that implements a framework, such as

MapReduce [63], may also qualify as a runtime system. In the case of MapReduce, the

map and reduce functions, supplied by the user, can be thought of as the program, and the

underlying machinery that manages the execution of those functions across a cluster can

be thought of as a runtime system.

While runtime systems can vary widely in the services they provide, some common

examples include memory management, execution models not natively provided by the

OS (such as user-level threads), dynamic linking of program components (or modules),

event handling, Just-in-time (JIT) compilation, user-level task scheduling, and so on. The

nature of such services will become important in Chapter 3, when I discuss parallel runtime

systems.

Operating systems can provide similar services, and this can precipitate incompati-

bilities, some of which I outlined earlier in this chapter. For example, a runtime system

implementing a bulk-synchronous, parallel execution model might require deterministic

timing between threads, but the OS might not guarantee such operation natively. In another

example, a runtime that has high-level semantic knowledge of memory access patterns

might be at odds with an operating system that provides an unpredictable, demand-paged

virtual memory system.

31

1.2 Regular Operating Systems

OSes have evolved rapidly over the last half century as computer systems became more

programmable. I will provide a brief introduction to modern OSes in Chapter 2. In this

section, I will provide some brief background on parts of the operating system architecture

that motivate the HRT concept.

Most modern, general-purpose OSes (I will refer to these from this point forward as

regular operating systems, or ROS) separate execution into two major privilege modes,

user-mode and kernel-mode. This allows the ROS kernel to form a root of trust that can safely

manage the system and keep it running, even in the face of faulty or malicious user-space

programs.

A ROS will also typically provide several abstractions that make it easier to program

and use the machine. These include virtual memory, processes (for multi-programmed

operation), threads, files, system calls, and more. Most ROSes also expose a limited API

to applications to make programming more convenient. Such APIs are typically exposed

to applications in the form of system calls. In addition to abstractions and APIs, a ROS

will often include a varied assortment of device drivers to make them compatible with

many systems with diverse hardware. To simplify the base kernel, device drivers and

components that may not be necessary to a wide user base are often provided in the form

of loadable kernel modules. This is true of most ROSes, including Linux, macOS, and

Windows.

Most ROSes are designed to be highly modular, and will include hardware abstraction

layers that make them portable across many different systems. Even so, they provide

adequate performance to a wide array of applications. However, this portability does

32

come at a cost, and—in addition to other features—contributes to their being suboptimal

for many high-performance systems, especially those designed to exploit massive levels of

parallelism.

1.3 Lightweight Kernels

In a high-performance computing environment, such as a supercomputer, the execution of

the application takes foremost precedence. Large-scale parallel applications can run on

these systems for months at a time, and overheads in their execution can become magnified

do to their scale both in time and space.

An important example is an application written in the bulk-synchronous parallel

model (BSP) [85], wherein processes within the application compute in parallel, perform

a communication step to gather results in some manner, then continue. If one node

experiences a perturbation (for example, from the OS handling an interrupt from a device),

all the other nodes must wait as well. Execution, therefore, proceeds at the pace of the

slowest compute node. If this occurs regularly (it often does), and the effect is multiplied

across thousands of nodes (it often is), the amount of wasted compute time can become

considerable [74, 75, 101].

Nondeterministic perturbations like the interrupt example mentioned above are a

hallmark of program execution within a ROS. To tackle this problem, OS researchers in

the HPC community answered with a simplified kernel design called a lightweight kernel

(LWK). LWKs forego much of the functionality present in a ROS that makes it portable and

very easy to use. In lieu of convenience, an LWK design will favor raw performance. LWKs

do not typically have a broad range of device drivers, nor do they employ complicated

33

hardware abstraction layers or comprehensive system call interfaces. However, they do

still supply a limited system call API to the application. This design is intended to limit

the kernel to providing only the minimal abstractions necessary to support the desired

applications. Such a minimal design not only simplifies development, but also secondarily

reduces or eliminates “OS noise” during the application’s execution, e.g. from external

interrupts. Notable LWKs that have enjoyed some success include Sandia’s Kitten [129],

the Catamount [118] LWK, IBM’s Compute Node Kernel (CNK) [86], and Cray’s Compute

Node Linux (CNL).

LWKs work very well for supercomputing sites, as they have a fairly small set of

applications they must support, and the hardware present in the system is known ahead

of time. However, there is still a lost opportunity for LWKs, as they retain the overall

architecture of a ROS. That is, they still use many of the same abstractions, and they still

relegate the runtime system (and application) to user-space, thus limiting its power.

1.4 Issues with Runtimes, ROSes, and LWKs

In this dissertation, I argue that for the specific case of a parallel runtime, the user/kernel

abstraction itself, which dates back to Multics, is not a good one. It is important to under-

stand the kernel/user abstraction and its implications. This abstraction is an incredibly

useful technique to enforce isolation and protection for processes, both from attackers and

from each other. This not only enables increased security, but also reduces the impact

of bugs and errors on the part of the programmer. Instead, programmers place a higher

level of trust in the kernel, which, by virtue of its smaller codebase and careful design,

ensures that the machine remains uncompromised. In this model, which is depicted in

34

Lib 1 Lib N ….

OS

Hardware

Runtime

Application

Figure 1.1: Typical system organization.

Figure 1.1, the privileged OS kernel sits directly on top of hardware, and supports runtimes,

applications, and libraries which execute at user-level. Because the kernel (lightweight

or otherwise) must be all things to all processes, it has grown dramatically over time, as

has its responsibilities within the system. This has forced kernel developers to provide a

broad range of services to an even broader range of applications. At the same time, the

basic model and core services have necessarily ossified in order to maintain compatibility

with the widest range of hardware and software. In ROSes, and to a lesser extent LWKs,

the needs of parallelism and parallel runtimes have not been first-order concerns.

Runtime implementors often complain about the limitations imposed by ROSes. While

there are many examples of significant performance enhancements within ROSes, and

others are certainly possible to support parallel runtimes better, a parallel runtime as

a user-level component is fundamentally constrained by the kernel/user abstraction. In

contrast, as a kernel, a parallel runtime would have full access to all hardware features of

the machine, and the ability to create any abstractions that it needs using those features.

35

Figure 1.2: System organization in which the runtime controls the machine.

Such a model is depicted in Figure 1.2. Here, the “kernel” is a minimal layer on top of

the hardware that provides services to the runtime, essentially as a library would. The

runtime can build on those to create its own abstractions and services (to be used by

the application), or it can ignore them. If required, the runtime can access the hardware

directly. I will show in this dissertation that, in fact, breaking free from the user/kernel

abstraction with HRTs can produce measurable benefits for parallel runtimes.

1.5 Hybrid Runtimes

Hybrid runtimes (HRTs) can alleviate the issues faced by ROSes and LWKs by treating the

runtime system as a kernel, with full access to typically restricted hardware, and complete

control over the abstractions over that hardware. An instance of an HRT consists of a

runtime system combined with a lightweight kernel framework, called an Aerokernel, that

provides services to the runtime, much like a library OS. These services can be used,

36

ignored, augmented, or replaced by the runtime developer. I will refer to a general model

where a runtime and an Aerokernel framework are combined as the hybrid runtime model

(or the HRT model). The Aerokernel framework simply serves as a starting point, with

familiar interfaces, so a runtime developer can more easily adopt the hybrid runtime

model. Unlike within a ROS environment, the hybrid runtime executes in kernel-mode,

and unnecessary abstractions are avoided by default.

The primary claim of this dissertation is that the hybrid runtime model can provide

significant benefits to parallel runtimes and the applications that run on top of them. I

will expand on this claim in Chapter 3 and then substantiate it in subsequent chapters by

providing performance evaluations of systems that support the HRT model.

The long term vision for hybrid runtimes is for them to:

• outperform their ROS counterparts for parallel runtimes.

• support creation on demand rather than booting them manually.

• promote experimentation with unconventional uses of privileged hardware.

• be easy to construct (even starting from an existing runtime system).

• operate with low overhead in virtualized environments.

• work in tandem with a ROS environment.

To the user, booting an HRT would look like starting a process from a ROS, but with

special meaning—the HRT would take over some portion of the machine and use it solely

for the runtime and application that it supports. That is, the HRT would not be used in the

same manner that a ROS is, e.g. for management of the system. Rather, it would be used

37

like a “software accelerator”. This environment would be used only when performance

is critical or unconventional functionality is required, and it could look very different

from the software running on the ROS. Ideally, constructing such an HRT would not be

tantamount to writing an OS kernel, and experimentation would be rather easy for the

runtime developer. HRTs will mesh well with virtualization, avoiding overheads that arise

from the heavy-weight operation of a ROS. Furthermore, an HRT would enjoy a rather

symbiotic relationship with the ROS by borrowing more complex functionality from the

latter when required. I will describe steps taken toward these goals in Chapters 3–7.

1.6 Benefits and Drawbacks of HRTs

Hybrid runtimes can enjoy considerably increased performance over their ROS-based

counterparts. I will show in subsequent chapters how we can achieve up to a 40% speedup

on the HPCG mini-app [67, 97] within the Legion runtime ported to the HRT model.

While performance is, of course, an important factor, HRTs provide other benefits as

well. They allow runtime developers more flexibility in designing the codebase, avoiding

the a priori imposition of mechanisms and policies that may be at odds with the needs

of the runtime. HRTs also allow runtime developers to experiment with kernel-level

privileges by taking advantage of hardware features that are usually unavailable at user-

level. The hope is that this will lead to radically different parallel runtime designs that also

perform well.

While HRTs offer some important benefits, their structure has some deleterious effects

that render them unsuitable for general-purpose use. First, because HRTs by default have

no notion of privilege separation, their deployment on raw hardware can create security

38

risks. A faulty application or runtime built as an HRT could be exploited to take over an

entire machine. In Chapter 5, I will describe deployment methods we have explored to

mitigate this risk at an operational level. Ultimately, however, the security and protection

of an HRT is under control of the runtime developer. Securing such a codebase may

actually be simpler than creating a secure, general-purpose ROS. While we have addressed

some security issues with particular deployment methods, making HRTs bullet proof is

beyond the scope of this dissertation, and will be explored further in future work.

Another potential drawback for HRTs is that they could be difficult to construct be-

cause of their low-level nature and tight connection to kernel-level programming. While

runtime developers are often sophisticated programmers, they may not be familiar with

the idiosyncrasies of kernel development. I will discuss solutions to address this difficulty

in Chapter 4. Similarly, debugging an HRT comes with its own set of complications due

to its kernel-mode operation. While we have not undergone significant work in this area,

its importance cannot be underestimated. Creating production quality HRTs, even in a

bleeding edge domain like supercomputing, will require sophisticated debugging facilities.

I will describe avenues that could lead to such debugging tools in Chapters 5 and 7.

1.7 Systems to Support and Evaluate the HRT Model

My work on HRTs has primarily focused on building real systems that realize the benefits

that the HRT model can provide. These systems center around a small kernel framework

named Nautilus.

39

1.7.1 Nautilus

Nautilus is an example of an Aerokernel, a very thin kernel framework intended to enable

hybrid runtimes. I will introduce Nautilus in detail in Chapter 3, but in this section I will

guide the reader through a cursory examination of its structure.

Two essential mechanisms allow Nautilus to enable the creation of hybrid runtimes:

1. It provides a default set of fast services that will be familiar to runtime developers.

2. It relinquishes full control of the machine to the runtime system.

Nautilus runs on commodity x64 hardware and on Intel’s Xeon Phi accelerator card. It

is a Multiboot2-based kernel that supports NUMA systems and many-core machines.

1.7.2 Hybrid Virtual Machines

While Nautilus can run on bare metal (for example, on a server or a supercomputer node),

and on commodity virtual machine monitors (VMMs) such as KVM, VMware, and QEMU,

it still requires that the runtime using it be ported. As will be discussed further in Chapter 7,

this porting process is no small endeavor. It would therefore be advantageous for a runtime

developer to be able to leverage ROS functionality (e.g. from Linux). A hybrid virtual

machine (HVM) enables this by partitioning a single VM among two environments. One

consists of a ROS environment, such as Linux, and the other is a hybrid runtime. With an

HVM, functionality not present in Nautilus (or another Aerokernel) can be provided by

the ROS. This is done with communication facilitated by the VMM.

40

Hybrid virtual machines are intended to make it easier for a runtime developer to

start adopting the HRT model. We implemented support for HVMs in our Palacios VMM.

HVMs are introduced in detail in Chapter 5.

1.7.3 Nemo Event System

One common abstraction that many runtimes support is that of an asynchronous software

event. If a runtime (or application) uses such events heavily, the inadequacy of the event

system’s implementation could be a serious issue. In Chapter 6, I will introduce and

specialized event system within Nautilus called Nemo that leverages the benefits of the

HRT model to reduce event signaling latencies by several orders of magnitude. Portions

of this speedup come from the simplicity and fast implementation of Nautilus primitives,

while other portions come from the ability to leverage restricted hardware (control over

interrupts) directly.

1.7.4 Multiverse Toolchain

To adopt the hybrid runtime model, runtime system developers must currently port their

system from its current OS environment to work with an Aerokernel (such as Nautilus).

While Nautilus is designed to make this easier (e.g, by providing familiar UNIX-like

interfaces), porting a complex user-space code to run with the privilege of a kernel is not

a trivial task. Debugging can be quite difficult, and errors challenging to identify. While

the HVM alleviates this issue slightly by allowing the developer to leverage existing ROS

functionality, the difficulty of a manual port still acts as an obstacle.

To address this issue, I explore a concept called automatic hybridization, whereby a Linux

user-space runtime is automatically transformed into a hybrid runtime simply by rebuild-

41

ing the codebase. We developed an initial implementation of automatic hybridization

called Multiverse, which carries out this transformation for runtimes using the Nautilus

Aerokernel. Multiverse will be introduced in detail in Chapter 7.

1.8 Results

Our work on hybrid runtimes has shown considerable promise for the HRT model. Initial

experiments with the Legion runtime coupled with an example application and the HPCG

mini-app show up to 40% performance improvement simply by porting to the HRT model;

this does not include the utilization of privileged-mode hardware features.

Extensive microbenchmarks of Nautilus facilities show significant improvements over

Linux, for example with thread creation, context switching, and concurrent programming

abstractions like condition variables.

The HVM deployment model of HRTs can leverage ROS functionality with very little

overhead. Interactions between a ROS and HRT can occur with latencies on the order of

hundreds of nanoseconds. This is within the realm of a typical system call in a ROS.

The Nemo event system can reduce asynchronous software event latency by several

orders of magnitude, and when leveraging restricted hardware features, can approach the

limits of the hardware capabilities.

Finally, Multiverse can transform a complex, Linux user-space runtime into a hybrid

runtime and leverage ROS functionality with little to no overheads in performance. This

makes Multiverse a good tool for a runtime developer to begin exploring the HRT model.

42

1.9 Outline of Dissertation

The remaining text of this dissertation will focus on the motivation for hybrid runtimes,

followed by their design, merits, and implementation. Several systems will be introduced

that demonstrate their promise.

In Chapter 2, I will provide perspectives on regular operating systems (ROSes) by

describing their design, merits, and limitations.

In Chapter 3, I give the detailed case for hybrid runtimes, I outline their benefits, and I

describe initial results showing speedups that result from porting runtimes to the HRT

model.

Chapter 4 comprises a description of the design and implementation of an Aero-

kernel framework called Nautilus that is intended to support the construction of high-

performance hybrid runtimes. In that chapter I will guide the reader through an extensive

series of microbenchmarks measuring the performance of the light-weight primitives that

make up Nautilus.

In Chapter 5, I introduce the concept of a hybrid virtual machine (HVM), which

simplifies the construction of hybrid runtimes by leveraging a logically partitioned virtual

machine to facilitate communication between an HRT and a legacy OS.

Chatper 6 focuses on a low-latency, asynchronous software event system called Nemo,

which is implemented as a part of Nautilus.

Chapter 7 introduces the concept of automatic hybridization as a method of further

simplifying the creation of HRTs. I will describe Multiverse, a system that implements

automatic hybridization for Linux user-space runtimes.

Finally, in Chapter 9, I will summarize the research and software engineering contribu-

43

tions of the work that comprises this dissertation and outline a series of next steps in the

investigation of hybrid runtimes and specialized, high-performance operating systems.

Appendix A gives a list of OS issues identified by the developers of the Legion runtime.

These served as one motivation for initiating the HRT research effort.

Appendix B contains a description of a system called Guest Examination and Revision

Services (GEARS) that enables guest-context virtual services within a virtual machine. While

unrelated to hybrid runtimes, this work runs in a similar vein to HRTs, as it blurs the lines

between software layers that are typically viewed as being quite rigid.

Appendix C comprises work on guarded modules, which are a type of guest-context

virtual services that are protected from the higher-privileged operating system within

which they execute. This work is an expansion of the GEARS system.

44

Chapter 2

Regular Operating Systems

The operating system (OS) is one of the most powerful and essential elements of a modern

computer system. While a “regular OS” (ROS) serves many purposes, one of its primary

objectives is to provide an execution environment that makes it easier to program the

machine. ROSes come in many flavors, and architectures vary widely. Widely used ROSes

include Linux, Windows, and Apple’s OSX (recently renamed macOS). This chapter is

primarily concerned with a common feature of any ROS, the kernel. Throughout the

chapter, I will provide background in operating systems necessary to understand the

contributions of this dissertation. Section 2.1 introduces the concept of an OS kernel and

discusses its salient features. Section 2.3 discusses abstractions typically provided by ROS

kernels. Section 2.4 gives a cursory examination of how a typical ROS operates at runtime.

Section 2.5 introduces lightweight kernels (LWKs) and contrasts their design with ROSes.

Section 2.6 discusses virtualization and its relation to operating systems concepts. Finally,

Section 2.7 concludes the chapter with a discussion of the limits of ROSes and LWKs.

Readers intimately familiar with OS concepts and implementation may skip ahead to that

section.

45

2.1 ROS Kernels

The roles that a typical ROS kernel plays can be placed into three primary categories:

• Providing abstractions

• Virtualizing resources

• Managing resources

These three roles share the common goal of making a computer system easy to use.

In this context, the first role is probably the most organic in that any large, reasonably

written program will be constructed using some of these abstractions. Some common

abstractions in modern operating systems include pages (an abstraction of memory), files

(an abstraction of stored data), and processes (an abstraction of executing instructions;

a thread plays a similar role). Given a modern CPU, it would be quite difficult (if not

impossible) to write software to operate the CPU without creating abstractions. Note that

providing abstractions (and interfaces) is also within the purview of libraries, and an OS

that only provides such things can essentially be thought of as a library. Such library OSes

are the subject of considerable research, and will be discussed in Chapter 8.

The second role of ROS kernel is to virtualize resources, such as memory or the CPU

itself. Virtual resources provide a logical view of the machine that is easy to reason about

from the application programmer’s perspective. For example, consider a single program

running on a machine. Excepting some esoteric hardware architectures, that program

essentially sees memory as a contiguous series of addressable bytes. When multiple

programs run on the machine, however, their usage of memory must be coordinated.

Instead of a complex solution that requires the applications to be aware of this rationing

46

of memory, the ROS kernel can instead provide a virtual abstraction of memory. Each

application can then logically see memory as the expected contiguous array of bytes (using

virtual addresses), while the ROS kernel partitions the physical memory behind the scenes.

The ROS kernel will also often virtualize the CPU in a similar fashion. When a CPU

is virtualized, an application can be written in a way that ignores the presence of other

programs in the system. In such a multi-programmed system, the ROS kernel can run

several programs by multiplexing a single CPU between many processes, the common

abstraction that an OS uses to represent a running program. Multi-programmed systems,

and the virtualization mechanisms used to realize them, are not without drawbacks. A

program that must contend for some resource with another program will necessarily be less

efficient than one that has dedicated access to that resource. The software mechanisms used

to implement virtualized resources also comes with associated overheads, though these

are often mitigated by competent software design and by efficient hardware support (e.g.

hardware paging for virtual memory). Finally, a program that requires some amount of

determinism may be stymied by the policies that a ROS kernel employs when it virtualizes

some resource. For example, a program with strict timing requirements may not be able to

operate correctly on a system where the ROS kernel allows interrupts to perturb program

execution at irregular intervals.

The third role of a ROS kernel is to manage resources in the system. This role is

also brought about by the need to support more than one running program. There are

many resource in a typical computer system that the ROS must manage. These include

external devices, memory, the CPU, files, and many more. A ROS kernel that employs

sound design principles will often manage such resources in ways that separate the

underlying mechanisms that support their management from the policies that determine

47

how they are managed. For example, a kernel will typically have a general mechanism for

scheduling processes, but will support many scheduling policies, such as simple round-

robin scheduling or completely fair scheduling. In order to manage resources in the system

effectively, a ROS must also provide protection. It must protect itself from applications, it

must protect applications from each other, and it must protect sensitive components of the

system from erroneous or malicious behavior. The mechanisms that a ROS uses to achieve

this protection will be discussed in Section 2.2.

A ROS will also provide a programming interface to the application so that it can

invoke OS services with system calls. System calls are essentially function calls with an

associated set of semantics determined by the OS. In a ringed architecture (also discussed in

Section 2.2), system calls will typically initiate a transition the CPU into a higher privileged

mode of operation, namely kernel mode or supervisor mode.

These roles will be important to understand, as hybrid runtimes (HRTs) organize them

in a different way than a ROS kernel does. We will see these differences in Chapter 3.

Readers interested in a more detailed treatment of the roles of traditional OSes are directed

to classic texts in the subject [9, 186, 178, 12, 179].

2.2 ROS Kernel Architecture

Probably the most common ROS kernel architecture falls into the monolithic kernel cate-

gory. This architecture has most of the complexity of the operating system implemented

inside the kernel itself. Components within a purely monolithic kernel tend to be highly

integrated. Contrasted with monolithic kernels are microkernels. In a microkernel design,

the size of the trusted kernel is minimized because it only implements basic low-level

48

highest privilege (kernel)

higher privilege (drivers)

lowest privilege (programs)

Figure 2.1: A ringed OS architecture. The kernel has highest privilege and applications
operate in the lowest privilege level.

services. More complicated functionality is relegated to modular user-space components

that communicate via inter-process communication (IPC). This has several purported

benefits, including reliability from the curtailment of errors that are more likely to arise

in a complex kernel, flexibility from the ability to use interchangeable components, and

extensibility from the modular design. Microkernels enjoy a more elegant design (and

are thus more attractive from a software engineering standpoint), but they historically

suffered from performance issues due to heavy-weight IPC mechanisms and architectural

effects arising solely from their design (such as poor locality). Examples of both monolithic

kernels and microkernels can be found in Chapter 8. Some successful ROSes, such as

Linux, take a hybrid approach that blends aspects of both kernel architectures.

49

2.2.1 Ringed Organization

In order to implement protection, commonly available CPUs provide facilities that allow

the hardware to be placed into different operating modes. For example, in the x86 archi-

tecture, the CPU can be placed into four different privileged rings (ring 0 through ring 3,

with the lowest ring enjoying highest privileges). In such a system, the kernel operates at

ring 0 (kernel-mode), and applications execute in the highest numbered ring (ring 3 on

x86). Intermediate rings may be set up by the kernel for special purposes. Such a “ringed

organization” is depicted in Figure 2.1.

Privilege changes occur on exceptional events and when the user program invokes

the OS with a system call. The elevated privilege that is given to the kernel (and only the

kernel), allows it access to various components of the system that are not available to a user

program. This includes control over devices, control over virtual memory mappings, access

to system tables and registers, control over interrupts, access to I/O instructions, access

to model-specific registers (MSRs), and more. More than a third of the Intel processor

manual is devoted to instructions that require elevated privilege. The implications of this

restriction will be discussed further in Section 2.7.

A processor that supports hardware virtualization augments the ringed structure with

another set of privilege levels below ring 0. This results in a “nested” ring organization,

where four rings exist for both the host OS and the guest OS.

2.2.2 Architecture Independence

A ROS that targets multiple platforms or architectures will commonly have its code

organized modularly so that parts of the kernel can plug in to platform or architecture-

50

X86-specific	
func/onality	

SPARC-specific	
func/onality	

ARM-specific	
func/onality	

General	kernel	func/onality	

Figure 2.2: An architecture-independent kernel organization. Kernel interfaces are de-
signed to plug in components specific to a particular architecture, typically at compile-time.

specific components. These components are decided on when the kernel is compiled.

This is common in, for example, low-level boot code, where details of the hardware are

important. This is an example of a hardware abstraction layer (HAL). A kernel architecture

employing such a HAL is shown in Figure 2.2.

2.2.3 Modules and Drivers

Extensibility is an important aspect of a ROS. It allows the system to adopt new policies

and for new devices to be supported without rebuilding the kernel. In addition, kernel

developers are relieved the responsibility of keeping up with new devices as they are

created. The device vendors can instead write code that controls the devices in the form of

a driver. Device drivers and other functionality that might not be necessary for all users

can be built as loadable modules. Users that need that functionality can then insert those

modules into the kernel while using the system. The privilege level at which the module

code runs depends on the OS, but Linux, for example, executes module code at ring zero. A

system with support for such loadable modules is more flexible and customizable. Almost

all commodity ROSes support loadable modules, including Linux, MS Windows, and

macOS.

Loadable modules, for all their flexibility and convenience, have drawbacks as well.

They often contain bugs, and can introduce vulnerabilities into an otherwise secure system.

51

To address this issue, a cautiously designed module system will limit the damage that a

module’s code can inflict on the core kernel. Linux accomplishes this by exporting only a

subset of the kernel name space to modules. While this limits errant behavior and abuse of

kernel interfaces, a module can still, in principle, invoke any part of the kernel by crafting

addresses cleverly. This is a fundamental weakness of dynamically loadable kernel code.

2.3 Kernel Abstractions

In Section 2.1, I discussed the role that a ROS plays in creating abstractions that user

programs can leverage. In this section, I will go into some detail for some of the more

important abstractions, and in Section 2.7, I will give a brief overview of some of their

limitations.

2.3.1 Processes

One of the most important abstractions that a ROS provides is one that represents a running

program and the state associated with it. This is known as a process, which essentially

represents an idealized machine. The process abstraction is what allows the ROS to portray

to user programs the illusion that there are more CPUs in the system than there actually

are. From the user’s perspective, the most important operations on a process are starting,

suspending, resuming, stopping, and querying its status. Such operations are invoked via

an API that the ROS kernel exposes.

A process essentially consists of a collection of information that represents the states of

the running program as it executes on the CPU. Important state that the ROS must track

include the program’s register state, its view of memory, its stack, and its program counter

52

kernel	

stack	

heap	

mapped	memory	
(libs,	files,	regions)	

bss	

global	data	

code	

Figure 2.3: An example of a process’s address space layout in Linux.

(PC). The PC represents the program’s currently executing instruction, and the stack is

used to implement scoped variables and activation records.

Processes in a typical system are organized into a tree structure, with a single process

acting as the root process. This process is invoked by the ROS kernel after the system

completes booting, and includes the first user-space instructions executed on the machine.

On Linux systems, this process is most often named init.

The low-level mechanism that a ROS uses to implement time-sharing of the CPUs is

essentially the ability to stash all of a process’s associated state in memory. This allows

the kernel to context switch between different processes by saving one process’s state and

restoring the state of another.

53

2.3.2 Address Spaces

One of the most important pieces of state associated with a process is its view of memory.

Aside from explicitly shared memory and special chunks of memory exposed by the ROS

kernel, the visible memory of each process is distinct. This is accomplished with the

abstraction of an address space. An address space is just a series of memory addresses that a

process can read and/or write. Portions of the address space can have special semantics

(e.g. read-only) that are either determined by the ROS kernel or by the process itself. An

example of a typical process’s address space is depicted in Figure 2.3.

When a new process is created (e.g. with the execve() system call in Linux), that

process will be provisioned with an entirely new address space. When a new process is

created by duplicating an existing process (e.g. with the fork() system call), the duplicate

process will receive a copy of the existing address space. In order to avoid the overhead of

unnecessarily copying the underlying memory associated with the original address space,

the ROS kernel may mark the memory as copy-on-write (COW). Then, only when one of

the processes attempts to modify the memory is the original memory copied. Thus, any

modifications will only be visible in one of the processes.

The underlying mechanism supporting address spaces is the virtual memory system.

Common hardware such as x86 chips support virtual memory with paging, a system

that organizes memory into a hierarchical tree of memory chunks called pages. Pages of

memory are allocated from the available physical memory present in the machine by the

kernel, and are managed by organizing them into a tree of tables called page tables. The

tables enable the kernel to track and modify the state of memory pages. Common states

include “not present,” “read-only,” and “non-executable.” When an instruction reads from

54

or writes to a page of memory, the hardware automatically “walks” the page table tree to

find the page. If the page is not present, the hardware will raise an exception (a page fault),

which the ROS kernel must handle. Some systems will initially mark most memory pages

as not present, and only allocate backing pages of physical memory when the program

attempts to touch those pages. This is called demand paging, and it is used in many major

ROS kernels, including Linux. There are mechanisms which allow a program to force

pages to be allocated at the beginning of its execution (this is called “pre-faulting”), but

these mechanisms are only used in special cases. The importance of the effects of demand

paging will become evident in Section 2.7.

Because every memory reference must go through the virtual memory system, every

load or store will result in a traversal of these page tables by the CPU. This can become

expensive, especially for paging systems with more levels of page tables (e.g. on x86_64).

To alleviate this cost, many CPU architectures include a small cache for page transla-

tions called the Translation Lookaside Buffer (TLB). The TLB is hugely important for

performance [20], especially for virtualization [144].

While this section gave a cursory overview of address spaces and page tables, readers

interested in more detail are advised to reference manuals from x86 CPU vendors [7, 107].

2.3.3 Threads

Operations on the various structures associated with processes can introduce overheads

that make their manipulation rather expensive. In order to alleviate this cost, many ROS

kernels provide the notion of threads. Threads can be thought of as light-weight processes.

They still represent a running program, but the amount of state is reduced. The primary

difference between a thread and a process centers around address spaces. Threads are

55

decoupled from the notion of address spaces. Threads may or may not be associated with

processes, but when they are, all threads within a process share that process’s address space.

Some OSes lack the notion of processes altogether, and all threads in the system share a

single address space. Such OSes are called single address space OSes (SASOSes). The data

structures representing an address space are not the only ones that the ROS can omit when

structuring the representation of a running program. Other state, such as open files or

network connections can also optionally be associated with executing instructions. Thus,

there are intermediate representations of running programs that lie between a process and

a thread, but such entities defy a simple nomenclature. Linux, for example, allows the

programmer to specify the state associated with a newly created process by passing special

flags to the clone() system call.

2.3.4 Files and Directories

It is often prudent for a programmer to have the ability to manipulate arbitrarily sized

chunks of data stored in the system in a logical manner. Most ROSes accomplish this by

providing the abstractions of files and directories. These abstractions allow the programmer

(or user of the system) to access data stored in memory or on disk by using a well-

defined API. The ROS implements this API with a file system, which allows users to

open, close, read, write, and seek files and directories. Different file systems offer different

characteristics, such as performance, networked operation, or crash consistency (e.g. with

write-ahead logging). File systems can be part of the core ROS kernel or can be dynamically

loaded as kernel modules. File systems, the underlying I/O subsystem in the ROS kernel,

and the characteristics of I/O devices can become very important in large-scale systems

like datacenters and supercomputers, where massive amounts of data are generated and

56

stored in the form of files.

2.3.5 Communication

Most ROSes will provide abstractions that facilitate communication between entities in the

system and between different systems. The former fall into the category of inter-process

communication (IPC). The latter include networking facilities, which—along with the

appropriate hardware—allow systems to communicate even when separated by vast

distances. Both types of communication are discussed in the following paragraphs.

IPC Kernel-provided IPC abstractions give a process or thread a way to communicate

with others in the system. This may be to notify another process of an asynchronous event,

to share data, to send messages, or to create an “assembly line” that passes data between

applications, each one completing a particular processing step.

Some common types of IPC facilities include:

• Signals: Signals allow one process to asynchronously notify another, often with a

particular type being associated with the notification. Signals can vary in their intent,

from notifying a process that it should terminate, to informing it of a window focus

change or memory protection violation. Signals typically have a small amount of

information, and are really only used to notify state changes. That is, there is no

“payload” associated with a signal. The kernel can enforce policies which determine

which processes can send signals to which recipients.

• Message queues: Message queues allow processes to use out-of-band communica-

tion between them. They may use direct addressing (sending to a particular process)

57

or they may encode a type to which multiple receivers can “subscribe.” Some mes-

sage queue implementations (like POSIX messages queues in Linux) support more

advanced semantics like priority encoding. Unlike signals (which may be used to

deliver these messages), the messages can include data payloads, typically with a

maximum limit on their size.

• Client-server: Some ROSes support client-server IPC facilities, where one process

acts as the server, and other processes send requests to the server to fetch data or

to send updates. Examples in Linux include UNIX domain sockets, which allow

familiar networking-style communication between processes, and Netlink sockets,

which enable client-server interactions across the user/kernel boundary.

• Pipes: Pipes allow processes to stream data to one another. A pipe has one side

dedicated to reading, and one side dedicated to writing, making it a half-duplex

communication channel. Pipes can be named, allowing explicit communication, or

anonymous, allowing them to be transparently used as standard I/O streams. Pipes

are an essential mechanism for constructing “assembly lines” of programs typified

by the UNIX philosophy.

• Shared memory: Perhaps one of the most performant IPC mechanisms, communica-

tion via shared memory allows a great degree of flexibility for applications using it,

as they can determine the sharing semantics. Furthermore, once sharing is initiated,

the kernel need not be involved in subsequent communication. Shared memory

communication is natural for threads, where address spaces are automatically shared.

For processes, however, the kernel must provide a mechanism to explicitly setup

shared segments of processes’ address spaces.

58

Networking Most ROSes will provide user programs with mechanisms to facilitate com-

munication between machines. In a modern ROS, this involves implemenation of several

protocols required by a layered network architecture. From the programmer’s perspec-

tive, however, the most important abstraction is the one that represents a communication

channel between two processes on different machines. Most ROSes name this type of

abstraction a socket. It provides a logical representation of a persistent connection between

machines, much like plugging a device into a wall socket. It is usually just a handle which

represents the connection. Sockets can be backed by different protocols and mechanisms,

depending on the user’s preference and on the specific use case. Sockets typically support

a standard communication API that will support functions such as connect(), send(),

recv(), and close().

By using kernel-provided networking abstractions like sockets, applications can build

more complicated communication facilities with special-purpose uses. One such facility is

the Message Passing Interface (MPI), widely used in parallel applications, which allows

logical, high-performance, point-to-point communication between processes on different

machines.

2.3.6 Synchronization and Mutual Exclusion Primitives

For a ROS that supports concurrent and parallel programming, care must be taken to

coordinate access to shared resources by processes or threads running concurrently. In

other words, there must be a way to guarantee the mutual exclusion of entities operating on

such resources. The piece of code within which mutual exclusion must be guaranteed is

called a critical section. The ROS will typically provide a set of mechanisms that allow the

creation of efficient abstractions for to implement mutual exclusion in various forms, as

59

outlined below.

Mutexes and locks Abstractions that provide mutual exclusion within a critical section

are often called mutexes. The simplest form of a mutex is a lock. A lock consists of

variable that can be in one of two states, locked or unlocked. On a uniprocessor system,

a lock does not even require this lock variable. Instead, mutual exclusion within the

critical section can be guaranteed by one processor or thread turning off interrupts when

it enters, and re-enabling them when it leaves. This solution, however, is inadequate for

multiprocessor systems, where different threads on different CPUs could enter the critical

section simultaneously. In this case, a lock must have a state variable that can be modified

atomically. In modern systems, the atomicity is provided by atomic read-modify-write

instructions such as test-and-set or compare-and-swap. More sophisticated locks that

require certain properties (such as fairness), can be implemented with algorithms like the

bakery algorithm (these are also called ticket locks).

The simplest form of a lock routine will attempt to acquire the lock repeatedly until it

becomes available. Such a lock is referred to as a spin lock. More advanced (and efficient)

locks can be constructed with support from the ROS kernel, where after initially spinning

for a predetermined number of times, the thread attempting to acquire the lock can go

to sleep on a queue associated with the lock. When another thread releases the lock, the

kernel will awaken the waiting thread.

Condition variables A programmer designing concurrent programs will often encounter

situations that require that a thread wait until some condition is satisfied. For example, a

thread might need to wait until a queue is populated before extracting an element from

it (e.g. a producer-consumer queue). Locks alone are not a sufficient abstraction for this

60

situation. Instead, the programmer can turn to condition variables. A condition variable’s

API will often have three primary routines: wait(), signal(), and broadcast(). The

wait() routine will allow a thread to go to sleep until a condition is met. The signal()

routine allows another thread to signal that the condition is met, and that the waiting

thread can continue running. Finally, broadcast() is similar to signal(), but notifies

several waiting threads instead of just one. The implementation of condition variables

will become important in Chapter 6, where condition variables are used by a runtime for

asynchronous software events.

Barriers Barriers enable synchronous operation among many threads by providing a

mechanism by which threads can block until they have all reached a predetermined point

in the code. There is one primary routine associated with a barrier, namely the arrive()

routine. When all threads arrive at the barrier, they can continue normal operation.

Barriers are used, for example, to implement stages of computation followed by stages of

communication. This is a common pattern encountered in parallel programs.

Note that the performance of mutual exclusion and synchronization primitives can be

very important for parallel and concurrent applications that use them heavily.

2.4 Operation

This section will give a brief overview of the operation of a typical ROS, both during

startup and during its normal operation.

For a ROS to boot the system, it is commonly given control of the machine by a piece

of code that resides in firmware called the BIOS (Basic Input/Output System). The BIOS,

which contains the instructions first executed by the processor on startup, is charged

61

with enumerating the devices attached to the CPU, populating system tables with their

information, and finding a bootloader to bring up the operating system. There are many

more steps that a commodity BIOS will, carry out, but it is sufficient for the purposes of this

section to describe the BIOS as a management layer for platform-specific hardware present

in the system. Once the bootloader loads the operating system into memory, it jumps to its

entry point, thus relinquishing control of the machine. From that point forward, the BIOS

is only invoked for a special class of system routines that deal with the management of

platform hardware.

When the ROS starts, it will begin by navigating a series of steps necessary to bring

the CPU into its final operating mode (for example, “long mode” on x86_64 chips). These

steps include initialization of the memory management unit (e.g. paging), setup of system

registers, bootup of secondary CPU cores, and population of system tables. At this point,

the ROS can handle external interrupts, manage the memory system, and invoke pieces

of code on other CPUs. It will also have mechanisms in place (e.g. a panic() routine) to

provide meaningful output in the event of an error or failure.

Once the initial setup of the CPU is complete, the ROS must initialize several other

subsystems before it can run user-space programs. This includes the setup of an external

device infrastructure (e.g. to manage disks, network interfaces, and keyboards) and a

device driver subsystem. It also must initialize the scheduling subsystem, which might

include threads and processes and their associated address spaces, and the ability to

context switch between them. Typically the ROS will initialize a file system layer to allow

logical access to stored data.

Finally, the ROS will initialize the necessary infrastructure on the CPU to support a

user-space layer with lower privileges, and the associated interface that will allow user-

62

space programs to invoke the kernel (namely, system calls). It can then invoke an initial

user-space program (init on Linux) that will form the root of a hierarchy of processes and

threads. At this point, an interactive shell can run, allowing the user to issue commands

in an interpreted language designed for the management of the system. Subsequently,

the ROS acts as a passive bystander, running only when invoked by a program or when

prompted by external interrupts or exceptional conditions such as faults.

2.5 Lightweight Kernels

A lightweight kernel (LWK) is meant to provide a more high-performance environment,

particularly for supercomputing applications, where system interference (discussed in

Section 2.7) can become a serious issue. LWKs prevent such interference by eliminating non-

deterministic behavior. One of the most common is the elimination of regular timer ticks,

which interrupt program execution. In a ROS, these timer ticks serve as mechanism by

which the kernel can preempt running tasks regularly to enforce scheduling requirements

among different processes and to load balance the system. However, in an HPC setting,

there is typically only one important application running on the machine, obviating the

necessity of the periodic timer mechanism. An LWK system will eliminate these regular

ticks by default1.

LWKs will also typically target a small subset of the hardware that a typical ROS will.

The hardware setup is often known ahead of time, which allows the kernel to be tailored

to a particular system. The overheads of abstraction layers necessary to facilitate portable

operation are thus avoided, and only a few drivers must be included in the kernel. The
1Newer ROSes such as Linux as of kernel version 3.10, the NT kernel in Windows 8, and the XNU kernel

in Apple’s OSX can also be configured for such “tickless” operation.

63

implication of this design is that the kernel code is much simpler and comprehensible for a

small group of developers. Because of their special-purpose nature and requirements for

high performance, LWKs are most often monolithic.

Like ROSes, most LWKs provide an API to user applications that make it easy to

program the machine. In some cases, this API is designed to be semi-compatible with ROS

APIs. While this API is less comprehensive in an LWK, it enables a target set of applications

to gain the benefits of the high-performance kernel without prohibitive porting effort.

The Kitten LWK serves as an instructive example of a lightweight kernel [129]. Kitten

supports the Linux ABI and a subset of Linux system calls, namely those necessary to

natively support OpenMP and glibc’s NPTL threading facilities. As outlined above, Kitten

has limited hardware support and operates without a regular timer tick. In addition, Kitten

avoids complex and unpredictable performance issues in the memory system by allowing

user-space to manage memory. Furthermore, Kitten uses a linear and contiguous virtual-to-

physical address mapping scheme, which greatly simplifies address translation and avoids

complex interactions caused by demand paging. Kitten’s task scheduler employs per-CPU

run queues with a simple round-robin scheduling policy. This scheme is appropriate for

typical HPC applications that evenly map threads to CPUs.

While LWKs provide predictably high performance for applications, they still have

limitations that can hinder runtime performance and functionality. These limitations will

be discussed in Section 2.7.

64

2.6 Virtualization

While operating systems traditionaly provide varying forms of virtualization, some sys-

tems go even further, introducing the concept of a virtual machine (VM). Much like a process

represents an idealized machine for an application program, a VM provides the illusion

of an idealized machine to an OS. When virtualization is used, we typically refer to the

physical machine as the host and the virtual machine as the guest. VMs enjoy many benefits,

from allowing more than one OS to be used on the same physical machine, to enabling

flexible debugging in different OS environments, to consolidating many, relatively small

VMs onto a single physical machine. Such functionality is facilitated by a layer of software

that sits below the OS, with even higher privilege, called a virtual machine monitor (VMM).

A VMM can be thought of as an OS for OSes, but it operates at a much lower level. VMMs

retain control of the machine by trapping privileged operations that an OS carries out in its

regular operation (much like an OS retains control when exceptions and interrupts occur

and when system calls are invoked).

Virtual machines can be broadly separated into two categories, full system virtual

machines and process virtual machines. The latter run within the context of a process in a host

OS, and only run when that process is scheduled. These type of VMs are many times used

to implement language virtual machines, which provide an abstract machine that executes

instructions in a portable instruction set that can be targeted by high-level languages. This

approach is used by, for example, Java and Python. In contrast, full system virtualization

uses a VMM to provide a logical view of an entire system to guest OSes running on top of

it. Full system virtualization can be implemented with two types of VMMs, namely Type

1 and Type 2. Type 1 VMMs sit directly on top of the hardware, and thus are also called

65

“bare metal” VMMs. Widely used Type 1 VMMs include VMware’s ESX hypervisor [192],

Windows Hyper-V, Xen [17], and KVM [164]. Type 2 VMMs require a host OS, and they

usually fit within the context of a library that the host OS can be linked with or within a

dynamically loadable kernel module. Examples of Type 2 VMMs include VMware Fusion,

Oracle’s Virtual Box, Parallels, and our Palacios VMM [129].

While virtual machines were first used in the IBM System/370 mainframe to multiplex

between different OSes (see Section 8.1.1), their performance overheads outweighed their

benefits for some time. They experienced a resurgence in the 1990s with the introduction

of the Disco system [41], which later led to the creation of VMware. Since then, hardware

vendors have introduced many features to support hardware virtualization, which elimi-

nates many prohibitive overheads. There has also been a consistent improvement in VMM

software design and VMM features that ameliorate performance issues [15, 87]. Work on

our Palacios VMM showed overheads as low as 5% on a large-scale supercomputer [128].

More recent VMM software allows more sophisticated usage models that give users

even more fine-grained control over their machines. One examples is the Pisces Co-Kernel

system [157], which allows a machine to be physically partitioned among different OSes.

Another example is our hybrid virtual machine, which will be introduced in Chapter 5.

While this section gave a cursory introduction to virtualization, readers interested in a

more detailed treatment of full system virtualization are directed to more comprehensive

texts [179, 147, 3].

66

2.7 Limitations

While a ROS can provide a great deal of flexibility and convenience, issues can arise in the

face of large amounts of parallelism and in environments where deterministic and high

performance are paramount concerns for a parallel runtime.

Restricted hardware access The first major issue that a parallel runtime can face when

built for a ROS is restricted access to hardware. While this restricted access does increase

the security and reliability of the system, it can place limits on the performance that a

runtime can achieve.

For example, a runtime implementing a garbage collector might need to keep track of

dirty elements (those that have been touched recently). The paging hardware on modern

x86 chips provide a mechanism of accomplishing this behavior directly. However, because

the ROS does not permit user programs to access this paging hardware, the runtime must

use other methods to track dirty pages.

Mismatched abstractions The abstractions that the ROS provides to software at user-

level may not be a good fit for a runtime’s needs. For example, in a parallel runtime that

uses light-weight, short-lived tasks, a heavy-weight process abstraction is unnecessary,

and can actually hinder performance (e.g. due to overheads of context switching).

Both restricted access to hardware and mismatched abstractions are two major issues

that can limit both the design and the performance of parallel runtimes. Appendix A con-

tains complaints from developers of the Legion runtime specifically related to such issues

with ROSes. When runtime developers run into such issues, there are often two effects.

The first is that the developers have to make compromises, either by not implementing the

67

desired functionality, or implementing it in an unnatural way that can limit its performance

and elegance. The second effect is that the runtime ends up with duplicated functionality.

In fact, many runtimes contain components that one can also find within the code base of a

ROS. Examples include task execution frameworks, event systems, memory management,

and communication facilities. Having such duplicates in the system is unnecessary and

counterproductive.

Another drawback of having a rigid set of kernel abstractions and an immutable system

call interface is that it can limit runtime developers’ imagination during development. A

runtime may have high-level information regarding its execution model, its memory access

patterns, and the types of applications it supports. Runtime developers could leverage this

high-level information to explore tailored solutions to problems they encounter. However,

the current structure of a ROS demands that they fit their runtimes into a predetermined

template.

Non-determinism Some runtimes need the ability to guarantee deterministic behavior.

This can be very important for parallel runtimes in particular, where threads can run in

parallel across many thousands of machines. It may be important in such an environment

for the parallel tasks to operate in lock step (e.g. in the BSP model of parallel computation).

When sources of non-determinism are introduced, the performance effects of a single

straggler can reverberate across the entire system. Some common sources of such non-

determinism (often called OS noise [74, 75, 101]) include external interrupts, page faults,

and background processes. It can be difficult to squash OS noise in a ROS completely.

Raw performance ROSes must be fairly general in the services and abstractions they

provide so that they can enable adequate performance for a large number of applications.

68

This generality comes at the cost of performance. Many layers of abstraction and highly

modular systems incur overheads through control-flow redirection. Management of

structures related to the virtualization of CPUs and memory also incurs some overheads,

however highly tuned. When these heavy-weight features are not even necessary, the

parallel runtime can pay a dear performance cost for the sake of convenience. These costs

can be fairly small at face value, but if a runtime uses enough ROS features that are effected

by overheads, the costs can compound.

In subsequent chapters, we will see empirically how all of these issues can conspire to

limit both performance and functionality.

69

Chapter 3

Hybrid Runtime Model

This chapter details the merits of hybrid runtimes (HRTs) and their potential benefits

for performance and functionality. Section 3.1 presents this argument. Section 3.2 briefly

recounts the high-level goals of the Nautilus Aerokernel. Sections 3.3– 3.5 describe example

HRTs that we have created using Nautilus as the underlying framework, along with

performance results. Finally, Section 3.6 concludes the chapter.

3.1 Argument

A language’s runtime is a system (typically) charged with two major responsibilities.

The first is allowing a program written in the language to interact with its environment

(at run-time). This includes access to underlying software layers (e.g., the OS) and the

machine itself. The runtime abstracts the properties of both and impedance-matches them

with the language’s model. The challenges of doing so, particularly for the hardware,

depend considerably on just how high-level the language is—the larger the gap between

the language model and the hardware and OS models, the greater the challenge. At

70

the same time, however, a higher-level language has more freedom in implementing the

impedance-matching.

The second major responsibility of the runtime is carrying out tasks that are hidden

from the programmer but necessary to program operation. Common examples include

garbage collection in managed languages (discussed in the previous chapter), JIT compila-

tion or interpretation for compilers that target an abstract machine, exception management,

profiling, instrumentation, task and memory mapping and scheduling, and even manage-

ment of multiple execution contexts or virtual processors. While some runtimes may offer

more or less in the way of features, they all provide the programmer with a much simpler

view of the machine than if he or she were to program it directly.

As a runtime gains more responsibilities and features, the lines between the runtime

and the OS often become blurred. For example, the Legion runtime, a data-centric parallel

runtime aimed at HPC, manages execution contexts (an abstraction of cores or hardware

threads), regions (an abstraction of NUMA and other complex memory models), task to

execution context mapping, task scheduling with preemption, and events. In the worst case

this means that the runtime and the OS are actually trying to provide the same functionality.

In fact, what we have found is that in some cases this duplication of functionality is

brought about by inadequacies of or grievances with the OS and the services it provides.

A common refrain of runtime developers (see Appendix A) is that they want the kernel

to simply give them a subset of the machine’s resources and then leave them alone. They

attempt to approximate this as best they can within the confines of user-space and with

the available system calls.

That this problem would arise is not entirely too surprising. After all, the operating

system is, prima facie, designed to provide adequate performance for a broad range of

71

general-purpose applications. However, when applications demand more control of the

machine, the OS can often get in the way, whether due to rigid interfaces or to mismatched

priorities in the design of those interfaces. Not only may the kernels abstractions be at

odds with the runtime, it may also completely prevent the runtime from using hardware

features that might otherwise significantly improve performance or functionality. If it

provides access to these features, it does so through a system call, which—even if it has

an appropriate interface for the runtime—nonetheless exacts a toll for use, as the system

call mechanism itself has a cost. Similarly, even outside system calls, while the kernel

might build an abstraction on top of a fast hardware mechanism, an additional toll is taken.

For example, signals are simply more expensive than interrupts, even if they are used to

abstract an interrupt.

A runtime that is a kernel will have none of these issues. It would have full access

to all hardware features of the machine, and the ability to create any abstractions that it

needs using those features. We want to support the construction of such hybrid runtimes

(HRTs). To do so, we will provide basic kernel functionality on a take-it-or-leave-it basis

to make the process easier. We also want such runtime kernels to have available the full

functionality of the ROS for components not central to runtime operation.

Figure 3.1 illustrates three different models for supporting a parallel runtime. The

current model (a) layers the parallel runtime over a general-purpose kernel (a ROS kernel).

The parallel runtime runs in user mode without access to privileged hardware features

and uses a kernel API designed for general-purpose computation. In the hybrid runtime

model (b) the parallel runtime is integrated with a specialized Aerokernel framework such

as Nautilus. The resulting HRT runs exclusively in kernel mode with full access to all

hardware features and with kernel abstractions designed specifically for it. Notice that

72

Parallel&App&

Parallel&Run,me&

General&Kernel&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&App&

Hybrid&Run,me&
(HRT)&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&Run,me&

General&Kernel&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&App&

Hybrid&Run,me&
(HRT)&

User%Mode%

Kernel%Mode%

Hybrid&Virtual&Machine&(HVM)&

Specialized&
Virtualiza,on&
Model&

Pe
rf
or
m
an

ce
*P
at
h*

Parallel&App&

Legacy*Path*

(a) Current Model (b) Hybrid Runtime Model

(c) Hybrid Runtime Model Within a Hybrid Virtual Machine

Pe
rf
or
m
an

ce
*P
at
h*

General&
Virtualiza,on&
Model&

Figure 3.1: Overview of hybrid runtime (HRT) approach: (a) current model used by parallel
runtimes, (b) proposed HRT model, and (c) proposed HRT model combined with a hybrid
virtual machine (HVM).

both the runtime and the parallel application itself are now below the kernel/user line.

Figure 3.1(b) is how we run Legion, NESL, and NDPC programs. We refer to this as the

performance path.

A natural concern with the structure of Figure 3.1(b) is how to support general-purpose

OS features. For example, how do we open a file? We do not want to reinvent the

wheel within an HRT or a kernel framework such as Nautilus in order to support kernel

functionality that is not performance critical. Figure 3.1(c) is our response, the hybrid

virtual machine (HVM), which will be discussed in detail in Chapter 5. In an HVM, the

73

virtual machine monitor (VMM) or other software will partition the physical resources

provided to a guest, such as cores and memory into two parts. One part will support

a general-purpose virtualization model suitable for executing full OS stacks and their

applications, while the second part will support a virtualization model specialized to the

HRT and will allow it direct hardware access. We will see that more advanced models

are also possible, where some resources are partitioned and others (namely, memory) are

shared. The specialized virtualization model enables the performance path of the HRT,

while the general virtualization model and communication between the two parts of the

HVM enable a legacy path for the runtime and application that will let it leverage the

capabilities of the general-purpose ROS kernel for non-performance critical work.

3.2 Nautilus

Nautilus1 is a small prototype Aerokernel framework that we built to support the HRT

model, and is thus the first of its kind. We designed Nautilus to meet the needs of parallel

runtimes that may use it as a starting point for taking full advantage of the machine. We

chose to minimize imposition of abstractions to support general-purpose applications in

lieu of flexibility and small codebase size. As I will show in Sections 3.3–3.5, this allowed us

to port three very different runtimes to Nautilus and the HRT model in a very reasonable

amount of time (in addition to one runtime that was automatically ported; see Chapter 7).

Nautilus is a Multiboot2-compliant kernel and we have tested it on several Intel and AMD

machines, as well as QEMU and our own Palacios VMM.

As Nautilus is a prototype for HRT research, we initially targeted the most popular
1Named after the submarine-like, mysterious vessel from Jules Verne’s Twenty Thousand Leagues Under

the Sea.

74

Language SLOC
C++ 133
C 636

Figure 3.2: Lines of code added to Nautilus to support Legion, NDPC, NESL, and Racket.

architecture for high-performance and parallel computing, x86_64. Nautilus also runs on

the Intel Xeon Phi.

The design of Nautilus is, first and foremost, driven by the needs of the parallel

runtimes that use it. Nevertheless, it is complete enough to leverage the full capabilities

of a modern 64-bit x86 machine to support three runtimes, one of which (Legion) is quite

complex and is used in practice today.

More details on the design, implementation, and evaluation of Nautilus will be pre-

sented in Chapter 4.

Building a kernel, however, was not our main goal. Our main focus was supporting the

porting and construction of runtimes for the HRT model. The Legion runtime, discussed

at length in the next section, was the most challenging and complex of the three runtimes

to bring up in Nautilus. Legion is about double the size of Nautilus in terms of codebase

size, consisting of about 43000 lines of C++. Porting Legion and the other runtimes took a

total of about four person-months of effort. Most of this work went into understanding

Legion and its needs. The lines of code actually added to Nautilus to support all four

runtimes is shown in Figure 3.2. We only needed to add about 800 lines of code. This is

tiny considering the size of the Legion runtime.

This suggests that exploring the HRT model for existing or new parallel runtimes,

especially with a small kernel like Nautilus designed with this in mind, is a perfectly

manageable task for an experienced systems researcher or developer. We hope that these

75

results will encourage others to similarly explore the benefits of HRTs.

3.3 Example: Legion

The Legion runtime system is designed to provide applications with a parallel program-

ming model that maps well to heterogeneous architectures [21, 189]. Whether the appli-

cation runs on a single node or across nodes—even with GPUs—the Legion runtime can

manage the underlying resources so that the application does not have to. There are several

reasons why we chose to port Legion to the HRT model. The first is that the primary focus

of the Legion developers is on the design of the runtime system. This not only allows us

to leverage their experience in designing runtimes, but also gives us access to a system

designed with experimentation in mind. Further, the codebase has reached the point where

the developers’ ability to rapidly prototype new ideas is hindered by abstractions imposed

by the OS layer. Another reason we chose Legion is that it is quickly gaining adoption

among the HPC community, including within the DoE’s Exascale effort. The third reason is

that we have corresponded directly with the Legion developers and discussed with them

issues with the OS layer that they found when developing their runtime. These issues are

outlined in Appendix A.

Under the covers, Legion bears many similarities to an operating system and concerns

itself with many issues that an OS must deal with, including task scheduling, isolation,

multiplexing of hardware resources, and synchronization. As discussed at the beginning of

this chapter, the way that a complex runtime like Legion attempts to manage the machine

to suit its own needs can often conflict with the services and abstractions provided by the

OS.

76

Low-level	run,me	API	(with	Machine	Model)	

Legion	High-Level	Run,me	

Legion	C++	Run,me	API	 Mapper	Interface	

Legion	Compiler	 C++	Legion	
Apps	

Shared-Memory-
Only	Run,me	

GASNet	+	CUDA	+	
Pthreads	Run,me	

Extensible	
Low-Level	
Run,me	

Compiled	
Legion	Apps	

Default	
Mapper	

Custom	
Mappers	

Figure 3.3: Legion system architecture.

As Legion is designed for heterogeneous hardware, including multi-node clusters and

machines with GPUs, it is designed with a multi-layer architecture. It is split up into the

high-level runtime and the low-level runtime. The high-level runtime is portable across

machines, and the low-level runtime contains all of the machine specific code. There is

a separate low-level implementation called the shared low-level runtime. This is the low-

level layer implemented for shared memory machines. The overall architecture of the

Legion runtime is depicted in Figure 3.3. As we are interested in single-node performance,

we naturally focused our efforts on the shared low-level Legion runtime. All of our

modifications to Legion when porting it to Nautilus were made to the shared low-level

component. Outside of optimizations using hardware access, and understanding the needs

77

of the runtime, the port was fairly straight-forward.

Legion, in its default user-level implementation, uses pthreads as representations

of logical processors, so the low-level runtime makes fairly heavy use of the pthreads

interface. In order to transform Legion into a kernel-level HRT, we simply had to provide

a similar interface in Nautilus. The amount of code added to Nautilus was less than 800

lines, and is described in Figure 3.2. After porting Legion into Nautilus, we then began to

explore how Legion could benefit from unrestricted access to the machine.

3.3.1 Evaluation

I now present an evaluation of our transformation of the user-level Legion runtime into a

kernel using Nautilus, highlighting the realized and potential benefits of having Legion

operate as an HRT. Our port is based on Legion as of October 14, 2014, specifically commit

e22962d, which can be found via the Legion project web site.2

The Legion distribution includes numerous test codes, as well as an example parallel

application that is a circuit simulator. We used the test codes to check the correctness of

our work and the circuit simulator as our initial performance benchmark. Legion creates

an abstract machine that consists of a set of cooperating threads that execute work when it

is ready. These are essentially logical processors. The number of such threads can vary,

representing an abstract machine of a different size.

Experimental setup We took all measurements on our lab machine named leviathan. We

chose this machine for our experiment because it has a large number of cores and an

interesting organization, similar to what a supercomputer node might look like. It is
2http://legion.stanford.edu

http://legion.stanford.edu

78

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

2 4 8 16 32 62

R
u

n
ti
m

e
 (

s
)

Legion Processors (threads)

Nautilus
Linux

Figure 3.4: Running time of Legion circuit simulator versus core count. The baseline
Nautilus version has higher performance at 62 cores than the Linux version.

a 2.1GHz AMD Opteron 6272 (Interlagos) server machine with 64 cores and 128 GB of

memory. The cores are spread across 4 sockets, and each socket comprises two NUMA

domains. All CPUs within one of these NUMA domains share an L3 cache. Within the

domain, CPUs are organized into 4 groups of 2 hardware threads. The hardware threads

share an L1 instruction cache and a unified L2 cache. Hardware threads have their own

L1 data cache. We configured the BIOS for this machine to “Maximum performance” to

eliminate the effects of power management. This machine also has a “freerunning‘ TSC,

which means that the TSC will tick at a constant rate regardless of the operating frequency

of the processor core. For Linux tests, it runs Red Hat 6.5 with stock Linux kernel version

2.6.32. For Xeon Phi tests, we use a Xeon Phi 3120A PCI accelerator along with the Intel

MPSS 3.4.2 toolchain, which uses a modified 2.6.38 Linux kernel. It is important to point

out that this is the current kernel binary shipped by Intel for use with Intel Xeon Phi

79

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 4 8 16 32 62

S
p

e
e

d
u

p

Legion Processors (threads)

Nautilus
Linux

Figure 3.5: Speedup of Legion (normalized to 2 Legion processors) circuit simulator
running on Linux and Nautilus as a function of Legion processor (thread) count.

hardware.

3.3.2 Legion Circuit Simulator

We ran the circuit simulator with a medium problem size (100000 steps) and varied the

number of cores Legion used to execute Legion tasks. Figure 3.4 shows the results. The

x-axis shows the number of threads/logical processors. The thread count only goes up

to 62 because the Linux version would hang at higher core counts, we believe due to a

livelock situation in Legion’s interaction with Linux. Notice how closely, even with no

hardware optimizations, Nautilus tracks the performance of Linux. The difference between

the two actually increases when scaling the number of threads. They are essentially at

parity. Nautilus is slightly faster at 62 cores.

80

0.5 %

1 %

1.5 %

2 %

2.5 %

3 %

3.5 %

4 %

4.5 %

5 %

2 4 8 16 32 62

S
p

e
e

d
u

p

Figure 3.6: Speedup of Legion circuit simulator comparing the baseline Nautilus version
and a Nautilus version that executes Legion tasks with interrupts off.

The speedup of the circuit simulator running in Legion as a function of the number

of cores is shown in Figure 3.5. Speedups are normalized to Legion running with two

threads.

To experiment with hardware functionality in the HRT model, we wanted to take

advantage of a capability that normally is unavailable in Linux at user-level. We decided

to use the capability to disable interrupts. In the Legion HRT, there are no other threads

running besides the threads that Legion creates, and so there is no need for timer interrupts

(or device interrupts). Observing that interrupts can cause interference effects at the level

of the instruction cache and potentially in task execution latency, we inserted a call to

disable interrupts when Legion invokes a task (in this case the task to execute a function in

the circuit simulator). Figure 3.6 shows the results, where the speedup is over the baseline

case where Legion is running in Nautilus but without any change in the default interrupt

81

policy. While this simple change involved only adding two short lines of code, we can see

a measurable benefit that scales with the thread count, up to 5% at 62 cores.

3.3.3 Legion HPCG

To evaluate the performance benefits of applying the HRT model to Legion using a more

complex benchmark, we used the HPCG (High Performance Conjugate Gradients) mini-

app. HPCG is an application benchmark effort from Sandia National Labs that is designed

to help rank top-500 supercomputers for suitability to scalable applications of national

interest [67, 97]. Los Alamos National Laboratory has ported HPCG to Legion, and

we used this port to further evaluate our HRT variant of Legion. HPCG is a complex

benchmark (∼5100 lines of C++) that exercises many Legion features. Recall that Legion

itself comprises another ∼43,000 lines of C++.

Figure 3.7 shows the speedup of the HPCG/Legion in Nautilus over HPCG/Legion on

Linux as a function of the number of Legion processors being used. Each Legion processor

is bound to a distinct hardware thread. On the Xeon Phi, Nautilus is able to speed up

HPCG by up to 20%. On x64, Nautilus increases its performance by almost 40%. We

configured HPCG for a medium problem size which, on a standard Linux setup, runs for

roughly 2 seconds. We see similar results for other HPCG configurations.

There are many contributors to the increased performance of HPCG in Nautilus, partic-

ularly fast condition variables. An interesting one is simply due to the simplified paging

model. On x64 the Linux version exhibited almost 1.6 million TLB misses during execution.

In comparison, the Nautilus version exhibited about 100.

82

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1 2 4 8 16 32 64 128 200 220

S
pe

ed
up

 o
ve

r
Li

nu
x

Legion Processors (threads)

x64
phi

Figure 3.7: Nautilus speedup of Legion HPCG on our x64 machine and the Intel Xeon Phi.

Language SLOC
Compiler

Lisp 11005
Runtime

C 8853
lex 230
yacc 461

Figure 3.8: Source lines of code for NESL. The runtime consists of the VCODE interpreter
and the CVL implementation we use.

3.4 Example: NESL

NESL [33] is a highly influential implementation of nested data parallelism developed

at CMU in the ’90s. Very recently, it has influenced the design of parallelism in Manti-

core [80, 78], Data Parallel Haskell [48, 50], and arguably the nested call extensions to

83

CUDA [150]. NESL is a functional programming language, using an ML-style syntax that

allows the implementation of complex parallel algorithms in a very compact and high-level

way, often 100s or 1000s of times more compactly than using a low-level language such

as C+OpenMP. NESL programs are compiled into abstract vector operations known as

VCODE through a process known as flattening. An abstract machine called a VCODE

interpreter then executes these programs on physical hardware. Flattening transformations

and their ability to transform nested (recursive) data parallelism into “flat” vector oper-

ations while preserving the asymptotic complexity of programs is a key contribution of

NESL [34] and very recent work on using NESL-like nested data parallelism for GPUs [29]

and multicore [28] has focused on extending flattening approaches to better match such

hardware.

As a proof of concept, we have ported NESL’s existing VCODE interpreter to Nautilus,

allowing us to run any program compiled by the out-of-the-box NESL compiler in kernel

mode on x86_64 hardware. We also ported NESL’s sequential implementation of the vector

operation library CVL, which we have started parallelizing. Currently, point-wise vector

operations execute in parallel. The combination of the core VCODE interpreter and a CVL

library form the VCODE interpreter for a system in the NESL model.

While this effort is a work in progress, it gives some insights into the challenges of

porting this form of language implementation to the kernel level. In summary, such a port

is quite tractable. A detailed breakdown of the source code in NESL as we use it is given

in Figure 3.8. Compared to the NESL source code release3, our modifications currently

comprise about 100 lines of Makefile changes and 360 lines of C source code changes.

About 220 lines of the C changes are in CVL macros that implement the point-wise vector
3http://www.cs.cmu.edu/∼scandal/nesl/nesl3.1.html

84

Language SLOC
Compiler

Perl 2000
lex 82
yacc 236

Runtime
C 2900
C++ 93
x86 assembly 477

Figure 3.9: Source lines of code for NDPC. The runtime counts include code both for use
on Nautilus and for user-level use.

operations we have parallelized. The remainder (100 Makefile lines, 140 C lines) reflect

the amount of glue logic that was needed to bring the VCODE interpreter and the serial

CVL implementation into Nautilus. The hardest part of implementing this glue logic is

assuring that the compilation and linking model match that of Nautilus, which is reflected

in the Makefile changes. The effort took roughly ten weeks to complete.

3.5 Example: NDPC

We have created a different implementation of a subset of the NESL language which

we refer to as “Nested Data Parallelism in C/C++” (NDPC). This is implemented as a

source-to-source translator whose input is the NESL subset and whose output is C++ code

(with C bindings) that uses recursive fork/join parallelism instead of NESL’s flattened

vector parallelism. The C++ code is compiled directly to object code and executes without

any interpreter or JIT. Because C/C++ is the target language, the resulting compiled NDPC

program can easily be directly linked into and called from C/C++ codebases. NDPC’s

collection type is defined as an abstract C++ class, which makes it feasible for the generated

code to execute over any C/C++ data structure provided it exposes or is wrapped with

85

the suitable interface. We made this design decision to further facilitate “dropping into

NDPC” from C/C++ when parallelism is needed. In the context of Figure 3.1(c), we

plan that the runtime processing of a call to an NDPC function will include crossing the

boundary between the general-purpose and specialized portions of the hybrid virtual

machine (HVM).

Figure 3.9 breaks down the NDPC implementation in terms of the languages used

and the size of the source code in each. The NDPC compiler is written in Perl and its

code breaks down evenly between (a) parsing and name/type unification, and (b) code

generation. The code generator can produce sequential C++ or multithreaded C++. The

generated code uses a runtime that is written in C, C++, and assembly that provides

preemptive threads and simple work stealing.

Code generation is greatly simplified because the runtime supports a thread_fork()

primitive. The runtime guarantees that a forked thread will terminate at the point it

attempts to return from the current function. The NDPC compiler guarantees the code it

generates for the current function will only use the current caller and callee stack frames,

that it will not place pointers to the stack on the stack, and that the parent will join with any

forked children before it returns from the current function. The runtime’s implementation

of thread fork() can thus avoid complex stack management. Furthermore, it can poten-

tially provide very fast thread creation, despite the fork() semantics, because it can avoid

most stack copying as only data on the caller and callee stack frames may be referenced by

the child. In some cases, the compiler can determine the maximum stack size (e.g., for a

leaf function), and supply this to the runtime, further speeding up thread creation.

We also note that the compiler knows exactly what parts of the stack can be written,

and it knows that the lifetime of a child thread nests within the lifetime of its parent. This

86

knowledge could be potentially leveraged at the kernel level by maintaining only a single

copy of read-only data on the parent stack and the child stacks.

Two user-level implementations of threading are included in the runtime, one of which

is a veneer on top of pthreads, while the other is an implementation of user-level fibers

that operates similarly to a kernel threading model. The kernel-level implementation, for

Nautilus, consists of only 150 lines of code, as Nautilus supports this threading model

internally. It is important to point out that the thread fork capability was quite natural to

add to Nautilus, but somewhat painful to graft over pthreads. Even for user-level fibers,

the thread fork capability requires somewhat ugly trampoline code which is naturally

avoided in the kernel.

As with the NESL VCODE port (Section 3.4) the primary challenges in making NDPC

operate at kernel-level within Nautilus have to do with assuring that the compilation

and linking models match those of Nautilus. An additional challenge has been dealing

with C++ in the kernel, although the C++ feature set used by code generated by NDPC is

considerably simpler than that needed by Legion. Currently, we are able to compile simple

benchmarks such as nested data parallel quicksort into Nautilus kernels and run them.

NDPC is a work in progress, but the effort to bring it up in Nautilus in its present state

required about a week.

3.6 Conclusions

In this chapter, I made the case for transforming parallel runtimes into operating system

kernels, forming hybrid runtimes (HRTs). The motivations for HRTs include the increasing

complexity of hardware, the convergence of parallel runtime concerns and abstractions in

87

managing such hardware, and the limitations of executing the runtime at user-level, both

in terms of limited hardware access and limited control over kernel abstractions. For the

Legion runtime, we were able to exceed Linux performance with simple techniques that

can only be done in the kernel. Building Nautilus was a six person-month effort, while

porting the runtimes was a four person-month effort. It is somewhat remarkable that

even with a fairly nascent kernel framework, just by dropping the runtime down to kernel

level and taking advantage of a kernel-only feature in two lines of code, we can exceed

performance on Linux, an OS that has undergone far more substantial development and

tuning effort.

How this is possible will become more clear in the next chapter, where I discuss the

detailed design, implementation, and evaluation of Nautilus.

88

Chapter 4

Nautilus Aerokernel Framework

This chapter discusses in depth the design, implementation, and evaluation of the Nautilus

Aerokernel, an enabling tool for hybrid runtimes. As I outlined briefly in previous chapters,

Nautilus is a kernel framework specifically designed to support the creation of HRTs. It

provides a basic kernel that can be booted within milliseconds after boot loader execution

on a multicore, multisocket machine, accelerator, or virtual machine. Nautilus includes

basic building blocks such as simple memory management, threads, synchronization, IPIs

and other in-kernel abstractions that a parallel runtime can be ported to or be built on top

of to become an HRT. While Nautilus provides functionality, it does not require the HRT

to use it, nor does it proscribe the implementation of other functionality. Nautilus was

developed for 64-bit x86 machines (x64) and then ported to the Intel Xeon Phi.

I will present detailed microbenchmark evaluations of Nautilus, comparing its func-

tionality and performance to that of analogous facilities available at user-level on Linux

that are typically used within parallel runtimes. Nautilus functionality such as thread

creation and events operate up to two orders of magnitude faster than Linux due to their

implementation and by virtue of the fact that there is no kernel/user boundary to cross.

89

They also operate with much less variation in performance, an important consideration for

many models of parallelism, particularly with scale.

Section 4.1 presents an overview of the Nautilus Aerokernel. Section 4.2 describes

the design of Nautilus and its various mechanisms. Section 4.3 describes the Intel Xeon

Phi port of Nautilus. Section 4.4 contains a detailed evaluation of the mechanisms and

abstractions that Nautilus provides. Finally, Section 4.5 closes this chapter with concluding

comments.

4.1 Nautilus

The design and implementation of Nautilus has been driven by studying parallel run-

times, including the three (Legion, NESL, NPDC) described in the previous chapter, the

SWARM data flow runtime [131], ParalleX [113], Charm++ [114], the futures and places

parallelism extensions to the Racket runtime [185, 187, 184], and nested data parallelism in

Manticore [81, 79] and Haskell [48, 49]. We have studied these codebases and in the case of

Legion, NPDC, SWARM, and Racket, we also interviewed their developers to understand

their views of the limitations of existing kernel support.

Nautilus is not a general-purpose kernel. In fact, there is not even a user-space. Instead,

its design focuses specifically on helping parallel runtimes to achieve high performance

as HRTs. The non-critical path functionality of the runtime is assumed to be delegated,

for example to the host in the case of an accelerator or to the ROS portion of an HVM (as

described in Chapter 5). The abstractions Nautilus provides are based on our analysis

of the needs of the runtimes we examined. Our abstractions are optional. Because an

HRT runs entirely at kernel level, the developer can also directly leverage all hardware

90

Paging Thread Misc Timers

Hardware

Ints

A
er

ok
er

ne
l

Topo Synch/
Events

Kernel Mode
User Mode (Nothing)

H
R

T
K

er
ne

l

Alloc

Parallel Runtime

Parallel Application

Full Privileged HW Access

Figure 4.1: Structure of Nautilus.

functionality to create new abstractions.

Our choice of abstractions was driven in part to make it feasible to port existing

parallel runtimes to become Aerokernel-based HRTs. A more open-ended motivator was

to facilitate the design and implementation of new parallel runtimes that do not have a

built-in assumption of being user space processes.

4.2 Design

Nautilus is designed to boot the machine, discover its capabilities, devices, and topology,

and immediately hand control over to the runtime. Figure 4.1 shows the basic structure,

showing the functionality provided by Nautilus in the context of the runtime and applica-

tion. Note that Nautilus is a thin layer in the HRT model, and that in this model there is

no user space. The runtime and the application have full access to hardware and can pick

and choose which Aerokernel functionality to use. The entire assemblage of the figure is

compiled into a Multiboot2-compliant kernel.

We focus the following discussion on functionality where Nautilus differs most from

other kernels. In general, the defaults for Nautilus functionality strive to be simple and

easy to reason about from the HRT developer’s viewpoint.

91

4.2.1 Threads

In designing a threading model for Aerokernel, we considered the experiences of others,

including work on high-performance user-level threading techniques like scheduler acti-

vations [10] and Qthreads [194]. Ultimately, we designed our threads to be lightweight in

order to provide an efficient starting point for HRTs. Nautilus threads are kernel threads.

A context switch between Nautilus threads never involves a change of address spaces.

Nautilus threads can be configured to operate either preemptively or cooperatively, the

latter allowing for the elimination of timer interrupts and scheduling of threads exactly as

determined by the runtime.

The nature of the threads in Nautilus is determined by how the runtime uses them.

This means that we can directly map the logical view of the machine from a runtime’s

point of view to the physical machine. This is not typically possible to do with any kind

of guarantees when running in user-space. In fact, this is one of the concerns that the

Legion runtime developers expressed with running Legion on Linux (see Appendix A).

The default scheduler and mapper binds a thread to a specific hardware thread as selected

by thread creator, and schedules round-robin. The runtime developer can easily change

these policies.

Another distinctive aspect of Nautilus threads is that a thread fork (and join) mechanism

is provided in addition to the common interface of starting a new thread with a clean

new stack in a function. A forked thread has a limited lifetime and will terminate when it

returns from the current function. It is incumbent upon the runtime to manage the parent

and child stacks correctly. This capability is leveraged in our ports of NESL and NDPC.

Thread creation, context switching, and wakeup are designed to be fast and to leverage

92

runtime knowledge. For example, maximum stack sizes and context beyond the GPRs can

be selected at creation time. Because interrupt context uses the current thread’s stack, it is

even possible to create a single large-stacked idle thread per hardware thread and then

drive computation entirely by inter-processor interrupts (IPIs), one possible mapping of

an event-driven parallel runtime such as SWARM.

4.2.2 Synchronization and Events

Nautilus provides several variants of low-level spinlocks, including MCS locks and bakery

locks. These are similar to those available in other kernels, and comparable in performance.

Nautilus focuses to a large extent on asynchronous events, which are a common

abstraction that runtime systems often use to distribute work to execution units, or workers.

For example, the Legion runtime makes heavy use of them to notify logical processors

(Legion threads) when there are Legion tasks that are ready to be executed. Userspace

events require costly user/kernel interactions, which we eliminate in Nautilus.

Nautilus provides two implementations of condition variables that are compatible

with those in pthreads. These implementations are tightly coupled with the scheduler,

eliminating unnecessary software interactions. When a condition is signaled, the default

Nautilus condition variable implementation will simply put the target thread on its re-

spective hardware thread’s ready queue. This, of course, is not possible from a user-mode

thread.

When a thread is signaled in Nautilus it will not run until the scheduler starts it. For

preemptive threads, this means waiting until the next timer tick, or an explicit yield from

the currently running thread. Our second implementation of condition variables mitigates

this delay by having the signaling thread “kick” the appropriate core with an IPI after it

93

has woken up the waiting thread. The scheduler recognizes this condition on returning

from the interrupt and switches to the awakened thread.

The runtime can also make direct use of IPIs, giving it the ability to force immediate

execution of a function of its choosing on a remote destination core. Note that the IPI

mechanism is unavailable when running in user-space.

A more detailed treatment of asynchronous events will be given in Chapter 6.

4.2.3 Topology and Memory Allocation

Modern NUMA machines organize memory into separate domains according to physical

distance from a physical CPU socket, core, or hardware thread. This results in variable

latency when accessing memory in the different domains and also means achieving high

memory bandwidth requires leveraging multiple domains simultaneously. Platform

firmware typically enumerates these NUMA domains and exposes their sizes and topology

to the operating system in a way that supports both modern and legacy OSes.

Nautilus captures this topology information on boot and exposes it to the runtime.

The page and heap allocators in Nautilus allow the runtime to select which domains to

allocate from, with the default being that allocations are satisfied from the domain closest

to the current location of the thread requesting the allocation. All allocations are carried

out immediately. This is in contrast to the policy of deferred allocations whose domains

are determined on first touch, the typical default policy for general purpose kernels. A

consequence is that a runtime that implements a specific execution policy, for example

the owner-computes rule (e.g., as in HPF [98]) or inspector-executor [62], can more easily

reason about how to efficiently map a parallel operation to the memory hardware.

A thread’s stack is allocated using identity-mapped addresses based on the initial

94

binding of the thread to a hardware thread, again to the closest domain. Since threads

do not by default migrate, stack accesses are low latency, even across a large stack. If the

runtime is designed so that it does not allow or can fix pointers into the stack, even the

stack can be moved to the most friendly domain if the runtime decides to move the thread

to a different hardware thread.

We saw NUMA effects that would double the execution time of a long-running parallel

application on the Legion runtime. While user-space processes do typically have access to

NUMA information and policies, runtimes executing in Nautilus have full control over the

placement of threads and memory and can thus enjoy guarantees about what can affect

runtime performance.

4.2.4 Paging

Nautilus has a simple, yet high-performance paging model aimed at high-performance

parallel applications. When the machine boots up, each hardware thread identity-maps

the entire physical address space using large pages (2MB and 1 GB pages currently, 512 GB

pages when available in hardware) to create a single unified address space. Optionally, the

identity map can be offset into the “higher half” of the x64 address space (one use of this

is discussed in Chapter 5). Nautilus can also be linked to load anywhere in the physical

address space.

The static identity map eliminates expensive page faults and TLB shootdowns, and

reduces TLB misses. These events not only reduce performance, but also introduce

unpredictable OS noise [74, 75, 101] from the perspective of the runtime developer. OS

noise is well known to introduce timing variance that becomes a serious obstacle in large-

scale distributed machines running parallel applications. The same will hold true for single

95

Environment TLB Misses
Linux user-space 1588314
Nautilus 100

Figure 4.2: Unified TLB misses during a run of HPCG on our x64 machine.

nodes as core counts continue to scale up. The introduction of variance by OS noise (not

just by asynchronous paging events) not only limits the performance and predictability

of existing runtimes, but also limits the kinds of runtimes that can take advantage of the

machine. For example, runtimes that need tasks to execute in synchrony (e.g., in order to

support a bulk-synchronous parallel [85] application or a runtime that uses an abstract

vector model) will experience serious degradation if OS noise comes into play.

To measure the benefits of the Nautilus paging model, we ran HPCG in Legion (dis-

cussed in the previous chapter) on top of both Nautilus and Linux user-space and counted

the TLB misses during this run. Figure 4.2 shows the results. This includes dTLB load

and store misses and iTLB load misses for all page sizes. In Nautilus, we program the

performance counters directly, and for Linux we use the perf stat utility.

The use of a single unified address space also allows fast communication between

threads, and eliminates much of the overhead of context switches. The only context

switches are between kernel threads, so no page table switch or kernel-triggered TLB flush

ever occurs. This is especially useful when Nautilus runs virtualized, as a large portion

of VM exits come from paging related faults and dynamic mappings initiated by the OS,

particularly using shadow paging. A shadow-paged Aerokernel exhibits the minimum

possible shadow page faults, and shadow paging can be more efficient that nested paging,

except when shadow page faults are common [14].

96

4.2.5 Timers

Nautilus optionally enables a per-hardware thread scheduler tick mechanism based on the

Advanced Programmable Interrupt Controller (APIC) timer. This is only needed when

preemption is configured.

For high resolution time measurement across hardware threads, Nautilus provides a

driver for the high-precision event timer (HPET) available on most modern x64 machines.

This is a good mapping for real-time measurement in the runtimes we examined. Within

per-hardware thread timing, the cycle counter is typically used.

4.2.6 Interrupts

External interrupts in Nautilus work just like any other operating system, with the excep-

tion that by default only the APIC timer interrupt is enabled at bootup (and only when

preemption is configured). The runtime has complete control over interrupts, including

their mapping, assignment, and priority ordering.

4.2.7 API for Porting

A unique feature of Nautilus is its internal API meant to facilitate porting user-space

applications and runtimes to kernels. These APIs will be familiar to developers used to

writing parallel code, and they include interfaces for manipulating threads, events, locks,

and others. The threading interface is partly compatible with POSIX threads (pthreads).

Nautilus also includes many familiar functions from glibc.

97

4.3 Xeon Phi

We have ported Nautilus to the Intel Xeon Phi. Although the Phi is technically an x64

machine, it has differences that make porting a kernel to it challenging. These include

the lack of much PC legacy hardware, a distinctive APIC addressing model, a distinctive

frequency/power/thermal model, and a bootstrap and I/O model that is closely tied to

Intel’s MPSS stack. Our port consists of two elements.

Philix is an open-source set of tools to support booting and communicating with a

third-party kernel on the Phi in compliance with Intel’s stack, while at the same time not

requiring the kernel to itself support the full functionality demanded of MPSS. Philix also

includes basic driver support for the Phi that can be incorporated into the third-party

kernel. This includes console support on both the host and Phi sides to make debugging a

new Phi kernel easier. Philix comprises 1150 lines of C.

Our changes to add Phi support to Nautilus comprised about 1350 lines of C. This

required about 1.5 person months of kernel developer effort, mostly spent in ferreting out

the idiosyncrasies of the Phi.

4.4 Microbenchmarks

I now present an evaluation of the performance of the basic primitives in Nautilus that are

particularly salient to HRT creation, comparing them to Linux user-level and kernel-level

primitives. The performance of basic primitives is important because runtimes build on

these mechanisms. Although they can use the mechanisms cleverly (Legion’s task model

is effectively a thread pool model, for example), making the underlying primitives and

98

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

Linux (p
threads)

Linux (k
ernel th

reads)

Aerokernel th
reads

µ = 586819

min = 571355
max = 616929

σ = 8224.09

µ = 635028

min = 619251
max = 756106

σ = 19142.2

µ = 5297.4

min = 4357
max = 13251

σ = 896.781

C
yc

le
s

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

Linux (p
threads)

Linux (k
ernel th

reads)

Aerokernel th
reads

µ = 103759

min = 88605
max = 340683

σ = 27845.4

µ = 96970.9

min = 88228
max = 190092

σ = 12768.7

µ = 1345.41

min = 1140
max = 2915

σ = 203.799

C
yc

le
s

(a) x64 (b) phi
Figure 4.3: Thread creation latency. Nautilus thread creations are on average two orders of
magnitude faster than Linux user-space (pthreads) or kernel thread creations and have at
least an order of magnitude lower variance.

environment faster can make runtimes faster, as we shall see. The experimental setup in

this section is the same as discussed in Section 3.3.1.

4.4.1 Threads

Figure 4.3 compares thread creation latency between Linux user-space (pthreads), Linux

kernel threads, and Nautilus threads. We compare with pthreads because runtimes (such

as Legion) build on these mechanisms. While thread creation may or may not be on

the performance critical path for a particular runtime (Legion creates threads only once

99

at startup time and binds them to physical cores), the comparison demonstrates the

lightweight capabilities of Nautilus. The cost measured is the time for the thread creation

function to return to the creator thread. For Nautilus, this includes placing the new thread

in the run queue of its hardware thread. A thread fork in Nautilus has similar latency since

the primary difference compared to ordinary thread creation has to do the content of the

initial stack for the new thread. The time for the new thread to begin executing is bounded

by the context switch time, which we measure below.

On both platforms, thread creation in Nautilus has two orders of magnitude lower

latency on average than both Linux options, and, equally important, the latency has little

variance. Thread creation in Nautilus also scales well, as, like the others, it involves

constant work. From an HRT developer’s point of view, these performance characteris-

tics potentially makes the creation of smaller units of work feasible, allows for tighter

synchronization of their execution, and allows for large numbers of threads.

Figure 4.4 illustrates the latencies of context switches between threads on the two

platforms, comparing Linux and Nautilus. In both cases, no floating point or vector state

is involved—the cost of handling such state is identical across Linux and Nautilus. The

average cost of a Nautilus context switch on the x64 is about 10% lower than that of Linux,

but Nautilus exhibits a variance that’s lower by a factor of two. On the Phi, Nautilus

exhibits two orders of magnitude lower variance in latency and more than factor of two

lower average latency. The instruction count for a thread context switch in Nautilus is

much lower than that for Linux. On the x64, this does not have much effect because the

hardware thread is superscalar. On the other hand, the hardware thread on the Phi is not

only not superscalar, but four hardware threads round-robin instruction-by-instruction for

the execution core. As a consequence, the lower instruction count translates into a much

100

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Linux (pthreads) Aerokernel threads

µ = 4896.09

min = 3166
max = 6918

σ = 685.126

µ = 1760.58

min = 1749
max = 1773

σ = 3.75548
C

yc
le

s

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Linux (pthreads) Aerokernel threads

µ = 1412.67

min = 1352
max = 2438

σ = 114.377

µ = 1269.52

min = 1176
max = 1391

σ = 48.3902

C
yc

le
s

(a) x64 (b) phi

Figure 4.4: Thread context switch latency. Nautilus thread context switches similar in
average performance to Linux on x64 and over two times faster on Phi. In both cases, the
variance is considerably lower.

lower average latency on the Phi.

The lower average context switch costs on the Phi translate directly into benefits for

an HRT developer because it makes it feasible to more finely partition work. On both

platforms, the lower variance makes more fine grain cooperation feasible. The default

policies described in Section 4.2, combined with the performance characteristics shown

here are intended to provide a predictable substrate for HRT development. The HRT

developer can also readily override the default scheduling and binding model while still

leveraging the fast thread creation/fork and context switch capabilities.

101

 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex wakeup

Aerokernel condvar

Aerokernel condvar +
 IP

I

oneway IP
I

µ = 25176.5

min = 1145
max = 29955

σ = 3698.93

µ = 24640.5

min = 81
max = 29996

σ = 3750.51

µ = 9128.78

min = 4195
max = 29990

σ = 3025.12

min = 4730
max = 6392
µ = 5348.51
σ = 290.006

min = 1150
max = 17397
µ = 1572.68
σ = 523.279

C
yc

le
s

to
 W

ak
eu

p

(a) x64

 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex wakeup

Aerokernel condvar

Aerokernel condvar +
 IP

I

oneway IP
I

µ = 25722.7

min = 24333
max = 27834

σ = 618.407

µ = 15637.4

min = 13311
max = 22343

σ = 1173.37

µ = 9014.73

min = 5528
max = 14074

σ = 2507.14

min = 5953
max = 7305
µ = 6483.89
σ = 213.517

min = 732
max = 761
µ = 740.85
σ = 5.71205

C
yc

le
s

to
 W

ak
eu

p

(b) phi

Figure 4.5: Event wakeup latency. Nautilus condition variable wakeup latency is on
average five times faster than Linux (pthreads), and has 3–10 times less variation.

102

4.4.2 Events

Figure 4.5 compares the event wakeup performance for the mechanisms discussed in

Section 4.2 on the two platforms. We measure the latency from when an event is signaled

to when the waiting thread executes. We compare the cost of condition variable wakeup

in user mode in Linux with our two implementations of them (with and without IPI) in

Nautilus. We also show the performance of the Linux fast user space mutex (“futex”)

primitive, and of a one-way IPI, which is the hardware limit for an event wakeup.

For condition variables, the latency measured is from the call to pthread_cond_signal

(or equivalent) and the subsequent wakeup from pthread_cond_wait (or equivalent). The

IPI measurement is the time from when the IPI is initiated until when its interrupt handler

on the destination hardware thread has written a memory location being monitored by the

source hardware thread.

The average latency for Nautilus’s condition variables (with IPI) is five times lower

than that of Linux user-level on both platforms. It is also three to five times lower than the

futex. Equally important, the variance in this latency is much lower on both platforms, by

a factor of three to ten. From an HRT developer’s perspective, these performance results

mean that much “smaller” events or smaller units of work can feasibly be managed, and

that these events and work can be more tightly synchronized in time.

Because they operate in kernel mode, HRTs can make direct use of IPIs and thus operate

at the hardware limit of asynchronous event notification, which is one to three thousand

cycles on our hardware. Figure 4.6 illustrates the latency of IPIs, as described earlier, on

our two platforms. The specific latency depends on which two cores are involved and the

machine topology. This is reflected in the notches in the CDF curve. Note however that

103

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1200 1400 1600 1800 2000 2200 2400

C
D

F

Cycles mesaured from BSP (core 0)

95th percentile = 1728 cycles

(a) x64

 0

 0.2

 0.4

 0.6

 0.8

 1

 710 720 730 740 750 760 770 780 790 800

C
D

F

Cycles mesaured from BSP (core 224)

95th percentile = 746 cycles

(b) phi

Figure 4.6: CDF of IPI one-way latencies, the hardware limit of asynchronous signaling
that is available to HRTs.

104

there is little variation overall—the 5th and 95th percentile are within hundreds of cycles.

Asynchronous event notification and IPIs will be explored in detail in Chapter 6.

4.5 Conclusion

In this chapter we saw a detailed description of the Nautilus Aerokernel framework,

one of the enabling tools for hybrid runtimes. Nautilus provides a suite of functionality

specialized to HRT development that can perform up to two orders of magnitude faster

than the general purpose functionality in the Linux kernel while also providing much less

variation in performance. Nautilus functionality leads to 20-40% performance gains in

an application benchmark for the Legion runtime system on x64 and Xeon Phi, as seen in

the previous chapter. In the next chapter, we will see how the hybrid virtual machine, the

other main tool for enabling HRTs, eases their deployment.

105

Chapter 5

Hybrid Virtual Machines

While running an HRT on bare metal is suitable for some contexts (e.g., an accelerator or a

node of a supercomputer), we may also want to use an HRT in shared contexts or ease the

porting of runtimes that have significant dependencies on an existing kernel. The hybrid

virtual machine (HVM), facilitates these use cases. HVM is an extension1to the open-source

Palacios VMM [129] that makes it possible to create a VM that is internally partitioned

between virtual cores that run a ROS and virtual cores that run an HRT. The ROS cores see

a subset of the VM’s memory and other hardware, while HRT cores see all of it and may

be granted specialized physical hardware access by the VMM. The ROS application can

invoke functions in the HRT that operate over data in the ROS application. Finally, the

HRT cores can be booted independently of the ROS cores using a model that allows an

HRT to begin executing in 10s of microseconds, and with which an Aerokernel-based HRT

(e.g. an HRT based on Nautilus) can be brought up in 10s of milliseconds. This makes

HRT startup in the HVM comparable in cost to fork()/exec() functionality in the ROS.
1Our prototype comprises about 3,500 lines of C and assembly, and we believe it could be readily

implemented in other VMMs.

106

In effect, the HVM allows a portion of an x64 machine to act as an accelerator.

The HVM extensions to Palacios are open-source and publicly available at http://

v3vee.org.

In this chapter, I first outline the deployment models for HRT and HVM in Section 5.1.

Section 5.2 gives the details of the HVM model. Section 5.3 discusses issues related to

security and protection in an HRT+HVM environment. Section 5.4 contains a description of

the merged address space mechanism for leveraging ROS functionality in an HRT. Section 5.5

gives an explanation of communication between a ROS and an HRT in the HVM model.

Section 5.6 discusses the boot and reboot process of HRTs within the HVM. Section 5.7

ends the chapter with final thoughts.

5.1 Deployment

We currently envision four deployment models for an HRT:

• Dedicated: the machine is dedicated to the HRT, for example on a machine is an

accelerator or a node of a supercomputer. This is the model used in the previous

chapters.

• Partitioned: the machine is a supercomputer node that is physically partitioned [154],

with a partition of cores dedicated to the HRT.

• VM: The machine’s hypervisor creates a VM that runs the HRT.

• HVM: The machine’s hypervisor creates a VM that is internally partitioned and runs

both the HRT and a general purpose OS we call the “regular” OS (ROS).

http://v3vee.org
http://v3vee.org

107

For the VM and HVM deployment models, the hypervisor partitions/controls resources,

and provides multiprogramming and access control. In the HVM model, the HRT can

leverage both kernels, as we describe in detail here. Note that in an HVM, the ROS memory

is vulnerable to modification by the HRT, but we think of the two as a unit; an unrelated

process would be run in a separate VM (or on the host).

The purpose of the hybrid virtual machine (HVM) environment, illustrated in Figure 3.1,

is to enable the execution of an HRT in a virtual environment simultaneously with the ROS.

That is, a single VM is shared between a ROS and an HRT. The virtual environment exposed

to the HRT may be different from and indeed much lower-level than the environment

exposed to the ROS. It can also be rebooted independently of the ROS. At the same time,

the HRT has access to the memory of the ROS and can interrupt it. In some ways, the HRT

can be viewed as providing an “accelerator” for the ROS and its applications, and the HVM

provides the functionality of bridging the two. Using the HVM, the performance critical

elements of the parallel runtime can be moved into the HRT, while runtime functionality

that requires the full stack remains in the ROS.

5.2 Model

The user creates a virtual machine configuration, noting cores, memory, NUMA topology,

devices, and their initial mappings to the underlying hardware. An additional configu-

ration block specifies that this VM is to act as an HVM. The configuration contains three

elements: (1) a partition of the cores of the VM into two groups: the HRT cores and the ROS

cores, which will run their respective kernels; (2) a limit on how much of the VM’s physical

memory will be visible and accessible from a ROS core; and (3) a Multiboot2-compliant

108

kernel, such as an HRT built on top of Aerokernel. We extend the Multiboot2 specification

to support HRTs. The existence of a special header in the Multiboot section of the ELF file

indicates that the HRT boot model described here is to be followed instead of the standard

Multiboot2 model.

The remainder of the model can be explained by considering the view of a ROS core

versus that of an HRT core. The VMM maintains the following invariants for a ROS core:

1. Only the portion of the VM’s physical memory designated for ROS use is visible and

accessible.

2. Inter-processor interrupts (IPIs) can be sent only to another ROS core.

3. Broadcast, group, lowest-priority, and similar IPI destinations consider only the ROS

cores.

An HRT core, on the other hand, has no such constraints. All of the VM’s physical

memory is visible and accessible. IPIs can be sent to any core, and broadcast, group,

lowest-priority and similar IPI destinations can consider either all cores or only HRT cores.

This is set by the HRT. Generally speaking, interrupts from interrupt controllers such as

IOAPICs and physical interrupts can be delivered to both ROS and HRT cores. The default

is that they are delivered only to ROS cores, but an HRT core can request them. Broadcast,

group, lowest priority, and similar destinations are computed over the ROS cores and any

requesting HRT cores. Collectively, the ROS cores form what appears to the kernel running

on them as a smaller machine (in terms of memory and cores) than it actually is.

109

5.3 Protection

The invariants described above are implemented through two techniques. The memory

invariants leverage the fact that each core in the VMM we use, similar to other VMMs,

maintains its own paging state, for example shadow or nested page tables. This state is

incrementally updated due to exits on the core, most importantly due to page faults or

nested page faults. For example, a write to a previously unmapped address causes an

exit during which we validate the access and add the relevant page table entries in the

shadow or nested age tables if it is an appropriate access. A similar validation occurs for

memory-mapped I/O devices. We have extended this model so that validation simply

takes into account the type of core (ROS or HRT) on which the exit occurred. This allows

us to catch and reject attempts by a ROS core to access illegal guest physical memory

addresses.

The interrupt invariants are implemented by extensions to the VMM’s APIC device. At

the most basic level, IPI delivery from any APIC, IOAPIC, or MSI takes into account the

type of core from which the IPI originates (if any) and the type of core that it targets. IPIs

from a ROS core to an HRT core are simply dropped. External interrupts targeting an HRT

core are delivered only if previously requested. Additionally, the computations involved

with broadcast and group destinations for IPIs and external interrupts are modified so

that only cores that are prospective targets are included. Similarly, the determination of

the appropriate core or cores for a lowest priority destination includes only those cores to

which the interrupt could be delivered under the previous restrictions. These mechanisms

allow us to reject any attempt to send an HRT core an unwanted interrupt.

110

ROS$Kernel$$
$

(Linux)$

Applica4on$
+$Run4me$
Codeand
Data$
$

0xffff800000000000

0xffffffffffffffff

0x00007fffffffffff

0x0000000000000000

Canonical(
“lower(half”(
(

Canonical(
“higher(half”(
(

Applica4on$
+$Run4me$
Codeand
Data$
$

ROS$Virtual$
Address$Space$

HRT$Virtual$
Address$Space$

Physical$
Address$Space$

HRT$Private$

ROS$+$HRT$
Shared$

ROS$+$HRT$
Shared$

HRT$Private$

Figure 5.1: Merged address space.

5.4 Merged Address Space

The HRT can access the entire guest physical address space, and thus can operate directly

on any data within the ROS. However, to simplify the creation of the legacy path shown

in Figure 3.1, we provide the option to merge an address space within the ROS with the

address space of the HRT, as is shown in Figure 5.1. When a merged address space is in

effect, the HRT can use the same user-mode virtual addresses that are used in the ROS. For

example, the parallel runtime in the ROS might load files and construct a pointer-based

data structure in memory. It could then invoke a function within its counterpart in the

HRT to operate on that data.

To achieve this we leverage the canonical 64-bit address space model of x64 processors,

and its wide use within existing ROS kernels, such as Linux. In this model, the virtual

111

address space is split into a “lower half” and a “higher half” with a gap in between, the

size of which is implementation dependent. In a typical process model, e.g., Linux, the

lower half is used for user addresses and the higher half is used for the kernel.

For an HRT that supports it, the HVM arranges so that the physical address space is

identity-mapped into the higher half of the HRT address space. That is, within the HRT,

the physical address space mapping (including the portion of the physical address space

only the HRT can access) occupies the same portion of the virtual address space that is

occupied by the ROS kernel, the higher half. Without a merger, the lower half is unmapped

and the HRT runs purely out of the higher half. When a merger is requested, we map

the lower half of the ROS’s current process’s address space into the lower half of the HRT

address space. For a Aerokernel-based HRT (like Nautilus), this is done by copying the

first 256 entries of the PML4 from the PML4 pointed to by the ROS’s CR3 to the HRT’s

PML4 and then broadcasting a TLB shootdown to all HRT cores.

Because the parallel runtime in the ROS and the HRT are co-developed, the responsibil-

ity of assuring that page table mappings exist for lower half addresses used by the HRT in

a merged address space is the parallel runtime’s. For example, the parallel runtime can pin

memory before merging the address spaces, or introduce a protocol to send page faults

back to the ROS. The former is not an unreasonable expectation in a high performance

environment as we would never expect to be swapping.

5.5 Communication

The HVM model makes it possible for essentially any communication mechanism between

the ROS and HRT to be built, and most of these require no specific support in the HVM.

112

Item Cycles Time
Address Space Merger ∼33 K 15 µs
Asynchronous Call ∼25 K 11 µs
Synchronous Call (different socket) ∼1060 482 ns
Synchronous Call (same socket) ∼790 359 ns

Figure 5.2: Round-trip latencies of ROS↔HRT interactions (x64).

As a consequence, we minimally defined the basic communication between the ROS, HRT,

and the VMM using shared physical memory, hypercalls, and interrupts.

The user-level code in the ROS can use hypercalls to sequentially request HRT reboots,

address space mergers, and asynchronous sequential or parallel function calls. The VMM

handles reboots internally, and forwards the other two requests to the HRT as interrupts.

Because additional information may need to be conveyed, a data page is shared between

the VMM and the HRT. For a function call request, the page essentially contains a pointer

to the function and its arguments at the start and the return code at completion. For an

address space merger, the page contains the CR3 of the calling process. The HRT indicates

to the VMM when it is finished with the current request via a hypercall.

After an address space merger, the user-level code in the ROS can also use a single

hypercall to initiate synchronous operation with the HRT. This hypercall ultimately indi-

cates to the HRT a virtual address which will be used for future synchronization between

the HRT and ROS. A simple memory-based protocol can then be used between the two

to communicate, for example for the ROS to invoke functions in the HRT, without VMM

intervention.

Figure 5.2 shows the measured latency of each of these operations, using Aerokernel as

the HRT.

113

5.6 Boot and Reboot

The ROS cores follow the traditional PC bootstrap model with the exception that the ACPI

and MP tables built in memory show only the hardware deemed visible to the ROS by the

HVM configuration.

Boot on an HRT core differs from both the ROS boot sequence and from the Multiboot2

specification [155], which we leverage. Multiboot2 for x86 allows for bootstrap of a kernel

into 32-bit protected mode on the first core (the BSP) of a machine. Our extension allows

for bootstrap of a kernel in full 64-bit mode. There are two elements to HRT boot—memory

setup and core bootstrap. These elements combine to allow us to simultaneously start all

HRT cores immediately at the entry point of the HRT. At the time of this startup, each core

is running in long mode (64-bit mode) with paging and interrupt control enabled. The

HRT thus does not have much bootstrap to do itself. A special Multiboot tag within the

kernel indicates compatibility with this mode of operation and includes requests for how

the VMM should set up the kernel environment.

In memory setup, which is done only once in the lifetime of the HRT portion of the VM,

we select an HRT-only portion of the guest physical address space and lay out the basic

machine data structures needed: an interrupt descriptor table (IDT) along with dummy

interrupt and exception handlers, a global descriptor table (GDT), a task state segment

(TSS), and a page table hierarchy that identity-maps physical addresses (including the

higher-half offset as shown in Figure 5.1, if desired) using the largest feasible page table

entries. We also select an initial stack location for each HRT core. A simple ELF loader

then copies the HRT ELF into memory at its desired target location. Finally, we build a

Multiboot2 information structure in memory. This structure is augmented with headers

114

Item Cycles (and exits) Time
HRT core boot of ∼135 K
Aerokernel to main() (7 exits) 61 µs
Linux fork() ∼320 K 145 µs
Linux exec() ∼1 M 476 µs
Linux fork() + exec() ∼1.5 M 714 µs
HRT core boot of ∼37 M
Aerokernel to idle thread (∼2300 exits) 17 ms

Figure 5.3: HRT reboot latencies in context (x64).

that indicate our variant of Multiboot2 is in use, and provide fundamental information

about the VM, such as the number of cores, the APIC IDs, interrupt vectoring, and the

memory map, including the areas containing the memory setup. Because bootstrap occurs

on virtual hardware this information can be much simpler than that supplied via ACPI.

In core bootstrap, which may be done repeatedly over the lifetime of the HRT portion

of the HVM, the registers of the core are set. The registers that must be set include the

control registers (IDTR, GDTR, LDTR, TR, CR0, CR3, CR4, EFER), the six segment registers

including their descriptor components, and the general purpose registers RSP, RBP, RDI,

and RAX. The point is that core bootstrap simply involves setting about 20 register values.

The instruction pointer (RIP) is set to the entry point of the HRT, while RSP and RBP are

set to the initial stack for the core, and RDI points to the multiboot2 header information

and RAX contains the multiboot2 cookie.

Unlike a ROS boot, all HRT cores are booted together simultaneously. The HRT is

expected to synchronize these internally. In practice this is easy as a core can quickly find

its rank by consulting its APIC ID and looking at the APIC ID list given in the extended

Multiboot2 information.

115

Fast HRT reboot Because core bootstrap involves changing a small set of registers and

then reentering the guest, the set of HRT cores can be rebooted very quickly. An HRT

reboot is also independent of the execution of the ROS, and an HRT can be therefore be

rebooted many times over the lifetime of the HVM. We allow an HRT reboot to be initiated

from the HRT itself, from a userspace utility running on the host operating system, and

via a hypercall from the ROS, as described above.

Figure 5.3 illustrates the costs of rebooting an HRT core, and compares it with the cost

of typical process operations on a Linux 2.6.32 kernel running on the same hardware. An

HRT core can be booted and execute to the first instruction of Aerokernel’s main() in∼50%

of the time it takes to do a Linux process fork(), ∼13% of the time to do a Linux process

exec() and ∼8% of the time to do a combined fork() and exec(). The latter is the closest

analog in Linux to what the HRT reboot accomplishes. Note also that timings on Linux

were done “hot”—executables were already memory resident.

A complete reboot of Aerokernel on the HRT core to the point where the idle thread is

executing takes 17 ms. This time is also blindingly fast compared to the familiar norm of

booting a physical or virtual machine. We anticipate that this time will further improve

for two reasons. First, we can in principle skip much of the general purpose startup code

in Aerokernel, which is currently executed, given that we know exactly what the virtual

hardware looks like. Second, by starting the core from a memory and register snapshot,

specifically at the point of execution we desire to start from, we should be able to even

further short-circuit startup code.

It is important to note that even at 17 ms, a complete Aerokernel reboot is 60 to 300

times faster than a typical 1-5 minute node or server boot time. It should be thought of

in those terms, similar to the MicroReboot concept [45] for cheap recovery from software

116

failures. We can use HRT reboots to address many issues and, in the limit, treat them as

being on par with process creation in a traditional OS.

5.7 Conclusion

In this chapter I introduced the hybrid virtual machine (HVM). HVM is VMM functionality

that allows us to simultaneously run two kernels, an HRT and a traditional kernel, within

the same VM, allowing a runtime to benefit from the performance and capabilities provided

by the HRT model while not losing the performance non-critical functionality of the

traditional kernel. We will see more on HVM in Chapter 7, where it is used to support

an automatically hybridized runtime. In the next chapter, I will introduce current limits on

asynchronous software events and ways to overcome these limits using the HRT model.

117

Chapter 6

Nemo Event System

Many runtimes leverage event-based primitives as an out-of-band notification mechanism

that can signal events ranging from task completions or arrivals to message deliveries or

changes in state. They may occur between logical entities like processes or threads, or

they may happen at the hardware level. They often provide a foundation for building

low-level synchronization primitives like mutexes and wait queues. The correct operation

of parallel programs written for the shared-memory model relies crucially on low-latency,

microarchitectural event notifications traversing the CPU’s cache coherence network. The

focus of this chapter is on asynchronous software events, namely events that a sending

thread or handler can trigger without blocking or polling, and for which the receiving

thread or handler can wait without polling.

Ultimately these events are just an instance of unidirectional, asynchronous communi-

cation, so one might expect little room for performance improvement. We find, however,

that the opposite is true. While a cache line invalidation can occur in a handful of CPU

cycles and an inter-processor interrupt (IPI) can reach the opposite edge of a many-core

chip in less than one thousand cycles, commonly used event signaling mechanisms like

118

user-level condition variables fail to come within even three orders of magnitude of that

mark.

The crux of the work in this chapter is to determine the hardware limits for asyn-

chronous event notification on today’s hardware, particularly on x64 NUMA machines

and the Intel Xeon Phi, and then to approach those limits with software abstractions

implemented in an environment uninhibited by an underlying kernel, namely an HRT

environment.

In the limit, an asynchronous event notification is bounded from below by the signaling

latency on a hardware line. We measure and analyze inter-processor interrupts (IPIs) on

our hardware, arguing that they serve as a first approximation for this lower bound. We

consider both unicast and broadcast event notifications, which are used in extant runtimes,

and have IPI equivalents. In this chapter, I will describe the design and implementation of

Nemo1, a system for asynchronous event notifications in HRTs that builds on IPIs. Nemo

presents abstractions to the runtime developer that are identical to the pthreads condition

variable unicast and broadcast mechanisms and thus are friendly to use, but are much

faster. Unlike IPIs, where a thread invokes an interrupt handler on a remote core, these

abstractions allow a thread to wake another thread on a remote core. In addition, Nemo

provides an interface for unconventional event notification mechanisms that operate near

the IPI limit.

As I will show through a range of microbenchmarking on both platforms, Nemo can

approach the hardware limit imposed by IPIs for the average latency and variance of

latency for asynchronous event notifications. Unicast notifications in Nemo enjoy up to

five times lower average latency than the user-level pthreads constructs and the Linux
1Nemo is available as an open-source extension of the Nautilus Aerokernel framework, which was

discussed in detail in Chapter 4.

119

futex construct, while broadcast notifications have up to 4,000 times lower average latency.

Furthermore, the variance seen in Nemo is up to an order of magnitude lower for unicast,

and many orders of magnitude lower for broadcast. Finally, Nemo can deliver broadcast

events with much higher synchrony, exhibiting nearly identical latency to all destinations.

I will then discuss a small hardware change that would reduce the hardware limit (and

Nemo’s latency). Our measurements suggest that a large portion of IPI cost stems from the

interrupt dispatch mechanism. The syscall/sysret instructions avoid similar costs for

hardware thread-local system calls by avoiding this dispatch overhead. I will discuss our

proposal that syscall be included as an IPI type. When receiving a “remote syscall” IPI,

the faster dispatch mechanism would be used, reducing IPI costs for specific asynchronous

events such as those in Nemo.

Section 6.1 gives an overview of asynchronous software events, their usage, and their

current limitations. Section 6.2 introduces the Nemo event system. Section 6.3 discusses

ways in which we can improve the hardware limit for asynchronous events. Finally,

Section 6.4 concludes this chapter.

6.1 Limits of Event Notifications

Our motivation in exploring asynchronous event notifications in the HRT model stems

from the observation that many parallel runtimes use expensive, user-level software

events even though modern hardware already includes mechanisms for low-latency event

communication. However, these hardware capabilities are traditionally reserved for

kernel-only use. I discuss common uses of event notification mechanisms, particularly

for task invocations in parallel runtimes, then present measurements on modern multi-

120

core machines for common event-based primitives, demonstrating potential benefits of

a kernel-mode environment for low-latency events. The core question for this section is

just how fast could asynchronous event notification in current x64 and Phi hardware go.

We expect that our findings could also apply to asynchronous events in other runtime

environments that expose privileged hardware features or forego traditional privilege

separation such as Dune [25], IX [26], and Arrakis [160].

6.1.1 Runtime Events

In one common usage pattern of asynchronous event notifications, a signaling thread

notifies one or more waiting (and not polling) threads that they should continue. The

signaling thread continues executing regardless of the status of waiting threads.

In examining the usage of event notifications, we worked with Charm++[114], SWARM [131],

and Legion [21, 189], all examples of modern parallel runtimes. They all use asynchronous

events in some way, whether explicitly through an event programming interface or im-

plicitly by runtime design. In many cases, these runtimes use events as vehicles to notify

remote workers of available work or tasks that should execute.

Legion provides a good example. It uses an execution model in which a thread (e.g., a

pthread) implements a logical processor. Each logical processor sequentially operates over

tasks. In order to notify remote logical processors of tasks ready to execute, the signaling

processor broadcasts on a condition variable (e.g., a pthread_cond_t) that wakes up any

idle logical processors, all of which race to claim the task for execution. This process

bears some similarity to the schedule() interrupts used in Linux at the kernel level. Since

pthread_cond_broadcast() must involve the kernel scheduler (via a system call), it is

fairly expensive, as we will show in Section 6.1.2. Linux’s futex abstraction attempts to

121

 0

 5000

 10000

 15000

 20000

 25000

 30000

pt
hr

ea
d

co
nd

va
r

fu
te

x w
ak

eu
p

un
ica

st
IP

I

µ = 25176.5

min = 1145
max = 29955

σ = 3698.93

µ = 24640.5

min = 81
max = 29996

σ = 3750.51

µ = 1572.68

min = 1150
max = 17397

σ = 523.279

C
yc

le
s

to
 W

ak
eu

p

(a) x64

pt
hr

ea
d

co
nd

va
r

fu
te

x w
ak

eu
p

un
ica

st
IP

I

µ = 25722.7

min = 24333
max = 27834

σ = 618.407

µ = 15637.4

min = 13311
max = 22343

σ = 1173.37

µ = 740.85

min = 732
max = 761

σ = 5.71205

(b) phi

Figure 6.1: Comparing existing unicast event wakeups in user-mode (pthreads and futexes
on Linux) with IPIs on x64 and phi. Unicast IPIs are at least an order of magnitude faster
and exhibit much less variation in performance on both platforms.

ameliorate this cost with mixed success.

6.1.2 Microbenchmarks

Section 4.4 gave a cursory examination of the performance of asynchronous software

events. This section will present a more detailed exploration of event performance. The

experimental setup is the same as that discussed in Section 3.3.1. Time measurement is with

the cycle counter and measurements are taken over at least 1000 runs (unless otherwise

noted) with results shown as box plots or CDFs and summary statistics overlaid in some

cases.

Figure 6.1 shows the latency for event wakeups on x64 and phi. In each of these

122

experiments, we create a thread on a remote core. This thread goes to sleep until it receives

an event notification. We measure the time from the instant before the signalling thread

sends its notification to when the remote thread wakes up. We map threads to distinct

cores. The numbers represent statistics computed over 100 trials for each remote core

(6,300 trials on x64, 22,700 on phi).

I include a comparison of three mechanisms. The first two are the most commonly

used asynchronous event mechanisms in user-space: condition variables and futexes. The

pthreads implementation of condition variables depicted builds on top of futexes. The

overhead of condition variables compared to futexes may be significant, but it is platform

dependent or implementation dependent—the average event wakeup latency of condition

variables is nearly double that of futexes on phi, but only a small increment more on x64.

The third mechanism, denoted with “unicast IPI” on the figure, shows the unicast

latency of an inter-processor interrupt (IPI). On x64 and phi, each hardware thread has an

associated interrupt controller (an APIC). The APIC commonly receives external interrupts

and initiates their delivery to the hardware thread, but it is also exposed as a memory-

mapped I/O device to the hardware thread. From this interface, the hardware thread can

program the APIC to send an interrupt (an IPI) to one or more APICs in the system. APICs

are privileged devices and are typically used only by the kernel.

We also considered events triggered using the MONITOR/MWAIT pair of instructions

present on modern AMD and Intel chips. These instructions allow a hardware thread

to wait on a write to a particular range of memory, potentially entering a low-energy

sleep state while waiting. Because the entire hardware thread is essentially blocked when

executing the MWAIT instruction, I did not include a comparison with this technique.

Figure 6.1 shows that IPIs are, on average, much faster than either condition variables

123

or futexes. On x64, they have roughly 16 times lower latency than either, while on phi, they

have roughly 32 times lower latency than condition variables and 16 times lower latency

than futexes. On phi, the average IPI latency is only 700 cycles. The wall-clock time on the

two machines is similar, as x64 has roughly twice the clock rate.

IPIs are not doing the same thing as a condition variable or a futex. For IPIs, we measure

the time from the instant before the signaling thread sends its notification to when the

interrupt handler begins executing, not the waiting thread. We measure the IPI time because

this latency represents a lower bound for a wakeup mechanism using existing hardware

functionality on commodity machines. There is significant room for an improvement of

more than an order of magnitude (∼20x). We attempt to achieve this improvement in

Section 6.2 by moving towards a purely asynchronous mechanism enabled by the HRT

environment.

Not only is the average time much lower for an IPI, but its variance is also diminished

considerably. As I noted in the introduction, variance in performance limits parallel

runtime performance and scalability. This is an OS noise problem. The hardware has fewer

barriers to predictable performance.

Broadcast events are of significant interest in parallel runtimes, for example in Legion

as described above. Figure 6.2 shows the wakeup latency for a broadcast event on x64

and phi, again comparing a condition variable based approach in pthreads, Linux futex,

and IPIs. Measurements here operate as with the unicast events, but we additionally keep

track of time of delivery on every destination so we can assess the synchronicity of the

broadcasts.

The relative latency improvements for broadcasts with condition variables and futexes

are similar to the unicast case, but the gain from using broadcast IPIs is much larger. On

124

 0

 500000

 1×106

 1.5×106

 2×106

 2.5×106

pt
hr

ea
d

co
nd

va
r

fu
te

x w
ak

eu
p

br
oa

dc
as

t I
PI

µ = 995795

min = 17538
max = 2.17277e+06

σ = 544512

µ = 370630

min = 16402
max = 1.89553e+06

σ = 199680

µ = 12827.3

min = 1252
max = 57467

σ = 2931.32

C
yc

le
s

to
 W

ak
eu

p

(a) x64

pt
hr

ea
d

co
nd

va
r

fu
te

x w
ak

eu
p

br
oa

dc
as

t I
PI

µ = 5.64881e+06

min = 31743
max = 1.17807e+07

σ = 3.08505e+06

µ = 2.25096e+06

min = 28545
max = 4.55009e+06

σ = 1.27551e+06

µ = 1153.68

min = 1016
max = 1225

σ = 17.1824

(b) phi

Figure 6.2: Comparing existing user-space event broadcasts vs. IPIs on x64 and phi.
Broadcast IPIs have over 4000 times lower latency than condition variables and almost
2000 times lower latency than futexes on phi. x64 shows 78 times lower latency than
condition variables and 30 times lower latency than futexes. Variance in latency is similarly
reduced.

phi, the average latency of a broadcast IPI received by all targets is over 4,000 times lower

than for a mechanism based on condition variables. The gain in variance is similarly

startling. On x64, this gain is 78 times. While broadcast IPIs exploit the hardware’s own

parallelism, the implementations of all the other techniques are essentially serialized in a

loop that wakes up waiting threads sequentially. In part this difference between phi and

x64 is simply that the Phi has almost four times as many cores. While one could argue that

a programmer should choose a barrier over a condition variable to signal a wakeup on

multiple cores, barriers lack the asynchrony needed for these kinds of event notifications.

We should also hope that a broadcast event causes wakeups to occur across cores with

125

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1×106

C
D

F

σ

pthread condvar
futex broadcast

broadcast IPI

HW lower bound

user-mode events

~70x

Figure 6.3: CDF comparing the σs for various broadcast (one-to-all) wakeup mechanisms
in user-space vs. IPIs on x64. Broadcast IPIs achieve a synchrony that is three orders of
magnitude better than that achieved by pthread condition variables or Linux futexes.

synchrony; when a broadcast event is signaled, we would like all recipients to awaken as

close to simultaneously as possible. However, Figures 6.3 and 6.4 show that this is clearly

not the case for the condition variable or futex-based broadcasts. Recall that we measure

the time of the wakeup on each destination. For one broadcast wakeup, we thus have as

many measurements as there are cores, and we can compute the standard deviation (σ)

among them. In these figures, we repeat this many times and plot the CDFs of these σ

estimates. Note that in the figures the x-axes are on a log scale. On these platforms, there

are orders of magnitude difference in the degree of synchrony in wakeups achievable on

the hardware and what is actually achieved by the user-space mechanisms.

126

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000 1×106 1×107

C
D

F

σ

pthread condvar
futex broadcast

broadcast IPI

HW lower bound

user-mode events

~79000x

Figure 6.4: CDF comparing the σs for various broadcast (one-to-all) wakeup mechanisms
in user-space vs. IPIs on phi. Broadcast IPIs achieve a synchrony that is five orders of
magnitude better than that achieved by pthread condition variables or Linux futexes.

6.1.3 Discussion

The large gap between the performance of asynchronous software events in user-mode

and the hardware capabilities should cause concern for runtime developers. Not only do

these latencies indicate that software wakeups may happen roughly on the millisecond

time-scale of a slow network packet delivery, but also that the programmer can do little to

ensure that these wakeups occur with predictable performance. The problem is worse for

broadcast events, and the problem appears to scale with increasing core count.

Recall again that we claim IPIs are a hardware limit to asynchronous event notifications,

and that it is important to understand that an IPI is not an event notification by itself. The

goal of Nemo is to achieve event notifications compatible with those expected by parallel

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1200 1400 1600 1800 2000 2200 2400

C
D

F

Cycles mesaured from BSP (core 0)

95th percentile = 1728 cycles

socket

NUMA domain

physical core

logical core

Figure 6.5: CDF of unicast IPI latency from the Bootstrap Processor (BSP) to all other cores
on x64. Approaching this profile is the goal of Nemo.

runtimes with performance that approaches that of IPIs, as well as to offer unconventional

mechanisms that trade off ease of use for performance near the IPI limit.

6.2 Nemo Events

Nemo is an asynchronous event notification system for HRTs built within the Nautilus

Aerokernel framework. Nemo addresses the performance issues of asynchronous user-

space notifications by leveraging hardware features not commonly available to runtime or

application developers. That is, they are enabled by the fact that the entire HRT runs in

kernel mode.

The goal of Nemo is to approach the hardware IPI latency profile. Figure 6.5 represents

128

 0

 0.2

 0.4

 0.6

 0.8

 1

 710 720 730 740 750 760 770 780 790 800

C
D

F

Cycles mesaured from BSP (core 224)

95th percentile = 746 cycles

Figure 6.6: CDF of unicast IPI latency from the Bootstrap Processor (BSP) to all other cores
on phi.

in detail the kind of profile we would like to achieve. We expect that these numbers,

which were measured on x64, will tell us something about the machine, given its complex

organization. The knees in the curve (marked with black circles) indicate boundaries in the

IPI network. While we could not find reliable documentation from AMD or other parties

on the topology of the IPI network on this machine, we are confident that these inflection

points correspond to distances within the chip hierarchy as indicated in the captions. As

Nemo begins to exhibit similar behavior, we will know we are near the limits of available

hardware.

Unicast IPI latencies on our phi card, shown in Figure 6.6, are smaller and show less

pronounced inflection points. We suspect this stems from its use of a single-chip processor

with a balanced interconnect joining the cores.

129

6.2.1 Kernel-mode Condition Variables

Existing runtimes, such as Legion, use pthreads features in their user-space incarnations.

Nautilus tries to simplify the porting of such runtimes to become HRTs. To support

thread creation, binding, context switching, and similar elements, Nautilus provides a

pthreads-like interface for its kernel threads. Default thread scheduling (round-robin

with or without preemption—preemption is not used here) and mapping policies (initial

placement by creator, no migration) are intended to be simple to reason about. Similarly,

memory allocation is NUMA-aware and based on the calling thread’s location, not by first

touch.

For Nemo, the relevant event mechanism in pthreads is the condition variable, imple-

mented in the pthread_cond_X() family of functions. Nemo implements a compatible set

of these functions within Aerokernel. There are two implementations. In the first, there is

no special interaction with the scheduler. When a waiting thread goes to sleep on a condi-

tion variable, it puts itself on the condition variable’s queue and deschedules itself. When

a signaling thread invokes condvar_signal(), this function will put the waiting thread

back on the appropriate processor’s ready queue. The now signaled thread will not run

until the processor’s background thread yield()s. We would expect this implementation

to increase performance simply by eliminating user/kernel transitions from system calls,

e.g. the futex() system call.

The second implementation uses a more sophisticated interaction with the scheduler in

order to better support common uses in runtimes like Legion and SWARM. In these, the

threads that are sleeping on condition variables are essentially logical processors. Ideally

each one would map to a single physical CPU and would not compete for resources on that

130

 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex wakeup

Aerokernel condvar

Aerokernel condvar + IPI

unicast IP
I

µ = 25176.5
min = 1145
max = 29955
σ = 3698.93

µ = 24640.5
min = 81
max = 29996
σ = 3750.51

µ = 9128.78
min = 4195
max = 29990
σ = 3025.12

min = 4730
max = 6392
µ = 5348.51
σ = 290.006

min = 1150
max = 17397
µ = 1572.68
σ = 523.279

C
yc

le
s

to
 W

ak
eu

p

Nemo

Figure 6.7: Nemo kernel-mode event mechanisms for single wakeups on x64. Average
latency is reduced by over a factor of four, and variation is considerably reduced.

CPU. Scheduling of tasks (Legion tasks or SWARM tasks, not kernel threads) are handled

by the runtime, so kernel-level scheduling is superfluous. The condition variable in such

systems is used essentially to awaken logical processors.

On a condvar_signal() our second implementation sends an IPI to “kick” the physical

processor of the newly runnable thread. The scheduler on the physical processor can then

immediately switch to it. The kick serves to synchronize the scheduling of the sleeping

thread, reducing the effects of background threads that may be running.

The two implementations comprise about 200 lines of code within the Nautilus Aero-

kernel framework.

Figures 6.7 and 6.8 show the performance of these two implementations compared

to the existing user-space techniques and to the unicast IPI. Our first implementation

131

 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex wakeup

Aerokernel condvar

Aerokernel condvar + IPI

unicast IP
I

µ = 25722.7
min = 24333
max = 27834
σ = 618.407

µ = 15637.4
min = 13311
max = 22343
σ = 1173.37

µ = 9014.73
min = 5528
max = 14074
σ = 2507.14

min = 5953
max = 7305
µ = 6483.89
σ = 213.517

min = 732
max = 761
µ = 740.85
σ = 5.71205

C
yc

le
s

to
 W

ak
eu

p

Nemo

Figure 6.8: Nemo kernel-mode event mechanisms for single wakeups on phi. Average
latency is reduced by over a factor of four and variation is considerably reduced.

(“Aerokernel condvar”) roughly halves the median latency of user-mode event wakeups

on both x64 and phi. This latency improvement represents a rough estimate of the speedup

achieved solely by moving the application/runtime into kernel-mode, thus avoiding

kernel/user transition overheads. The implementation does, however, exhibit considerable

variance in wakeup latency. This is because the wakeup time depends on how long it takes

for the CPU’s background thread to yield() again.

Our second implementation (“Aerokernel condvar + IPI”) ameliorates this variation,

and further reduces average and median latency. The use of the IPI kick collapses the

median latency of the wakeup down to the minimum latency of the standard kernel-mode

condition variable. The variance in this case is much lower than all of the other wakeup

mechanisms.

132

 0

 500000

 1×106

 1.5×106

 2×106

 2.5×106

pthread condvar

futex wakeup

Aerokernel condvar

Aerokernel condvar + IPI

broadcast IP
I

µ = 995795

min = 17538
max = 2.17277e+06

σ = 544512

µ = 370630

min = 16402
max = 1.89553e+06

σ = 199680

µ = 265820

min = 3258
max = 612959

σ = 159421

min = 7842
max = 464015
µ = 132417
σ = 98637.4

min = 1252
max = 57467
µ = 12827.3
σ = 2931.32

C
yc

le
s

to
 W

ak
eu

p

Nemo

Figure 6.9: Nemo kernel-mode event mechanisms for broadcast wakeups on x64. Average
latency is reduced by a factor of 10 and variation is considerably reduced.

Figures 6.9 and 6.10 show the performance of broadcast events, where the gain is larger

(a factor of 10–16). Figures 6.11 and 6.12 show the improvement of the synchrony of broad-

cast event wakeups. This is improved by a factor of 10 on both platforms. Section 6.1.2

gives a description of the format of the latter two figures and a discussion of broadcast

IPIs.

In the current Nemo implementations for broadcast events, the signaling thread moves

each waiting thread to its processor’s run queue and then (in the second implementation)

kicks that processor with an IPI. Although there is considerable overlap between context

switches, in-flight IPIs, and moving the next thread to its run queue, we expect that

this sequential behavior of the signaling thread is a current limit on the broadcast event

mechanism both in terms of average/median latency and in terms of synchrony of the

133

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

pthread condvar

futex wakeup

Aerokernel condvar

Aerokernel condvar + IPI

broadcast IP
I

µ = 5.64881e+06

min = 31743
max = 1.17807e+07

σ = 3.08505e+06

µ = 2.25096e+06

min = 28545
max = 4.55009e+06

σ = 1.27551e+06

µ = 1.02075e+06

min = 7199
max = 7.25596e+06

σ = 1.1411e+06 min = 8267
max = 3.93142e+06
µ = 558155
σ = 428849

min = 1016
max = 1225
µ = 1153.68
σ = 17.1824

C
yc

le
s

to
 W

ak
eu

p

Nemo

Figure 6.10: Nemo kernel-mode event mechanisms for broadcast wakeups on phi. Average
latency is reduced by an factor of 16 and variation is considerably reduced.

awakened threads. This is in contrast to the IPI broadcast in hardware, which is inherently

parallel and exhibits significant synchrony in arrivals, as indicated in the figures and

previous discussions.

6.2.2 IPIs and Active Messages

In the previous section, I introduced Nemo events which were built to conform to the

pthreads programming interface, particularly condition variables. With the inherent

limitations of this interface and the privileged hardware available to us in an HRT in

mind, we can now explore a new event mechanism with a different interface built directly

on top of IPIs. The mechanism is also informed by how pthreads condition variables

are actually used in Legion and SWARM, namely to indirectly implement behavior via

134

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1×106

C
D

F

σ

pthread condvar
futex broadcast
Aerokernel condvar
Aerokernel condvar + IPI
broadcast IPI

HW lower bound

user-mode
events

Nemo events
(kernel-mode)

2x

Figure 6.11: CDF showing the Nemo kernel-mode event mechanisms for broadcast wake-
ups on x64. Nemo achieves an order of magnitude better synchrony in thread wakeups.

user-level mechanisms that can be directly implemented in the kernel context.

We claim that Active Messages [191] would better match the functional behavior

that event-based runtimes need. Active Messages enable low-latency message handling

for distributed memory supercomputers with high-performance interconnects. Since a

message delivery is ultimately just one kind of asynchronous event, we looked to Active

Messages for inspiration on how to approach the hardware limit for asynchronous software

events. In short, we use the IPI as the basis for an Active Message model within the shared

memory node.

In an Active Message system, the message payload includes a reference (a pointer) to a

piece of code on the destination that should handle the message receipt. One advantage

of this model is that it reduces the load on the kernel and results in a faster delivery

135

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000 1×106 1×107

C
D

F

σ

pthread condvar
futex broadcast
Aerokernel condvar
Aerokernel condvar + IPI
broadcast IPI

HW lower bound

Nemo events
(kernel-mode)

user-mode
events

4x

Figure 6.12: CDF showing the Nemo kernel-mode event mechanisms for broadcast wake-
ups on phi.

CORE 0 NCORES - 1
Action Lookup Table

0x000000001000076AAction
For

Event ID 2

Action Descriptor Table

Signaling Thread

Receiving Thread

Event IPI
 Handler

Incoming
Event
 IPI

nemo_event_notify(event_id,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 core_id)	

event_id	 =	 2	
core_id	 =	 4	

1 2 3 4

2	

(1)

(2)

(3)

Figure 6.13: Nemo Active Message-inspired event wakeups implemented using IPIs.

136

to the user-space application. Since the HRT is the kernel, we do not need to avoid

transferring control to it on an event notification. Furthermore, since the HRT is not a

multi-programmed environment, we can be sure that the receiving thread is a participant

in the parallel runtime/application, and thus has the high-level information necessary to

process the event. We can eliminate handling overhead by leveraging existing logic in

the hardware already meant for handling asynchronous events—in this case, IPIs. IPIs by

themselves, however, cannot implement a complete Active Message substrate, as there is

no payload other than the interrupt vector and state pushed on the stack by hardware.

Figure 6.13 shows the design and control flow of our Active Message-inspired event

mechanism. We reserve a slot in the IDT for a special Nemo event interrupt, which will

vector to a common handler (1). If only one type of event is necessary, this handler will

be the final handler and thus no more overhead is incurred. However, it is likely that a

runtime developer will need to use more than one event. In this case, the common handler

will lookup an event action (a second-level handler) in an Action Lookup Table (ALT), which

is indexed by its core ID (2). From this table, we find an action ID, which serves as an index

into a second table called the Action Descriptor Table (ADT). The ADT holds actions that

correspond to events. After the top-level handler indexes this table, it then executes the

final handler (3). The IPI is used to deliver the active message, while the Action Table

effectively contains its content.

The mechanism described here comprises about 160 lines of code in Nautilus.

Figures 6.14 and 6.15 show CDFs of the latency of Nemo’s Active Message-inspired

events compared to the unicast IPI. Notice that in all cases Nemo events are only roughly 40

cycles slower on phi and 100 cycles slower on x64. We are now truly close to the capabilities

of the hardware as evidenced by the performance and by the observed sensitivity to

137

 0

 0.2

 0.4

 0.6

 0.8

 1

 1200 1400 1600 1800 2000

C
D

F

Cycles mesaured from BSP (core 0)

unicast IPI
nemo event notify

95th% = 1728

95th% = 1824

~100 cycles

Figure 6.14: CDF showing unicast latency of Nemo’s Active Message-inspired events
compared to unicast IPIs on x64. Nemo lies within ∼5% of IPI performance.

the hardware topology, which is implied by the knees in the IPI latency profile (e.g. in

Figure 6.5).

Figure 6.16 shows the latency of Active Message-inspired Nemo events compared to

broadcast IPIs. The performance of the Nemo events are within tens of cycles of broadcast

IPIs, as we would expect. Figures 6.17 and 6.18 show the amount of synchrony present in

the Nemo events. I give an explanation of this type of figure in Section 6.1.2.

6.3 Towards Improving the Hardware Limit

Although I have shown how we achieve a marked improvement for asynchronous software

events using hardware features (IPIs in particular) that are not commonly available to

138

 0

 0.2

 0.4

 0.6

 0.8

 1

 710 720 730 740 750 760 770 780 790 800

C
D

F

Cycles mesaured from BSP (core 224)

unicast IPI
nemo event notify

95th% = 746

95th% = 781

~40 cycles

Figure 6.15: CDF showing unicast latency of Nemo’s Active Message-inspired events
compared to unicast IPIs on phi. Nemo lies within ∼5% of IPI performance.

user-space programs, it is important to calibrate this performance to another hardware

capability that is critical to the performance of multicore machines, namely the cache

coherence network. The question here is can we improve the hardware limit?

Mogul et al. lamented this issue [145] while advocating for lightweight, inter-core

notifications: “Unfortunately, today IPIs are the only option.”

The coherence network in a modern CPU propagates its own form of events between

chips, namely messages that implement the protocol that maintains the coherence model.

Not only do we expect the coherence network connecting the chips and the associated

logic to have low latency but also predictable performance.

How fast is this network from the perspective of event notification in general? We

implemented a small synchronous event mechanism using memory polling to assess this.

139

 0

 5000

 10000

 15000

 20000

 25000

 30000

IP
I b

ro
ad

ca
st

Nem
o

br
oa

dc
as

t

µ = 12792

min = 1252
max = 26838

σ = 2718.73

µ = 12958

min = 1376
max = 29703

σ = 2819.29

C
yc

le
s

to
 W

ak
eu

p

(a) x64

IP
I b

ro
ad

ca
st

Nem
o

br
oa

dc
as

t

µ = 1153.68

min = 1016
max = 1225

σ = 17.1824
µ = 1190.99

min = 1052
max = 1260

σ = 16.3532

(b) phi

Figure 6.16: Broadcast latency of Nemo’s Active Message-inspired events compared to
broadcast IPIs on x64 and phi. Performance is nearly identical in both cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

C
D

F

σ

IPI broadcast
Nemo broadcast

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
52

0

 2
61

0

 2
70

0

 2
79

0

~50 cycles

Figure 6.17: CDF comparing Nemo’s Active Message-inspired broadcast events to broad-
cast IPIs on x64. Synchrony is nearly identical.

140

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

σ

IPI broadcast
Nemo broadcast

 0

 0.2

 0.4

 0.6

 0.8

 1

 13 14 15 16 17 18 19

Figure 6.18: CDF comparing Nemo’s Active Message-inspired broadcast events to broad-
cast IPIs on phi. Synchrony is nearly identical.

In this mechanism, much like in a barrier or a spinlock, the waiting thread simply spins

on a memory location waiting for its value to change. When a signaling thread changes

this value, its core’s cache controller will send a coherence message to the waiting thread’s

core, ultimately prompting a cache fill with the newly written value, and an exit from

the spin. Figure 6.19 shows the performance of this synchronous mechanism compared

to the asynchronous mechanism of unicast IPIs on our x64 hardware. IPIs are roughly

1000 cycles more expensive until the notifications (or invalidations) have to travel further

through the chip hierarchy and off chip. The stepwise nature of the “coherence network”

curve confirms our prediction of predictable, low-latency performance.

These results prompted us to ask a new question: what prevents the IPI network

from achieving performance comparable to the coherence network? To address this

question, we performed an analysis of IPIs from the kernel programmer’s perspective,

141

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Cycles mesaured from BSP (core 0)

unicast IPI
synchronous event (mem polling)

coherence
network

interrupt
network

Figure 6.19: CDF comparing latency of asynchronous unicast IPIs compared to a simple
synchronous notification scheme using memory polling on x64. This represents the basic
cost difference between a synchronous and asynchronous event imposed by the hardware.

Software event min. cycles
Source APIC write 43
Destination handling 729
Communication delay 378
Total for unicast IPI 1150
Total for syscall 232

Figure 6.20: Estimated IPI cost breakdown in cycles on x64.

142

gathering measurements for the hardware and software events necessary for their delivery.

Figure 6.20 shows the results.

The latency of a unicast IPI involves three components. The first, “Source APIC write”,

is the time to initiate the IPI by writing the APIC registers appropriately at the source. In

the figure, we record the minimum time we observed. The second component, denoted

“Destination handling,” is the time required at the destination to handle the interrupt, going

from message delivery to the time of the first interrupt handler instruction. To estimate

this number, we measured the minimum latency from initiating a software interrupt (via

an int instruction) to the entry of its handler on the same core. We expect that this number

is actually an underestimate since it does not include any latency that might be introduced

by processing in the destination APIC. The “Communication delay” is simply these two

numbers subtracted from the total unicast IPI cost shown in Section 6.1.2. It is likely to be

an overestimate.

Integrating the observations of Figures 6.19 and 6.20 suggests that the reason why an

asynchronous IPI has so much higher latency than a synchronous coherence event is likely

to be due, in large part, to the destination handling costs of an IPI. For asynchronous event

notification in an HRT, much of this handling is probably not needed—we would like to

simply invoke a remote function, much like a Startup IPI (SIPI) available on modern x86

machines. In particular, the privilege checks, potential stack switches, and stack pushes

involved in an IPI are unnecessary.

A similar issue was addressed a decade ago when it was shown how much overhead

was involved in processing of the int instruction used in system calls, especially as clock

speeds grew disproportionally to interrupt handling logic. Designers at Intel and AMD

introduced the syscall and sysret instructions to reduce this overhead considerably.

143

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Cycles mesaured from BSP (core 0)

unicast IPI
synchronous event (mem polling)
projected remote syscall

cost of dest.
handling

Figure 6.21: CDF of the projected latency of the proposed “remote syscall” mechanism.
This comparison is made relative to the measured latencies of Figure 6.19.

Figure 6.20 notes the cost of a syscall on our x64 hardware, which is less than 1/3 of our

estimated destination handling costs for an IPI.

We believe a similar modification to the architecture could produce comparable benefits

for low-latency event delivery and handling. The essential concept is to introduce a

new class of IPIs, the “remote syscall”. This would combine the IPI generation and

transmission logic with the syscall logic on the destination core. That is, this form of IPI

would act like a syscall to the remote core, avoiding privilege checks, stack switches, or

any stack accesses. To estimate the gains from this model, we made a projection of IPI

performance if one could reduce destination handling to the cost of a syscall instruction.

Figure 6.21 shows the projected improvements. There is now considerable overlap in the

144

performance of synchronous events based on the coherence network and asynchronous

events based on the new “remote syscall”.

Current Intel APICs use an Interrupt Command Register (ICR), to initiate IPIs. The

delivery mode field, which is 3 bits long, indicates what kind of interrupt to deliver. Mode

011 is currently reserved, so this is a possible candidate for a remote syscall mode. There

are, of course numerous varieties of the APIC model between Intel and AMD, but the ICR

is a 64 bit register with numerous reserved bits in all of them. Any of these bits could

be used to encode a request for a “remote syscall”. As another example, the 2 bit wide

delivery shorthand field could be extended into the adjacent reserved field by one bit

to accommodate indicating whether delivery should happen by the traditional interrupt

mechanism or via syscall-like handling. In these delivery modes or shorthands, the

vector might provide a hint to the event handling dispatch software. We expect that these

changes would be minimal, although we do not know what effort would be needed to

integrate this new functionality with instruction fetch logic. The fact that a SIPI can already

vector the core to a specific instruction suggests to us that it might not introduce much

new logic. Indeed, another possible approach might be to allow SIPIs when the core is

outside of its INIT state.

6.4 Conclusions

In this chapter I have shown how the performance of asynchronous software events suffers

when the application/runtime is restricted to user-space mechanisms and mismatched

event programming interfaces. The performance of these mechanisms comes nowhere near

the hardware limits of IPIs, much less cache coherence messages. By leveraging the HRT

145

model, wherein the runtime and application can execute with fully privileged hardware

access, we increased the performance of these event mechanisms considerably. We did so

by designing, implementing, and evaluating the Nemo asynchronous event system within

the Nautilus Aerokernel framework for building HRTs on x64 and Xeon Phi. HRTs built

using Nemo primitives can enjoy event wakeup latencies that are as much as 4,000 times

lower than the event mechanisms typically used in user-space. Furthermore, the variation

in wakeup latencies in Nemo is much lower, allowing a greater degree of synchrony

between broadcasts to multiple cores. In addition to Nemo, we also considered the design

of IPIs themselves and proposed a small hardware addition that could potentially reduce

their cost considerably for constrained use cases, such as asynchronous event notification.

I showed that such additions can push the performance of asynchronous software events

closer to that of the hardware cache coherence network.

146

Chapter 7

Multiverse Toolchain

While porting a parallel runtime to the HRT model can produce the highest performance

gains, it requires an intimate familiarity with the runtime system’s functional require-

ments, which may not be obvious. These requirements must then be implemented in

the Aerokernel layer and the Aerokernel and runtime combined. This requires a deep

understanding of kernel development. This manual process is also iterative: the developer

adds Aerokernel functionality until the runtime works correctly. The end result might

be that the Aerokernel interfaces support a small subset of POSIX, or that the runtime

developer replaces such functionality with custom interfaces.

While such a development model is tractable, and we have transformed three runtimes

to HRTs using it (see Chapter 3), it represents a substantial barrier to entry to creating

HRTs, which we seek here to lower. The manual porting method is additive in its nature.

We must add functionality until we arrive at a working system. A more expedient method

would allow us to start with a working HRT produced by an automatic process, and then

incrementally extend it and specialize it to enhance its performance.

The Multiverse system described in this chapter supports just such a method using a

147

technique called automatic hybridization to create a working HRT from an existing, unmodi-

fied runtime and application. With Multiverse, runtime developers can take an incremental

path towards adapting their systems to run in the HRT model. From the user’s perspective,

a hybridized runtime and application behaves the same as the original. It can be run

from a Linux command line and interact with the user just like any other executable. But

internally, it executes in kernel mode as an HRT.

Multiverse bridges a specialized HRT with a legacy environment by borrowing function-

ality from a legacy OS, such as Linux. Functions not provided by the existing Aerokernel

are forwarded to another core that is running the legacy OS, which handles them and

returns their results. The runtime developer can then identify hot spots in the legacy

interface and move their implementations (possibly even changing their interfaces) into

the Aerokernel. The porting process with Multiverse is subtractive in that a developer

iteratively removes dependencies on the legacy OS. At the same time, the developer can

take advantage of the kernel-level environment of the HRT.

To demonstrate the capabilities of Multiverse, we automatically hybridize the Racket

runtime system. Racket has a complex, JIT-based runtime system with garbage collection

and makes extensive use of the Linux system call interface, memory protection mech-

anisms, and external libraries. Hybridized Racket executes in kernel mode as an HRT,

and yet the user sees precisely the same interface (an interactive REPL environment, for

example) as out-of-the-box Racket.

This chapter will first introduce the Multiverse toolchain in Section 7.1. Section 7.2 de-

tails the implementation of Multiverse, while Section 7.3 presents its evaluation. Section 7.4

concludes the chapter.

148

7.1 Multiverse

We designed the Multiverse system to support automatic hybridization of existing runtimes

and applications that run in user-level on Linux platforms.

7.1.1 Perspectives

The goal of Multiverse is to ease the path for developers of transforming a runtime into

an HRT. We seek to make the system look like a compilation toolchain option from the

developer’s perspective. That is, to the greatest extent possible, the HRT is a compilation

target. Compiling to an HRT simply results in an executable that is a “fat binary” containing

additional code and data that enables kernel-mode execution in an environment that

supports it. An HVM-enabled virtual machine on Palacios is the first such environment.

The developer can then extend this incrementally—Multiverse facilitates a path for runtime

and application developers to explore how to specialize their HRT to the full hardware

feature set and the extensible kernel environment of the Aerokernel.

From the user’s perspective, the executable behaves just as if it were compiled for

a standard user-level Linux environment. The user sees no difference between HRT

execution and user-level execution.

7.1.2 Techniques

The Multiverse system relies on three key techniques: state superpositions, split execution,

and event channels. We now describe each of these.

149

Split execution In Multiverse, a runtime and its application begin their execution in

the ROS. Through a well-defined interface discussed in Section 7.1.3, the runtime on the

ROS side can spawn an execution context in the HRT. At this point, Multiverse splits

its execution into two components, each running in a different context; one executes

in the ROS and the other in the HRT. The semantics of these execution contexts differ

from traditional threads depending on their characteristics. I discuss these differences

in Section 7.2. In the current implementation, the context on the ROS side comprises a

Linux thread, the context on the HRT side comprises an Aerokernel thread, and I will refer

to them collectively as an execution group. While execution groups in our current system

consist of threads in different OSes, this need not be true in general. The context on the HRT

side executes until it triggers a fault, a system call, or other event. The execution group

then converges on this event, with each side participating in a protocol for requesting

events and receiving results. This protocol exchange occurs in the context of HVM event

channels, which I discuss below.

Figure 7.1 illustrates the split execution of Multiverse for a ROS/HRT execution group.

At this point, the ROS has already made a request to create a new context in the HRT, e.g.

through an asynchronous function invocation. When the HRT thread begins executing in

the HRT side, exceptional events, such as page faults, system calls, and other exceptions

vector to stub handlers in the Aerokernel, in this case Nautilus (1). The Aerokernel then

redirects these events through an event channel (2) to request handling in the ROS. The

VMM then injects these into the originating ROS thread, which can take action on them

directly (3). For example, in the case of a page fault that occurs in the ROS portion of the

virtual address space, the HVM library simply replicates the access, which will cause the

same exception to occur on the ROS core. The ROS will then handle it as it would normally.

150

General Purpose OS
(Linux)

HVM Library

Parallel Runtime

Parallel App

 AeroKernel
 (Nautilus)

 HVM Library

 Parallel Runtime

 Parallel App

merged address space

VMM

accelerated HRT

(1)

(2)

(3)

(4)

Figure 7.1: Split execution in Multiverse.

Item Cycles Time
Address Space Merger ∼33 K 1.5 µs
Asynchronous Call ∼25 K 1.1 µs
Synchronous Call (different socket) ∼1060 48 ns
Synchronous Call (same socket) ∼790 36 ns

Figure 7.2: Round-trip latencies of ROS↔HRT interactions.

In the case of events that need direct handling by the ROS kernel, such as system calls, the

HVM library can simply forward them (4).

Event channels When the HRT needs functionality that the ROS implements, access to

that functionality occurs over event channels, event-based, VMM-controlled communication

channels between the two contexts. The VMM only expects that the execution group

adheres to a strict protocol for event requests and completion.

Figure 7.2 shows the measured latency of event channels with the Nautilus Aerokernel

performing the role of HRT. Note that these calls are bounded from below by the latency

151

of hypercalls to the VMM.

State superpositions In order to forego the addition of burdensome complexity to the

Aerokernel environment, it helps to leverage functions in the ROS other than those that lie

at a system call boundary. This includes functionality implemented in libraries and more

opaque functionality like optimized system calls in the vdso and the vsyscall page. In

order to use this functionality, Multiverse can set up the HRT and ROS to share portions

of their address space, in this case the user-space portion. Aside from the address space

merger itself, Multiverse leverages other state superpositions to support a shared address

space, including superpositions of the ROS GDT and thread-local storage state.

In principle, we could superimpose any piece of state visible to the VMM. The ROS

or the runtime need not be aware of this state, but the state is nonetheless necessary for

facilitating a simple and approachable usage model.

The superposition we leverage most in Multiverse is a merged address space between

the ROS and the HRT, depicted in Figure 5.1. The merged address space allows execution

in the HRT without a need for implementing ROS-compatible functionality. When a

merged address space takes effect, the HRT can use the same user-mode virtual addresses

present in the ROS. For example, the parallel runtime in the ROS might load files and

construct a complex pointer-based data structure in memory. It can then invoke a function

within its counterpart in the HRT to compute over that data.

7.1.3 Usage models

The Multiverse system is designed to give maximum flexibility to application and runtime

developers in order to encourage exploration of the HRT model. While the degree to which

152

static void*
routine (void * in) {

void * ret = aerokernel_func ();
printf (" Result = %d\n", ret);

}

int main (int argc , char ** argv) {
hrt_invoke_func (routine);
return 0;

}

Figure 7.3: Example of user code adhering to the accelerator model.

a developer leverages Multiverse can vary, we can broadly categorize the usage model

into three categories, discussed below.

Native In the native model, the application/runtime is ported to operate fully within

the HRT/Aerokernel setting. That is, it does not use any functionality not exported by the

Aerokernel, such as glibc functionality or system calls like mmap(). This category allows

maximum performance, but requires more effort, especially in the compilation process.

The ROS side is essentially unnecessary for this usage model, but may be used to simplify

the initiation of HRT execution (e.g. requesting an HRT boot). The native model is also

native in another sense: it can execute on bare metal without any virtualization support.

This is the model used in Chapters 3–6.

Accelerator In this category, the app/runtime developer leverages both legacy (e.g.

Linux) functionality and Aerokernel functionality. This requires less effort, but allows the

developer to explore some of the benefits of running their code in an HRT. Linux function-

ality is enabled by the merged address space discussed previously, but the developer can

also leverage Aerokernel functions.

Figure 7.3 shows a small example of code that will create a new HRT thread and use

153

event channels and state superposition to execute to completion. Runtime initialization is

opaque to the user, much like C runtime initialization code. When the program invokes

the hrt_invoke_func() call, the Multiverse runtime will make a request to the HVM to

run routine() in a new thread on the HRT core. Notice how this new thread can call

an Aerokernel function directly, and then use the standard printf() routine to print its

result. This printf call relies both on a state superposition (merged address space) for the

function call linkage to be valid, and on event channels, which will be used when the C

library code invokes a system call (e.g. write()).

Incremental The application/runtime executes in the HRT context, but does not lever-

age Aerokernel functionality. Benefits are limited to aspects of the HRT environment.

However, the developer need only recompile their application to explore this model. In-

stead of raising an explicit HRT thread creation request, Multiverse will create a new

thread in the HRT corresponding to the program’s main() routine. The Incremental model

also allows parallelism, as legacy threading functionality automatically maps to the corre-

sponding Aerokernel functionality with semantics matching those used in pthreads. The

developer can then incrementally expand their usage of hardware- and Aerokernel-specific

features.

While the accelerator and incremental usage models rely on the HVM virtualized

environment of Palacios, it is important to note that they could also be built on physical

partitioning [154] as well. At its core, HVM provides to Multiverse a resource partitioning,

the ability to boot multiple kernels simultaneously on distinct partitions, and the ability

for these kernels to share memory and communicate.

154

static void*
routine (void * in) {

void * ret = aerokernel_func ();
printf (" Result = %d\n", ret);

}

int main (int argc , char ** argv) {
pthread_t t;
pthread_create (&t, NULL , routine , NULL);
pthread_join (t, NULL);
return 0;

}

Figure 7.4: Example of user code adhering to the accelerator model with overrides.

7.1.4 Aerokernel Overrides

One way a developer can enhance a generated HRT is through function overrides. The

Aerokernel can implement functionality that conforms to the interface of, for example,

a standard library function, but that may be more efficient or better suited to the HRT

environment. This technique allows users to get some of the benefits of the accelerator

model without any explicit porting effort. However, it is up to the Aerokernel developer

to ensure that the interface semantics and any usage of global data make sense when using

these function overrides. Function overrides are specified in a simple configuration file

that is discussed in Section 7.2.

Figure 7.4 shows the same code from Figure 7.3 but using function overrides. Here the

Aerokernel developer has overridden the standard pthreads routines so that pthread_create()

will create a new HRT thread in the same way that hrt_invoke_func() did in the previous

example.

155

7.1.5 Toolchain

The Multiverse toolchain consists of two main components, the runtime system code

and the build setup. The build setup consists of build tools, configuration files, and an

Aerokernel binary provided by the Aerokernel developer. To leverage Multiverse, a user

must simply integrate their application or runtime with the provided Makefile and rebuild

it. This will compile the Aerokernel components necessary for HRT operation and the

Multiverse runtime system, which includes function overrides, Aerokernel binary parsing

routines, exit and signal handlers, and initialization code, into the user program.

7.2 Implementation

I now discuss implementation details for the runtime components of the Multiverse system.

This includes the portion of Multiverse that is automatically compiled and linked into

the application’s address space at build time and the parts of Nautilus and the HVM that

support event channels and state superpositions. Unless otherwise stated, I assume the

incremental usage model discussed in Section 7.1.3.

7.2.1 Multiverse Runtime Initialization

As mentioned in Section 7.1, a new HRT thread must be created from the ROS side (the

originating ROS thread). This, however, requires that an Aerokernel be present on the

requested core to create that thread. The runtime component (which includes the user-level

HVM library) is in charge of booting an Aerokernel on all required HRT cores during

program startup. They can either be booted on demand or at application startup. We use

156

libs

AeroKernel binary

stack

Virtual address space
for control process (ROS core)

libs
.text
.data

heap AeroKernel-managed
memory

HRT core physical memory

Loaded AeroKernel

Multiboot
and

VMM info structures

Figure 7.5: Nautilus boot process.

the latter in our current setup.

Our toolchain inserts program initialization hooks before the program’s main() func-

tion, which carry out runtime initialization.

Initialization tasks include the following:

• Registering ROS signal handlers

• Hooking process exit for HRT shutdown

• Aerokernel function linkage

• Aerokernel image installation in the HRT

• Aerokernel boot

• Merging ROS and HRT address spaces

Aerokernel Boot Our toolchain embeds an Aerokernel binary into the ROS program’s

ELF binary. This is the image to be installed in the HRT. At program startup, the Multiverse

157

runtime component parses this embedded Aerokernel binary and sends a request to the

HVM asking that it be installed in physical memory, as shown in Figure 7.5. Multiverse

then requests the Aerokernel be booted on that core. The boot process, which I described

in detail in Chapter 4, brings the Aerokernel up into an event loop that waits for HRT

thread creation requests.

The above initialization tasks are opaque to the user, who needs (in the Accelerator

usage model) only understand the interfaces to create execution contexts within the HRT.

7.2.2 Execution Model

To implement split execution, we rely on HVM’s ability to forward requests from the ROS

core to the HRT, along with event channels and merged address spaces.

The runtime developer can leverage two mechanisms to create HRT threads, as dis-

cussed in Section 7.1.3. Furthermore, two types of threads are possible on the HRT side:

top-level threads and nested threads. Top-level threads are threads that the ROS explicitly

creates. A top-level HRT thread can create its own child threads as well; we classify these

as nested threads. The semantics of the two thread types differ slightly in their operation.

Nested threads resemble pure Aerokernel threads, but their execution can proceed in the

context of the ROS user address space. Top-level threads require extra semantics in the

HRT and in the Multiverse component linked with the ROS application.

Threads: Multiverse pairs each top-level HRT thread with a partner thread that exe-

cutes in the ROS. The purpose of this thread is two-fold. First, it allows us to preserve

join semantics. Second, it gives us the proper thread context in the ROS to initiate a

state superposition for the HRT. Figure 7.6 depicts the creation of HRT threads and their

interaction with the ROS. First, in (1) the main thread is created in the ROS. This thread sets

158

ROS HRT

Main
thread

Partner
thread

HRT
thread

Nested
HRT

thread

(1)

(2) (3)

(4)
(5)

Figure 7.6: Interactions within an execution group.

up the runtime environment for Multiverse. When the runtime system creates a thread, e.g.

with pthread_create() or with hrt_invoke_func(), Multiverse creates a corresponding

partner thread that executes in the ROS (2). It is the duty of the partner thread to allocate a

ROS-side stack for a new HRT thread then invoke the HVM to request a thread creation in

the HRT using that stack (3). When the partner creates the HRT thread, it also sends over

information to initiate a state superposition that mirrors the ROS-side GDT and ROS-side

architectural state corresponding to thread-local storage (primarily the %fs register). The

HRT thread can then create as many nested HRT threads as it desires (4). Both top-level

HRT threads and nested HRT threads raise events to the ROS through event channels with

the top-level HRT thread’s corresponding partner acting as the communication end-point

(5).

As is typical in threading models, the main thread can wait for HRT threads to finish

by using join() semantics, where the joining thread blocks until the child exits. While

159

in theory we could implement the ability to join an HRT thread directly, it would add

complexity to both the HRT and the ROS component of Multiverse. Instead, we chose to

allow the main thread to join a partner thread directly and provide the guarantee that a

partner thread will not exit until its corresponding HRT thread exits on the remote core.

When an HRT thread exits, it signals the ROS of the exit event. When Multiverse creates

an HRT thread, it keeps track of the Nautilus thread data (sent from the remote core after

creation succeeds), which it uses to build a mapping from HRT threads to partner threads.

The thread exit signal handler in the ROS flips a bit in the appropriate partner thread’s

data structure notifying it of the HRT thread completion. The partner can then initiate its

cleanup routines and exit, at which point the main thread will be unblocked from its initial

join().

Disallowed functionality: Because of the limitations of our current Aerokernel im-

plementation, we must prohibit the ROS code executing in HRT context from leveraging

certain functionality. This includes calls that create new execution contexts or rely on the

Linux execution model such as execve, clone, and futex. This functionality could, of

course, be provided in the Aerokernel, but we have not implemented it at the time of this

writing.

Function overrides: In Section 7.1.3 I described how a developer can use function

overrides to select Aerokernel functionality over default ROS functionality. The Multiverse

runtime component enforces default overrides that interpose on pthread function calls.

All function overrides operate using function wrappers. For simple function wrappers,

the Aerokernel developer can simply make an addition to a configuration file included in

the Multiverse toolchain that specifies the function’s attributes and argument mappings

between the legacy function and the Aerokernel variant. This configuration file then allows

160

Multiverse to automatically generates function wrappers at build time.

When an overridden function is invoked, the wrapper runs instead, consults a stored

mapping to find the symbol name for the Aerokernel variant, and does a symbol lookup

to find its HRT virtual address. This symbol lookup currently occurs on every function

invocation, so incurs a non-trivial overhead. A symbol cache, much like that used in the

ELF standard, could easily be added to improve lookup times. When the address of the

Aerokernel override is resolved, the wrapper then invokes the function directly (since it is

already executing in the HRT context where it has appropriate page table mappings for

Aerokernel addresses).

7.2.3 Event Channels

The HVM model enables the building of essentially any communication mechanism

between two contexts (in our case, the ROS and HRT), and most of these require no specific

support in the HVM. As a consequence, we minimally define the basic communication

between the ROS, HRT, and the VMM using shared physical memory, hypercalls, and

interrupts.

The user-level code in the ROS can use hypercalls to sequentially request HRT reboots,

address space mergers (state superpositions), and asynchronous sequential or parallel

function calls. The VMM handles reboots internally, and forwards the other two requests

to the HRT as special exceptions or interrupts. Because the VMM and HRT may need to

share additional information, they share a data page in memory. For a function call request,

the page contains a pointer to the function and its arguments at the start and the return

code at completion. For an address space merger, the page contains the CR3 of the calling

process. The HRT indicates to the VMM when it is finished with the current request via a

161

hypercall.

After an address space merger, the user-level code in the ROS can also use a single hy-

percall to initiate synchronous operation with the HRT. This hypercall ultimately indicates

to the HRT a virtual address which will be used for future synchronization between the

HRT and ROS. They can then use a simple memory-based protocol to communicate, for

example to allow the ROS to invoke functions in the HRT without VMM intervention.

7.2.4 Merged Address Spaces

To achieve a merged address space, we leverage the canonical 64-bit address space model

of x64 processors, and its wide use within existing kernels, such as Linux. In this model,

the virtual address space is split into a “lower half” and a “higher half” with a gap in

between, the size of which is implementation dependent. In a typical process model, e.g.,

Linux, the lower half is used for user addresses and the higher half is used for the kernel.

For an HRT that supports it, the HVM arranges that the physical address space is

identity-mapped into the higher half of the HRT address space. That is, within the HRT,

the physical address space mapping (including the portion of the physical address space

only the HRT can access) occupies the same portion of the virtual address space that

the ROS kernel occupies, namely the higher half. Without a merger, the lower half is

unmapped and the HRT runs purely out of the higher half. When the ROS side requests a

merger, we map the lower half of the ROS’s current process address space into the lower

half of the HRT address space. For an Aerokernel-based HRT, we achieve this by copying

the first 256 entries of the PML4 pointed to by the ROS’s CR3 to the HRT’s PML4 and then

broadcasting a TLB shootdown to all HRT cores.

Because the runtime in the ROS and the HRT are co-developed, the responsibility of

162

assuring that page table mappings exist for lower half addresses used by the HRT in a

merged address space is the runtime’s. For example, the runtime can pin memory before

merging the address spaces or introduce a protocol to send page faults back to the ROS.

The former is not an unreasonable expectation in a high performance environment as we

would never expect a significant amount of swapping.

7.2.5 Nautilus Additions

In order to support Multiverse in the Nautilus Aerokernel, we needed to make several

additions to the codebase. Most of these focus on runtime initialization and correct

operation of event channels. When the runtime and application are executing in the HRT,

page faults in the ROS portion of the virtual address space must be forwarded. We added

a check in the page fault handler to look for ROS virtual addresses and forward them

appropriately over an event channel.

One issue with our current method of copying a portion of the PML4 on an address

space merger is that we need to keep the PML4 synchronized. We must account for

situations in which the ROS changes top-level page table mappings, even though these

changes are rare. We currently handle this situation by detecting repeat page faults.

Nautilus keeps a per-core variable keeping track of recent page faults, and matches

duplicates. If a duplicate is found, Nautilus will re-merge the PML4 automatically. More

clever schemes to detect this condition are possible, but unnecessary since it does not lie

on the critical path.

For correct operation, Multiverse requires that we catch all page faults and forward

them to the ROS. That is, if we collect a trace of page faults in the application running

native and under Multiverse, the traces should look identical. However, because the HRT

163

runs in kernel mode, some paging semantics (specifically with copy-on-write) change. In

default operation, an x86 CPU will only raise a page fault when writing a read-only page

in user-mode. Writes to pages with the read-only bit while running in ring 0 are allowed

to proceed. This issue manifests itself in the form of mysterious memory corruption, e.g.

by writing to the zero page. Luckily, there is a bit to enforce write faults in ring 0 in the

cr0 control register.

Before we built Multiverse, Nautilus lacked support for system calls, as the HRT

operates entirely in kernel mode. However, a legacy application will leverage a wide

range of system calls. To support them, we added a small system call stub handler in

Nautilus that immediately forwards the system call to the ROS over an event channel.

There is an added subtlety with system calls in HRT mode, as they are now initiating a trap

from ring 0 to ring 0. This conflicts with the hardware API for the SYSCALL/SYSRET pair of

instructions. We found it interesting that SYSCALL has no problem making this idempotent

ring transition, but SYSRET will not allow it. The return to ring 3 is unconditional for

SYSRET. To work around this issue, we must emulate SYSRET and execute a direct jmp to

the saved rip stashed during the SYSCALL.

While we can build a particular runtime system with the Multiverse toolchain using

custom compilation options, this is not possible for the legacy libraries they rely on. We

are then forced into supporting the compilation model that the libraries were initially

compiled with. While arbitrary compilation does not typically present issues for user-space

programs, complications arise when executing in kernel mode. One such complication is

AMD’s red zone, which newer versions of GCC use liberally. The red zone sits below the

current stack pointer on entry to leaf functions, allowing them to elide the standard function

prologue for stack variable allocation. The red zone causes trouble when interrupts and

164

Component SLOC
C ASM Perl Total

Multiverse runtime 2232 65 0 2297
Multiverse toolchain 0 0 130 130
Nautilus additions 1670 0 0 1670
HVM additions 600 38 0 638
Total 4502 103 130 4735

Figure 7.7: Source Lines of Code for Multiverse.

exceptions operate on the same stack, as the push of the interrupt stack frame by the

hardware can destroy the contents of the red zone. To avoid this, kernels are typically

compiled to disable the red zone. However, since we are executing code in the ROS address

space with predetermined compilation, we must use other methods.

In Nautilus, we address the red zone by ensuring that interrupts and exceptions operate

on a well known interrupt stack, not on the user stack. We do this by leveraging the x86

Interrupt Stack Table (IST) mechanism, which allows the kernel to assign specific stacks

to particular exceptions and interrupts by writing a field in the interrupt descriptor table.

SYSCALL cannot initiate a hardware stack switch in the same way, so on entry to the

Nautilus system call stub, we pull down the stack pointer to avoid destroying any red

zone contents.

7.2.6 Complexity

Multiverse development took roughly 5 person months of effort. Figure 7.7 shows the

amount of code needed to support Multiverse. The entire system is compact and compart-

mentalized so that users can experiment with other Aerokernels or runtime systems with

relative ease. While the codebase is small, much of the time went into careful design of the

execution model and working out idiosyncrasies in the hybridization, specifically those

165

Benchmark System Calls Time (User/Sys) (s) Max Resident Set (Kb) Page Faults Context Switches Forwarded Events
spectral-norm 23800 39.39/0.24 182300 51452 1695 75252
n-body 18763 41.15/0.19 152300 45064 1430 63827
fasta-3 35115 31.28/0.17 80492 25418 1075 60533
fasta 29989 12.23/0.10 43568 14956 627 44945
binary-tree-2 1260 31.98/0.10 82072 31082 491 32342
mandelbrot-2 3667 7.76/0.05 43600 14250 291 17917
fannkuch-redux 1279 2.73/0.01 21284 5358 33 6637

Figure 7.8: System utilization for Racket benchmarks. A high-level language has many
low-level interactions with the OS.

dealing with operation in kernel mode.

7.3 Evaluation

This section presents an evaluation of Multiverse using microbenchmarks and a hybridized

Racket runtime system running a set of benchmarks from The Language Benchmark Game.

We ran all experiments on a Dell PowerEdge 415 with 8GB of RAM and an 8 Core 64-bit

x86_64 AMD Opteron 4122 clock clocked at 2.2GHz. Each CPU core has a single thread with

four cores per socket. The host machine has stock Fedora Linux 2.6.38.6-26.rc1.fc15.x86_64

installed. Benchmark results are reported as averages of 10 runs.

Experiments in a VM were run on a guest setup which consists of a simple BusyBox

distribution running an unmodified Linux 2.6.38-rc5+ image with two cores (one core for

the HVM and one core for the ROS) and 1 GB of RAM.

7.3.1 Racket

Racket [77, 73] is the most widely used Scheme implementation and has been under con-

tinuous development for over 20 years. It is an open source codebase that is downloaded

over 300 times per day.1 Recently, support has been added to Racket for parallelism via
1http://racket-lang.org

http://racket-lang.org

166

futures [182] and places [187].

The Racket runtime is a good candidate to test Multiverse, particularly its most complex

usage model, the incremental model, because Racket includes many of the challenging

features emblematic of modern dynamic programming languages that make extensive

use of the Linux ABI, including system calls, memory mapping, processes, threads, and

signals. These features include complex package management via the file system, shared

library-based support for native code, JIT compilation, tail-call elimination, live variable

analysis (using memory protection), and garbage collection.

Our port of Racket to the HRT model takes the form of an instance of the Racket engine

embedded into a simple C program. Racket already provides support for embedding an

instance of Racket into C, so it was straightforward to produce a Racket port under the

Multiverse framework. This port uses a conservative garbage collector, the SenoraGC,

which is more portable and less performant than the default, precise garbage collector. The

port was compiled with GCC 4.6.3. The C program launches a pthread that in turn starts

the engine. Combined with the incremental usage model of Multiverse, the result is that

the Racket engine executes in the HRT.

When compiled and linked for regular Linux, our port provides either a REPL interac-

tive interface through which the user can type Scheme, or a command-line batch interface

through which the user can execute a Scheme file (which can include other files). When

compiled and linked for HRT use, our port behaves identically.

To evaluate the correctness and performance of our port, we tested it on a series of

benchmarks submitted to The Computer Language Benchmarks Game [1]. We tested on

seven different benchmarks: a garbage collection benchmark (binary-tree-2), a permutation

benchmark (fannkuch), two implementations of a random DNA sequence generator (fasta

167

 0

 10

 20

 30

 40

 50

fa
nn

ku
ch

-re
du

x

bin
ar

y-
tre

e-
2

fa
sta

fa
sta

-3

nb
od

y

sp
ec

tra
l-n

or
m

m
an

de
lbr

ot
-2

R
un

tim
e

(s
)

Native
Virtual

Multiverse

Figure 7.9: Performance of Racket benchmarks running Native, Virtual, and in Multiverse.
With Multiverse, the existing, unmodified Racket implementation has been automati-
cally transformed to run entirely in kernel mode, as an HRT, with little to no overhead.

and fasta-3), a generation of the mandelbrot set (mandelbrot-2), an n-body simulation (n-

body), and a spectral norm algorithm. Figure 7.8 characterizes these benchmarks from the

low-level perspective. Note that while this is an implementation of a high-level language,

the actual execution of Racket programs involves many interactions with the operating

system. These exercise Multiverse’s system call and fault forwarding mechanisms. The

total number of forwarded events is in the last column.

Figure 7.9 compares the performance of the Racket benchmarks run natively on our

hardware, under virtualization, and as an HRT that was created with Multiverse. Error

bars are included, but are barely visible because these workloads run in a predictable way.

The key takeaway is that Multiverse performance is on par with native and virtualized

168

performance—Multiverse let us move, with little to no effort, the existing, unmodified

Racket runtime into kernel mode and run it as an HRT with little to no overhead.

The small overhead of the Multiverse case compared to the virtualized and native

cases is due to the frequent interactions, such as those described above, with the Linux

ABI. However, in all but two cases, the hybridized benchmarks actually outperform the

equivalent versions running without Multiverse. This is due to the nature of the accelerated

environment that the HRT provides, which ameliorates the event channel overheads. As

we expect, the two benchmarks that perform worse under Multiverse (nbody and spectral-

norm) have the most overhead incurred from event channel interactions. The most frequent

interactions in both cases are due to page faults.

While Figure 7.8 tells us the number of interactions that occur, we now consider the

overhead of each one using microbenchmarks. This estimate will also apply to page faults,

since the mechanism by which they are forwarded is identical to system calls.

The most frequent system calls used in the Racket runtime (independent of any bench-

mark) are mmap() and munmap(), and so we focus on these two. Figure 7.10 shows mi-

crobenchmark results (averages over 100 runs) for these two, comparing virtualized

execution and Multiverse. Note that neither system calls nor page faults involve the VMM

in the virtualized case. For both system calls, the Multiverse event forwarding facility adds

roughly 1500 cycles of overhead. If we multiply this number by the number of forwarded

events for these benchmarks listed in Figure 7.8, we expect that Multiverse will add about

112 million cycles (51 ms) of overhead for spectral-norm, and 96 million cycles (43 ms) for

nbody. This is roughly in line with Figure 7.9.

Note that event forwarding will decrease as a runtime is incrementally extended to

take advantage of the HRT model. As an illustration of this, we modified Racket’s garbage

169

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

m
m

ap

m
un

m
ap

La
te

nc
y

(c
yc

le
s)

Virtual
Multiverse

Figure 7.10: Multiverse event forwarding overheads demonstrated with mmap() and
munmap() system calls.

 0

 10

 20

 30

 40

 50

 60

nb
od

y

sp
ec

tra
l-n

or
m

R
un

tim
e

(s
)

Native-prefault
Virtual-prefault

Multiverse-prefault

Figure 7.11: Performance of nbody and spectral-norm benchmarks with and without
a modification to the runtime system that prefaults in all mapped pages, reducing the
number of forwarded events.

170

collector to prefault in pages any time that it allocates a range of memory for internal use.

We accomplished this with a simple change that added the MAP_POPULATE flag to Racket’s

internal mmap() invocations. This reduces the number of page faults incurred during the

execution of a benchmark, therefore reducing the number of forwarded events. The results

are shown in Figure 7.11. While this change increases the running time for the benchmark

overall—indicating that this is not a change that one would introduce in practice—it

gives us an indication of what the relative performance would be with fewer forwarded

events. Indeed, with fewer events, the hybridized versions (Multiverse-prefault) of these

benchmarks running in a VM now outperform their counterparts (Virtual-prefault).

It is worth reflecting on what exactly has happened here: we have taken a complex

runtime system off-the-shelf, run it through Multiverse without changes, and as a

result have a version of the runtime system that correctly runs in kernel mode as an

HRT and behaves identically with virtually identical performance. To be clear, all of

the Racket runtime except Linux kernel ABI interactions is seamlessly running as

a kernel. While this codebase is the endpoint for user-level development, it represents

a starting point for HRT development in the incremental model.

7.4 Conclusions

In this chapter, I introduced Multiverse, a system that implements automatic hybridization of

runtime systems in order to transform them into hybrid runtimes (HRTs). I illustrated the

design and implementation of Multiverse and described how runtime developers can use

it for incremental porting of runtimes and applications from a legacy OS to a specialized

171

Aerokernel.

To demonstrate its power, we used Multiverse to automatically hybridize the Racket

runtime system, a complex, widely-used, JIT-based runtime. With automatic hybridization,

we can take an existing Linux version of a runtime or application and automatically

transform it into a package that looks to the user like it runs just like any other program,

but actually executes on a remote core in kernel-mode, in the context of an HRT, and

with full access to the underlying hardware. I presented an evaluation focused on the

performance overheads of an unoptimized Multiverse hybridization of Racket and showed

that performance varies with the usage of legacy functionality. Runtime developers can

leverage Multiverse to start with a working system and incrementally transition heavily

utilized legacy functions to custom components within an Aerokernel.

172

Chapter 8

Related Work

This chapter is dedicated to a discussion of work related to this dissertation, first work that

is broadly relevant to HRTs in Section 8.1, then specific work relevant to Chapters 5–7.

8.1 Hybrid Runtimes

In this section, I will begin by recounting a short history of kernel design in Section 8.1.1.

I will then discuss more recent developments that are important for my work on HRTs

(Section 8.1.2). Next, I will discuss OS designs specifically targeted for high-performance,

large-scale machines (Section 8.1.3). Finally, I will outline recent research in parallel

languages and runtimes (Section 8.1.4).

8.1.1 Kernel Design

Microkernels Starting with some of the ideas laid out in the Nucleus of the RC 4000

system [93], researchers began to question some of the design decisions commonly asso-

ciated with monolithic operating systems. This effort eventually led to the development

173

of microkernels, where only minimal functionality (e.g. threads, IPC, and memory man-

agement) merits inclusion in the kernel, and less critical functionality resides in userspace.

The following excerpt from Liedtke [136] aptly summarizes the main requirement of a

microkernel:

A concept is tolerated inside the microkernel only if moving it outside the

kernel, i.e., permitting competing implementations, would prevent the imple-

mentation of the system’s required functionality.

Notable examples of first generation microkernels include Mach [31], L3 [135], and

Chorus [172]. Mach, which still has influence today in Apple’s Darwin OS and GNU

Hurd [43], was arguably the most successful of these, but the performance of microkernels,

particularly for IPC, proved rather inadequate.

2nd generation microkernels Second generation microkernels mostly aimed to address

the performance issues that afflicted the previous generation. The L3 team produced a com-

plete rewrite with L4 [134, 136, 95] and eschewed portability for the sake of performance.

Notable features in L4 included recursive construction of address spaces, short messages

passed in registers, and lazy scheduling. SPIN [30] was based on the latest version of

Mach at the time, and allowed extensions written in a type-safe language (Modula-3) to be

dynamically loaded into the kernel, which exported minimal functionality on which these

extensions could build.

Early Microcomputer/PC OSes Early microcomputer and PC operating systems such

as CP/M and MS-DOS, like Nautilus, had a nebulous separation between the kernel and

the programs running on top of it. For example, CP/M had a logical separation from the

174

kernel and application programs—a set number of transient processes [168] were pre-loaded

into memory in the same address space as the kernel—but no strict privilege separation

was enforced. Similarly, MS-DOS had applications run in supervisor mode along with the

kernel. Such early OSes were intended to support general-purpose processing rather than

high-performance and parallel computing.

Embedded and Real-Time OSes While the goals of embedded and real-time operating

systems (RTOSes) differ at a high-level from lightweight kernels and HRTs, there are some

similarities. One major similarity is the aim for deterministic performance. An RTOS

must, for example, provide strict bounds on interrupt handling latency. Some RTOSes

only execute a predetermined set of programs which execute with the same privilege of

the kernel. For example, in µC/OS-II [125], application programs (“tasks”) are allowed to

enable and disable external interrupts, and memory protection is not enabled by default.

In contrast to the monolithic architecture of µC/OS-II, the designers of the QNX RTOS

chose a lightweight microkernel architecture [99]. Other notable RTOSes include VxWorks

and Windows CE.

Exokernels In contrast to shifting components into and out of the privileged kernel,

Exokernels [70, 71, 69, 112] promote the idea that the kernel should avoid providing

any high-level abstractions for the hardware. For example, an exokernel, rather than

abstracting the logical structure of a disk into files and file systems, will instead expose the

disk’s notion of blocks and sectors directly. The responsibility of providing higher-level

abstractions falls on untrusted, user-mode library OSes. Nautilus is heavily influenced by

Exokernel, but my work on HRTs is more focused on providing the right mechanisms and

abstractions to parallel runtimes in particular.

175

Several exokernel derivatives exist that tout minimal size—even more so than microkernels—

as their primary concern. Typically referred to as picokernels or nanokernels, they comprise

a very thin kernel layer that can sometimes support other operating systems running

on top of them. Important examples include KeyKOS (a highly influential, persistent,

capability-based OS) [36], ADEOS [197], and the Stanford Cache Kernel [54]. These designs

quickly become blurred with virtualization, and in many cases they overlap [180, 41].

Virtualization Virtualization has proven itself as a powerful, driving force in the design

of operating systems since the early days of the IBM System/370 [89, 162] and more

recently with the resurgence of virtualization in the commercial and scientific domains (e.g.

VMware [42], Xen [18], KVM [121], and Palacios [130]). It has even been noted that VMMs

embody many of the ideas championed by proponents of microkernels [92]. While a

serious effort is underway to make virtualization viable for the HPC community [129, 124],

it largely eschews both concerns about OS design specifically for parallel runtimes and

questions of which hardware features should be exposed directly to the runtime. The

runtime system is, first and foremost, limited by the choices of the guest OS. My previous

work on GEARS [91] investigates the ability of the virtualization layer to address the

shortcomings of this existing structure.

3rd generation microkernels The third, more recent, generation of microkernels focuses

on security [180] and the formal properties of the kernel API. The most notable example is

EROS [175], which is a “clean-room” implementation of KeyKOS. seL4 [68], a successor of

EROS and L4, is a recently developed microkernel that has a formally verified specification.

Other projects exist that focus on correctness, resilience, and stability, including type-

safe OSes (e.g. Singularity [103]). The concept of modularity plays a key role in the

176

construction of operating systems, particularly form a software-engineering standpoint.

The Flux OSKit [82] stands out as a noteworthy effort lowering the barriers of kernel

design and development by providing components common to many kernel designs.

These concerns, however, are largely orthogonal to the work on HRTs in this dissertation.

Single address space OS Nautilus currently runs with all threads sharing a single, global

address space. This is, of course, not a new idea. Single Address Space Operating Sys-

tems (SASOSes) provide efficient and logically simple sharing between processes, as the

meaning of a virtual address in one process has the same meaning in another. Protection is

provided through hardware support (e.g. paging). More recent monolithic OSes such as

Linux provide a limited form of global address spaces by virtue of shared page mappings.

Notable examples of influential SASOSes include Opal (based on Mach 3.0) [53], Singular-

ity [103], Scout [146], Nemesis1 [171], Mungi [96, 64], and AmigaOS. Nautilus currently

acts as a SASOS mostly for simplicity. If it turns out that a parallel runtime needs better

logical separation between address spaces, the simplicity in the design will allow us to

quickly modify it.

OSes for multiprocessors and multicores Operating systems have long touted support

for multiprocessors [57]. Computer historians cite ILLIAC IV [19] as the first example

of a large multiprocessing system2. I will discuss systems for large-scale supercomput-

ers in more detail in Section 8.1.3. While much of the parallelism available in the large,

expensive machines of these days came in the form of SIMD, the idea of using several

units in parallel was highly influential. However, widespread use of this kind of par-
1Nemesis also supported self-paging, in which an application makes its own paging decisions.
2Thinking Machines’ Connection Machine [100] is often cited as the first massively parallel machine.

177

allelism did not flourish until much later, with the end of Dennard scaling [65] and the

increasing concern over power. These challenges eventually led to the idea of the chip

multiprocessor (CMP) [156]. CMPs brought many new challenges, which the operating

systems community faced head on. Scalability to many cores became a primary concern

for OSes that had previously targeted general purpose machines3 [38, 123]. Corey [37]

addressed this issue by minimizing sharing among kernel data structures. Multikernels

such as Barrelfish [174, 22] and later Barrelfish/DC [199] took a different approach and

treated a chip multiprocessor as a distributed system of communicating cores. Tesselation

OS [138, 55] splits processors into QoS domains called Cells, which are gang scheduled [72]

on a group of hardware threads. Tesselation does this in order to enforce hard isolation

between—and multiplex resources among—applications with disparate scheduling and

resource requirements. Tesselation embodies some microkernel/nanokernel ideas in the

way it defers fine-grained scheduling decisions to the cells themselves4. In contrast to this

work, HRTs concentrate not on resource management for a broad range of applications,

but rather for a specific class of parallel runtimes.

The above designs still impose abstractions on the applications (and runtimes) running

on top of them. With HRTs, we can throw out these abstractions so that the runtime has

more control, and can dictate the appropriate abstractions. Of course, these abstractions

may share enough commonality to warrant inclusion in a kernel intended to support many

parallel runtimes.

Rhoden and others at the UC Berkeley AMPLab are currently developing an OS called

Akaros [198, 169], which shares many design goals with Nautilus, and thus merits a deeper

discussion. They specifically claim that OS abstractions for parallel datacenter applications
3Incidentally, a similar renaissance occurred in the databases community [110, 111].
4 This is logically similar to scheduler activations [10].

178

(at the node level) need rethinking. I agree. They plan to expose cores directly to the

application, much like Tesselation. They also employ gang scheduling of tasks on cores,

and allow applications to have more power over memory management, scheduling, and

transparent access to block sizes for memory, disk, and network.

There are a few important differences that distinguish HRTs from the Akaros team’s

goals. First, we concentrate on parallel runtimes, and have a unique position to co-design

the runtime with the kernel. Akaros still runs its many-core processes (MCPs) in user-mode.

I believe that the right way to create good designs for parallel runtimes and the kernels

that support them is to allow the runtime to have full control over the hardware5.

Threading The scheduling of light-weight tasks goes hand in hand with multicore pro-

gramming, and much research has focused on developing useful and efficient threading

packages. POSIX threads (pthreads) [44] have long stood as the de facto standard for shared-

memory parallel programming. OpenMP [59] builds on pthreads to by using compiler

directives instead of library calls, making the process of porting sequential code signifi-

cantly easier. OpenTM [16] extends OpenMP even further to support transactional memory,

an alternative to synchronization between threads, one of the most difficult aspects of

parallel programming.

Pthreads are an example of kernel threads, threads that must be created by issuing a

request to the kernel. User-level thread packages advance a—typically faster—alternative

model wherein the application or runtime maintains thread state and manages context

switches between threads. User-level threads typically enjoy performance benefits but they

suffer from a lack of control, especially in the face of blocking system calls. Many popular,
5In other words, the runtime is built with the assumption that it has full hardware control. Abstractions

can come later, once the needs and priorities of the runtime layer are identified.

179

managed languages employ user-threads. Scheduler activations [10] address some of the

shortcomings of user-level threads by allowing the OS to propagate events and information

to the user-level scheduler. Qthreads [194] enhance user-level threads with full/empty-bit

semantics, in which threads can wait on a location in memory to become either completely

full or empty6. Lithe [158] advocates a different approach that has the OS expose hardware

threads directly in lieu of a general-purpose scheduler7; this approach allows different

parallel libraries, including pthreads, OpenMP, and Cilk to compose cleanly. Callisto [94]

achieves a similar goal, but runs on top of a stock Linux kernel.

8.1.2 Revival of Exokernel Ideas

More recently, the ideas laid out in the exokernel work have enjoyed a resurgence, particu-

larly as they relate to hardware virtualization. OSv [122] is essentially a small exokernel

designed to run a single application in the cloud. Unikernels [140] also leverage the ubiq-

uity and ease of use of virtual machines in order to compile application-specific libOSes

that run in a dedicated VM. Drawbridge [163] and Bascule [23] similarly leverage the libOS

concept specifically for Microsoft Windows libOSes, allowing them to run unmodified

Windows applications. They also employ the notion of a picoprocess, which interacts with

the underlying security monitor via a small set of stateless calls8. Dune uses hardware

virtualization support to provide direct access to hardware features for an untrusted ap-

plication running in a Linux host [25, 26]. Arrakis leverages virtualized I/O devices in

a similar vain in order to allow applications direct access to hardware [159]. I, however,
6These semantics bear resemblance to data-triggered threads [190].
7Tesselation borrows heavily from Lithe in this regard.
8This form of lightweight virtualization has recently become popular with Linux Containers [142]. Of

course, LXC was not the first of its kind. The idea is, at least in part, an obeisance to Solaris Containers [126],
FreeBSD jails [116], chroot jails [83], Linux-VServer [66], and AIX Workload Partitions [4].

180

am not concerned only with hardware features that rely on the availability of hardware

virtualization. I am also interested in exploring unconventional uses of other existing

hardware features, especially as they relate to parallel runtimes. As far as I am aware,

there is no work, recent or otherwise, that looks at hardware features and abstractions

specifically for parallel runtimes.

8.1.3 Operating Systems Targeting HPC

The high-performance computing (HPC) community has been studying the effects of

the OS on application performance for some time now. This work produced a general

consensus that, especially in large-scale supercomputers, the OS should not “get in the way,”

a sentiment that led the way for light-weight kernels (LWKs) such as Sandia’s Kitten [129],

Catamount [118], IBM’s Compute Node Kernel (CNK) [86], and Cray’s Compute Node

Linux (CNL). These LWKs are intended to provide minimal abstractions (only those

required by the supported applications). By design, they eliminate non-deterministic

behavior that can interfere with application performance. [74, 101, 75]. Current efforts exist

to bridge LWKs with existing general-purpose OSes like Linux within the same system.

Examples of these include the Hobbes project (in which we are involved) [39], mOS [195],

Argo [24], and McKernel [177].

8.1.4 Parallel Languages and Runtimes

In this section, I will describe some of the influential research in parallel languages and

runtime systems. I have split this discussion into parts, delineated by the domain in which

each language/runtime is relevant. There is, of course, some overlap. First, I will discuss

some of the more general-purpose languages and runtimes targeted at parallel systems.

181

Racket [77] is the most widely used Scheme dialect, partly developed here at Northwest-

ern, that has recently integrated support for parallelism in the form of futures and places

into its runtime [185, 184, 183]. The Manticore project seeks to bring the advantages of

Concurrent ML to parallel systems without the performance impact of the synchronization

mechanism in the existing implementations of CML [167, 80, 78]. The Manticore runtime

has supported CML style constructs using, e.g. threads and continuations. Manticore is pri-

marily an answer to multicore systems from the language developer’s perspective [13, 27].

High performance computing The cornerstone of the high-performance community

since the advent of large-scale multiprocessing has been the MPI library combined with C,

C++, or Fortran. However, there has been significant effort from the language community

in developing a better way to program large-scale supercomputers.

Beginning in the early 2000s, DARPA headed the High Productivity Computing Sys-

tems (HPCS) project, aimed at creating multi-petaflop systems. Several language innova-

tions came out of this project, including Fortress, Chapel, and X10. Fortress (which is now

effectively deprecated) [5], aimed to include the power of mathematical expressions in

its syntax, and included support for implicit parallelism with work stealing. Chapel [51]

supports task-parallelism, data-parallelism, and nested parallelism, and is based on High-

performance Fortran (HPF). X10 is an object-oriented language that uses the concepts of

places and asynchronous tasks, and supports message-passing style, fork-join parallelism,

and bulk-synchronous parallel operation [52, 119]. The above examples all made use of a

partitioned global address space (PGAS), which aim to bring the convenience and logical

simplicity of shared memory programming to distributed-memory systems. Unified Paral-

lel C (UPC) [56, 46] and Co-array Fortran [149] are other widely used examples of PGAS

182

languages. The CHAOS/PARTI runtime libraries also introduced several runtime opti-

mizations to support efficient, distributed shared memory for unstructured applications in

the context of computational chemistry and aerodynamics [61, 181].

GPGPUs have brought SIMD machines to the mainstream, and the HPC community

has acted as a frontrunner of their use. NVIDIA has developed a runtime library named

CUDA [151, 153, 152] that allows programmers to vectorize their code for parallel operation

on their GPUs. Intel has followed suit with the Xeon Phi series of accelerators [105, 108, 106]

to target the same market. Here the innovations are more focused in the hardware domain.

The programming model is more similar to using a library than using a special-purpose

language. OpenACC [88] is an effort to integrate these accelerator libraries into a common

API.

Languages based on message passing Message passing languages signal events and

operations by using messages between objects or entities. Charm++ [115, 114] is one of the

most popular languages in the HPC community that uses this model. Many large-scale

scientific codes are built on top of Charm++, including NAMD, a popular molecular

dynamics suite. More recently, the Charm group has investigated runtime optimizations

specifically for multi-core clusters [141]. Erlang is an older language developed by Ericsson,

specifically developed for communication systems. Its concurrency model naturally

extends to parallel systems, and it has gained traction in recently in both commercial and

scientific communities [11, 109, 47].

Data-parallel languages Data parallelism, closely related to the concept of SIMD, in-

volves applying a single operation over a collection of data elements. High-performance

Fortran [143, 120] was a popular data-parallel language. Haskell also has rich support for

183

data parallelism [161, 50]. However, one of the main drawbacks of data parallelism is that

it does not support unstructured parallelism. For example, using a traditional data parallel

approach, it is not possible to write a parallel implementation of a recursive operation on

a tree (e.g. quicksort). Blelloch addressed this challenge with nested data-parallelism [32]

and the NESL language, which introduced the notion of flattening to a collection, allow-

ing “siblings” in the recursion tree to be coalesced into a single collection. This allows

vectors to be operated on in the traditional data-parallel manner. With SIMD machines

gaining popularity again in the form of GPGPUs, there has been a revival of research in

nested data-parallel languages [176, 28, 29]. Our implementation of NDPC (discussed in

Chapter 3) is heavily influenced by this work.

Parallel runtimes This section focuses on systems in which the runtime, not the language

itself, is the primary area of concern. SWARM is a new dataflow runtime built on top

of pthreads aimed at low-latency task-parallelism [131]. HPX is a runtime system that

supports the ParalleX execution model, in which, similar to dataflow, modifications to data

can trigger events, such as thread creation, in the system [113]. As it uses communication

driven by a global address space, ParalleX bears many similarities to the execution models

of PGAS languages. Legion [21, 189] is a recently developed runtime aimed at heteroge-

neous architectures and scalability to many nodes. I discussed Legion in more detail in

Chapter 3.

Cilk [35] is another highly influential alternative to traditional threads, which is cur-

rently available in a C++ flavor in the form of CilkPlus. Cilk only adds a few keywords

to C (e.g. spawn); some of its most noteworthy aspects include its ability to extract paral-

lelism from programmer-provided hints and its work-stealing scheduler. Jade [127, 170]

184

is another parallel language that uses high-level information from the programmer. It is

intended to make it easy for programmers to transform an existing sequential application

for coarse-grained9 concurrency using hints about task and data organization. The runtime

can extract this information dynamically and apply machine specific optimizations trans-

parent to the application10.

While there is a huge swath of research aimed at parallel programming, none of these

systems, prima facie, address runtime concerns at the kernel level; the focus on these

concerns is a primary contribution of the work in this dissertation.

8.2 Nemo Event System

The real-time OS community has studied asynchronous events in depth, focusing on

events in contexts such as predictable interrupt handling [166], priority inversion [173],

and fast vectoring to user-level code [84]. However, this work does not consider the design

of asynchronous events in a context where the application/runtime has kernel-mode

privileges and full access to hardware, as in an HRT.

Thekkath and Levy introduced a mechanism [188] to implement user-level exception

handlers—instances of synchronous events in our terminology—to mitigate the costs of

the privilege transitions discussed at the beginning of Chapter 6. The motivation for this

technique mirrors motivations for RDMA-based techniques we see used in practice today.

In contrast, Nemo’s design focuses on asynchronous events.
9That is, concurrency that involves tasks that will execute for a long enough time such that running the

tasks concurrently does not introduce significant overhead.
10It should be clear now that Legion shares many ideas with the Jade system.

185

Horowitz introduced a programmable hardware technique for Informing Memory Opera-

tions, which vector to a user-level handler with minimal latency on cache miss events [102].

These events bear more similarities to exceptions than to asynchronous events, especially

those originating at a remote core.

Keckler et al. introduced concurrent event handling, in which a multithreaded processor

reserves slots for event handling in order to reduce overheads incurred from thread context

switching [117]. Chaterjee discusses further details of this technique, particularly as it

applies to MIT’s J-Machine [148] and M-Machine [76]. A modern example of this technique

can be found in the MONITOR and MWAIT instruction pair. I discuss how this type of

technique differs from our goals in Section 6.1.2.

The Message Driven Processor (MDP), from which the J-Machine was built, had hard-

ware contexts specifically devoted to handling message arrivals [60]. Furthermore, this

processor had an instruction (EXECUTE) that could explicitly invoke an action on a remote

node. This action could be a memory dereference, a call to a function, or a read/write to

memory. This is essentially the capability that in Section 6.3 we suggested could be imple-

mented in the context of x64 hardware. It is unfortunate that useful explicit messaging

facilities like those used in the MDP—save some emerging and experimental hardware

from Tilera (née RAW [132]) and the RAMP project [193]—have not made their way into

commodity processors used in today’s supercomputers, servers, and accelerators.

8.3 HVM and Multiverse

Other approaches to realizing the split-machine model for the HVM shown in Figure 3.1

exist. Dune, described in Section 8.1.2, provides one alternative. Guarded modules [90]

186

could be used to give portions of a general-purpose virtualization model selective privi-

leged access to hardware, including I/O devices. Pisces [154] would enable an approach

that could eschew virtualization altogether by partitioning the hardware and booting

multiple kernels simultaneously without virtualization.

Libra [8] bears similarities to our Multiverse system in its overall architecture. A Java

Virtual Machine (JVM) runs on top of the Libra libOS, which in turn executes under

virtualization. A general-purpose OS runs in a controller partition and accepts requests for

legacy functionality from the JVM/Libra partition. This system involved a manual port,

much like the work described in Chapter 3. However, the HVM gives us a more powerful

mechanism for sharing between the ROS and HRT as they share a large portion of the

address space. This allows us to leverage complex functionality in the ROS like shared

libraries and symbol resolution. Furthermore, the Libra system does not provide a way to

automatically create these specialized JVMs from their legacy counterparts.

The Blue Gene/L series of supercomputer nodes run with a Lightweight Kernel (LWK)

called the Blue Gene/L Run Time Supervisor (BLRTS) [6] that shares an address space

with applications and forwards system calls to a specialized I/O node. While the bridging

mechanism between the nodes is similar, there is no mechanism for porting a legacy

application to BLRTS. Others in the HPC community have proposed similar solutions that

bridge a full-weight kernel with an LWK in a hybrid model. Examples of this approach

include mOS [195], ARGO [24], and IHK/McKernel [177]. The Pisces Co-Kernel [157] treats

performance isolation as its primary goal and can partition physical hardware between

enclaves, or isolated OS/Rs that can involve different specialized OS kernels.

In contrast to the above systems, our HRT model is the only one that allows a runtime to

act as a kernel, enjoying full privileged access to the underlying hardware. Furthermore, as

187

far as we are aware, none of these systems provide an automated mechanism for producing

an initial port to the specialized OS/R environment.

188

Chapter 9

Conclusion

I have presented the concept of the hybrid runtime (HRT), where a parallel runtime and a

light-weight kernel framework are combined, and where the runtime has full access to

privileged mode hardware and has full control over abstractions. This model addresses

issues that runtimes face when running in user-space in the context of a general-purpose

OS. I discussed the potential benefits of the HRT model applied to parallel runtimes. I also

described the design of HRTs, as well as their implementation and evaluation. I showed

how some of the benefits of HRTs can be realized simply by porting a parallel runtime do

the HRT model, which for the case of the HPCG benchmark in Legion produced up to 40%

speedup over its Linux counterpart.

At the outset of this work, the hypothesis was that building parallel runtimes as

privileged kernel-mode entities can be valuable for performance and functionality. I found

this to be supported by evidence, and I made several discoveries with respect to the HRT

model along the way. Several of these discoveries led to systems that will continue to serve

as foundations for further research in high-performance operating systems.

The key enabler of HRTs is a light-weight kernel framework called an Aerokernel.

189

We designed and implemented the first such Aerokernel, named Nautilus, of which I am

the primary developer. Nautilus provides a starting point for parallel runtime develop-

ers by exposing several convenient and fast mechanisms familiar to user-space runtime

developers, such as threads, memory management, events, and synchronization facili-

ties. I demonstrated how these facilities perform much faster than those provided by a

general-purpose OS like Linux, in some cases by several orders of magnitude. Nautilus

currently boots on both commodity x86_64 hardware and on the Intel Xeon Phi. It is

a Multiboot2-compliant kernel, and will boot on supported systems that have GRUB2

installed. It has been tested on AMD machines, Intel machines (including Xeon Phi cards),

and on virtualization under QEMU, KVM, and our Palacios VMM.

Nautilus can also run in an environment bridged with a regular operating system (ROS),

such as Linux in what is sometimes called a multi-OS environment. This is made possible

by the hybrid virtual machine (HVM). In the HVM model, an HRT (based on Nautilus)

can be created on demand from the ROS. The HRT controls a subset of the cores on the

machine, and can be booted on the order of milliseconds (roughly the timescale of a process

creation in Linux). The HVM allows the HRT to borrow legacy functionality from a ROS by

forwarding events such as page faults and system calls to the ROS. The HVM is primarily

aimed at easing the deployment of HRTs, allowing them to be used as software accelerators

when high performance is paramount.

During my investigation of parallel runtimes (especially those that leverage software

events), I discovered that the underlying mechanisms that Linux provides for such events

are significantly slower than the capabilities of the hardware. To address this shortcoming,

I implemented versions of familiar event facilities (such as condition variables) in Nautilus

that perform orders of magnitude better than those on Linux. I also implemented event

190

facilities with new semantics that perform at the hardware limit of IPIs, which is not

possible in a ROS, where the parallel runtime is relegated to user-space operation. I

collectively refer to these event facilities in Nautilus as Nemo.

Finally, I built the Multiverse toolchain, which allows runtime developers to more

quickly adopt the HRT model. This was motivated by another discovery with regard

to HRTs, namely that building them can be quite difficult. To ease the development

process, Multiverse carries out a process called automatic hybridization, wherein a Linux

user-space runtime is transformed into a HRT by rebuilding the code with our toolchain.

Multiverse allows a user to execute a user-level runtime as normal at the command-line

while automatically splitting the execution in an HVM between the ROS and the HRT. The

runtime then executes as a kernel, enjoying privilege mode access. Multiverse introduces

little to no overhead in the runtime’s operation, while allowing the developer to begin

experimenting with kernel-mode features. This allows the runtime developer to start with

a working system rather than undertaking the arduous process of building an Aerokernel

from scratch.

9.1 Summary of Contributions

Development of the HRT model I have developed the hybrid runtime (HRT) model for

parallel runtimes, which allows such runtimes to operate with fully privileged access to

the hardware and with full control over the abstractions to the machine. A HRT consists

of a parallel runtime and a light-weight Aerokernel framework combined into one entity,

and it can enable higher performance and more flexibility for the runtime.

191

Nautilus I am the primary designer and developer of the Nautilus Aerokernel frame-

work. Nautilus is an open source project, freely available online under the MIT license.

Philix I designed and implemented Philix, a toolkit that allows OS developers to boot

their custom OS on Intel’s Xeon Phi. Philix provides an interactive console on the host

machine so that the OS developer can easily see output of their OS running on the Phi.

Philix is built on top of Intel’s MPSS toolchain, and is freely available online.

Example HRTs The following runtimes have been ported to the HRT model, demonstrat-

ing its benefits:

• Legion: The Legion runtime ported to the HRT model outperforms its Linux coun-

terpart by up to 40% on the HPCG mini-app. We also saw speedups on the example

circuit simulator benchmark included in the Legion distribution.

• NESL: The NESL runtime ported to the HRT model showed that we could take

an existing, complete parallel language from a user-space runtime to a kernel with

reasonable effort, and with only a few hundred lines of code.

• NDPC: We co-designed the NDPC language (based on a subset of NESL) to explore

using non-traditional kernel features within a runtime context, such as thread fork.

• Hybridized Racket: With the Multiverse toolchain, I automatically transformed the

Racket runtime into an HRT. Racket has a complex runtime system which includes JIT

compilation and garbage collection. This work showed that not only is automatically

transforming such a complex runtime feasible, but also that its operation as a kernel

is both feasible and beneficial.

192

Evaluation of Nautilus I carried out a detailed evaluation of the various mechanisms that

Nautilus provides with extensive microbenchmarking. In most cases Nautilus outperforms

Linux by significant margins.

Evaluation of Legion I evaluated our HRT port of Legion using the HPCG mini-app

and Legion’s circuit simulator example application. Just by porting, we saw considerable

speedups for these Legion benchmarks. A simple change allowing control over interrupts

(kernel-mode only access) also allowed non-trivial performance improvement.

Nemo I designed and implemented the Nemo event system within Nautilus. Nemo

provides facilities that enjoy orders of magnitude lower event notification latency than

what is possible in user-space Linux.

HVM I aided in the design and development of the hybrid virtual machine, which allows

an HRT to be bridged with a ROS with low overheads.

Multiverse I designed and implemented the Multiverse toolchain, which enables the

automatic hybridization of Linux user-space runtimes. I demonstrated the feasibility of

automatic hybridization using the Racket runtime as an example.

Palacios I have contributed to various efforts to the open-source Palacios VMM, listed

below:

• Virtualized DVFS: I aided Shiva Rao in his masters thesis work on virtualizing

dynamic voltage and frequency scaling (DVFS) using Palacios. This system allows

fine-grained control of the Dynamic Voltage and Frequency Scaling (DVFS) hardware

193

during VM exits, leveraging inferred information about guests to make informed

power management decisions.

• Virtual HPET: I implemented a virtual implementation of the High-Precision Event

Timer, a fine-grained platform timer present on most contemporary high-performance

hardware. I added support for the HPET to allow us to run experimental systems

like OSv on Palacios.

• QEMU backend: QEMU provides a rich diversity of virtual devices. This is one

contributor to the simplicity of, e.g. the KVM codebase, as it leverages these device

implementations. I wanted to similarly be able to leverage these devices for Palacios.

This system implements that functionality with a software bridge between Palacios

and QEMU.

• VMM-emulated RTM: This was the first VMM-emulated implementation of the

Restricted Transactional Memory (RTM) component of the Intel Transactional Syn-

chronization Extensions (TSX). Its performance is roughly 60x relative to Intel’s

emulator. I implemented this system with Maciej Swiech.

• Palacios on the Cray XK6: I ported the Palacios VMM to run on the Cray XK6 series

of supercomputer nodes. This comprised several bug fixes and enhancements to the

Palacios codebase.

• Other contributions: I have also participated in regular development and main-

tenance of the Palacios codebase. This includes bug fixes, enhancements to the

extension architecture, guest configuration and loading, software interrupt and

system call interception, and others.

194

GEARS Guest Examination and Revision Services (GEARS) is a set of tools that allows

developers to create guest-context virtual services, VMM-based services that extend into

the guest. GEARS is implemented within Palacios, and is described in detail in Appendix B.

Guarded modules Guarded modules extend the concept of guest-context virtual services

by granting them privileged access to hardware and VMM state. Guarded modules protect

this privilege from the rest of the guest by maintaining a software border with compile-time

and run-time techniques. More detail on guarded modules is presented in Appendix C.

9.2 Future Work

While the work in this dissertation has shown considerable promise for the HRT model,

there remain many avenues of research yet to be explored. I outline some potential

directions below.

9.2.1 Hybrid Runtimes

We have shown that the hybrid runtime model can increase performance in a parallel run-

time without major changes to the runtime’s operation. These increases can be attributed

to the simplification of the underlying mechanisms in the Aerokernel and the elimination

of user/kernel transitions. However, there is still untapped potential for HRTs that I have

yet to explore.

New execution models By operating in kernel-mode, a parallel runtime can take full

advantage of its control over the machine. This allows the runtime to implement new

execution models from the ground up, rather than on top of abstractions enforced by a

195

ROS. I would like to explore new execution models that would not be possible in a ROS.

One example is a data-flow runtime system that eschews the notion of threads entirely,

operating on the basis of asynchronous data-flow events.

Unconventional hardware uses While I have explored leveraging interrupt control in

the context of Legion and IPIs for events, there are many other hardware features that

could be used in unconventional ways. These include system facilities like page tables,

IOMMUs, floating point structures, debugging mechanisms, and many more.

Comparative study with Unikernels Unikernels, which are single-application, special-

ized kernels based on Exokernels, have risen to prominence in the research community

in parallel with my work on hybrid runtimes. While Unikernels do not focus on paral-

lelism, hybrid runtimes may benefit from some of the lessons learned as Unikernels reach

maturity.

Debugging One of the primary drawbacks of hybrid runtimes, and indeed executing

code with elevated privilege, is the difficulty that arises in debugging. I do not believe this

is a fundamental weakness of HRTs. My work on Multiverse indicates that with the proper

mechanisms, the convenience of a conventional OS environment can be combined with

the high performance of an HRT. I would like to extend the bridging work of HVMs and

Multiverse to the area of debugging.

9.2.2 Nautilus

At this point, Nautilus is still very much a prototype codebase. In addition to stability

improvements, there are several additions to the codebase that I believe will enable further

196

interesting research.

Multinode While my work on HRTs until now has primarily focused on node-level

parallelism (which is becoming more important), the operation of a parallel runtime across

many nodes in a large-scale machine introduces new challenges. I would like to explore

ways to exploit Nautilus and the HRT model to improve the operation of parallel runtimes

at massive scales.

File systems Currently, Nautilus does not have support for file systems. File systems,

however, can play a major role in data-intensive parallel runtimes. While Nautilus can

leverage a ROS filesystem via the HVM, I am interested in exploring how the HRT model

can influence file system design. A parallel runtime’s usage of the file system may be very

different from applications in general, which may result in a radically different file system

design.

Porting Currently, Nautilus runs on x86_64 and the Xeon Phi. There are several archi-

tectures that, if supported, would provide foundations for further research with Nautilus.

Targets that I am particularly interested in include IBM POWER (e.g. for BlueGene/Q

nodes) and Intel’s newer Knights Landing (KNL) chips.

9.2.3 OS Architectures

There are several aspects of OS architecture that I believe warrant further research. I outline

them below.

197

HRT-aware ROS Our current implementations of HVM and Multiverse allow bridged

operation between an HRT and ROS. Currently, the ROS needs no modifications for

this setup to work correctly. However, much like a paravirtualized guest in a virtual

environment, it may be advantageous for the ROS to contain HRT-aware components in

order to increase bridged performance or functionality.

Data-parallel kernels Much work has focused on designing kernels to expose task-level

parallelism, mainly in the form of threads. While OS kernels typically provide support

for data-parallel (SIMD) instruction set extensions, such as AVX, there are, as far as I

am aware, no kernels designed specifically for data-parallelism, for example to support

a data-parallel runtimes such as NESL or data-parallel Haskell. It is an open question

whether or not an OS kernel itself can and should be designed as a data-parallel system.

9.2.4 Languages

Finally, I believe there is considerable room for research in both systems languages and

parallel languages, especially for a model like HRT, where the runtime enjoys full access to

hardware. For example, system software has largely been written in C for the past several

decades. While C is a suitable tool for writing programs that require modeling of the

underlying machine, a significant portion of OS code relies on C’s ability to include inline

assembly, especially for privileged mode components and setup of the machine. This

presents an opportunity for improvement in language design, especially for languages

used by OS and runtime developers.

198

References

[1] The computer language benchmarks game. http://benchmarksgame.alioth.
debian.org/.

[2] OSU micro-benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.

[3] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier,
Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert. Intel
virtualization technology for directed I/O. Intel Technology Journal, 10(3), August
2006.

[4] Jack Alford. AIX 6.1 workload partitions. http://www.ibm.com/developerworks/
aix/library/au-workload, November 2007.

[5] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan Willem Maessen, Suky-
oung Ryu, Guy L. Steele, and Sam Tobin-Hochstadt. The Fortress language specifica-
tion. Technical Report Version 1.0, Sun Microsystems, March 2008.

[6] George Almási, Ralph Bellofatto, José Brunheroto, Călin Caşcaval, José Castaños,
Luis Ceze, Paul Crumley, C. Christopher Erway, Joseph Gagliano, Derek Lieber,
Xavier Martorell, José E. Moreira, Alda Sanomiya, and Karin Strauss. An overview
of the BlueGene/L system software organization. In Proceedings of the Euro-Par
Conference on Parallel and Distributed Computing (EuroPar 2003), August 2003.

[7] AMD Corporation. AMD64 Architecture Programmer’s Manual Volume 2: Systems
Programming, May 2013.

[8] Glenn Ammons, Jonathan Appavoo, Maria Butrico, Dilma Da Silva, David Grove,
Kiyokuni Kawachiya, Orran Krieger, Bryan Rosenburg, Eric Van Hensbergen, and
Robert W. Wisniewski. Libra: A library operating system for a JVM in a virtualized
execution environment. In Proceedings of the 3rd International Conference on Virtual
Execution Environments (VEE 2007), pages 44–54, June 2007.

[9] Thomas Anderson and Michael Dahlin. Operating Systems: Principles and Practice.
Recursive Books, second edition, 2012.

http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.ibm.com/developerworks/aix/library/au-workload
http://www.ibm.com/developerworks/aix/library/au-workload

199

[10] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy.
Scheduler activations: Effective kernel support for the user-level management of
parallelism. In Proceedings of the 13th ACM Symposium on Operating Systems Principles
(SOSP 1991), pages 95–109, October 1991.

[11] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent
Programming in Erlang. Prentice Hall, second edition, January 1996.

[12] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three
Easy Pieces. Arpaci-Dusseau Books, 0.91 edition, May 2015.

[13] Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John Reppy. Garbage collection
for multicore NUMA machines. In Proceedings of the 2011 ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness (MSPC 2011), pages 51–57, June 2011.

[14] Chang Bae, John Lange, and Peter Dinda. Enhancing virtualized application perfor-
mance through dynamic adaptive paging mode selection. In Proceedings of the 8th

International Conference on Autonomic Computing (ICAC 2011), June 2011.

[15] Chang Seok Bae, John R. Lange, and Peter A. Dinda. Enhancing virtualized applica-
tion performance through dynamic adaptive paging mode selection. In Proceedings
of the 8th International Conference on Autonomic Computing (ICAC 2011), pages 255–264,
June 2011.

[16] Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos Kozyrakis, and Kunle
Olukotun. The OpenTM transactional application programming interface. In Pro-
ceedings of the 16th International Conference on Parallel Architecture and Compilation
Techniques (PACT 2007), pages 376–387, September 2007.

[17] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
ACM Symposium on Operating Systems Principles (SOSP), pages 164–177, 2003.

[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP 2003),
pages 164–177, October 2003.

[19] George H. Barnes, Richard M. Brown, Maso Kato, David J. Kuck, Daniel L. Slotnick,
and Richard A. Stokes. The ILLIAC IV computer. IEEE Transactions on Computers,
C-17(8):746–757, August 1968.

[20] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Translation caching: Skip, don’t
walk (the page table). In Proceedings of the 37th Annual International Symposium on
Computer Architecture (ISCA 2010), pages 48–59, June 2010.

200

[21] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing
locality and independence with logical regions. In Proceedings of Supercomputing (SC
2012), November 2012.

[22] Andrew Baumann, Paul Barham, Pierre Evariste Dagand, Tim Harris, Rebecca Isaacs,
Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The
Multikernel: A new OS architecture for scalable multicore systems. In Proceedings of
the 22nd ACM Symposium on Operating Systems Principles (SOSP 2009), pages 29–44,
October 2009.

[23] Andrew Baumann, Dongyoon Lee, Pedro Fonseca, Lisa Glendenning, Jacob R. Lorch,
Barry Bond, Reuben Olinsky, and Galen C. Hunt. Composing OS extensions safely
and efficiently with Bascule. In Proceedings of the 8th ACM European Conference on
Computer Systems (EuroSys 2013), pages 239–252, April 2013.

[24] Pete Beckman. Argo: An exascale operating system. http://www.mcs.anl.gov/
project/argo-exascale-operating-system.

[25] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. Dune: Safe user-level access to privileged CPU features. In Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design and Implementation
(OSDI 2012), pages 335–348, October 2012.

[26] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. IX: A protected dataplane operating system for high through-
put and low latency. In Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2014), pages 49–65, October 2014.

[27] Lars Bergstrom. Parallel Functional Programming with Mutable State. PhD thesis, The
University of Chicago, Chicago, IL, June 2013.

[28] Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, Stephen Rosen, and Adam
Shaw. Data-only flattening for nested data parallelism. In Proceedings of the 18th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
2013), pages 81–92, February 2013.

[29] Lars Bergstrom and John Reppy. Nested data-parallelism on the GPU. In Proceedings
of the 17th ACM SIGPLAN International Conference on Functional Programming (ICFP
2012), pages 247–258, September 2012.

[30] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers, and Susan Eggers. Extensibility, safety
and performance in the SPIN operating system. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP 1995), pages 267–283, December
1995.

http://www.mcs.anl.gov/project/argo-exascale-operating-system
http://www.mcs.anl.gov/project/argo-exascale-operating-system

201

[31] David L Black, David B Golub, Daniel P Julin, Richard F Rashid, Richard P Draves,
Randall W Dean, Alessandro Forin, Joseph Barrera, Hideyuki Tokuda, Gerald Malan,
et al. Microkernel operating system architecture and Mach. In Proceedings of the
USENIX Workshop on Micro-Kernels and Other Kernel Architectures, pages 11–30, April
1992.

[32] Guy E. Blelloch. NESL: A nested data-parallel language. Technical Report CMU-CS-
92-103, School of Computer Science, Carnegie Mellon University, January 1992.

[33] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan Hardwick, Jay Sipelstein, and
Marco Zagha. Implementation of a portable nested data-parallel language. Journal
of Parallel and Distributed Computing, 21(1):4–14, April 1994.

[34] Guy E. Blelloch and John Greiner. A provable time and space efficient implementa-
tion of NESL. In Proceedings of the International Conference on Function Programming
(ICFP), May 1996.

[35] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
Journal of Parallel and Distributed Computing, 37(1):55–69, 1996.

[36] Allen C. Bomberger, William S. Frantz, Ann C. Hardy, Norman Hardy, Charles R.
Landau, and Jonathan S. Shapiro. The KeyKOS nanokernel architecture. In Proceed-
ings of the USENIX Workshop on Micro-kernels and Other Kernel Architectures, pages
95–112, April 1992.

[37] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and
Zheng Zhang. Corey: An operating system for many cores. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation (OSDI 2008),
pages 43–57, December 2008.

[38] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of Linux scalability to
many cores. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation (OSDI 2010), October 2010.

[39] Ron Brightwell, Ron Oldfield, Arthur B. Maccabe, and David E. Bernholdt. Hobbes:
Composition and virtualization as the foundations of an extreme-scale OS/R. In
Proceedings of the International Workshop on Runtime and Operating Systems for Super-
computers (ROSS 2013), pages 2:1–2:8, June 2013.

[40] Ron Brightwell, Kevin Pedretti, and Keith D. Underwood. Initial performance
evaluation of the Cray SeaStar interconnect. In Proceedings of the 13th Symposium on
High Performance Interconnects (HOTI 2005), pages 51–57, August 2005.

202

[41] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running com-
modity operating systems on scalable multiprocessors. In Proceedings of the 16th

Symposium on Operating Systems Principles (SOSP 1997), pages 143–156, October 1997.

[42] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman, and Ed-
ward Y. Wang. Bringing virtualization to the x86 architecture with the original
VMware workstation. ACM Transactions on Computer Systems, 30(4):12:1–12:51,
November 2012.

[43] Thomas Bushnell. Towards a new strategy of OS design. GNU’s Bulletin, 1(16),
January 1994.

[44] Dick Buttlar and Jacqueline Farrell. Pthreads programming: A POSIX standard for better
multiprocessing. O’Reilly Media, Inc., 1996.

[45] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando
Fox. Microreboot: A technique for cheap recovery. In Proceedings of the 6th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2004), pages 31–44,
December 2004.

[46] William W. Carlson, Jesse M. Draper, David E. Culler, Kathy Yelick, Eugene Brooks,
and Karen Warren. Introduction to UPC and language specification. Technical
Report CCS-TR-99-157, IDA Center for Computing Sciences, May 1999.

[47] Richard Carlsson. An introduction to core Erlang. In Proceedings of the PLI 2001
Workshop on Erlang, September 2001.

[48] Manuel Chakravarty, Gabriele Keller, Roman Leshchinskiy, and Wolf Pfannenstiel.
Nepal—nested data-parallelism in haskell. In Proceedings of the 7th International
Euro-Par Conference (EUROPAR), August 2001.

[49] Manuel Chakravarty, Roman Leshchinskiy, Simon Peyon Jones, Gabriele Keller, and
Simon Marlow. Data parallel haskell: A status report. In Proceedings of the Workshop
on Declarative Aspects of Multicore Programming, January 2007.

[50] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. Data parallel Haskell: A status report. In Proceedings
of the 2007 Workshop on Declarative Aspects of Multicore Programming (DAMP 2007),
pages 10–18, January 2007.

[51] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel programma-
bility and the Chapel language. International Journal of High Performance Computing
Applications, 21(3):291–312, August 2007.

[52] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioğlu, Christoph von Praun, and Vivek Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In Proceedings of the 20th

203

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2005), pages 519–538, October 2005.

[53] Jeffrey S. Chase, Jeffrey S. Chase, Henry M. Levy, Henry M. Levy, Michael J. Feeley,
Michael J. Feeley, Edward D. Lazowska, and Edward D. Lazowska. Sharing and
protection in a single address space operating system. ACM Transactions on Computer
Systems, 12(4):271–307, November 1994.

[54] David R. Cheriton and Kenneth J. Duda. A caching model of operating system
kernel functionality. In Proceedings of the 1st USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2004), pages 14:1–14:15, November 1994.

[55] Juan A. Colmenares, Gage Eads, Steven Hofmeyr, Sarah Bird, Miguel Moretó, David
Chou, Brian Gluzman, Eric Roman, Davide B. Bartolini, Nitesh Mor, Krste Asanović,
and John D. Kubiatowicz. Tessellation: Refactoring the OS around explicit resource
containers with continuous adaptation. In Proceedings of the 50th ACM/IEEE Design
Automation Conference (DAC 2013), pages 76:1–76:10, May/June 2013.

[56] UPC Consortium. UPC language and library specifications, v1.3. Technical Report
LBNL-6623E, Lawrence Berkeley National Lab, November 2013.

[57] F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the Multics system.
In Proceedings of the 1965 Fall Joint Computer Conference, Part I (AFIPS 1965), pages
185–196, November 1965.

[58] Zheng Cui, Lei Xia, Patrick G. Bridges, Peter A. Dinda, and John R. Lange. Optimistic
overlay-based virtual networking through optimistic interrupts and cut-through
forwarding. In Proceedings of Supercomputing (SC 2012), November 2012.

[59] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for
shared-memory programming. IEEE Computational Science & Engineering, 5(1):46–55,
1998.

[60] William J. Dally, Roy Davison, J.A. Stuart Fiske, Greg Fyler, John S. Keen, Richard A.
Lethin, Michael Noakes, and Peter R. Nuth. The message-driven processor: A
multicomputer processing node with efficient mechanisms. IEEE Micro, 12(2):23–39,
April 1992.

[61] Raja Das, Joel Saltz, and Alan Sussman. Applying the CHAOS/PARTI library to
irregular problems in computational chemistry and computational aerodynamics. In
Proceedings of the 1993 Scalable Parallel Libraries Conference, pages 45–56, October 1993.

[62] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication opti-
mizations for irregular scientific computations on distributed memory architectures.
Journal of Parallel and Distributed Computing, 22(3):462–478, September 1994.

204

[63] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation (OSDI 2004), December 2004.

[64] Luke Deller and Gernot Heiser. Linking programs in a single address space. In
Proceedings of the 1999 USENIX Annual Technical Conference (USENIX ATC 1999),
pages 283–294, June 1999.

[65] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest
Bassous, and Andre R. LeBlanc. Design of ion-implanted MOSFET’s with very
small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, October
1974.

[66] Benoit des Ligneris. Virtualization of Linux based computers: the Linux-VServer
project. In Proceedings of the 19th International Symposium on High Performance Comput-
ing Systems and Applications (HPCS 2005), pages 340–346, May 2005.

[67] Jack Dongarra and Michael A. Heroux. Toward a new metric for ranking high
performance computing systems. Technical Report SAND2013-4744, University of
Tennessee and Sandia National Laboratories, June 2013.

[68] Kevin Elphinstone and Gernot Heiser. From L3 to seL4—what have we learnt in 20
years of L4 microkernels? In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP 2013), pages 133–150, November 2013.

[69] Dawson R. Engler. The Exokernel Operating System Architecture. PhD thesis, Mas-
sachusetts Institute of Technology, October 1998.

[70] Dawson R. Engler and M. Frans Kaashoek. Exterminate all operating system abstrac-
tions. In Proceedings of the 5th Workshop on Hot Topics in Operating Systems (HotOS
1995), pages 78–83, May 1995.

[71] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole, Jr. Exokernel: An operat-
ing system architecture for application-level resource management. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles (SOSP 1995), pages 251–266,
December 1995.

[72] Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-
grain synchronization. Journal of Parallel and Distributed Computing, 16(4):306–318,
December 1992.

[73] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli
Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. The Racket Manifesto. In 1st

Summit on Advances in Programming Languages (SNAPL 2015), volume 32 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 113–128, 2015.

205

[74] Kurt B. Ferreira, Patrick Bridges, and Ron Brightwell. Characterizing application
sensitivity to OS interference using kernel-level noise injection. In Proceedings of
Supercomputing (SC 2008), November 2008.

[75] Kurt B. Ferreira, Patrick G. Bridges, Ron Brightwell, and Kevin T. Pedretti. Impact
of system design parameters on application noise sensitivity. Journal of Cluster
Computing, 16(1), March 2013.

[76] Marco Fillo, Stephen W. Keckler, William J. Dally, Carter Nicholas P., Andrew Chang,
Yevgeny Gurevich, and Whay S. Lee. The M-Machine multicomputer. In Proceedings
of the 29th Annual International Symposium on Microarchitecture (MICRO 29), pages
146–156, November 1995.

[77] Matthew Flatt and PLT. The Racket reference—version 6.1. Technical Report PLT-
TR-2010-1, August 2014.

[78] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly-threaded
parallelism in Manticore. In Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2008), pages 119–130, September 2008.

[79] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly threaded
parallelism in manticore. In Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming (ICFP), September 2008.

[80] Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao. Manticore:
A heterogeneous parallel language. In Proceedings of the 2007 Workshop on Declarative
Aspects of Multicore Programming (DAMP 2007), pages 37–44, January 2007.

[81] Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao. Manticore:
A heterogeneous parallel language. In Proceedings of the Workshop on Declarative
Aspects of Multicore Programming, January 2007.

[82] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shivers.
The Flux OSKit: A substrate for kernel and language research. In Proceedings of
the 16th ACM Symposium on Operating Systems Principles (SOSP 1997), pages 14–19,
October 1997.

[83] Steve Friedl. Go directly to jail: Secure untrusted applications with chroot. Linux
Magazine, December 2002.

[84] Gerald Fry and Richard West. On the integration of real-time asynchronous event
handling mechanisms with existing operating system services. In Proceedings of the
2007 International Conference on Embedded Systems and Applications (ESA 2007), June
2007.

[85] Alexandros V. Gerbessiotis and Leslie G. Valiant. Direct bulk-synchronous parallel
algorithms. Journal of Parallel and Distributed Computing, 22(2):251–267, August 1994.

206

[86] Mark Giampapa, Thomas Gooding, Todd Inglett, and Robert W. Wisniewski. Experi-
ences with a lightweight supercomputer kernel: Lessons learned from Blue Gene’s
CNK. In Proceedings of Supercomputing (SC 2010), November 2010.

[87] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf
Schuster, and Dan Tsafrir. ELI: Bare-metal performance for I/O virtualization. In
Proceedings of the 17th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2012), pages 411–422, March 2012.

[88] OpenACC Working Group et al. The OpenACC application programming interface,
version 1.0. http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf,
November 2011.

[89] P. H. Gum. System/370 extended architecture: Facilities for virtual machines. IBM
Journal of Research and Development, 27(6):530–544, November 1983.

[90] Kyle C. Hale and Peter A. Dinda. Guarded modules: Adaptively extending the
VMM’s privilege into the guest. In Proceedings of the 11th International Conference on
Autonomic Computing (ICAC 2014), pages 85–96, June 2014.

[91] Kyle C. Hale, Lei Xia, and Peter A. Dinda. Shifting GEARS to enable guest-context
virtual services. In Proceedings of the 9th International Conference on Autonomic Comput-
ing (ICAC 2012), pages 23–32, September 2012.

[92] Steven Hand, Andrew Warfield, Keir Fraser, Evangelos Kostovinos, and Dan Ma-
genheimer. Are virtual machine monitors microkernels done right? In Proceedings of
the 10th Workshop on Hot Topics on Operating Systems (HotOS 2005), June 2005.

[93] Per Brinch Hansen. The nucleus of a multiprogramming system. Communications of
the ACM, 13(4):238–241, April 1970.

[94] Tim Harris, Martin Maas, and Virendra J. Marathe. Callisto: Co-scheduling parallel
runtime systems. In Proceedings of the 9th ACM European Conference on Computer
Systems (EuroSys 2014), pages 24:1–24:14, April 2014.

[95] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Jean Wolter, and Sebastian
Schönberg. The performance of µ-kernel-based systems. In Proceedings of the 16th

ACM Symposium on Operating Systems Principles (SOSP 1997), pages 66–77, October
1997.

[96] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, and Stephen Russell. The Mungi
single-address-space operating system. Software: Practice and Experience, 28(9):901–
928, July 1998.

[97] Michael A. Heroux, Jack Dongarra, and Piotr Luszczek. HPCG technical specification.
Technical Report SAND2013-8752, Sandia National Laboratories, October 2013.

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

207

[98] High Performance Fortran Forum. High Performance Fortran language specification,
version 2.0. Technical report, Center for Research on Parallel Computation, Rice
University, January 1996.

[99] Dan Hildebrand. An architectural overview of QNX. In Proceedings of the USENIX
Workshop on Micro-kernels and Other Kernel Architectures, April 1992.

[100] William Daniel Hills. The Connection Machine. PhD thesis, Massachusetts Institute of
Technology, June 1985.

[101] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Characterizing the
influence of system noise on large-scale applications by simulation. In Proceedings of
Supercomputing (SC 2010), November 2010.

[102] Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith. In-
forming memory operations: Providing memory performance feedback in modern
processors. In Proceedings of the 23rd Annual International Symposium on Computer
Architecture (ISCA 1996), pages 260–270, May 1996.

[103] Galen C. Hunt and James R. Larus. Singularity: Rethinking the software stack.
SIGOPS Operating Systems Review, 41(2):37–49, April 2007.

[104] InfiniBand Trade Association. InfiniBand Architecture Specification: Release 1.0. Infini-
Band Trade Association, 2000.

[105] Intel Corporation. Intel R© Xeon PhiTM Coprocessor Developer’s Quick Start Guide Version
1.7.

[106] Intel Corporation. Intel R© Coprocessor Instruction Set Architecture Reference Manual,
September 2012.

[107] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Manual
Volume 3 (3A, 3B & 3C): System Programming Guide, February 2014.

[108] Intel Corporation. Intel R© Xeon PhiTM Coprocessor System Software Developer’s Guide,
March 2014.

[109] Erik Johansson, Mikael Pettersson, and Konstantinos Sagonas. A high performance
Erlang system. In Proceedings of the 2nd ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP 2000), pages 32–43, Septem-
ber 2000.

[110] Ryan Johnson, Nikos Hardavellas, Ippokratis Pandis, Naju Mancheril, Stavros Hari-
zopoulos, Kivanc Sabirli, Anastassia Ailamaki, and Babak Falsafi. To share or not
to share? In Proceedings of the 33rd International Conference on Very Large Data Bases
(VLDB 2007), pages 351–362, September 2007.

208

[111] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak
Falsafi. Shore-MT: A scalable storage manager for the multicore era. In Proceedings of
the 12th International Conference on Extending Database Technology (EDBT 2009), pages
24–35, March 2009.

[112] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M. Briceño,
Russell Hunt, David Mazières, Thomas Pinckney, Robert Grimm, John Jannotti, and
Kenneth Mackenzie. Application performance and flexibility on Exokernel systems.
In Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP 1997),
pages 52–65, October 1997.

[113] Harmut Kaiser, Maciej Brodowicz, and Thomas Sterling. ParalleX: An advanced
parallel execution model for scaling-impaired applications. In Proceedings of the 38th

International Conference on Parallel Processing Workshops (ICPPW 2009), pages 394–401,
September 2009.

[114] Laxmikant V. Kalé, Balkrishna Ramkumar, Amitabh Sinha, and Attila Gursoy. The
Charm parallel programming language and system: Part II–the runtime system.
Technical Report 95-03, Parallel Programming Laboratory, University of Illinois at
Urbana-Champaign, 1994.

[115] Laxmikant V. Kalé, Balkrishna Ramkumar, Amitabh Sinha, and Attila Gursoy. The
Charm parallel programming language and system: Part I–description of language
features. Technical Report 95-02, Parallel Programming Laboratory, University of
Illinois at Urbana-Champaign, 1995.

[116] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the omnipotent root.
In Proceedings of the 2nd International System Administration and Networking Conference
(SANE 2000), May 2000.

[117] Stephen W. Keckler, Andrew Chang, Whay S. Lee, Sandeep Chatterjee, and William J.
Dally. Concurrent event handling through multithreading. IEEE Transactions on
Computers, 48(9):903–916, September 1999.

[118] Suzanne M. Kelly and Ron Brightwell. Software architecture of the light weight
kernel, Catamount. In Proceedings of the 2005 Cray User Group Meeting (CUG 2005),
May 2005.

[119] Ebcioğlu Kemal, Vijay Saraswat, and Vivek Sarkar. X10: Programming for hierarchi-
cal parallelism and non-uniform data access. In Proceedings of the 3rd International
Workshop on Language Runtimes, October 2004.

[120] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of High Perfor-
mance Fortran: An historical object lesson. In Proceedings of the 3rd ACM SIGPLAN
Conference on History of Programming Languages (HOPL 3), pages 7:1–7:22, June 2007.

209

[121] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. KVM: the
Linux virtual machine monitor. In Proceedings of the Linux Symposium, pages 225–230,
June 2007.

[122] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and
Vlad Zolotarov. OSv—optimizing the operating system for virtual machines. In
Proceedings of the 2014 USENIX Annual Technical Conference (USENIX ATC 2014), June
2014.

[123] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wisniewski, Jimi
Xenidis, Dilma Da Silva, Michal Ostrowski, Jonathan Appavoo, Maria Butrico, Mark
Mergen, Amos Waterland, and Volkmar Uhlig. K42: Building a complete operating
system. In Proceedings of the 1st ACM European Conference on Computer Systems
(EuroSys 2006), pages 133–145, April 2006.

[124] Alexander Kudryavtsev, Vladimir Koshelev, Boris Pavlovic, and Arutyun Avetisyan.
Modern HPC cluster virtualization using KVM and Palacios. In Proceedings of the
Workshop on Cloud Services, Federation, and the 8th Open Cirrus Summit (FederatedClouds
2012), pages 1–9, September 2012.

[125] Jean J. Labrosse. µC/OS-II the real-time kernel: User’s manual.
https://doc.micrium.com/display/osiidoc?preview=/10753158/20644170/
100-uC-OS-II-003.pdf, 2015. Accessed: 2016-09-07.

[126] Menno Lageman. Solaris containers—what they are and how to use them. Sun
BluePrints OnLine, May 2005.

[127] Monica S. Lam and Martin C. Rinard. Coarse-grain parallel programming in Jade.
In Proceedings of the 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP 1991), pages 94–105, April 1991.

[128] John Lange, Kevin Pedretti, Peter Dinda, Patrick Bridges, Chang Bae, Philip Soltero,
and Alexander Merritt. Minimal overhead virtualization of a large scale supercom-
puter. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE 2011), pages 169–180, March 2011.

[129] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng Cui, Lei
Xia, Patrick Bridges, Andy Gocke, Steven Jaconette, Mike Levenhagen, and Ron
Brightwell. Palacios and Kitten: New high performance operating systems for
scalable virtualized and native supercomputing. In Proceedings of the 24th IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2010), April 2010.

[130] John R. Lange, Peter Dinda, Kyle C. Hale, and Lei Xia. An introduction to the
Palacios virtual machine monitor—version 1.3. Technical Report NWU-EECS-11-
10, Department of Electrical Engineering and Computer Science, Northwestern
University, November 2011.

https://doc.micrium.com/display/osiidoc?preview=/10753158/20644170/100-uC-OS-II-003.pdf
https://doc.micrium.com/display/osiidoc?preview=/10753158/20644170/100-uC-OS-II-003.pdf

210

[131] Christopher Lauderdale and Rishi Khan. Towards a codelet-based runtime for
exascale computing. In Proceedings of the 2nd International Workshop on Adaptive Self-
Tuning Computing Systems for the Exaflop Era (EXADAPT 2012), pages 21–26, March
2012.

[132] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan Babb,
Vivek Sarkar, and Saman Amarasinghe. Space-time scheduling of instruction-level
parallelism on a raw machine. In Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS 1998),
pages 46–57, October 1998.

[133] Bo Li, Jianxin Li, Tianyu Wo, Chunming Hu, and Liang Zhong. A VMM-based
system call interposition framework for program monitoring. In Proceedings of the
16tth IEEE International Conference on Parallel and Distributed Systems (ICPADS 2010),
pages 706–711, December 2010.

[134] Jochen Liedtke. Improving IPC by kernel design. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP 1993), pages 175–188, December
1993.

[135] Jochen Liedtke. A persistent system in real use—experiences of the first 13 years. In
Proceedings of the 3rd International Workshop on Object-Orientation in Operating Systems,
pages 2–11, December 1993.

[136] Jochen Liedtke. On micro-kernel construction. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP 1995), pages 237–250, December
1995.

[137] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar Panda. High performance
VMM-bypass I/O in virtual machines. In Proceedings of the USENIX Annual Technical
Conference, May 2006.

[138] Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanović, and John
Kubiatowicz. Tessellation: Space-time partitioning in a manycore client OS. In
Proceedings of the 1st USENIX Conference on Hot Topics in Parallelism (HotPar 2009),
pages 10:1–10:6, March 2009.

[139] Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Computing,
22(6):789–828, September 1996.

[140] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-
nels: Library operating systems for the cloud. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2013), pages 461–472, March 2013.

211

[141] Chao Mei, Gengbin Zheng, Filippo Gioachin, and Laxmikant V. Kalé. Optimizing
a parallel runtime system for multicore clusters: A case study. In Proceedings of the
2010 TeraGrid Conference (TG 2010), pages 12:1–12:8, August 2010.

[142] Paul B Menage. Adding generic process containers to the Linux kernel. In Proceedings
of the Linux Symposium, pages 45–58, June 2007.

[143] John Merlin and Anthony Hey. An introduction to High Performance Fortran.
Scientific Programming, 4(2):87–113, April 1995.

[144] Timothy Merrifield and H. Reza Taheri. Performance implications of extended page
tables on virtualized x86 processors. In Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2016), pages 25–35,
April 2016.

[145] Jeffrey C Mogul, Andrew Baumann, Timothy Roscoe, and Livio Soares. Mind the
gap: reconnecting architecture and os research. In Proceedings of the 13th Workshop on
Hot Topics in Operating Systems (HotOS 2011), May 2011.

[146] Allen B. Montz, David Mosberger, Sean W. O’Malley, Larry L. Peterson, and Todd A.
Proebsting. Scout: A communications-oriented operating system. In Proceedings of
the 5th Workshop on Hot Topics in Operating Systems (HotOS 1995), pages 58–61, May
1995.

[147] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel virtual-
ization technology: Hardware support for efficient processor virtualization. Intel
Technology Journal, 10(3), August 2006.

[148] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. The j-machine multi-
computer: An architectural evaluation. In Proceedings of the 20th Annual International
Symposium on Computer Architecture (ISCA 1993), pages 224–235, May 1993.

[149] Robert W. Numrich and John Reid. Co-array Fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1–31, August 1998.

[150] NVIDIA Corporation. Dynamic parallelism in CUDA, December 2012.

[151] NVIDIA Corporation. CUDA C Programming Guide—Version 6.0, February 2014.

[152] NVIDIA Corporation. CUDA Driver API—Version 6.0, February 2014.

[153] NVIDIA Corporation. CUDA Runtime API—Version 6.0, February 2014.

[154] Jiannan Oayang, Brian Kocoloski, John Lange, and Kevin Pedretti. Achieving perfor-
mance isolation with lightweight co-kernels. In Proceedings of the 24th International
ACM Symposium on High Performance Parallel and Distributed Computing, (HPDC 2015),
June 2015.

212

[155] Yoshinori K. Okuji, Bryan Ford, Erich Stefan Boleyn, and Kunihiro Ishiguro. The
multiboot specification—version 1.6. Technical report, Free Software Foundation,
Inc., 2010.

[156] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung
Chang. The case for a single-chip multiprocessor. In Proceedings of the 7th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 7), pages 2–11, October 1996.

[157] Jiannan Ouyang, Brian Kocoloski, John R. Lange, and Kevin Pedretti. Achieving
performance isolation with lightweight co-kernels. In Proceedings of the 24th Inter-
national Symposium on High-Performance Parallel and Distributed Computing (HPDC
2015), pages 149–160, June 2015.

[158] Heidi Pan, Benjamin Hindman, and Krste Asanović. Composing parallel software
efficiently with Lithe. In Proceedings of the 2010 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2010), pages 376–387, June
2010.

[159] Simon Peter and Thomas Anderson. Arrakis: A case for the end of the empire. In
Proceedsings of the 14th Workshop on Hot Topics in Operating Systems (HotOS 2013),
pages 26:1–26:7, May 2013.

[160] Simon Peter, Jialin Li, Irene Zhang, Dan R.K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system is
the control plane. In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2014), pages 1–16, October 2014.

[161] Simon Peyton Jones. Harnessing the multicores: Nested data parallelism in Haskell.
In Proceedings of the 6th Asian Symposium on Programming Languages and Systems
(APLAS 2008), December 2008.

[162] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17(7):412–421, July 1974.

[163] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C.
Hunt. Rethinking the library OS from the top down. In Proceedings of the 16th Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2011), pages 291–304, March 2011.

[164] Qumranet Corporation. Kvm - kernel-based virtual machine. Technical report, 2006.
KVM has been incorporated into the mainline Linux kernel codebase.

[165] Himanshu Raj and Karsten Schwan. High performance and scalable I/O virtu-
alization via self-virtualized devices. In Proceedings of the 16th IEEE International
Symposium on High Performance Distributed Computing (HPDC 2007), July 2007.

213

[166] Paul Regnier, George Lima, and Luciano Barreto. Evaluation of interrupt handling
timeliness in real-time linux operating systems. ACM SIGOPS Operating Systems
Review, 42(6):52–63, October 2008.

[167] John Reppy, Claudio V. Russo, and Yingqi Xiao. Parallel concurrent ML. In Proceed-
ings of the 14th ACM SIGPLAN International Conference on Functional Programming
(ICFP 2009), pages 257–268, August 2009.

[168] Digital Research. Concurrent CP/M operating system: System guide. http://www.
cpm.z80.de/manuals/ccpmsg.pdf, 1984. Accessed: 2016-09-07.

[169] Barret Rhoden, Kevin Klues, David Zhu, and Eric Brewer. Improving per-node
efficiency in the datacenter with new OS abstractions. In Proceedings of the 2nd ACM
Symposium on Cloud Computing (SoCC 2011), pages 25:1–25:8, October 2011.

[170] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Jade: A high-level, machine-
independent language for parallel programming. IEEE Computer, 26(6):28–38, June
1993.

[171] Timothy Roscoe. Linkage in the Nemesis single address space operating system.
ACM SIGOPS Operating Systems Review, 28(4):48–55, October 1994.

[172] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann,
C. Kaiser, S. Langlois, P. Léonard, and W. Neuhauser. CHORUS distributed operating
systems. Computing Systems, 1(4):305–370, Fall 1988.

[173] Fabian Scheler, Wanja Hofer, Benjamin Oechslein, Rudy Pfister, Wolfgang Shröder-
Preikschat, and Daniel Lohmann. Parallel, hardware-supported interrupt handling in
an event-triggered real-time operating system. In Proceedings of the 2009 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES 2009),
pages 167–174, December 2009.

[174] Adrian Schüpbach, Simon Peter, Andrew Baumann, and Timothy Roscoe. Embracing
diversity in the Barrelfish manycore operating system. In Proceedings of the Workshop
on Managed Many-core Systems (MMCS 2008), June 2008.

[175] Jonathan S. Shapiro and Norman Hardy. EROS: A principle-driven operating system
from the ground up. IEEE Software, 19(1):26–33, January 2002.

[176] Adam Michael Shaw. Implementation Techniques for Nested-Data-Parallel Languages.
PhD thesis, The University of Chicago, Chicago, IL, August 2011.

[177] Taku Shimosawa, Balazs Gerofi, Masamichi Takagi, Gou Nakamura, Tomoki Shira-
sawa, Yuji Saeki, Masaaki Shimizu, Atsushi Hori, and Yutaka Ishikawa. Interface
for heterogeneous kernels: A framework to enable hybrid os designs targeting
high performance computing on manycore architectures. In Proceedings of the IEEE
International Conference on High Performance Computing (HiPC 2014), December 2014.

http://www.cpm.z80.de/manuals/ccpmsg.pdf
http://www.cpm.z80.de/manuals/ccpmsg.pdf

214

[178] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Concepts.
Wiley, ninth edition, 2012.

[179] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes.
Morgan Kaufmann, first edition, 2005.

[180] Udo Steinberg and Bernhard Kauer. NOVA: A microhypervisor-based secure virtu-
alization architecture. In Proceedings of the 5th ACM European Conference on Computer
Systems (EuroSys 2010), pages 209–222, April 2010.

[181] Alan Sussman and Joel Saltz. A manual for the multiblock PARTI runtime primitives,
revision 4. Technical Report UMIACS-TR-93-36, University of Maryland Institute
for Advanced Computer Studies, College Park, Maryland, 1993.

[182] J. Swaine, K. Tew, P. Dinda, R. Findler, and M. Flatt. Back to the futures: Incremental
parallelization of existing sequential runtime systems. In Proceedings of the ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2010), October 2010.

[183] James Swaine. Incremental Parallelization of Existing Sequential Runtime Systems. PhD
thesis, Northwestern University, Evanston, Illinois, June 2014.

[184] James Swaine, Burke Fetscher, Vincent St-Amour, Robert Bruce Findler, and Matthew
Flatt. Seeing the futures: Profiling shared-memory parallel Racket. In Proceedings
of the 1st ACM SIGPLAN Workshop on Functional High-performance Computing (FHPC
2012), September 2012.

[185] James Swaine, Kevin Tew, Peter Dinda, Robert Bruce Findler, and Matthew Flatt.
Back to the futures: Incremental parallelization of existing sequential runtime sys-
tems. In Proceedings of the 2nd ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2010), pages 583–597, October
2010.

[186] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. Pearson, fourth
edition, 2014.

[187] Kevin Tew, James Swaine, Matthew Flatt, Robert Findler, and Peter Dinda. Places:
Adding message passing parallelism to racket. In Proceedings of the 2011 Dynamic
Languages Symposium (DLS 2011), October 2011.

[188] Chandramohan A. Thekkath and Henry M. Levy. Hardware and software support
for efficient exception handling. In Proceedings of the 6th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS 1994),
pages 110–119, October 1994.

215

[189] Sean Treichler, Michael Bauer, and Alex Aiken. Language support for dynamic,
hierarchical data partitioning. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2013), pages 495–514, October 2013.

[190] Hung-Wei Tseng and Dean M. Tullsen. Data-triggered threads: Eliminating re-
dundant computation. In Proceedings of the 17th International Symposium on High
Performance Computer Architecture (HPCA 2011), pages 181–192, February 2011.

[191] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.
Active messages: a mechanism for integrating communication and computation. In
Proceedings of the 25th Annual International Symposium on Computer Architecture (ISCA
1998), pages 430–440, July 1998.

[192] Carl Waldsburger. Memory resource management in vmware esx server. In Proceed-
ings of the 2002 Symposium on Operating Systems Design and Implementation (OSDI),
2002.

[193] John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu, Christoforos
Kozyrakis, James C. Hoe, Derek Chiou, and Krste Asanović. Ramp: Research
accelerator for multiple processors. IEEE Micro, 27(2):46–57, March 2007.

[194] Kyle B Wheeler, Richard C Murphy, and Douglas Thain. Qthreads: An API for pro-
gramming with millions of lightweight threads. In Proceedings of the 22nd International
Symposium on Parallel and Distributed Processing (IPDPS 2008), April 2008.

[195] Robert W. Wisniewski, Todd Inglett, Pardo Keppel, Ravi Murty, and Rolf Riesen.
mOS: An architecture for extreme-scale operating systems. In Proceedings of the 4th

International Workshop on Runtime and Operating Systems for Supercomputers (ROSS
2014), pages 2:1–2:8, June 2014.

[196] Lei Xia, Zheng Cui, John Lange, Yuan Tang, Peter Dinda, and Patrick Bridges.
VNET/P: Bridging the cloud and high performance computing through fast overlay
networking. In Proceedings of 21st International ACM Symposium on High-Performance
Parallel and Distributed Computing (HPDC 2012), pages 259–270, June 2012.

[197] Karim Yaghmour. Adaptive domain environment for operating systems. http:
//www.opersys.com/ftp/pub/Adeos/adeos.pdf.

[198] Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi, Anthony D.
Joesph, Randy Katz, Scott Shenker, and Ion Stoica. The datacenter needs an operating
system. In Proceedings of the 3rd USENIX Conference on Hot Topics in Cloud Computing
(HotCloud 2011), pages 17:1–17:5, August 2011.

[199] Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe. Decoupling
cores, kernels, and operating systems. In Proceedings of the 11th USENIX Symposium

http://www.opersys.com/ftp/pub/Adeos/adeos.pdf
http://www.opersys.com/ftp/pub/Adeos/adeos.pdf

216

on Operating Systems Design and Implementation (OSDI 2014), pages 17–31, October
2014.

217

Appendix A

OS Issues as Stated by Legion

Runtime Developers

Below is a list of features and requests for OSes received from the Legion runtime develop-

ers. They give a sense for some of the problems with building a runtime atop a generalized

OS interface. Each block delineates comments from a different developer.

Developer 1

Some quick thoughts:

1. All operations should come in non-blocking form (i.e. in the traditional

“non-blocking” definition used by OSes - return E_AGAIN rather than block-

ing), ideally with an optional semaphore/futex/whatever that the OS

can use to signal when an operation has a non-zero chance of success (i.e.

when it’s worth re-attempting the request).

218

2. Mechanisms for pinning memory that can be used by multiple hardware

devices need to be improved. Some of this is on the GPU/NIC/etc. drivers

but anything the OS can do to help would be nice.

3. The overhead of SIGSEGV handling is preventing us from trying any mmap()

shenanigans to implement lazy load and/or copy-on-write semantics for

instances. A lower-overhead way to trap those accesses and monkey with

page tables would be great.

4. An OS-level API for letting runtimes acquire hardware resources (e.g.

CPU cores, pinnable memory) would be the way we’d want to interact

with other runtimes. When we “own” the resource, we have the whole

thing, but we can scale our usage up/down in a fine-grained way (i.e.

better than cpuset wrappers on the command line and OMP_NUM_THREADS

environment variables). There’s a Berkeley project that worked on this

about 5 years ago that I’m blanking on the name of1.

5. More detailed affinity information. Dynamic power information on cores/mem-

ories. Neither of these need to be perfect—higher fidelity is obviously

better.

6. For deep memory hierarchies, we just need the low-level control of alloca-

tion and data movement. For resilience, an API that: a. allows the HW/OS

to let the runtime/app know about faults (with as much information as

is available) b. allows the runtime/app to tell the HW/OS if/how it was

handled, and whether or not the OS (or the HW) should pull the fire alarm.
1He is almost certainly referring to Akaros [198, 169], which I discussed in Section 8.1.1.

219

7. Just low-level control of all the physical resources in the system (proces-

sors, memories, caches, etc.). We’d rather do the virtualization ourselves

(modulo the answer to #2 above).

Developer 2

1. From a runtime developer’s perspective, the way that current operating

systems manage resources is fundamentally broken. For example, pinned

memory right now is handled by the OS in Linux, which means that it is

very hard for us in Legion to create a pinned allocation of memory that is

visible to both the CUDA and Network drivers (either IB or Cray) because

they both want to make the system call that does the pinning. Instead I

think a better model is to move resource allocation up into user space so the

runtime can make it visible with a nice abstraction (Legion mapper) using

an approach similar to how exokernels work (http://pdos.csail.mit.

edu/exo/). The OS should provide safety for resources, but management

and policy should be available to both the runtime and ultimately to the

application instead of being baked into the OS implementation the way it

is today.

2. Similar in spirit to what I mentioned above, control data structures like OS

page tables should be available to the runtime system. On the long-term

list of interesting things to do with Legion is to use something like Dune

(http://dune.scs.stanford.edu/) to manipulate the virtual to physical

mapping of pages to support things like copy-on-write instances of physi-

cal regions. It would also allow us to do things like de-duplicate copies of

http://pdos.csail.mit.edu/exo/
http://pdos.csail.mit.edu/exo/
http://dune.scs.stanford.edu/

220

data (especially for ghost cell regions), as long as we knew that regions

were being accessed with read-only privileges. Again this fits into the idea

that like the runtime system, the OS should provide mechanism and not

policy like it does today.

3. Error handling and fault detection in operating systems today are fun-

damentally broken for distributed systems. If there is data corruption

detected on a checksum for a packet sent over the interconnect, which

node handles that, source or destination? Furthermore, assuming error de-

tection gets significantly better, using signals to interrupt processes every

time a fault is detected just seems broken. Also, the way signal handlers

run today aren’t really designed for multi-threaded systems and so they

employ a stop-the-world approach that halts all threads within a process.

In a world where we think of memory as one big heap that is probably

the only way to do things. However, in a world where the runtime knows

about which tasks are accessing which regions, the runtime will only want

to restart tasks accessing corrupted regions without ever halting other

tasks. In this way, something like Legion could be better at hiding the

latency of handling faults as well, assuming the OS doesn’t stop the whole

world.

4. Consistent with the ideas above, when it comes to scheduling the OS

should provide mechanism and not policy. Threads should be scheduled

directly onto hardware, with maybe only very coarse grained thread

scheduling to guarantee forward progress. The application should be

able to easily specify things like priorities and hints about where to place

221

threads onto hardware cores. The application should also have the ability

to pin a thread to a core and never give it up. At most, the OS should

assume that it can own one core in order to handle system calls. The

application should always be able to claim and own the rest of the cores

for performance reasons.

In summary, one of the main ideas of Legion is to provide mechanism and not

policy, instead allowing application and architecture specific mappers to make

these kinds of decisions. If the OS has any policy decisions baked into it, then

Legion can’t make the full range of mapping decisions available to the mapper

and that will limit performance. Just like the runtime system, it is the OS’s job

to provide mechanism and stay out of the way of the mappers.

While some of these requests could likely be fulfilled by modifying or tweaking an existing

OS like Linux, the broad range of complaints hints at an underlying issue. Designers of a

runtime with such specific constraints on performance and functionality need more control

of the machine. Ease of use is not an issue for them; they simply need to extract everything

from the hardware that they can. If the existing interfaces do not provide this, something

needs to change. This change is what I propose to enact within Nautilus.

222

Appendix B

GEARS

This chapter describes the Guest Examination and Revision Services (GEARS) framework

that we developed for the Palacios VMM. This work was published in the proceedings

of the 9th International Conference on Autonomic Computing in 2012 [91]. In particular

we will look at the design, implementation, and evaluation of GEARS. I will begin by

describing the notion of guest-context virtual services below. Then I will describe the design,

implementation, and evaluation of GEARS (Section B.2). I will then outline two services

we built using GEARS, an accelerated overlay networking component (Section B.3), and

an MPI accelerator (Section B.4). Finally, I will draw conclusions and discuss how GEARS

fits into the broader picture of my thesis work (Section B.5).

The GEARS system is a prototype to further the argument that the implementation of

VMM-based virtual services for a guest OS should extend into the guest itself, even without

its cooperation. Placing service components directly into the guest OS or application can

reduce implementation complexity and increase performance. VMM code running directly

within the guest OS or application without its cooperation can considerably simplify the design

and implementation of services because the services can then directly manipulate aspects

223

of the guest from within the guest itself. Further, these kinds of services can eliminate

many overheads associated with costly exits to the VMM, improving their performance.

Finally, extending a service into a guest enables new types of services not previously

possible or that are prohibitively difficult to implement solely in the context of the VMM. I

refer to virtual services that can span the VMM, the guest kernel, and the guest application,

as guest-context virtual services.

When a VMM utilizes its higher privilege level to enable or enhance functionality,

optimize performance, or otherwise modify the behavior of the guest in a favorable

manner, it is said to provide a service to the guest. VMM-based services are usually

provided transparently to the guest without its knowledge (e.g. via a virtual device). We

now consider several example services that did profit from GEARS.

Overlay networking acceleration An important service for many virtualized comput-

ing environments is an overlay networking system that provides fast, efficient network

connectivity among a group of VMs and the outside world, regardless of where the VMs

are currently located. Such an overlay can also form the basis of an adaptive/autonomic

environment. A prominent challenge for overlay networks in this context is achieving low

latency and high throughput, even in high performance settings, such as supercomputers

and next-generation data centers. I will show in Section B.3 how GEARS can enhance an

existing overlay networking system with a guest-context component.

MPI acceleration MPI is the most widely used communication interface for distributed

memory parallel computing. In an adaptive virtualized environment, two VMs running

an application communicating using MPI may be co-located on a single host. Because

the MPI library has no way of knowing this, it will use a sub-optimal communication

224

path between them. Our MPI acceleration service can detect such cases and automatically

convert message passing into memory copies and/or memory ownership transfers. I will

discuss the design of this service in Section B.4.

Procrustean services While administrators can install services or programs on guests

already, this task must be repeated many times. Furthermore, because the administrators

of guests and those of provider hosts may not be the same people, providers may execute

guests that are not secure. GEARS functionality permits the creation of services that would

automatically deploy security patches and software updates on a provider’s guests.

B.1 Guest-context Virtual Services

Services that reside within the core of the VMM have the disadvantage of relying on the

mechanism by which control is transferred to the VMM. A VMM typically does not run

until an exceptional situation arises, such as the execution of a privileged instruction (a

direct call to the VMM in the case of paravirtualization) or the triggering of external or

software interrupts. Much like in an operating system, the transition to the higher privilege

level, called an exit, introduces substantial overhead. Costly exits remain one of the most

prohibitive obstacles to achieving high-performance virtualization1.

Eliminating these exits can, thus, improve performance considerably. The motivation

is similar to minimizing costly system calls to OS code in user-space processes. Modern

Linux implementations, for example, provide a mechanism called virtual system calls, in

which the OS maps a read-only page into every process’s address space on start-up. This
1Gordon et al., with the ELI system [87], ameliorate this problem on x86 by employing a shadow interrupt

descriptor table (IDT) that vectors assigned interrupts directly to the guest.

225

page contains code that implements commonly used services and obviates the need to

switch into kernel space. If the implementation of a VMM service is pushed up into the

guest in a similar manner, more time is spent in direct execution of guest code rather than

costly invocations of the VMM. This is precisely what GEARS accomplishes.

Moving components of a service implementation into the guest can not only improve

performance, but also enable services that would otherwise not be feasible. In particular,

guest-context services have a comprehensive view of the state of the guest kernel and

application. These services can make more informed decisions than those implemented

in a VMM core, which must make many indirect inferences about guest state. The VMM

must reconstruct high-level operations based on the limited information that the guest

exposes architecturally. Moreover, in order to manipulate the state of a guest kernel or

application, the VMM must make many transformations from the low-level operations

that the guest exposes to high-level operations that affect guest execution. While services

certainly exist that can accomplish this transformation, their implementation takes on a

more elegant design by operating at the same semantic level as the guest components they

intend to support.

GEARS employs a tiered approach, which involves both the host and the VMM, to

inject and run services in guest context. The process is outlined in Figure B.1. Users (service

developers) provide standard C code for the VMM without needing extensive knowledge

of VMM internals. This makes the procedure of implementing a service straight-forward,

enabling rapid development. The code provided is a service implementation, split into

two clearly distinguishable parts. We refer to these as the top-half and the bottom-half. The

top-half is the portion of the service that runs in the guest-context. The bottom-half, which

may not always be present, resides within a host kernel module readily accessible to the

226

Figure B.1: GEARS services are broken into two parts; one exists in the guest and the other
in the VMM. GEARS takes both parts provided as source code and uses several utilities to
register and manage execution of the service.

VMM. The top-half calls into its respective bottom-half if it requires its functionality. The

bottom-half can similarly invoke the top-half, allowing for a two-way interaction between

the service components.

The code for the top-half must adhere to a guest-specific format. However, GEARS

provides host-resident utilities that transform the code appropriately. Hence, from the

user’s perspective, writing the top-half of a guest-context service implies little more

requisite knowledge than the ability to write a normal program or kernel module for the

guest in question. GEARS simply provides the transformation utilities appropriate for that

guest. If the service requires access to, or assistance from the VMM core, the developer

can design a bottom half by writing a host kernel module that implements the relevant

interface. Detailed discussion of bottom halves can be found in [91].

227

The notion of leaving service implementations entirely up to the user allows a clean

separation between the framework and the services that it enables. GEARS provides

the necessary tools to create cross-layer services, and users are responsible for using this

platform to design innovative guest-VMM interactions.

B.2 GEARS Design and Evaluation

I will now outline the design and evaluation of the GEARS framework, independent of

any services built on top of it. Readers interested in implementation details are directed

to [91].

To enable guest-context services, the VMM must provide a mechanism that can place

components directly within the guest. GEARS implements this mechanism with the code

injection tool. Further, the VMM must have a way to select an appropriate time at which

to perform this placement. The GEARS system call interception utility provides one way

of accomplishing this. Finally, in order for the VMM to control guest execution paths at a

higher level, e.g. for library calls, it must have the ability to modify the environment passed

to the process. GEARS achieves this with process environment modification. Because

these three conditions alone can facilitate the creation of guest-context services, we claim

that GEARS provides the necessary and sufficient tools to accomplish this task. After

describing our testbed for this work, I will describe in more detail how we satisfy these

three conditions.

Experimental setup Before proceeding, it is prudent to describe the hardware and soft-

ware setup for the experiments described in the following sections. We performed all

228

experiments on AMD 64-bit hardware. We primarily used two physical machines for our

testbed.

• 2GHz quad-core AMD Opteron 2350 with 2GB memory, 256KB L1, 2MB L2, and 2MB

L3 caches. We refer to this machine as vtest.

• 2.3GHz 2-socket, quad-core (8 cores total) AMD Opteron 2376 with 32GB of RAM,

512KB L1, 2MB L2, and 6MB L3 caches, called lewinsky.

Both of these machines had Fedora 15 installed, with Linux kernel versions 2.6.40 and

2.6.42, respectively. The guests we used in our testbed ran Linux kernel versions 2.6.38.

All experiments were run using the Palacios VMM configured for nested paging.

System call interception System call interception allows a VMM to monitor the activity

of the guest at a fine granularity. Normally, system calls are not exceptional events

from the standpoint of the VMM. However, system calls are commonly triggered using

software interrupts, which modern hardware allows VMM interception of. GEARS can

use more advanced techniques to intercept system call execution with the newer SYSCALL

instructions. Once the VMM can track the execution of system calls, it can provide a wide

range of services to the guest, such as sanity checking arguments to sensitive kernel code

or matching system call patterns as in [133]. Figure B.2 shows the overhead introduced by

selective system call exiting (the technique we use to intercept the SYSCALL instruction) for

the getpid system call. This particular call is one of the simpler system calls in Linux, so

these numbers represent the fixed cost introduced by system call interception. The row

labeled guest represents a standard guest with no GEARS extensions. The guest+intercept

229

Strategy Latency (µs)
guest 4.26
guest+intercept 4.51

Figure B.2: Average system call latency for getpid system call using selective exiting.

row indicates a GEARS-enabled guest using system call exiting. In this case, no system

calls are selected to exit, so this overhead is the overhead paid by all system calls. Notice

that the overhead introduced is only a small fraction of a microsecond. More details on the

selective system call exiting technique can be found in the GEARS paper.

Process environment modification System call interception enables the VMM to essen-

tially see the creation of every process in the guest through calls to execve, for example.

The interception is done before the system call even starts, so the VMM has the option

to modify the guest’s memory at this point. One useful thing it can do is modify the

environment variables that the parent process passes on to its child.

There are certain environment variables that are particularly useful. One is the

LD_PRELOAD variable, which indicates that a custom shared library should be given prece-

dence over the one originally indicated. This variable gives the VMM an opportunity to

directly modify the control flow of a guest application. Other interesting environment

variables affecting control flow include LD_BIND_NOW and LD_LIBRARY_PATH. The very fact

that the Linux kernel itself uses the environment to pass information to the process (e.g.

with the AT_SYSINFO variable) opens up a broad range of interesting possibilities.

Environment variables can not only be modified, but also, with careful treatment of

memory, added or removed. This allows the VMM to provide information directly to

the guest application without the need for paravirtualization. The guest OS requires no

cognizance of the underlying VMM. Instead, VMM-awareness can vary on an application

230

Component Lines of Code
System Call Interception 833
Environment Modification 683
Code Injection 915
Total 2431

Figure B.3: Implementation complexity for GEARS and its constituent components.

by application basis. This allows developers to make rapid optimizations to employ VMM

services. As will become clear, these developers can even implement their own VMM

service with minimal effort. Notice that the marked divergence from the usual reliance of

user space applications on the operating system’s ABI.

Code injection Code injection is perhaps the most unique mechanism in the GEARS

framework. Because it allows the VMM to run arbitrary code in the context of the guest

without any cooperation or knowledge on the part of the guest OS or application, it is the

core tool enabling guest-context services.

We employ two types of code injection—user-space and kernel-space. User-space

injection allows the VMM to map a piece of trusted code into the address space of a user-

space process. On exits, the VMM can invoke this code manually or redirect user-space

function calls to it by patching the process binary image.

GEARS can also inject code into a guest that will dynamically link with the libraries

mapped into the applications’ address spaces. Our current example services do not utilize

this GEARS feature.

The other type of injection is kernel-space code injection, which relies on the ability to

inject code into a user-space process. Injected kernel code must currently be implemented

in a kernel module compiled for the guest. We used user-space code injection to write the

module into the guest file system and subsequently insert it into the guest kernel.

231

While the existing GEARS implementation is targeted at Linux guests, it consists of

relatively few components, each of which rely on features provided almost universally

by modern OSes and architectures. This means that porting GEARS for other kinds of

guests entails no great effort. Figure B.3 shows the size of the GEARS codebase. Each

component is relatively compact. GEARS is currently implemented as a set of extensions

to the Palacios VMM, and would likely become even more compact if integrated into the

hypervisor core.

B.3 VNET/P Accelerator

VNET/P is an overlay networking system with a layer 2 abstraction implemented inside

the Palacios VMM [196]. It currently achieves near-native performance in both the 1 Gbps

and 10 Gbps switched networks common in clusters today and even more advanced

interconnects [58] like Infiniband [104] and Cray’s SeaStar [40]. Speeds on even faster

networks, such as Infiniband, in the future. At the time we wrote the GEARS paper in 2012,

VNET/P could achieve, with a fully encapsulated data path, 75% of the native throughput

with 3-5x the native latency between directly connected 10 Gbps machines2. We used

GEARS tools to further improve this performance.

The throughput and latency overheads of VNET/P are mostly due to guest/VMM

context switches, and data copies or data ownership transfers. We can reduce the number

of context switches, and the volume of copies or transfers, by shifting more of the VNET/P

data path into the guest itself. In the limit, the entire VNET/P data path can execute in the

guest with guarded privileged access to the underlying hardware. In this work [91], we
2More recent numbers can be found in the VNET/P SC paper [58]

232

Host NIC Driver

Packet Encapsulation/
Forwarding

Virtio NIC

VM

Application

VMM

Native Virtio Driver

Physical Network

Host NIC Driver

Virtio NIC

VM
Application

VMM

Augmented Virtio Driver

Physical Network

VNET/P VNET/P Accelerator

Packet Encapsulation/
Forwarding

Direct Network Bridge
Direct Network Bridge

Top Half

Bottom Half

Inserted via

GEARS

code

injection

Figure B.4: Implementation of the prototype VNET/P Accelerator.

explored an initial step towards this goal that does not involve privileged access and aims

at reducing the latency overhead as a proof-of-concept.

Figure B.4 illustrates this initial proof-of-concept implementation of the VNET/P

Accelerator Service. In the baseline VNET/P data path, shown on the left, raw Ethernet

packets sent from a VM through a virtual NIC are encapsulated and forwarded within

the VMM and sent via a physical NIC. In the VNET/P Accelerator data path, shown

on the right, the encapsulation and forwarding functionality of VNET/P resides within

the guest as part of the guest’s device driver for the virtual NIC. This augmented device

driver kernel module is uncooperatively inserted into the guest kernel using the GEARS

code injection tool. The augmented driver then delivers Ethernet frames containing the

encapsulated packets to the virtual NIC. In our implementation, the driver that has been

augmented is the Linux virtio NIC driver. The backend virtio NIC implementation in

Palacios has no changes; it is simply bridged to the physical NIC.

233

Component Lines of Code
vnet-virtio kernel module (Top Half) 329
vnet bridge (Bottom Half) 150
Total 479

Figure B.5: Implementation complexity of prototype VNET/P Accelerator Service. The
complexity given is the total number of lines of code that were changed. The numbers
indicate that few changes are necessary to port VNET/P functionality into a Linux virtio
driver module.

Benchmark Native VNET/P VNET/P Accel
Latency

min 0.082 ms 0.255 ms 0.205 ms
avg 0.204 ms 0.475 ms 0.459 ms
max 0.403 ms 2.787 ms 2.571 ms

Throughput
UDP 922 Mbps 901 Mbps 905 Mbps
TCP 920 Mbps 890 Mbps 898 Mbps

Figure B.6: VNET/P Accelerator results.

The implementation complexity of the proof-of-concept VNET/P accelerator is shown

in Figure B.5, which illustrates that few changes are needed to split VNET/P functionality

into a top half and a bottom half. The control plane of VNET/P remains in the bottom half

in the VMM; only the encapsulation and forwarding elements move into the top half that

GEARS injects into the guest.

Figure B.6 depicts the performance of the initial, proof-of-concept VNET/P Accelerator.

Here, the round-trip latency and throughput was measured between a VM running on the

vtest machine and a VM running on an adjacent machine that does not use the accelerator.

We measured latency using ping with 1000 round-trips. The throughputs were measured

using ttcp, where both TCP and UDP throughput are reported. We ran ttcp with a 6400

byte buffer, 10000 packets sent, and a standard 1500 byte MTU. We compared accelerated

VNET/P with standard VNET/P and native performance between the two host machines

234

without virtualization or overlays.

The VNET/P Accelerator achieves the same bandwidth as VNET/P, and both are as

close to native as possible given that encapsulation is used. The VNET/P Accelerator

achieves a modest improvement in latency compared to VNET/P (20% minimum, 3%

average, 8% maximum).

B.4 MPI Accelerator

Consider an MPI application executing within a collection of VMs that may migrate due to

decisions made by an administrator, an adaptive computing system, or for other reasons.

The result of such migrations, or even initial allocation, may be that two VMs are co-located

on the same host machine. However, the MPI application and the MPI implementation

itself are oblivious to this, and will thus employ regular network communication primitives

when an MPI process located in one VM communicates with an MPI process in the other.

VNET/P will happily carry this communication, but performance will be sub-optimal.

Fundamentally, the communication performance in such cases is limited to the main

memory copy bandwidth. Ideally, matching MPI send and receive calls on the two VMs

would operate at this bandwidth. We assume here that the receiver touches all of the

data. If that is not the case, the performance limit could be even higher because copy-

on-write techniques might apply. Our MPI Accelerator service performs precisely this

transformation of MPI sends and receives between co-located VMs into memory copy

operations.

Building such an MPI Accelerator purely within the VMM would be extremely chal-

lenging because MPI send and receive calls are library routines that indirectly generate

235

system calls and ultimately cause guest device driver interactions with the virtual hard-

ware the VMM provides. It is these virtual hardware interactions that the VMM sees. In

order to implement an MPI Accelerator service, it would be necessary to reconstruct the

lost semantics of MPI operation. The ability to discern the MPI semantics from the guest

application is the key enabler of our MPI Accelerator implementation.

GEARS provides two essential tools that the MPI Accelerator service leverages: (a) user

space code injection, and (b) process environment modification (Section B.2). At any point

during VM execution, the service uses (a) to inject and run a program that creates a file

in the VM. The file contains a shared library that is an LD_PRELOAD wrapper for MPI. The

system then uses (b) to force exec()s of processes to use the LD_PRELOAD wrapper. This can

be limited to specific executables by name if desired. The wrapper installs itself between

the processes and the MPI shared library such that MPI calls bind to the wrapper. The

wrapper, which constitutes the top half of the service can then decide how to process each

MPI call in coordination with the bottom half of the service that resides in the VMM. The

top and bottom halves communicate using service-specific hypercalls.

In our prototype implementation, illustrated in Figure B.7, we focused on the blocking

MPI_Send and MPI_Recv calls. The top half intercepts the appropriate MPI calls as follows:

• MPI_Init() : After normal initialization processing in MPI, this call also notifies the

bottom half of this MPI process, including its name, arguments, and other parameters.

It registers the process for consideration with the service.

• MPI_Finalize(): Before normal de-initialization in MPI, this call notifies the bottom

half that the process can be unregistered.

• MPI_Comm_rank(): After a normal ranking in MPI, this call notifies the bottom half

236

MPI Application

Top Half
MPI Library

Guest Kernel

Palacios VMM

Bottom Half

MPI Application

Top Half
MPI Library

Guest Kernel

Match-Copy-Release
Processing

Host HyperCall
Constrained
Guest Access

Host
Kernel

}
Inserted via

GEARS system call
interception, code

injection, and
process

environment
modification

Figure B.7: Implementation of the MPI Accelerator service for co-located VMs. This
illustrates the fast path between an MPI_Send and its matching MPI_Recv.

of the process’s rank.

• MPI_Send(): The wrapper checks to see if this is an MPI_Send() that the bottom half

can implement. If it is not, it hands it to the MPI library. If it is, it touches each page

of the data to assure it is faulted in, and then hands the send request to the bottom

half and waits for it to complete the work. If the bottom half asserts that it cannot,

the wrapper defaults to the MPI library call.

• MPI_Recv(): This is symmetric to MPI_Send().

Our implementation is intended as a proof of concept demonstrating the utility of

GEARS tools and advancing the overall argument of this work. Nonetheless, it also

performs quite well. We have run the OSU MPI Latency benchmark [2] (osu_latency)

between two co-located VMs using VNET/P, VNET/P with the GEARS tools enabled in

Palacios, and with the MPI Accelerator active. We used the MPICH2 MPI library [139] for

237

1

10

100

1000

10000

100000

0 4 32 256 2 K 16 K 128 K 1 M 4 M

L
a
te

n
c
y

in
 M

ic
ro

se
c
o

n
d

s

Message Size in Bytes

VNET/P+Gears
VNET/P
MPI-Accel

Figure B.8: Performance of MPI Accelerator Service on OSU MPI Latency Benchmark
running in two co-located VMs on lewinsky test machine. For small messages, it achieves
a 22 Âţs latency, limited by system call interception and hypercall overheads. For large
messages, the MPI accelerator approaches the maximum possible performance given the
memory copy bandwidth of the machine (4.6 GB/s).

our measurements. Our performance measurements were taken on the lewinsky machine,

previously described. The results are shown in Figure B.8. It is important to note that for

larger message sizes, the message transfer time is dominated by the machine’s memory

bandwidth. According to the STREAM benchmark, the machine has a main memory copy

bandwidth of 4.6 GB/s. Our results suggest that we approach this—specifically, the MPI

latency for 4 MB messages implies a bandwidth of 4 GB/s has been achieved. For small

messages the MPI latency is approximately 22 µs (about 50,000 cycles). The small message

latency is limited by system call interception, exit/entry, and hypercall overheads. Here,

GEARS selective system call interception was not enabled. Using it further reduces the

238

Component Lines of Code
Preload Wrapper (Top Half) 345
Kernel Module (Bottom Half) 676
Total 1021

Figure B.9: Implementation complexity of MPI Accelerator.

overhead for small messages.

The figure also shows the performance of using VNET/P for this co-located VM

scenario. The “VNET/P” curve illustrates the performance of VNET/P without any

GEARS features enabled. Without system call interception overheads, we see that VNET/P

achieves a 56 µs latency for small messages and the large message latency is limited due

to a transfer bandwidth of a respectable 500 MB/s. The “VNET/P+Gears” curve depicts

VNET/P with the GEARS features enabled and illustrates the costs of non-selective system

call interception. The small message latency grows to 150 µs, while the large message

latency is limited due to a transfer bandwidth of 250 MB/s. In contrast to these, the MPI

Accelerator Service, based on GEARS, achieves 1/3 the latency and 8 times the bandwidth,

approaching the latency limits expected due to the hypercall processing and the bandwidth

limits expected due to the system’s memory copy bandwidth. Note that the impact of

GEARS system call interception on the MPI Accelerator’s small message latency is much

smaller than its impact on VNET/P. This is not a discrepancy. With the MPI Accelerator, far

fewer system calls are made per byte transferred because the injected top-half intercepts

each MPI library call before it can turn into multiple system calls.

Figure B.9 illustrates that the service implementation is quite compact. The GEARS

tools are the primary reason for the service’s feasibility and compactness.

239

B.5 Conclusions

GEARS is a set of tools that enable the creation of guest-context virtual services which span

the VMM, the guest kernel and the guest application. I showed with an implementation

within the Palacios VMM that the complexity of these tools is tractable, suggesting that

they could be implemented in other VMMs without great effort. GEARS in Palacios allows

developers to write VMM services with relatively little knowledge of VMM internals.

Further, I showed that the implementations of the services themselves can remain relatively

compact while still delivering substantial performance or functionality improvements.

GEARS is an example of changing well-established system software interfaces for

performance, functionality, complexity, or otherwise useful reasons. It is a testament to

the power of specialized runtime systems with direct support from the underlying system

software layer. In this case the support resided between the hypervisor layer and the

application/guest kernel layer. The design and implementation of the GEARS system

informed the development of my ideas regarding the drawbacks of generalized (and

restricted) operating system interfaces.

One interesting aspect of guest-context virtual services is their boundaries with the rest

of the guest. How difficult are these boundaries to identify? Can we secure them? The

next chapter presents the results of my investigation of these questions in my work on

guarded modules—the follow-up work to GEARS.

240

Appendix C

Guarded Modules

In this chapter, I will first give a high-level overview of guarded modules and their moti-

vation. This work was published in the proceedings of the 11th International Conference

on Autonomic Computing in 2014 (co-located with USENIX ATC) [90]. I will then de-

scribe the trust model we assume (Section C.1) and the design and implementation of

the guarded module system (Section C.2). I will then present an evaluation of guarded

modules (Section C.3). Next, I will discuss the design and evaluation of two examples

we built using the guarded module system, a selectively privileged PCI passthrough NIC

(Section C.4), and selectively privileged access to mwait (Section C.5). Finally, I will draw

conclusions connections to my thesis work (Section C.6).

By design, a VMM does not trust the guest OS and thus does not allow it access to

privileged hardware or VMM state. However, such access can allow new or better services

for the guest, such as the following examples.

• Direct guest access to I/O devices can allow existing guest drivers to be used, avoid

241

the need for virtual devices, and accelerate access when the device could be dedicated

to the guest. In existing systems, the VMM limits the damage that a rogue guest could

inflict by only using self-virtualizing devices [137, 165] or by operating in contexts

such as HPC environments, where the guest is trusted and often runs alone [128].

• Direct guest access to the Model-Specific Registers (MSRs) that control dynamic

voltage and frequency scaling (DVFS) would allow the guest’s adaptive control

of these features to be used instead of the VMM’s whenever possible. Because

applications running on the guest enjoy access to more rich information than the

VMM does, there is reason to believe that guest-based control would perform better.

• Direct guest access to instructions that can halt the processor, such as monitor and

mwait, can allow more efficient idle loops and spinlocks when the VMM determines

that such halts can be permitted given the current configuration.

Since we cannot trust the guest OS, to create such services we must be able to place

a component into the guest that is both tightly coupled with the guest and yet protected

from it. We leverage GEARS, discussed in the previous section, to do exactly this. Here,

we extend GEARS to allow for injected code to be endowed with privileged access to

hardware and the VMM that the VMM selects, but only under specific conditions that

preclude the rest of the guest from taking advantage of the privilege. We refer to this

privileged, injected code as a guarded module, which is effectively a protected guest-context

virtual service (described in Section B.1).

Our technique leverages compile-time and link-time processing which identifies valid

entry and exit points in the module code, including function pointers. These points are

in turn “wrapped” with automatically generated stub functions that communicate with

242

the VMM. Our current implementation of this technique applies to Linux kernel modules.

The unmodified source code of the module is the input to the implementation, while the

output is a kernel object file that includes the original functionality of the module and the

wrappers. Conceptually, a guarded module has a border, and the wrapper stubs (and their

locations) identify the valid border crossings between the guarded module, which is trusted,

and the rest of the kernel, which is not.

A wrapped module can then be injected into the guest using GEARS or added to

the guest voluntarily. The wrapper stubs and other events detected by the VMM drive

the second component of our technique, a state machine that executes in the VMM. An

initialization phase determines whether the wrapped module has been corrupted and

where it has been loaded, and then protects it from further change. Attempted border

crossings, either via the wrapper functions or due to interrupt/exception injection, are

caught by the VMM and validated. Privilege is granted or revoked on a per-virtual

core basis. Components of the VMM that implement privilege changes are called back

through a standard interface, allowing the mechanism for privilege granting/revoking to

be decoupled from the mechanism for determining when privilege should change. The

privilege policy is under the ultimate control of the administrator, who can determine the

binding of specific guarded modules with specific privilege mechanisms.

C.1 Trust and Threat Models; Invariants

We assume a completely untrusted guest kernel. A developer will add to the VMM selective

privilege mechanisms that are endowed with the same level of trust as the rest of the core

VMM codebase. A module developer will assume that the relevant mechanism exists. The

243

determination of whether a particular module is allowed access to a particular selective

privilege mechanism is made at run-time by an administrator. The central relationship we

are concerned with is between the untrusted guest kernel and the module. A compilation

process transforms the module into a guarded module. This then interacts with run-time

components to maintain specific invariants in the face of threats from the guest kernel.

These invariants are described below.

Control-flow integrity The key invariant we provide is that the privilege on a given

virtual core will be enabled if and only if that virtual core is executing within the code

of the guarded module and the guarded module was entered via one of a set of specific,

agreed-upon entry points. The privilege is disabled whenever control flow leaves the

module, including for interrupts and exceptions.

The guarded module boasts the ability to interact freely with the rest of the guest kernel.

In particular, it can call other functions and access other data within the guest. A given

call stack might intertwine guarded module and kernel functions, but the system guards

against attacks on the stack as part of maintaining the invariant.

A valid entry into the guarded module is not checked further. Our system does not

guard against an attack based on function arguments or return values, namely Iago attacks.

The module author needs to validate these himself. Note, however, that the potential

damage of performing this validation incorrectly is limited to the specific privilege the

module has.

Code integrity Disguising the module’s code is not a goal of our system. The guest kernel

can read and even write the code of the guarded module. However, any modifications

of the code by any virtual core will be caught and the privilege will be disabled for the

244

remainder of the module’s lifetime in the kernel. The identity of the module is determined

by its content, and module insertion is initiated external to the guest with a second

identifying factor, guarding against the kernel attempting to spoof or replay a module

insertion.

Data integrity Data integrity, beyond the registers and the stack, is managed explicitly

by the module. The module can request private memory as a privilege. On a valid entry,

the memory is mapped and is usable , while on departing the module, the memory is

unmapped and rendered invisible and inaccessible to the rest of the kernel.

C.2 Design and Implementation

The specific implementation of guarded modules I describe here applies to Linux kernel

modules. Our implementation fits within the context of Palacios and takes advantage

of code generation and linking features of the GCC and GNU binutils toolchains. The

VMM-based elements leverage functionality commonplace in modern VMMs, and thus

could be readily ported to other VMMs. The code generation and linking aspects of our

implementation seem to us to be feasible in any C toolchain that supports ELF or a similar

format. The technique could be applicable to other guest kernels, although we do assume

that the guest kernel provides runtime extensibility via some form of load-time linking.

In our implementation, a guarded Linux kernel module can either be voluntarily

inserted by the guest or involuntarily injected into the guest kernel using GEARS. The

developer of the module needs to target the specific kernel he wants to deploy on, exactly

as in creating a Linux kernel module in general.

245

Guest KernelGuest Kernel

Guarded Module
B d t

Border

ng
s

Border‐out

Border‐in
de

r
Cr
os
si
n

VMM
PrivilegedPrivileged

Bo
r

g
Hardware
Access

g
VMM
Access

Border Control
State Machine

Hardware

Figure C.1: Guarded module big picture.

Figure C.1 illustrates the run-time structure of our guarded module implementation,

and documents some of the terminology we use. The guarded module is a kernel module

within the guest Linux kernel that is allowed privileged access to the physical hardware or

to the VMM itself. The nature of this privilege, which I will describe later, depends on the

specifics of the module. I refer to the code boundary between the guarded module and the

rest of the guest kernel as the border.

Border crossings consist of control flow paths that traverse the border. A border-out is a

traversal from the module to the rest of the kernel, of which there are three kinds. The first,

a border-out call occurs when a kernel function is called by the guarded module, while the

second, a border-out ret, occurs when we return back to the rest of the kernel. The third, a

border-out interrupt occurs when an interrupt or exception is dispatched. A border-in is a

246

traversal from the rest of the kernel to the guarded module. There are similarly three forms

here. The first, a border-in call consists of a function call from the kernel to a function within

the guarded module, while the second, a border-in ret consists of a return from a border-out

call, and the third, a border-in rti consists of a return from a border-out interrupt. Valid

border-ins should raise privilege, while border-outs should lower privilege. Additionally,

any attempt to modify the module should lower privilege.

The VMM contains a new component, the border control state machine, that determines

whether the guest has privileged access at any point in time. The state machine also

implements a registration process in which the injected guarded module identifies itself

to the VMM and is matched against validation information and desired privileges. This

allows the administrator to decide which modules, by content, are allowed which priv-

ileges. After registration, the border control state machine is driven by hypercalls from

the guarded module, exceptions that occur during the execution of the module, and by

interrupt or exception injections that the VMM is about to perform on the guest.

The VMM detects attempted border crossings jointly through its interrupt/exception

mechanisms and through hypercalls in special code added to the guarded module as part

of our compilation process. Figure C.2 illustrates how the two interact.

Compile-time Our compilation process, Christoization1, automatically wraps an existing

kernel module with new code needed to work with the rest of the system. Our toolchain

that implements this is essentially a guarded module compiler. Two kinds of wrappers are

generated. Exit wrappers are functions that interpose on the calls from the guarded module

to the rest of the kernel. Figure C.3 shows an example entry wrapper. The important thing
1Named after the famed conceptual artist, Christo, who was known for wrapping large objects such as

buildings and islands in fabric.

247

Border-‐out	 call	

Excep0on/Interrupt	

Border	

Exit	 wrapper	 	
requests	 lower	 privilege	
on	 call,	 higher	 on	 return	

Entry	 wrapper	 requests	
higher	 privilege	 on	 call,	

lower	 on	 return	

VMM	 Controls	 Ul0mate	 Privilege	

Border-‐out	
int	

Wrappers	 added	 	
Through	
Christoiza2on	

Border-‐in	 call	

Border-‐in	 ret	

Border-‐out	 ret	

Border-‐in	
iret	

VMM	 detects	
injec0on,	 requests	
lower	 privilege	 Privilege	

Request/Release	
Hypercalls	

Border	 Control	
State	 Machine	

Return	 from	
Excep0on/Interrupt	

Privilege	 	
callbacks	

VMM	 detects	 RTI	
requests	 higher	

privilege	
#PF	 write	 	
to	 module	

Guest	 Kernel	
Guarded	
Module	

VMM	

Figure C.2: Guarded modules, showing operation of wrappers and interaction of state
machine on border crossings.

to note about our compilation process is that the wrappers serve to drive the guarded

module runtime component, described next. More details on compilation can be found in

the original paper [90].

Run-time The run-time element of our system is based around the border control state

machine. As Figure C.2 illustrates, the state machine is driven by hypercalls originating

from the wrappers in the guarded module, and by events that are raised elsewhere in

the VMM. As a side-effect of the state machine’s execution, it generates callbacks to other

248

entry_wrapped:

popq %r11

pushq %rax

movq $border_in_call, %rax (a)

vmmcall

popq %rax

callq entry

pushq %rax

movq $border_out_ret, %rax (b)

vmmcall

popq %rax

pushq %r11

ret (to rest of kernel)

Figure C.3: An entry wrapper for a valid entry point. Exit wrappers are similar, except
they invoke border out on a call, and border in after returning. In this case, (a) invokes the
VMM to perform validation and raise privilege, here (b) invokes the VMM to save state
for later checks, lower privilege, and return to the guest kernel

components of the VMM that implement specific privilege changes, notifying them when

valid privilege changes occur. The state machine also handles the initialization of a guarded

module and its binding with these other parts of the VMM. We refer to the collective effects

of these hypercalls and subsequent callback invocations as border crossings; they are a

transition from a privileged to an unprivileged state. As depicted in Figure C.4, there

are several types of border crossings. I will not discuss their details here, but interested

readers can refer to the guarded module paper [90].

Each border crossing into the module has more overhead than its associated border-out.

This is because we must perform validations of the stack to ensure control flow integrity

(discussed in Section C.1). The performance implications of this validation are discussed

249

Border-out call

Border-in ret

Border-out ret

Border-in call

Border-out int

Border-in iret

Privileged

Unprivileged

Illegal activity

Figure C.4: Border Control.

in the next section.

It is worth noting that the entry wrapper shown in Figure C.3 and the exit wrappers are

linked such that they are only invoked on border crossings. Calls internal to the guarded

module do not have any additional overhead. The same applies for calls internal to the

kernel.

The state machine detects suspicious activity by noting privilege changing hypercalls

at invalid locations, shadow or nested page faults indicating attempts to write the module

code, and stack validation failures. Our default behavior is simply to lower privilege when

these occur, and continue execution. Other reactions are, of course, possible.

C.3 Evaluation

We now consider the costs of the guarded module system, independent of any specific

guarded module that might drive it, and any selective privilege-enabled VMM component

it might drive. We focus on the costs of border crossings and their breakdown. The most

important contributors to the costs are VM exit/entry handling and the stack validation

250

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

Border-‐out	
Call	

Border-‐in	
Ret	

Border-‐in	
Call	

Border-‐out	
Ret	

Cy
cl
es
	 entry_lookup	

misc_exit_handle	

misc_hcall	

check	

priv	 lower/raise	 Stack
checking

Figure C.5: Privilege change cost with stack integrity checks.

mechanism.

All measurements were conducted on a Dell PowerEdge R415. This is a dual-socket

machine, each socket comprising a quad-core, 2.2 GHz AMD Opteron 4122, giving a total

of 8 physical cores. The machine has 16 GB of memory. It runs Fedora 15 with a stock

Fedora 2.6.38 kernel. Our guest environment uses a single virtual core that runs a BusyBox

environment based on Linux kernel 2.6.38. The guest runs with nested paging, using 2 MB

page mappings, with DVFS control disabled.

Figure C.5 illustrates the overheads in cycles incurred at runtime. All cycle counts

were averaged over 1000 samples. There are five major components to the overhead.

The first is the cost of initiating a callback to lower or raise privilege. This cost is very

small at around 100 cycles. The second cost, labeled “hypercall handling”, denotes the

cycles spent inside the hypercall handler itself, not including entry validations, privilege

251

changes, or other processing involved with a VM exit. This cost is also quite small, and

also typically under 100 cycles. “Entry point lookup” represents the cost of a hash table

lookup, which is invoked on border-ins when the instruction pointer is checked against

the valid entry points that have been registered during guarded module initialization. The

cost for this lookup is roughly 240 cycles. “Exit handling” is the time spent in the VMM

handling the exit outside of guarded module runtime processing. This is essentially the

common overhead incurred by any VM exit. Finally, “stack checking” denotes the time

spent ensuring control-flow integrity by validating the stack. This component raises the

cost of a border crossing by 5000 cycles, mostly due to stack address translations and hash

computations. Border-in calls are less affected due to the initial translation and recording

of the entry stack pointer, while border-out rets are unaffected. Reducing the cost of this

validation is the subject of on-going work.

I now consider two examples of using the guarded module functionality, drawn from

the list in the introduction. In the first example, selectively-privileged PCI passthrough,

the guarded module, and only the guarded module, is given direct access to a specific PCI

device. I illustrate the use of this capability via a guarded version of a NIC driver. In the

second example, selectively-privileged mwait, the guarded module, and only the guarded

module, is allowed to use the mwait instruction. I illustrate the use of this capability via

guarded module that adaptively replaces the kernel idle loop with a more efficient mwait

loop when it is safe to do so.

All measurements in this section are with the configuration described above.

252

C.4 Selectively Privileged PCI Passthrough

Like most VMMs, Palacios has hardware passthrough capabilities. Here, we use its ability

to make a hardware PCI device directly accessible to the guest. This consists of a generic

PCI front-end virtual device (“host PCI device”) , an interface it can use to acquire and

release the underlying hardware PCI device on a given host OS (“host PCI interface”), and

an implementation of that interface for a Linux host.

A Palacios guest’s physical address space is contiguously allocated in the host physical

address space. Because PCI device DMA operations use host physical addresses, and

because the guest programs the DMA engine using guest physical addresses it believes

start at zero, the DMA addresses the device will actually use must be offset appropriately.

In the Linux implementation of our host PCI interface, this is accomplished using an

IOMMU: acquiring the device creates an IOMMU page table that introduces the offset. As

a consequence, any DMA transfer initiated on the device by the guest will be constrained

to that guest’s memory. A DMA can then only be initiated by programming the device,

which is restricted to the guarded module. This restriction also prevents DMA attacks on

the module that might originate from the guest kernel.

A PCI device is programmed via control/status registers that are mapped into the

physical memory and I/O port address spaces through standardized registers called BARs.

Each BAR contains a type, a base address, and a size. Palacios’s host PCI device virtualizes

the BARs (and other parts of the standardized PCI device configuration space). This lets

the guest map the device as it pleases. For a group of registers mapped by a BAR into

the physical memory address space, the mapping is implemented using the shadow or

nested page tables to redirect memory reads and writes. For a group of registers mapped

253

guarded	
module	 2	

unprivileged	
mode	

PCI	 I/O	 and	 memory	 BARs	 	

guarded	
module	 1	
privileged	
mode	

r r w w 000.. val

Hardware	 NIC	 	

Figure C.6: High-level view of the operation of selective privilege for a PCI device.

into the I/O port space, there is no equivalent to these page tables, and thus the mappings

are implemented by I/O port read/write hooks. When the guest executes an IN or OUT

instruction, an exit occurs, the hook is run, and the handler simply executes an IN or OUT

to the corresponding physical I/O port. If the host and guest mappings are identical, the

ports are not intercepted, allowing the guest to read/write them directly.

We extended our host PCI device to support selective privilege. In this mode of

operation, virtualization of the generic PCI configuration space of the device proceeds as

normal. However, at startup, BAR virtualization ensures that the address space regions

of memory and I/O BARs are initially hooked to stub handlers. The stub handlers

simply ignore writes and supply zeros for reads. This is the unprivileged mode. In this

mode, the guest sees the device on its PCI bus, and can even remap its BARs as desired,

but any attempt to program it will simply fail because the registers are inaccessible. In

selectively privileged operation, the host PCI device also responds to callbacks for raising

and lowering privilege. Raising privilege switches the device to privileged mode, which

254

is implemented by remapping the registers in the manner described earlier, resulting in

successful accesses to the registers. Lowering privilege switches back to unprivileged

mode, and remaps the registers back to the stubs. Privilege changes happen on a per-core

basis. This process is depicted in Figure C.6.

While the above description is complex, it is important to note that only about 60

lines of code were needed to add selectively privileged operation to our existing PCI

passthrough functionality. Combined with the rest of the guarded module system, the

selectively privileged host PCI device permits fully privileged access to the underlying

device within a guarded module, but disallows it otherwise.

Making a NIC driver into a guarded module As an example, we used the guarded

module system to generate a guarded version of an existing NIC device driver within the

Linux tree, specifically the Broadcom BCM5716 Gigabit NIC. No source code modifications

were made to the driver or the guest kernel. We Christoized this driver, creating a kernel

module that later is injected into the untrusted guest. The border control state machine in

Palacios pairs this driver with the selectively privileged PCI passthrough capability.

Overheads Compared to simply allowing privilege for the entire guest, a system that

leverages guarded modules incurs additional overheads. Some of these overheads are

system-independent, and were covered in Section C.3. The most consequential component

of these overheads is the cost of executing a border-in or border-out, each of which consists

of a hypercall or exception interception (requiring a VM exit) or interrupt/exception injec-

tion detection (done in the context of an in-progress VM exit), a lookup of the hypercall’s

address, a stack check or record, conducting a lookup to find the relevant privilege callback

function, and then the cost of invoking that callback.

255

Packet Sends
Border-in 1.06
Border-out 1.06
Border Crossings / Packet Send 2.12

Packet Receives
Border-in 4.64
Border-out 4.64
Border Crossings / Packet Receive 9.28

Figure C.7: Border crossings per packet send and receive for the NIC example.

We now consider the system-dependent overhead for the NIC. There are two elements

to this overhead: the cost of changing privilege and the number of times we need to change

privilege for each unit of work (packet sent or received) that the module finishes. The cost

of raising privilege for the NIC is 4800 cycles (2.2 µs), while lowering it is 4307 cycles (2.0

µs).

Combining the system-independent and system-dependent costs, we expect that a

typical border crossing overhead, assuming no stack checking will consist of about 3000

cycles for VM exit/entry, 4000 cycles to execute the border control state machine, and

about 4500 cycles to enable/disable access to the NIC. These 11500 cycles comprise 5.2 µs

on this machine. Stack checking would add an average of about 4500 cycles, leading to

16000 cycles (7.3 µs).

To determine the number of these border crossings per packet send or receive, we

counted them while running the guarded module with a controlled traffic source (ttcp)

that allows us to also count packet sends and/or receives. Dividing the counts gives us

the average. There is variance because the NIC does interrupt coalescing.

Figure C.7 shows the results of this analysis for the NIC. Sending requires on the

order of 2 border crossings (privilege changes) per packet, while receiving requires on the

order of 9 border crossings per packet. Note that many of the functions that constitute

256

border crossings are actually leaf functions defined in the kernel. This indicates that we

could further reduce the overall number of border crossings per packet by pulling the

implementations of these functions into the module itself.

C.5 Selectively Privileged MWAIT

Recent x86 machines include a pair of instructions, monitor and mwait, that can be used

for efficient synchronization among processor cores. The monitor instruction indicates

an address range that should be watched. A subsequent mwait instruction then places

the core into a suspended sleep state, similar to a hlt. The core resumes executing when

an interrupt is delivered to it (like a hlt), or when another core writes into the watched

address range (unlike a hlt). The latter allows a remote core to wake up the local core

without the cost of an inter-processor interrupt (IPI). One example of such use is in the

Linux kernel’s idle loop.

In Palacios, and other VMMs, we cannot allow an untrusted guest to execute hlt or

mwait because the guest runs with physical interrupts disabled. A physical interrupt is

intended to cause a VM exit followed by subsequent dispatch of the interrupt in the VMM.

If an mwait instruction were executed in the guest under uncontrolled conditions, it could

halt the core indefinitely. This precludes the guest using the extremely fast inter-core

wakeup capability that mwait offers.

Under controlled conditions, however, letting the guest run mwait may be permissible.

When no other virtual core is mapped to the physical core (so we can tolerate a long wait)

and we have a watchdog that will eventually write the memory, the guest might safely

run an mwait. To achieve these controlled conditions requires that we limit the execution

257

pcore 0

zzz	

vcore 0
mwait_idle()	

idle loop redirection
stub (guarded module)

pcore 1

zzz	

vcore 0

vcore 1

default_idle()	

Figure C.8: Direct access to the MWAIT instruction provided by a guarded module.

of these instructions to code that the VMM can trust and that this code only execute mwait

when the VMM deems it safe to do so. A malicious guest could use an unrestricted ability

to execute mwait to launch a denial-of-service attack on other VMs and the VMM. We

enforce this protection and adaptive execution by encapsulating the mwait functionality

within the safety of a guarded module.

Adding selectively-privileged access to mwait to Palacios was straightforward, involv-

ing only a few lines of code. We then implemented a tiny kernel module that interposes

on Linux’s default idle loop, specifically modifying pm_idle, a pointer to the function

that points to the idle implementation. Our module points this to a function internal to

itself that dispatches either to an mwait-based idle implementation within the module or

to the original idle implementation, based on a flag in protected memory that is shared

with Palacios. Palacios sets this flag when it is safe for the module to use mwait. In these

situations, the guest kernel enjoys much faster wake-ups of the idling core.

To assure that only our module can execute mwait we transform it into a guarded

module using the techniques outlined earlier. A border-in to our module occurs when

Linux calls its idle loop. If the border-in succeeds, Palacios stops intercepting the use

258

of mwait. When control leaves the module, a border-out occurs, and Palacios resumes

intercepting mwait. If code elsewhere in the guest attempts to execute these instructions,

they will trap to the VMM and result in an undefined opcode exception being injected into

the guest. Figure C.8 shows this process at a high level. Each of the larger boxes represents

a physical CPU core (pcore). The smaller boxes within represent virtual cores (vcores). In

the case on the right-hand side, there are two vcores assigned to the same pcore, so the

VMM cannot allow either one to use the mwait version of the idle loop. On the left-hand

side, however, there is only one vcore, so it is free to use the optimized mwait version of

idle.

This proof-of-concept illustrates how the VMM can use guarded modules to safely

adapt the execution environment of a VM to changing conditions.

C.6 Conclusions

I presented the design, implementation, and evaluation of a system for guarded modules.

The system allows the VMM to add modules to a guest kernel that have higher privileged

access to physical hardware and the VMM while protecting these guarded modules and

access to their privileges from the rest of the guest kernel. This system is based on joint

compile-time and run-time techniques that bestow privilege only when control flow enters

the guarded module at verified locations. I demonstrated two example uses of the guarded

module system. The first is passthrough access to a PCI device, for example a NIC, that

is limited to a designated guarded module (a device driver). The guest kernel can use

this guarded module just like any other device driver. I further demonstrated selectively

privileged use of the monitor and mwait instructions in the guest, which could wreak

259

havoc if their use was not constrained to a guarded module that cooperates with the VMM.

