
Electrical Engineering and Computer Science Department

Technical Report
Number: NU-EECS-16-11

June, 2016

Fury Route: Leveraging CDNs to Remotely Measure Network Distance

Marcel Flores, Alexander Wenzel, Kevin Chen, Aleksandar Kuzmanovic

Abstract

Estimating network distance between arbitrary Internet endpoints is an essential primitive in
networking. We show that the heterogeneous infrastructure of different CDNs, combined with
the proliferation of the EDNS0 client-subnet extension (ECS), enables novel infrastructureless
measurement. We design Fury Route, a system that estimates network distance by utilizing ECS
to construct a virtual path between endpoints via intermediate CDN replicas.

Keywords

Network distance, Content distribution networks, Internet measurement

Fury Route: Leveraging CDNs to Remotely Measure

Network Distance

Marcel Flores

Northwestern University

Alex Wenzel

Northwestern University

Kevin Chen

Northwestern University

Aleksandar Kuzmanovic

Northwestern University

Abstract
Estimating network distance between arbitrary Inter-
net endpoints is an essential primitive in applications
ranging from performance optimization to network de-
bugging and auditing. Enabling such a primitive with-
out deploying new infrastructure was demonstrated via
DNS. However, the proliferation of DNS hosting has
made DNS-based measurement techniques far less de-
pendable. In this paper, we show that the heteroge-
neous infrastructure of di↵erent CDNs, combined with
the proliferation of the EDNS0 client-subnet extension
(ECS), enables novel infrastructureless measurement.
We design Fury Route, a system that estimates net-
work distance by utilizing ECS to construct a virtual
path between endpoints via intermediate CDN replicas.

Fury Route requires no additional infrastructure to be
deployed. The measured endpoints do not need to par-
ticipate by sending or responding to probes. Fury Route
further generates no load on endpoints. It only queries
DNS, whose infrastructure is designed for large loads.
We extensively evaluate Fury Route and demonstrate
that (i) the key to Fury Route’s ability to construct
virtual paths lies in the heterogeneity of the underlying
CDNs, (ii) Fury Route is e↵ective in revealing relative
network distance, needed in many real-world scenarios,
(iii) caching can dramatically reduce Fury Route’s DNS
overhead, making it a useful system in practice.

1. INTRODUCTION
The ability to estimate network distance between ar-

bitrary endpoints on the Internet is fundamentally nec-
essary in numerous scenarios [24]. Such estimates have
been shown to heavily correlate with actual end-to-end
performance (in terms of throughput and delay) be-
tween the two endpoints [32, 39].

In [24], Gummadi et al. showed that DNS infrastruc-
ture could be e↵ectively utilized to measure network
distance without access to any of the endpoints. By us-
ing open recursive DNS resolvers and by relying on the
proximity of clients and servers to their authoritative
DNS servers, they manage to approximate the distance
between the endpoints. Nonetheless, 15 years later, the

Internet has become a much di↵erent place. On one
hand, the number of open recursive DNS resolvers is
rapidly decreasing [26]. On the other hand, DNS host-
ing (i.e., outsourcing DNS services to the cloud [1, 2,
3, 4, 5, 6, 7, 9, 10, 12, 14, 15]), is fundamentally blur-
ring the assumption of co-location of endpoints (both
clients and servers) and authoritative DNS servers. In
our experiments, we find that only 4% of internet hosts
had DNS servers which responded to outside recursive
queries, severely limiting the applicability of King. This
trend is only going to evolve in future, making DNS-
based latency measurement techniques far less depend-
able.
In this paper, we present Fury Route, a system that

aims to estimate the network distance between arbitrary
Internet endpoints. It does so by relying on network
features which are likely to grow more pronounced. In
particular, Fury Route relies on (i) the existence of dif-
ferent Content Distribution Networks (CDNs) and their
heterogeneity in terms of the number and deployment
of their replicas, (ii) CDNs’ common desire to direct
clients to nearby CDN replicas, and (iii) the prolif-
eration of EDNS0 client-subnet extension (ECS) [20],
a mechanism by which a host issuing DNS requests
can indicate the origin of the request. In a nutshell,
Fury Route constructs a virtual path between source and
destination, consisting of CDN replicas from di↵erent
providers, by issuing ECS requests on behalf of end-
points and intermediate CDN replicas on the path. We
show that the length of such a constructed path corre-
lates with the latency between the two endpoints.
Fury Route requires no additional infrastructure to

be deployed. The measured endpoints do not need to
cooperate, neither by sending nor responding to any
probes. Fury Route further generates no load on the
parties involved. It only queries DNS, whose infras-
tructure is designed to handle large loads. Moreover,
while Fury Route utilizes the DNS infrastructure, it is
in no way impacted by the number or availability of
recursive DNS resolvers, nor is it a↵ected by DNS host-
ing. Fury Route utilizes the significant mapping work

1

done by various CDNs, and it e↵ectively extracts this
information via DNS.

To begin, Fury Route initially issues ECS requests on
behalf of the source and destination for domains served
on multiple CDNs. Then, it constructs a path towards
the destination by generating an iterative series of ECS
queries, which “hop” between intermediate CDN repli-
cas by issuing new requests on behalf of these CDN
replicas. The key to Fury Route’s path construction is
its ability to move “closer” to the destination in each
iteration, as determined by the overlap of CDN repli-
cas seen by the current hop and the destination. As
di↵erent CDNs have di↵erent deployments and gran-
ularity (e.g., large-scale fine-grained Google CDN vs.
coarse-grained Alibaba CDN), they o↵er di↵ering views
of the underlying network. We demonstrate that this
heterogeneity allows Fury Route to connect arbitrary
endpoints on the Internet.

In our evaluation, we show that ECS is widely de-
ployed on the Internet today, with 86% of pages in the
Alexa Top 500 contacting at least one domain which
supports ECS. We further evaluate the Fury Route sys-
tem, and find that in the median case, it is able to
construct chains between 90% of origin and destination
pairs. We further demonstrate that it is able to cor-
rectly order up to 83% of destinations in the median
case. We explore the e↵ectiveness of caching our paths,
demonstrating that a well formed cache can reduce the
overhead of 87% of paths to the minimum possible. Fi-
nally, we examine the e↵ects of shifting CDN behaviors
and demonstrate that a single snapshot provides reli-
able performance.

Necessarily, Fury Route is not perfect, and comes
with limitations and caveats. First, due to the nature
of virtual end-to-end path design, Fury Route isn’t de-
signed to measure absolute latency, a process that is
prone to inevitable imprecision. Nonetheless, we demon-
strate that Fury Route is highly e↵ective in determining
relative network distance information. Many real-world
applications, including peer or server selection as well
as Web performance and auditing, rely only on rela-
tive network distance. Second, Fury Route fundamen-
tally depends on the underlying CDN infrastructure to
provide estimates. Consequently, its performance, both
in its ability to construct the chains and to estimate
network distance, is necessarily better in regions where
CDN deployment is richer. Third, the volume of DNS
requests Fury Route must send necessarily depends on
the number of underlying CDNs used. We demonstrate
in Section 5.5 that caching can dramatically reduce the
number of DNS requests generated by Fury Route.

We make the following contributions:

• We demonstrate that the proliferation of ECS, a
feature designed to enable a more e�cient user
mapping by CDNs, e↵ectively turns the DNS into

an open database of CDNs’ user mappings that
could be used for remote network distance estima-
tion.

• We design Fury Route, a system that queries this
database to construct a virtual path between ar-
bitrary Internet endpoints, and estimate network
distance between them.

• We evaluate Fury Route and demonstrate that it
is a practical system capable of estimating network
distance without introducing any new infrastruc-
ture nor without generating any probing tra�c.

This paper is structured as follows. Section 2 provides
large-scale measurements to characterize the real-world
deployment and properties of ECS in today’s Internet.
In Section 3, we present Fury Route’s design, and its
implementation in Section 4. Section 5 provides Fury
Route’s evaluation and we provide a discussion in Sec-
tion 6. We present related work in Section 7 and con-
clude in Section 8.

2. BACKGROUND AND MEASUREMENT
Before we present the design of Fury Route, we first

motivate the need for remote measurements. We then
consider the nature of the EDNS0 client-subnet exten-
sion and the features which can be of the most meaning-
ful use to Fury Route. We then consider a set of mea-
surements conducted to understand the nature of ECS
in the “wild,” as well as the nature of ECS responses.

2.1 The Need for Remote Measurements
Despite the prevalence of large scale networks with

significant visibility of the network, the need for mea-
surements between remote hosts on the Internet re-
mains. Beyond classical applications, such as peer or
server selection, the estimates of network distance be-
tween arbitrary Internet endpoints is needed in the con-
struction of topology-aware multicast overlays [24]. More-
over, it significantly simplifies the execution of wide-
area measurement studies at scale [24]. Remote net-
work mesurements are further very useful in emerging
networking scenarios as well. For example, modern Web
pages are characterized by a high degree of content frag-
mentation, i.e., pieces of content on a Web page (ads,
images, etc) are served by numerous di↵erent providers,
servers, CDNs, and locations [29]. In such a scenario,
the site operator has control of neither the client nor
the provider. Here the site operator must at least de-
tect potentially very distant low-performance providers,
yet with no direct ability to perform measurements be-
tween the providers and clients. The ability to estimate
performance between clients and providers is needed not
just for performance optimization but also for auditing
and debugging purposes.
Figure 1 presents the fundamental pieces of such a

scenario. Since the client and provider are both out-

2

Site

Client

P1

P2

d1

d2
Figure 1: An example of a scenario in which a web site operator

must choose between providers (P1 and P2) for a client with no

direct measurement ability.

side the control of the site operator no direct measure-
ment can be done. However, the operator must avoid
a provider with extensively-long network distance from
the client. Fury Route provides recourse in such a sce-
nario, allowing the operator to estimate the relative dif-
ference between the client and the providers, e.g., de-
tect that d1 is longer than d2. As it stands, Fury Route
is the only system that provides an infrastructure-free
mechanism to estimate distance between remote hosts
in such scenarios.

2.2 EDNS0 Client-Subnet
The EDNS0 client-subnet extension (ECS) pro-

vides a mechanism by which a host issuing DNS re-
quests can label their requests with a subnet, indicating
the origin of the request. The purpose of this extension
is to aid in DNS-based replica selection and addresses
challenges which arise from clients being far away from
their LDNS server [20, 31]. When providing a subnet,
the client also indicates a subnet length, allowing pre-
cise control of how specific the request is. This enables
clients to explicitly adjust the balance between accuracy
and privacy.

Upon receiving an ECS request, the authoritative
DNS server uses the submitted subnet to perform its
replica selection, according to its individual policy. When
responding to the query, the answer includes a scope
netmask field. If this value is less than or equal to
the client-specified subnet length(i.e., a larger subnet),
it indicates the set of subnets which would receive the
same result, for caching purposes. If the value is greater
than the supplied length (i.e., smaller subnet), it indi-
cates the DNS server would like the client to resubmit
with a more specific subnet.

Fury Route will take advantage of EDNS0 in two
ways. First, it uses the client-subnet field to send re-
quests from arbitrary locations, granting it a wide view
of provider replicas from anywhere in the entire Inter-
net. Second, it exploits the value of the scope netmask
in the response in order to understand the quality of the
set of responses. While these actual values are likely a
function of each network’s particular layout, policy, and
current load, they still provide feedback on how well the
provider was able to match a particular client subnet.

Figure 2: A CDF of the fraction of contacted domains per page

which support EDNS over the Alexa Top 500.

2.3 Observed Networks
As Fury Route is built on the e↵orts and deployments

of existing networks, we present a brief measurement
study of the networks which we use and the behav-
iors that they exhibit. While similar in mechanism,
the measurement study presented here varies fundamen-
tally from previous work [17, 37]. In particular, while
the size of a network is important, we are chiefly in-
terested in the character of ECS responses, rather than
their actual content. Specifically, we are concerned with
the granularity, consistency, and location variety of re-
sponses, as such features will be critical for Fury Route.
First, we examine the prevalence of sites which re-

spond to ECS queries. We load each landing page on
the Alexa Top 500 and record all DNS tra�c which oc-
curs during each load. This includes all DNS requests
sent as the result of third-party providers such as Ad
networks and CDNs and resulted in 10, 013 total DNS
names. We further select IP addresses from 25 Planet
Lab nodes, distributed around the world, with 5 nodes
from each continent, excluding Africa. Next, for each
domain name in our set, we issue 25 ECS queries to
Google DNS (from a single machine), using each of the
25 Planet Lab IP addresses as the client-subnet value
with a full /32 prefix. This allows us to see (i) the set
of providers which support ECS, (ii) which providers
are performing client mapping in their responses, (iii)
a coarse estimate of the size of each provider network.
Figure 2 presents a CDF of the number of domains

loaded by each page which support ECS, based on the
above criteria. We see that 14% of pages encountered
no ECS domains. On the other extreme, 18% of pages
consist entirely of ECS supporting providers. In the me-
dian case, 40% of domains o↵er ECS support. Example
Alexa 500 pages that fully support ECS are google.

com, gmail.com, youtube.com, mozilla.org, tumblr.
com, feedly.com. Example Alexa 500 pages that pro-
vide no open support for ECS, i.e., the 14% shown in
Figure 2, are mostly Akamai-supported pages, such as
adobe.com, apple.com, and bbc.co.uk. While Akamai
does support ECS [18], it does so only via OpenDNS [13]

3

Figure 3: A CDF of the number of contacted domains per page

which support EDNS over the Alexa Top 500.

and GoogleDNS [11] public DNS services, using the ac-
tual IP address of the requester. As such, Akamai’s
CDN is currently not directly usable by Fury Route, as
Fury Route requires sending ECS requests on behalf of
remote IPs. Consequently, the ECS deployment shown
in Figure 2 presents a strict lower bound.

Figure 3 o↵ers further insight, showing a CDF of the
number of ECS supported domains per page. Here, we
see that the median case contacts 5 domains with ECS
support, but many pages contact significantly more.
These results may depend on the nature of each site
operator’s relationship with their third party providers:
they may contract with several CDNs and may have
a complex blend of configurations with those providers.
In total, we observed 1, 749 total unique hostnames which
indicated support for ECS. While this analysis suggests
broad deployment of ECS, Fury Route will depend on
having a variety of providers, as well as distributed and
diverse infrastructure from each provider. We therefore
explore the nature of ECS responses when considered
as providers, rather than simply individual hostnames.

In examining our set of 1, 749 ECS supporting host-
names, we noted that many resolved to matching canon-
ical names, while others did not. Therefore, in order to
discern between providers, we chose to pursue an ap-
proach based on the A records in observed responses.
We resolved each of these hostnames using IP addresses
of our 25 Planet Lab servers as client-subnets, granting
us a view of how each hostname resolves around the
world. We begin with each set of responses grouped
by the original hostname for which they are responses.
We then cluster groups of responses which feature at
least 10% overlap in A Records, in order to combine
hostnames for hosts which belong to the same provider.
While this may miss many of the configuration sub-
tleties of CDN networks (e.g., overlap in the networks,
restrictions in IP-hostname mappings, etc), it allows us
to paint a general picture of ECS enabled CDN sizes.
This processing leaves us with a total of 383 providers.

Figure 4 shows a CDF of the number of IP addresses
observed for each provider. First, we see the majority
do not seem to feature large networks, with the me-
dian case having 5 IP addresses. Furthermore, nearly

Figure 4: A CDF of the number of IPs observed from each

provider cluster.

Provider Hostname
Google www.google.com

Edgecast gp1.wac.v2cdn.net
Alibaba img.alicdn.com

CloudFront st.deviantart.net
CDN77 922977808.r.cdn77.net

CDNetworks cdnw.cdnplanet.com.cdngc.net
ADNXS ib.adnxs.com

Table 1: Selected set of providers.

90% of providers had fewer than 20 addresses. Despite
the tendency towards small providers, we observed 40
providers with at least 20 IPs, and 17 with at least 50
IPs. Finally, we saw that 5 providers had more than 100
IPs, with the largest, belonging to Amazon, having over
3, 000. We emphasize that these values are certainly un-
derestimates due to the small set of vantage points in
our subnet pool. Indeed, using 25 IPs we observed 405
Google CDN IPs, while a previous study from 2013 dis-
covered around 30,000 Google CDN IPs [17]. Still, our
small-scale measurement grants us an understanding of
the types of networks that are available to Fury Route.

2.4 Provider Granularity
We further examine the behavior of specific networks

which are particularly useful in the development of Fury
Route. We consider a set of CDN providers known to
support EDNS [16, 17, 37] combined with our provider
clusters from the above section. In order to avoid in-
cluding the same provider twice that may have made
it past our filtering process, we manually inspect any
CNAME responses, as well as a sample of WHOIS records,
ensuring that we select each provider once. While in-
cluding multiple domain names from the same provider
is not directly harmful, it complicates Fury Route’s abil-
ity to make decisions, as we see in Section 4.
Table 1 shows our final selection of providers, as well

as the corresponding hostname used to query each provider.
We recall that providers are “used” by issuing a query
for a hostname belonging to that provider and making
use of the set of responding servers.
To understand the types of responses given by our se-

lected providers, we consider the contents of their ECS

4

Figure 5: CDF of observed scope netmask responses.

responses. In particular, we examine the values of the
response scope netmask, which indicates how well the
subnet included in the query was able to match the re-
sponse. While this value is likely a↵ected by policy, i.e.,
both the internal mapping policy of each provider, and
a DNS caching policy which attempts to take advantage
of DNS caching [20], the scope netmask is undoubtedly
a valid asset in Fury Route’s design. Fury Route will
therefore interpret the values as the quality, i.e., near-
ness, of a given response.

We query for each of our provider domain names with
each of our 25 globally distributed IPs as the client sub-
net. Figure 5 shows a CDF of the response scopes
for each provider. The providers fall into two cate-
gories: course and fine grained. CloudFront, CDNet-
works, Google, return /24 (the smallest subnet recom-
mended by the ECS specification) subnets for nearly
all requests, appearing as vertical lines at 24 in the fig-
ure. Alternatively, Alibaba, ADNXS, and Edgecast re-
turn broader scopes. While CDN77 returns many broad
scopes, we also see that nearly 40% of its responses were
/18s or smaller. We note that some providers may em-
ploy anycast, suggesting any DNS client mapping they
perform is intended for coarser grained locations.

The presence of varying granularities allows Fury Route
to take advantage of multiple perspectives of the Inter-
net. Indeed, if certain providers o↵er a coarse grained
view, it will allow us to progress through the network
di↵erently than only fine grained providers which always
o↵er very nearby results. Furthermore, using multiple
providers enables us to gain multiple perspectives, as
each network is managed and operates according to its
own policy and deployments.

3. FURY ROUTE
Fury Route is built on the principle that the network

distance between two hosts can be estimated by con-
structing a path of CDN replicas between the two hosts.
These CDN replicas are returned as responses to ECS
queries and the paths are generated by an iterative se-
ries of ECS queries which “hop” between CDN replicas
by issuing new requests on behalf of a CDN replica with
the client-subnet extension. This entire process can be

performed from any host, requires no participation on
the part of the hosts being measured, and does not rely
on any directly deployed infrastructure. This is possible
due to the nature of ECS, which allows any single prob-
ing node to issue DNS queries as if it were any other
host. This allows Fury Route to perform its estimates
with no direct probes, instead it only generates DNS
queries to well provisioned DNS infrastructure.
The Fury Route system consists of three main com-

ponents: (i) A chain building mechanism which con-
nects an origin host with a destination host via a se-
quence of CDN replicas discovered via EDNS-enabled
DNS responses, (ii) A voting system which enables this
chain-building system to make forward progress in the
space of CDN hosts, (iii) A comparison module, which
compares the lengths of the chains and makes decisions
about the relative distance between two points of inter-
est, maximizing the information made available from
the CDN-based DNS responses.

3.1 Chain Building
Fury Route is able to perform remote network dis-

tance estimations by using an approach we call chain
building. The fundamental basis for this chain build-
ing approach is that DNS responses from CDNs which
support ECS are likely to be near the requesting host,
as indeed this is the stated purpose of ECS [20]. Fury
Route builds on this notion, and constructs chains of
near-by responses to estimate distance.
Fury Route begins with an origin host O and a des-

tination host D. It further has a set of providers P =
{p1, . . . , pk}, where each pi is represented by a host-
name which belongs to a provider. While, as we saw in
Section 2, a provider may span multiple hostnames, we
take provider to mean an entity which can be queried
by a look-up for a specific name. We therefore treat
hostnames and providers as interchangeable.
To begin construction of a chain, Fury Route issues an

ECS query to each provider in P , using D’s address as
the client subnet. It then takes the responses to each of
these queries and pools them into a target set, which we
denote T = {t1, . . . , tn}, n � k.1 These hosts represent
CDN replicas which are likely close to the destination
D, and therefore are indicators of its location. We use
such a target set since the destination D may not be
itself a CDN replica, but an arbitrary host. The target
set therefore gives us a set of CDN replicas for which
the algorithm is explicitly searching.
Next, Fury Route issues a set of ECS requests to the

provider set P , using the origin host O’s IP address as
the client subnet. It then records the set of returned
CDN replicas, noting their scope netmask values and

1
The target set can contain more CDN replicas than the

number of providers, because a provider may return more

than a single replica for a host.

5

O D

Target Set

(a)

O D

Target Set

(b)

O D

Target Set

(c)

Figure 6: A representation of the chain building procedure. The dashed circle indicates hosts in the target set. Dotted circles show

hosts in a scan of all providers.

the corresponding provider. It then considers each of
such obtained CDN replicas, and selects one using the
voting process described below. The voting procedure
encourages the selection of hosts, i.e., CDN replicas,
which are closer to the target set T , and therefore closer
to D. Fury Route then issues a new set of requests, us-
ing the previously selected CDN replica as its client sub-
net. This process is repeated until at least one provider
returns a host which is in the target set T , or it exceeds
a fixed number of scans. If it successfully encounters a
replica from T , the resulting sequence of hosts is then
taken as the chain of replicas connecting O and D.

Figure 6 shows a visual representation of these steps.
Part (a) shows Fury Route’s view after establishing the
target set T (shown as shaded triangles within the dashed
circle), and issuing the first set of ECS queries to the
providers on behalf of the origin host. Non-shaded tri-
angles show hosts returned as a result of those queries.
Next, part (b) shows when it then selects one of these
hosts, and issues another set of queries, o↵ering a fur-
ther set of CDN replicas. Finally, in part (c), the chain
is complete, as the final round of queries to the providers
returned results which land within the target set.

3.2 Voting
Fury Route employs a voting mechanism to select

the next CDN replica host which is likely to provide
forward-progress towards the destination host D. The
voting mechanism is built on the heuristic that the best
choice for the next hop is the one which brings the next
hop closest to the target. To this end, we use the fol-
lowing mechanism: when considering a set of potential
candidate CDN replicas, C = {c1, . . . , cl}, Fury Route
attempts to determine which will have the greatest over-
lap in ECS-enabled responses with the target set T .

In order to measure this overlap, Fury Route performs
the following operation for each candidate CDN replica
ci. It issues an ECS query to the first provider, p1, with
ci as the client subnet. We denote the set of responses
as R1,i. Next, it issues ECS queries to p1 using each of
the target CDN replicas in T . We combine all of the
target set responses into a single collection which we
denote R1,T .

p1

p2

p3

c1

Target SetCandidate

Providers

p1

p2

p3

c2

Target SetCandidate

Providers

Figure 7: An example of the voting mechanism. Providers p1
and p2 have overlap with the target set for c1, but only p1 for c2.
Therefore the system selects c1.

Using these sets we will determine which candidate is
given the closest matching set of replicas to the target
set. Formally, we measure the overlap seen by p1 for
candidate ci, denoted B1,i, as:

B1,i = R1,i \R1,T .

If B1,i is non-empty, we say that this candidate has
overlap with the target set as seen by provider p1, and
provider p1 grants a single vote for ci. If B1,i is empty,
no vote is granted.
This process is repeated for each provider in P , and

the votes are summed for the candidate. The entire
process is further repeated for each potential candidate
in C. It is important to note that a single provider may
vote for many candidates. Fury Route then selects the
candidate with the most votes, as it features the most
overlap with the target set across providers, making it
likely to o↵er the most forward progress.
Figure 7 presents a simple example of this process.

In this example, we have 2 potential candidates, and 3
providers. We first query each of the providers and store
the resulting responses. Next, each CDN replica host
is scanned for each provider, also noting the results. In
the example, we see that providers p1 and p2 see overlap
with c1, while only p2 sees overlap with c2. Therefore
Fury Route selects c1.
In the event that Fury Route finds itself with a set of

candidates which have lower vote totals than the pre-
vious round, Fury Route “backtracks”, abandoning the
current chain branch, and returning to the candidate
with the previous highest number of votes. If there is
no such candidate, it then settles for the candidate with
the next highest number of votes. In this way, it is able
to pursue a path with the highest indication of progress,
while avoiding moving further away from the target.

6

This process is aided by the variations in scope be-
tween the CDN providers. As we observed in Section 2.3,
some providers use very specific locations, meaning over-
lap will only occur when the candidate is particularly
close to the target set. Others use much coarser map-
pings, which allow overlaps, and therefore non-zero votes,
to occur at greater distances. By combining a mix of
such providers, this voting approach uses information
from the coarse providers to initially move in the correct
direction and depends increasingly on the finer grained
providers as the chain of replicas approaches the target.

3.3 Chain Length
Once a chain has been constructed between the source

and destination hosts as outlined above, the resulting
chain is used as a comparison tool for estimating net-
work distances. In particular, we take advantage of the
response scope netmask field, which indicates the appli-
cability of the answers. While this is largely intended
for caching purposes, Fury Route makes use of the value
to estimate the quality of a particular response, which
we take to represent the accuracy of the chosen replica.

Fury Route therefore implements the following met-
ric. If a chain includes a link between two CDN replicas
in a chain, A and B, and s is the scope netmask of the
response which included B, we take the cost of travers-
ing such a link to be cost = max(8, 32� s). The higher
the precision of the response, the smaller the cost of the
corresponding link. In a rare scenario when we obtain a
scope s larger than 24 (e.g., sometimes as large as 32),
we “downgrade” such a response to 24, setting the min-
imal cost in the system to 8. Such adjustments prevent
edge cases from creating chains with no information.
Finally, responses which o↵er no scope information are
ignored as being non-ECS supporting and therefore no
such links will exist in a final chain.

4. IMPLEMENTATION
We now present the details of our implementation of

Fury Route. Critical to its design is the lack of depen-
dency on any external measurement infrastructure: no
external vantage points are necessary, and neither the
source nor the destination needs to be within the control
of the measurement system. Therefore our implemen-
tation is able to run from a single machine.

In order to ensure flexibility when sending DNS re-
quests, we use Google DNS and a modified version of
the dnspython DNS library [8] to issue our queries. As
in [37], we find that we are able to achieve up to 50
queries per second, depending on the provider set. All
of our queries are sent with a full /32 client subnet. In
the event that a chain fails to reach the target set after
a threshold of candidate selection rounds, Fury Route
abandons the current chain and starts over, attempting
to build the chain from the destination to the origin.

4.1 Response Graph
In order to minimize the number of queries that must

be performed for Fury Route to construct a chain, our
implementation of Fury Route constructs a response
graph while executing the chain construction. The re-
sponse graph stores all observed replicas as nodes. Edges
are used to encode the response scope from the perspec-
tive of di↵erent replicas. Nodes are further annotated
with the set of providers which have been queried with
that replica as a client subnet. Nodes within the same
/24 subnet are combined, to avoid repeating queries
with nearly identical client addresses.
This graph representation provides us with two key

optimizations. First, it allows us to keep track of the
queries sent and avoid sending duplicates, reducing the
total query cost. Additionally, the added graph struc-
ture allows us to use replicas which may not occur in the
chain itself. For example, the voting process may reveal
additional replicas from candidate providers which were
not explored directly during chain construction. Such
paths may reveal “shortcuts” to the target set, elimi-
nating potentially redundant components of the chain.
After a single chain is completed, a shortest-path can
then be taken from the source to the destination.

4.2 Provider Selection
The nature of providers is varied and complex, with

each o↵ering a potentially very di↵erent view of the In-
ternet, as explored in Section 2.3. We restricted the cur-
rent implementation to a relatively small set of providers
in order to keep overhead at a manageable level. Indeed,
adding too many providers may result in a significant
increase in the number of candidates in each iteration
of the chain-building process, which can introduce sig-
nificant amounts of overhead. We explain how caching
can help resolve such issues in the next section.
We divide our set of providers into two categories.

The first, voting-only providers, are excluded from can-
didate selection in the chain building procedure because
they lack su�cient accuracy. Nonetheless, they are
very useful in voting due to their coarse-grained nature.
The remaining providers are called candidate providers,
which participate in both voting and chain construction.
Based on our findings in Section 2, we take Alibaba,
Edgecast, and ADNXS to be voting-only providers, due
to their broader scope, i.e., lower mapping accuracy.
The remaining providers, CDNetworks, CloudFront, Google,
and CDN77 are then taken as candidate providers.
To account for variations in the ECS scope netmask

precision, we employ a corrective term when consid-
ering candidates from CDNetworks. In particular, we
found that CDNetworks queries often returned servers
that were quite distant from the node indicated in the
client subnet, despite the high frequency of /24 scope
responses. Fury Route therefore avoids taking such

7

UCSD

UCLA

CloudFront
8

8

Google

10

CDN77

8

Google

8

CDN77

8

Final Chain

(a)
Arizona

Rutgers

Google- LGA

16 CDN77 - NY

8

Google - DFW

8

CloudFront - LAX

8

Google - LAX

Final Chain

10

(b)

UFL

NU

Google - NUQ

8

CloudFront - LAX

CloudFront - ORD

CloudFront - SFO

CloudFront - MIA

8

CDN77- ATL

10

8
CloudFront - SEA

8

8
8

8

Final Chain

(c)

Figure 8: (a) A very near destination, (b) a chain which reflects the underlying CDN deployment, and (c) a chain which resulted from

an exhaustive search.

routes, biasing against CDNetworks replicas by always
setting them to a single vote. We further adjust for the
underestimated scope by considering all corresponding
edge weights at 3⇥ the cost, a value which provides the
best performance in our evaluations. The coarse nature
of CDNetworks as candidates enables Fury Route to
connect with distant locations, which might prove di�-
cult with finer grained providers, e.g., across oceans, as
we explore later. The voting bias prevents more local
paths from pursuing such routes unnecessarily.

4.3 Real-World Behaviors
We present several examples of the graph behavior

exhibited by Fury Route. Separate from the full evalu-
ation in Section 5, these descriptions aim to o↵er deeper
understanding of the operational behavior of Fury Route.

Very-Near Destination In this case, we consider
when the source is very near to the destination. In such
situations, it is possible that several of the providers
will direct both locations to the same replica.

Figure 8(a) demonstrates such a scenario between an
origin server at UCSD and destination at UCLA. We see
that on the first scan of the origin (UCSD in this case),
a target node was encountered immediately. Since both
origin and destination were quite near the replica, a
short chain was promptly established.

Replica Sinks As Fury Route relies on the deploy-
ments the underlying CDNs, we expect that the chains
constructed by Fury Route will likely reflect these de-
ployments. One such example is the tendency of chains
to include nodes which seem geographically out-of-the-
way, but are reasonable given the CDNs networks, not
unlike traditional packet paths and the underlying net-
work. Our providers appear to have significant deploy-
ments in southern California, pulling many chains that
direction, even if it is not the nearest geographically.
To further understand the behaviors in this case, we
examine the reverse DNS names of the replicas used by
Fury Route. While not perfect identifiers, they provide
a general idea of where a replica may be located [17].

Figure 8(b) shows an example of this when construct-
ing a chain from an origin at Arizona to a destination
at Rutgers. In this case, rather than passing through

Texas, as a traceroute appears to do, the chain first
passes through Los Angeles. It then makes a larger hop
directly to New York, which brings it to the target set.
While such paths may introduce some inaccuracy, Fury
Route compensates by considering only relative chain
lengths: as long as the origin is the same, the chains
will encounter similar provider infrastructure layouts,
and therefore encounter similar such detours.
Exhaustive Search Next, we consider a scenario in

which the voting fails to immediately move Fury Route
towards the best path. While it could still be driving
the system in the correct direction, it may end up with
a set of replicas where it can advance no further to-
wards the destination. In these scenarios, Fury Route
will explore the best voted paths, but will eventually
abandon such branches and return to earlier options,
via its backtracking mechanism. In these cases, Fury
Route correctly determines the shortest path, despite
its earlier explorations.
Figure 8(c) shows such a case between an origin at

UFL and a destination at NU. Fury Route first ex-
plores the North American west coast before ultimately
finding an appropriate chain to connect the two nodes.
A Google response which sends Fury Route towards
Mountain View, CA (NUQ), potentially as a fail-safe
selection for Google, is not uncommon. We expect this
behavior is the result of the underlying CDN deploy-
ment. Here, however, it is manifested in the voting
system, rather than the candidate selection. Once none
of the follow-up nodes in the west coast branch (Cloud-
Front LAX, SFO, and SEA) have lower vote totals than
the previous round, Fury Route abandons the west coast
branch via the backtracking mechanism, and pursues
the east coast path. In addition, since Fury Route takes
the shortest completed path, it is able to avoid incurring
any inaccuracy as the result of such scenarios.
Across Oceans As a final example (not shown in

the figure), we consider a path which must cross an
ocean. In particular, we consider an origin at UW in
Seattle, and a destination at NITech in Nagoya, Japan.
In this case, Fury Route pursues a number of candidates
in Northern California (e.g., Amazon-SFO and Google-
NUQ), before selecting a CDNetworks candidate, with-

8

Figure 9: The fraction of destinations for which Fury Route was

able to complete a chain.

out reverse DNS information. Finally, it then selects a
target set replica from CDN77 in Tokyo.

Notably, CDNetworks replied to the request with a
scope of /24. However, using this value directly would
have resulted in a severely underweight chain, as the
link from California to Japan introduces significant net-
work distance. Therefore, our increased cost for CD-
Networks nodes resulted in a more accurate final chain
length, while still allowing Fury Route to successfully
cross the gap caused by the Pacific ocean.

5. EVALUATION
In this section we explore the broader scale operation

of Fury Route. We demonstrate that it is able to con-
struct chains for a large fraction of globally distributed
endpoints. We further evaluate its performance in esti-
mating relative network distance. To understand which
cases Fury Route performs poorly in, we examine the
most prominently observed pathological behaviors. We
then evaluate the potential of caching systems for Fury
Route, and quantify the benefits they provide to a large
scale system. Finally, we evaluate the e↵ect that regu-
larly shifting CDN replica selection has on Fury Route.

5.1 Completion Rate
First, we consider the completion rate of Fury Route

chains. Here, we consider a set of 60 Planet Lab sites,
distributed globally. While Fury Route enables network
distance estimates between any two endpoints, we use
Planet Lab nodes to obtain RTTmeasurements between
them, i.e., to establish the ground truth. For each site,
we attempt to construct a chain to each of the other 59
sites. Each chain is given up to 25 candidate selection
rounds in order to complete. If it exceeds this value,
the chain is marked as incomplete. Experimenting with
larger values provided no detectable increase in com-
pletion rate. Therefore, 25 provided a balance between
exploratory freedom and run time.

Figure 9 shows the fraction of destinations for each
origin server for which Fury Route was able to con-
struct a chain as a CCDF over the set of origins. In
the median case, 90% of chains are successfully com-
pleted, and in over 40% of cases, all chains were com-

pleted successfully. We found that pairs unable to com-
plete their chains featured destinations with potentially
sparse CDN deployments from our providers. Indeed
the worst performing destinations were in Argentina (a
particular destination saw 57% of chains failed), New
Zealand (48%), and China (43%). However, even in
cases in which the destination features a nearby replica,
distant nodes may never be directed to such a node. For
example, a CDN provider with a replica in South Amer-
ica may only ever send South American tra�c to that
replica, making it di�cult for Fury Route to reach such
destinations. As expected, locations that have poor
CDN deployment, considering particular CDN providers
and domain names that Fury Route uses, are most prob-
lematic both in terms of chain completion rate, and ac-
curacy, as we demonstrate below.

5.2 Comparison To King
Here, we aim understand the performance of Fury

Route compared to a technique with similar goals. In
particular, we attempted to measure the performance of
King [24] on the 60 Planet Lab hosts from our previous
experiment. However, we found that King is no longer
tenable: not a single one of our hosts had a name server
that would respond to recursive queries.
To develop a further understanding of how King may

perform on the modern Internet, we consider a random
sample of 1000 addresses from IPv4 space. For each,
we attempted to run King between the address and an
address at our local institution. We again found very
low rates of recursive resolvers in the wild, with only
about 4% of addresses having name servers that would
accept such queries.
While other mechanisms for estimating distance in

the network exist, they all require significant infrastruc-
ture and measurements capabilities, as we discuss in
Section 7. In cases when such infrustructure-dependent
systems are not available, Fury Route may be the only
source of information. We therefore consider its perfor-
mance when compared to the ground truth of a direct
latency measurement.

5.3 Rank Performance
Here, we evaluate Fury Route’s ability to correctly

estimate relative network distances. We show, given a
fixed origin point, how well Fury Route is able to cor-
rectly determine which of a pair of destinations is clos-
est and which is further away. Indeed, most real-world
applications, including peer or server selection as well
as Web performance and auditing, rely exclusively only
on relative network distance. In order to test this, we
again consider the full mesh of chains provided by our
previous 60 Planet Lab nodes. To establish a ground
truth network distance for each pair, we perform a ping
measurement immediately prior to generating the Fury

9

Figure 10: A CCDF over origin hosts showing the fraction of

comparisons for which the Fury Route chain length matched the

measured RTT ordering.

Route chain, granting an up-to-date view of the network
delay between origin and destination.

With the above data, we wish to determine how well
Fury Route’s chain-lengths estimate the relative order-
ing given by the RTT measurements. We consider the
set of all possible pairwise comparisons between destina-
tions for each origin, giving us up to 1770 comparisons
per origin (i.e., 1,770 = 59 + 58 + ...), depending on
each origin’s completion rate. For each pair, we check if
the comparison of the corresponding Fury Route chain
lengths matches that of the corresponding ping mea-
surements. We then are able to count the fraction of
comparisons which matched the RTT measurements.

Figure 10 shows a CDF of the fraction of matched
comparisons for each of our origins. The dotted line to
the left indicates all possible pairs. Each other line in-
dicates the performance for the subset of comparisons
(among the 1770 pairs) with a minimum distance be-
tween path RTTs of �. For example, for an origin S,
� = 25 contains all pairs of destinations, e.g., A and B,
for which |RTT(S,A) � RTT(S,B)| > 25ms. For our
set of hosts, 71% of pairs were in � > 25, 54% in � > 50,
and 29% in � > 100. First, we note that in nearly all
cases, Fury Route is above 50% performance in terms of
matches. Furthermore, we see that increasing the dif-
ference between the origin and destinations expectedly
improves performance. Indeed, the best case of a dif-
ference of � = 100 gives us 83% of comparisons correct
in the median case.

Such results are in line with our expectations: since
Fury Route is not measuring network delay values di-
rectly, we do not expect it to be able to di↵erentiate
small di↵erences in round trip time. Moreover, such
cases are not likely to have significant e↵ects on network
performance. Furthermore, Fury Route is able to pro-
vide the valuable network distance information about
two remote hosts that may otherwise be inaccessible.

5.4 Pathological Cases
Next, we present the notable pathological behaviors

encountered by Fury Route during the course of our
evaluation. In general, these cases violate the assump-

tions on which Fury Route operates, causing inaccura-
cies and other performance anomalies.
No Nearby Replicas In this scenario, an origin

or destinations may be distant from all CDN replicas
served to it. As discussed in Section 5.1, such situ-
ations may prevent Fury Route from constructing a
chain. However, in the event that they do connect, they
are likely to provide highly inaccurate paths, as Fury
Route may severely underestimate the distance to such
end points. For example, a destination host at SJTU in
Shanghai frequently returned CloudFront nodes in Los
Angeles with a scope of /24. This ultimately resulted
in a large number of underestimated distances. Simi-
lar behavior was observed for a destination in Buenos
Aires returning responses in Indiana (CloudFront) and
Atlanta (CDN77). Indeed, the lack of CDN deployment,
CloudFront in Asia and South America in this case, is
taking its toll.
Missed Replicas In this scenario, there is a clear

link which Fury Route misses because it was unable to
recognize the proximity of two replicas. The precise rea-
son for this is likely the result of internal CDN policy.
As an example, an attempted chain from UFL to Rut-
gers featured a CloudFront replica in the target set with
a reverse DNS name suggesting proximity to Washing-
ton D. C. (i.e., IAD). During chain construction, Fury
Route regularly encountered other CloudFront nodes
also named as being near Washington D. C., but from a
significantly di↵erent subnets. Fury Route was unable
to recognize their proximity, and therefore generated a
significantly longer path, ultimately overestimating the
network distance.
Bad Hops A final observed pathological behavior oc-

curs in the interactions between providers. Specifically,
a provider may respond with a close match (i.e., a /24),
but return addresses for clearly very distant servers. For
example, occasionally when given a client subnet from
CDN77 in NYC, Google will respond with a node in
Paris, as observed by reverse DNS name. While such a
jump does not necessarily hurt quality of Fury Route’s
final chain, it increases the likelihood that the chain will
include a significant detour that is not evenly reflected
throughout all chains.
While these pathologies result from several observed

behaviors, they have two core consistent features. First,
they arise from variation in CDN policy or behavior,
in either the specific value of the ECS response scope,
or in the particular replica selection policy employed
by the CDN. Second, they are rooted in the lack of
full global deployment of the some of selected CDNs.
Consequently, we expect their occurrence will decrease
as the density of the CDN providers increases. More-
over, utilizing semantic CDN information, and applying
learning and blacklisting methods could help purify the
Fury Route response graphs.

10

Figure 11: CDF of the queries used for constructing each chain.

5.5 Overhead Analysis
Next, we measure the cost of Fury Route in terms of

the DNS query overhead. In particular, we explore the
number of queries required to successfully construct a
chain. We reiterate that the network-level overhead is
entirely based on DNS queries: Fury Route generates no
direct network measurements and therefore generates
no load on the hosts being measured.

Figure 11 presents a CDF of the number of queries
to complete all the chains in the previous section. In
the median case, a single chain requires 260 queries,
which can be completed in under 6 seconds. Further-
more, nearly 90% of chains are able to complete with
under 650 queries. The increase in queries beyond 400
is the result of destinations which had to invoke the re-
verse path in order to complete, and therefore had to
construct a second chain. Since our providers are all
large-scale networks, chain construction does not repre-
sent significant load on their networks.

Graph Caching The use of our graph data struc-
ture to implement Fury Route comes with the addi-
tional benefit of creating a simple and e↵ective caching
mechanism. If a large number of measurements are be-
ing performed from a single origin, as is the expected
use-case, Fury Route can simply reuse the graph for
each subsequent chain construction. With a su�cient
cache, queries could then be executed extremely rapidly,
making Fury Route viable as a real time estimation tool.

To quantify the benefits of graph caching, we conduct
the following experiment. First, we randomly sample 50
Planet Lab nodes as origins. For each origin, we ran-
domly sample 200 addresses from IPv4 space. Next, we
construct chains from each origin to each of its corre-
sponding destinations, reusing the graph for each origin.

Figure 12 presents the average number of queries for
each origin: the x-axis indicates the query index, i.e.,
how many times the graph has been reused, and the
y-axis is the average number of queries, where the er-
ror bars represent a standard deviation. We see that
the initial chain takes an average of 250 queries to com-
plete, but quickly decreases, requiring only 65 queries
by the 10th chain constructed with the graph. After 20
chains are constructed, the average number of queries

Figure 12: The improvement of queries needed over time with

the same graph.

Figure 13: A CDF of the queries needed for each set of 1000

chains.

decreases below 50. The jittery nature of this data is
due to the fact that occasionally one of the randomly
generated IPs will be a significant distance away, requir-
ing exploration of replicas not previously seen.
To further explore development of the graph cache,

we conduct an experiment in which we use a single ori-
gin and graph to construct chains to 5000 randomly
sampled IP addresses. In doing so, we seek to under-
stand the fraction of chains which can be constructed
entirely from the contents of the cache.
Figure 13 shows a CDF of the number of queries

needed for each set of 1000 chains. We see that the
initial 1000 bears most of the query-burden, and a sin-
gle chain takes up to 250 queries to complete. However,
we see that by the end of these first 1000 chains, 47%
of queries needed only the minimum 7 total queries to
complete, i.e., they completed after only scanning the
destination for the 7 domain names shown in Table 1,
the smallest overhead possible. As more chains are con-
structed, we observe a decrease in the number of queries
required, until after 4000 queries, 87% of chains are able
to complete with minimum overhead.
This graph caching principle could be extended to

a complete cache, reducing all chains to the minimum
number of queries. Previous work [17] has demonstrated
that the entire /24 client space can be explored for
Google in approximately a day using a single resolver.
Extrapolating this to our other providers, one could pay
the one time cost of scanning each provider to discover
their entire current set of replicas and the corresponding

11

Figure 14: Similarity in DNS responses for each provider over

a day.

Figure 15: The average fraction of replicas in chains which re-

mained the same over time

edges in the Fury Route graph. Still, our experiment in
Figure 13 demonstrated that an organically constructed
graph can be built in under 2 hours which provides near
instant measurements for a large fraction of queries.

5.6 Change Over Time
By design, CDN responses to DNS queries can be

highly variable, incorporating client location, internal
cache state, load balancing policy, and any other provider
decision making policy. We therefore examine the con-
sistency of Fury Route’s performance over time. We ex-
amine how responses change over time, and the e↵ects
this has on the resulting chains. To quantify the un-
derlying variation in CDN replica selection, we queried
each of our providers with our 25 Planet Lab nodes from
Section 2 every hour for a 24 hour period.

Figure 14 shows the fraction of /24 subnets that were
observed in the previous hour’s response. For the ma-
jority of providers, 80% of the provided subnets are the
same, suggesting moderate replica churn. In the case
of CDN77, we observe no variation for the entire 24
hours. An exceptional case can be found with CDNet-
works, which averaged only a 50% match. Further anal-
ysis revealed this was partially due the the fact that the
majority of responses from CDNetworks featured only 2
A records, contrasted with Google’s regular 5 or more.

Next, we examine the e↵ect the variation in provider
responses has on Fury Route’s chains. We select 30
random origin-destination pairs from our set of Planet
Lab nodes and generate each chain between them every

hour for 24 hours. Figure 15 shows the average fraction
of replicas in a chain that appeared in the chain for
the previous hour, i.e, the fraction of overlap with the
previous chain, where error bars indicate a standard
deviation. At each sample, the overlap varies between
60 and 75%. The relatively large standard deviation
further indicates significant changes for some chains.
To understand the e↵ect of variation on Fury Route’s

performance, we consider the following experiment. We
again generate the 602 mesh of chains, this time allowing
each origin to construct a graph cache. After 12 hours,
we construct the chains again, re-scanning all nodes and
combining the cached graph with nodes revealed in the
fresh scan. In the second round of chain building, each
graph grew an average of 26%, as a significant set of new
replicas were observed, in line with Figure 15. However,
the results show that the two sets of chains presented
no change in rank performance. This shows that Fury
Route is able to generate meaningful representations of
the network with a single snapshot, and there is no need
to capture all time variations.

6. DISCUSSION
Non-Client Mapped Responses As we demon-

strated in Section 2, not all providers who support ECS
use it to perform replica selection. Even in cases where
the provider performs client mapping for some responses,
it does not always do so (e.g., Alibaba). Such cases are
necessarily unhelpful to the operation of Fury Route.
However, as long as the non-ECS nature is indicated,
i.e., a 0 response scope, Fury Route will ignore it en-
tirely. In the event that it has a nonzero scope, Fury
Route may be able to work around such responses, as
such candidates will ultimately receive few votes during
chain construction.
ECS Adoption The behavior of Fury Route is likely

to change as ECS adoption increases. Indeed, as the
number of visible replicas from which Fury Route can
construct chains increases, the quality of the chains for
path distance estimation is likely to increase. Further-
more, additional votes in our chain construction mech-
anism will only increase the accuracy of decisions that
the system makes.
Additional Providers As discussed previously, the

current implementation of Fury Route relies on a set of
detected, measured, and processed providers who sup-
port the EDNS0 client-subnet extension. However, a
larger number of providers could be selected, in par-
ticular, as the density of networks increases a greater
number of providers becomes available. However, doing
so comes at the cost of increasing the number of queries
performed by Fury Route: there are a greater number
of candidates and a greater number of voters at each
iteration.

12

7. RELATED WORK
There has been a significant body of work devoted to

the challenge of predicting network performance. These
have included large-scale measurement platforms [33,
34, 35, 27, 28], which attempt to measure a large num-
ber of routes and hosts from a large number of vantage
points. Other systems have embedded coordinate sys-
tems, often based on measurements to a set of known
landmarks or peers, to perform network distance esti-
mations between a set of hosts without direct measure-
ments [21, 22, 23, 30, 36, 40]. Contrary to the above
systems, Fury Route outsources the direct network mea-
surements to a number of underlying CDNs. As a result,
it conducts neither passive nor active measurements of
any sort. It further requires no access to the measured
endpoints nor to any other third-party hosts or infras-
tructure.

King examines how latency can be measured indi-
rectly by considering the latency between two nearby
DNS resolvers [24]. While similar to Fury Route in
that it does not require the direct participation of either
host, King requires a nearby open recursive resolver,
and a nearby authoritative server. However, such re-
quirements are becoming more di�cult to satisfy. A
recent study has shown that the number of open recur-
sive DNS servers is rapidly decreasing – approximately
by up to 60% a year, and by around 30% on average a
year [26]. In addition, the DNS hosting is another sig-
nificant and enlarging problem for King, as discussed in
Section 1. Moreover, our experiments found that only
4% of a random sample of Internet hosts had open re-
cursive DNS servers, rendering King widely unusable.
While Fury Route utilizes the DNS infrastructure, it is
in no way dependent on the number or availability of
open DNS resolvers, nor is it a↵ected by DNS hosting.
Fury Route requires only that a host has nearby CDN
replicas, a situation CDNs are strongly motivated to
maximize.

The use of CDN redirections has been shown e↵ec-
tive in terms of relative network positioning [38, 39]. In
particular, if two clients have overlapping CDN replicas,
they are likely to be close to each other in the network
sense. Such an approach has further been utilized by
large-scale systems such as BitTorrent [19]. Contrary
to such an approach, which requires a large-scale dis-
tributed system such as BitTorrent in order to be ef-
fective (so that two BitTorrent clients have an overlap
among CDN replicas), Fury Route has no such limita-
tion. Indeed, it can, in principal, e↵ectively connect
any two endpoints on the Internet. The key behind
this is the use of multiple CDNs of di↵erent granularity
in terms of CDN replicas, i.e., both fine- and coarse-
grained, and the use of ECS as a vehicle to hop over
di↵erent CDN replicas.

Further work has been done to develop deeper under-
standing of the behavior of networks in Reverse Tracer-
oute [25]. Reverse Traceroute combines a number of
techniques to piece together a reverse path from a host.
While Reverse Traceroute has a fundamentally di↵erent
goal from Fury Route, it is similar in its aims of allowing
measurement to and from an arbitrary host. However,
Reverse Traceroute relies on a number of pieces of par-
ticipating infrastructure to collect trace route probe in-
formation. It further requires access to the source node.
While Fury Route is built on the back of the CDNs’ in-
frastructure, it relies on these CDN networks to perform
the “heavy lifting,” and needs only ECS queries. Fur-
thermore, contrary to Reverse Traceroute, it requires
no access to any of the two measuring endpoints and no
participating measurement infrastructure.
Finally, the use of ECS [20] as a measurement tool

was the key principle in [17, 37]. While similar in our
use of ECS to obtain client-mapping information from
existing infrastructure, both of these works have a dif-
ferent goal: exploring the deployments of specific CDNs.
Fury Route, on the other hand, is attempting to use
these CDNs to perform an additional task: network
distance estimation. Therefore, while we build on the
complexity and heterogeneity of the CDNs measured
in these works, Fury Route solves an entirely di↵erent
problem with ECS as a tool.

8. CONCLUSIONS
In this paper, we presented Fury Route, a system

which builds on the underlying client mapping performed
by CDNs and the potentials of the EDNS client subnet
extension. Fury Route constructs chains of responses
and uses the lengths of these responses to estimate the
relative network distance between remote hosts, all with-
out any direct network measurements. We presented a
study of a number of behaviors observed in Fury Route
when constructing response chains in the real world. We
demonstrated Fury Route’s ability to construct chains
to 90% of destinations in the median case. We further
showed that it is successfully able to select a best-choice,
choosing correctly in up to 83% of median cases. Addi-
tionally, we examined the potential for caching, showing
a significant capability for caching route graphs, allow-
ing over 87% of chains to complete with the minimum
possible number of queries after a cache has been built
and demonstrated the longevity of such caches. Given
its lack of requirement for directly controlled measure-
ment infrastructure, low overhead, and ability to mea-
sure between arbitrary hosts, Fury Route stands to be a
practical and powerful tool for estimating relative net-
work distance.

13

9. REFERENCES

[1] Akamai: Fast DNS.
https://www.akamai.com/us/en/solutions/

products/cloud-security/fast-dns.jsp.
[2] Amazon Route 53.

https://aws.amazon.com/route53/.
[3] Azure DNS. https:

//azure.microsoft.com/en-us/services/dns/.
[4] CDNetworks Cloud DNS. https:

//www.cdnetworks.com/products/cloud-dns/.
[5] Cloudfare: Global, fast and always secure

authoritative DNS.
https://www.cloudflare.com/dns/.

[6] DNSMadeEasy. http://www.dnsmadeeasy.com/.
[7] Dyn DNS. http://dyn.com/dns/.
[8] ECS for dnspython. https://github.com/

mutax/dnspython-clientsubnetoption.
[9] GoDaddy: Premium DNS. https://www.

godaddy.com/domains/dns-hosting.aspx.
[10] Google Cloud Platform: Cloud DNS.

https://cloud.google.com/dns/.
[11] Google Public DNS.

https://developers.google.com/speed/

public-dns/docs/using?hl=en.
[12] Neustar DNS Services. https:

//www.neustar.biz/services/dns-services.
[13] OpenDNS. https://www.opendns.com/.
[14] Verisign Managed DNS. http://www.verisign.

com/en_US/security-services/

dns-management/index.xhtml.
[15] Verizon ROUTE: Fast, Reliable Enterprise-Class

Services for Domain Name System (DNS).
https://www.verizondigitalmedia.com/

platform/route/.
[16] Which CDNS support EDNS-client-subnet.

https://cloud.google.com/dns/.
[17] Calder, M., Fan, X., Hu, Z., Katz-Bassett,

E., Heidemann, J., and Govindan, R.
Mapping the expansion of Google’s serving
infrastructure. In Proceedings of IMC ’13 (2013),
IMC ’13.

[18] Chen, F., Sitaraman, R., and Torres, M.
End-user mapping: Next generation request
routing for content delivery. In Proceedings of
ACM SIGCOMM ’15 (London, UK, Aug. 2015).

[19] Choffnes, D., and Bustamante, F. Taming
the torrent: A practical approach to reducing
cross-ISP tra�c in peer-to-peer systems. In
Proceedings of ACM SIGCOMM ’08 (Seattle,
WA, Aug. 2008).

[20] Contavalli, C., van der Gaast, W., tale,
and Kumari, W. Client subnet in DNS
queries(IETF draft).
http://www.ietf.org/internet-drafts/

draft-ietf-dnsop-edns-client-subnet-06.

txt.
[21] Costa, M., Castro, M., Rowstron, A., and

Key, P. PIC: practical Internet coordinates for
distance estimation. In Proc of ICDCS ’04 (2004).

[22] Dabek, F., Cox, R., Kaashoek, F., and
Morris, R. Vivaldi: A decentralized network
coordinate system. In Proc. of SIGCOMM ’04
(2004), SIGCOMM ’04.

[23] Francis, P., Jamin, S., Jin, C., Jin, Y., Raz,
D., Shavitt, Y., and Zhang, L. IDMaps: A
global Internet host distance estimation service.
IEEE/ACM Trans. Netw. 9, 5 (Oct. 2001).

[24] Gummadi, K., Saroiu, S., and Gribble, S.
King: Estimating latency between arbitrary
Internet end hosts. In Proceedings of Internet
Measurement Workshop (IMW) (Marseille,
France, Nov. 2002).

[25] Katz-bassett, E., Madhyastha, H. V.,
Kumar, V., Scott, A. C., Sherry, J.,
Wesep, P., Anderson, T., and
Krishnamurthy, A. Reverse traceroute. In Proc
of. USENIX NSDI ’10 (2010), NSDI ’02.

[26] Kuhrer, M., Hupperich, T., Bushart, J.,
Rossow, C., and Holz, T. Going wild:
Large-scale classification of open DNS resolvers.
In Proceedings of IMC ’15 (2015), IMC ’15.

[27] Madhyastha, H. V., Anderson, T.,
Krishnamurthy, A., Spring, N., and
Venkataramani, A. A structural approach to
latency prediction. In Proc. of ACM IMC ’06
(2006), IMC ’06.

[28] Madhyastha, H. V., Isdal, T., Piatek, M.,
Dixon, C., Anderson, T., Krishnamurthy,
A., and Venkataramani, A. iPlane: An
information plane for distributed services. In
Proc. of OSDI ’06 (2006), OSDI ’06.

[29] Narayanan, A., Nam, Y., Sivakumar, A.,
Chandrasekaran, B., Maggs, B., and Rao,
S. Reducing latency through page-aware
management of web objects by content delivery
networks. In Proc. of ACM SIGMETRICS ’16
(2016).

[30] Ng, T., and Zhang, H. Predicting Internet
network distance with coordinates-based
approaches. In Proc. of IEEE Infocom ’02 (2002).

[31] Otto, J. S., Sánchez, M. A., Rula, J. P.,
and Bustamante, F. E. Content delivery and
the natural evolution of DNS: Remote DNS
trends, performance issues and alternative
solutions. In Proc. of ACM IMC ’12 (2012), IMC
’12.

[32] Padhye, J., Firoiu, V., Towsley, D., and
Kurose, J. Modeling TCP throughput: A simple
model and its empirical validation. In Proceedings

14

of ACM SIGCOMM ’98 (Vancouver, British
Columbia, Sept. 1998).

[33] Rabinovich, M., Triukose, S., Wen, Z., and
Wang, L. DipZoom: The Internet measurements
marketplace. In Proc of IEEE Infocom ’06 (2006).

[34] RIPE Atlas. https://atlas.ripe.net/.
[35] Sánchez, M. A., Otto, J. S., Bischof, Z. S.,

Choffnes, D. R., Bustamante, F. E.,
Krishnamurthy, B., and Willinger, W.
Dasu: Pushing experiments to the Internet’s edge.
In Proc. of USENIX NSDI (2013).

[36] Shavitt, Y., and Tankel, T. On the curvature
of the Internet and its usage for overlay
construction and distance estimation. In Proc. of
INFOCOM ’04 (2004).

[37] Streibelt, F., Böttger, J., Chatzis, N.,
Smaragdakis, G., and Feldmann, A.

Exploring EDNS-client-subnet adopters in your
free time. In Proceedings of IMC ’13 (2013), IMC
’13.

[38] Su, A.-J., Choffnes, D., Bustamante, F.,
and Kuzmanovic, A. Relative network
positioning via CDN redirections. In Proceedings
of ICDCS ’08 (2008), ICDCS ’08.

[39] Su, A.-J., Choffnes, D., Kuzmanovic, A.,
and Bustamante, F. Drafting behind Akamai
(Travelocity-based detouring). In Proceedings of
ACM SIGCOMM ’06 (Pisa, Italy, Sept. 2006).

[40] Wong, B., Slivkins, A., and Sirer, E. G.
Meridian: A lightweight network location service
without virtual coordinates. In Proc of

SIGCOMM ’05 (2005), SIGCOMM ’05.

15

