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Abstract

Web performance has long proved to be one of the most
sought after and difficult to achieve components for the
web. Since the inception of the modern web infras-
tructure, the situation has been growing in complexity,
adding remote hosts and objects, providing everything
from computation infrastructure, content distribution
capability, and targeted advertising. While many of
these components provide improvements for some users,
the complexity of the Internet often leaves other users
suffering from poor performance. Worse still, much of
this poor external performance is hidden from site op-
erators.

With Oak, we propose a system which addresses client
performance on the individual level, based on data pro-
vided directly by each user. Based on this user-reported
performance, Oak determines which components of a
page are under-performing. Oak further provides an au-
tomated mechanism by which sites are able to replace
resources with those provided by a better performing
alternative service for a particular user. In this work,
we demonstrate the prevalence of under-performing ser-
vices on the web, finding that over 60% of the Alexa
Top 500 have at least one under-preforming server. We
further evaluate Oak on experimental and popular ex-
isting webpages, and demonstrate its effectiveness in
making decisions in existing environments and with a
distributed user base.

1. INTRODUCTION

Achieving good web performance remains one of the
key challenges in the modern Internet. Users want sites
to perform quickly for a smooth user experience, and
providers want sites to perform well for users to ensure
customer satisfaction. Indeed, numerous studies have
demonstrated the importance of a rapidly functioning
website in cases of e-commerce customer return [6, 22,
28, 29].

This task has been made particularly challenging by
the rise in complexity of modern websites. Modern
pages load more than simple HTML files from a sin-
gle server, instead fetching scripts, videos, and images
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from numerous sources across the Internet [3, 7]. This
complexity has come with a cost, as the more complex
a site becomes, the more likely it is to encounter chal-
lenges with that complexity [33, 34].

Worse still, many of these components are served by
third parties, obfuscating their performance from orig-
inal site operators. In this setting many of the classic
approaches for obtaining performance information [1]
are not able to provide a complete picture of the user’s
network performance, complicating auditing and debug-
ging procedures. This prevents site operators from un-
derstanding what clients are experiencing in the wild,
leaving operators in the dark on the performance of por-
tions of their own sites which are hosted externally.

The details of web performance have been a common
consideration in research [7, 8, 11, 20, 30, 33]. Given
the importance of web performance to commercial in-
terests and its use in everyday life, it is no surprise that
it has proved to be of such interest. However, numerous
works have demonstrated that much of the current web
is problematic: regularly encountering performance and
compatibility issues [7, 8]. A significant body of work
has proposed measurement-based solutions [11, 20, 30,
33]. However, such solutions largely address complica-
tions in the loading and execution of pages (e.g., load
and execution dependencies) from the client perspec-
tive. While providing important insights and solutions,
they do not generally address a site’s management of
external resources.

Existing work has examined specific components of
web resources, such as the selection of cloud providers [38].
Some have considered post-facto analysis, seeking to
provide generalized recommendations to improve future
deployments [20, 33, 34]. Others still have sought to
provide real-time solutions, but focused on maximizing
the performance of existing resources from a fixed set
of providers [8].

In this paper, we present Oak, a system which pro-
vides insight into the client-observed performance of ex-
ternal resources and provides real-time changes to a site
to adapt to the needs of each individual user. In partic-
ular, Oak employs a user-profile scheme, to monitor the



performance of external objects for each user. This is
made possible by direct communication with the client
in which the client provides a performance report di-
rectly to Oak. Oak then determines if future requests
from the client should be served with content from an
alternative external server or provider in place of the
default.

By employing direct performance information from
clients, Oak is able to understand precisely the perfor-
mance observed by that client, rather than relying on
external services or measurements. Furthermore, Oak
is able to address performance challenges which may be
unique to that user, for example network blind-spots
by third party providers, or localized network anoma-
lies. Much in the same way that ad networks provide
users with a customized experience that reflects user in-
terest, Oak provides users with a customized version of
a page which connects them with known-best providers.
Contrary to ad networks, Oak monitors a user’s perfor-
mance, rather than their behavior. Since Oak manages
outgoing pages on an individual level, it is able to ad-
dress these issues, providing users with pages which be-
have best specifically for that user.

Oak chooses providers by way of operator specified
rules. These rules are designed to allow operators to
replace segments of a page which represent abstract ob-
jects, i.e., references to an external domain, such as an
externally provided advertisement. Operators are then
able to express an alternate behavior, such as excluding
the object entirely in cases of non-performance, or pro-
viding an alternative with a different external provider.
In this way, Oak returns control of a site with many
external components to the origin server, rather than
further outsourcing the task to other services. The ori-
gin now has the power to control from where each client
loads information based on data directly from the client.

Our chief contributions are the following:

e We introduce user-targeted performance as a new
approach for websites to operate with external re-
sources.

e A mechanism for site operators to gain insight into,
otherwise hidden, external object performance via
direct client performance reports.

e An approach for detecting performance outliers
which considers the median absolute deviation as
its mile-marker for performance, offering a robust
and versatile metric.

e A rule specification mechanism which allows op-
erators to specify portions of pages that can be
replaced, and the corresponding alternative con-
tent.

e A system which detects the cause-and-effect asso-
ciated with the aforementioned rules, determining

which portions of a page may be responsible for
connecting to particular outliers.

We present the design and implementation of the
above system, and demonstrate that it is able to cor-
rectly detect poorly performing servers and thereby pro-
vide significant gains, reducing the median page load
time in experimental scenarios on the Internet. In a
further evaluation, we consider a prototype implemen-
tation of Oak on versions of existing webpages, demon-
strating its ability to provide meaningful improvements
on current pages, offering faster object downloads in
over 80% of considered cases.

This paper is structured as follows: in Section 2 we
consider the current state of affairs on the Web, and
demonstrate the prevalence of sites with a large number
of external objects, many of which perform poorly. We
then consider the current approaches in Section 3. In
Section 4 we present a careful look at the components of
Oak, and in Section 5 we demonstrate its effectiveness
in the real world. In Section 6 we discuss our findings
as well as potential alternative design components, and
we conclude in Section 7.

2. MOTIVATION

Modern web pages have grown increasingly complex,
relying on numerous web objects, including JavaScript,
CSS, and HTML5 components. From a networking
perspective, much of this additional complexity comes
in the form of an increasing number of remote hosts.
Specifically, when a page is loaded, significant portions
of a page originate from remote servers. This remote
hosting means that the client must perform fresh DNS
look-ups, create new connections, and request the cor-
responding objects. While many of these services come
in the form of CDNs, or other performance enhancing
services, they complicate the work done on the user end,
and sites are left without a mechanism for directly au-
diting user performance. Furthermore, many of these
services are available from multiple providers, present-
ing an opportunity for site operators to “shop” for the
best performance.

To quantify the frequency of these remote compo-
nents, we performed a measurement study of the Alexa
Top 500 [27]. Our first measurement considered the
fraction of components on the page which loaded from
outside hosts. We do not consider sub-domains of the
original domain to be outside hosts.

Figure 1 presents a CDF of the fraction of external
hosts. We see that in the median case, 75% of the ob-
jects loaded from a page come from external hosts. This
is likely the result of the wide use of CDNs, image and
video hosting services, and externally served ads. While
they certainly increase the complexity, it is not, how-
ever, obvious that the increase of external objects re-
sults in slower page loads, or that particular objects are
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Figure 1: CDF of fraction of objects with non-origin
hostnames from the Alexa Top 500.
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Figure 2: CDF of the number of outliers for the Alexa
Top 500, from 25 vantage points.

loading poorly. However in previous work [7], the num-
ber of external hosts has been found to correlate with
high page load times.

To understand the specific user-experienced behav-
iors encountered as a result of this added complexity
we conduct a further analysis. Here, we again load
the Alexa Top 500 from 25 vantage points distributed
around the world. For each page, we consider the rela-
tive performance of objects, labeling performance out-
liers using a method we will discuss more fully in Sec-
tion 4.2.1.

Figure 2 shows that over 60% of sites in this set fea-
ture at least a single performance outlier, and 20% of
sites feature at least 4 such outliers. Such a figure is
not surprising given the large number of external servers
that sites contact: it becomes quite likely that at least
one of them will be under-performing.

Oak is able to offer visibility of such outliers and al-
lows the the creation of user-targeted pages which side-
step poorly performing external hosts. By basing the
provider decision on observed performance, Oak is fur-
ther agnostic to the cause of such poor performance. If
a server is slow to deliver an object relative to others
seen by the client, Oak will attempt to switch providers
if possible. Oak can therefore manage issues caused
by everything from short term congestion to long-term
network misconfiguration. Since many site operators al-
ready contract with multiple CDNs and take advantage
of numerous external services [3], the potential burden

counter.yadro.ru | Ads/Analytics
www.dsply.com | Analytics
d31gbvlctheecs.cloudfront.net | Analytics
rtb-ap.vizury.com | Ads/Analytics
ib.adnxs.com | Ads/Analytics

Table 1: The most frequently seen outliers and their
categories. Advertisements, social networking, and an-
alytics dominate.
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Figure 3: Fraction of outliers which vanished after vary-
ing intervals.

of finding a replacement is lowered.

2.1 Outlier Characterization

Table 1 shows the most frequently seen outliers across
all our measurements in Figure 2. We further provide a
determination of the category of the resources fetched
from that domain. External advertising, analytics, and
social networking components appear to dominate these
outliers. Specifically, outliers are characterized by being
external additions to sites, rather than just externally
hosted assets, increasing their potential for flexibility.

We further wish to understand the potential improve-
ment that Oak may have on a site’s operation. In the
case of dynamic pages, providers may change overtime,
and therefore replacing certain components may have
long term effects, while others will offer primarily short
term gains. To this end, we consider the consistency of
outliers, that is, for how long a given server appears as
an outlier for a particular client.

Figure 3 shows the fraction of outliers which changed
over time, relative to the results shown in Figure 2,
considering 1 day, 2 days, and 5 days. In the first
day, there is a significant drop off, with 52% of outliers
changing after a single day in the median case. How-
ever, on subsequent days the set of re-occurring outliers
remains consistent, remaining nearly unaltered after 5



days. Therefore, while some performance outliers are
ephemeral, vanishing over short time scales and likely
the result of temporary network conditions, about half
of them are consistent, appearing reliably. This sug-
gests that Oak must be prepared to handle both types
of performance deviation.

It is important to understand that the presence of
such outliers does not necessarily mean that those out-
liers are on the critical path in a site’s loading. As
such, they may not directly increase the page load time.
However, the objects loaded from outliers are loading
slowly, suggesting components of a site, which the site
operator saw fit to include in the first place, are per-
forming poorly. This potentially diminishes their value
and damages the user experience. Moreover, the per-
formance of these outliers is hidden from the site op-
erators, making them difficult to detect and address in
traditional settings.

3. RELATED WORK

Web performance has long been a concern at the fore-
front of Internet research. Individuals want their Inter-
net experience to proceed smoothly and quickly and
businesses and commercial interests aim to make their
sites appealing to consumers [6, 29]. However, the com-
plex nature of this challenge has increased significantly
since the dawn of the web, with the vast majority of sites
pulling from many servers, generating dynamic content
on the fly, aided by Javascript and other web script-
ing technologies [7, 20, 30, 33]. Others have explored
the performance of web systems and various protocol
upgrades and environments [12, 34, 36]. Oak builds
on many of these observations, and seeks to incorpo-
rate aspects of these measurements into its live client-
based observations. Many of these works have further
explored the nature of JavaScript loading and execution
dependencies. Oak focuses on a potentially orthogo-
nal problems and instead is only concerned with which
components of a page caused connections to particular
remote servers.

Various solutions have been proposed to try and re-
duce the latency associated with web access, including
object prefetching [9, 13, 25, 26], web page paralleliza-
tion [23, 24|, higher granularity cacheing [35], and re-
dundancy [10, 32]. However these approaches generally
propose changes to client behavior, rather than adapt-
ing the behavior of the service to observed performance.
In Costlo [39], the authors further explored the most
effective combinations of redundancy, but don’t incor-
porate past client feedback. With Oak, servers actively
adapt to communicated client performance, which could
likely be augmented with many of the above systems
and approaches.

Other systems have explored how to choose between
cloud providers, which may overlap with choosing be-

tween components on a page. Measurement studies
have been performed on cloud services and the perfor-
mance of different workloads [5, 16, 19]. Rather than
provide static analysis, Oak aims to measure and apply
changes to problematic providers in real time. Addi-
tionally systems which use multiple cloud systems for
security, performance, and configuration benefits have
been developed [2, 4, 17, 21]. Conductor [37] and
SPANSstore [38] provide systems which balance cost and
latency when choosing cloud providers. C3 [31] reduces
tail latency in a databases running on EC2 by incor-
porating server feedback about current load. C3 [15]
presents a deployed system for optimizing CDN selec-
tion for streaming video. Oak is designed to be gen-
eral, considering live client performance on all aspects
of a page, such as advertising and general CDN per-
formance, making it fundamentally different from CDN
brokering, replica selection, and application specific tech-
niques.

Another approach to improve user experience is to
alter the way in which the site loads. In Klotski [8],
users specify portions of a site to prioritize by way of
utility functions which describe the important portions
of the page, and the system attempts to deliver them
within a time budget. While similar in its approach to
altering the download behavior, Oak does so in response
to client feedback, and directly from the server itself,
altering where content is downloaded from, rather than
its ordering.

Some have considered web performance a network
challenge, asking how the networking side of web inter-
actions could be improved to push through more data,
faster [11, 18]. Others have pursued deeper changes to
the lower layers of the Internet to try and optimize web
performance [14]. Oak is intended to be an applica-
tion layer change, enabling additional communication
between clients and servers, and is entirely compatible
with such improvements.

4. OAK

In this section, we present the design of Oak, explor-
ing the details of how Oak receive performance informa-
tion from individual users, how this information can be
used by Oak to activate rules which modify the pages,
and how further insights can be drawn from this data.

Oak consists of two main components: a server and
a client. The server operates side-by-side a site’s web
server, modifying outgoing pages according to decisions
made based on client reported performance and a set of
operator-determined actions. The server is further re-
sponsible for processing incoming client data and record-
ing the resulting changes. The client runs on end user
machines, likely as a browser modification, is responsi-
ble for measuring the performance when loading pages
and objects, and reporting these measurements back to
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Figure 4: The Oak page performance analysis interac-
tion.

the server.

Oak performs two primary actions: performance anal-
ysis, which processes incoming performance data and
page modification, which alters outgoing pages for each
individual. We now consider each of these interactions
in greater depth.

Performance Analysis Figure 4 presents an overview

of this process. First, the client loads the default page
from the Oak enabled server and the server responds
with the default version of the requested page and an
identifying cookie (1). As a result, the client will likely
fetch content from a number of external services (2).
Since the client is Oak enabled, it generates a perfor-
mance report, which it sends back to the server via
HTTP POST, along with its identifying cookie, allow-
ing the server connect its performance with the particu-
lar client (3). This report contains information on which
external servers the client communicated with, the size
of the objects loaded from each of those servers, and
download times for each loaded object.

When the Oak Server receives this report, it analyzes
the performance, and determines which, if any, servers
were operating outside of acceptable bounds (4), a pro-
cess which we discuss in detail in Section 4.2.1. Any
such servers are labeled as violators. These violators are
then checked against a set of operator specified rules,
activating any rules which pertain to objects on the vi-
olating servers (5). We discuss the specification and use
of the rules in greater detail in Section 4.1. We discuss
the process of rule activation in Section 4.2.2.

Page Modification Figure 5 outlines the page mod-
ification process. When a request for a page (with an
identifying cookie) arrives at the web server (1), the
HTTP response to the user’s request is further pro-
cessed by Oak. In particular, Oak considers a set of
currently active rules for that user (2). These rules al-
ter the page so as to change the loading of particular
external resources, either by eliminating them from the
page, or providing an alternate server or provider. Next
the rule-modified page is delivered to the client (3), and

(4)
External External External
D E F

Figure 5: After Oak has detected violators, it provides
alternative external servers.

the client contacts external servers (4), which have been
selected as alternatives to the previous external servers.

Both of these processes are performed at the wuser
level. Each client submits its own performance informa-
tion, which is then considered against its own history.
Rules are then activated on a per-client basis, mean-
ing that outgoing pages are modified based on user-
perceived performance. This focus on client level be-
havior allows Oak to address performance issues that
may not be visible on the aggregate, and make deci-
sions that best benefit each individual client.

4.1 The Rules

Here, we present a detailed look at the rules Oak em-
ploys to act on operator specified alternatives. The core
idea is that the rules allow for the abstract description
of resources and their potential alternatives. By acti-
vating a rule, Oak can prevent a client from connecting
to a server with known poor performance, and instead
connect to a faster server or provider. For example,
if a rule specifies an advertisement from a particular
provider with which a client sees poor performance, it
can switch to an alternate server or provider. Since
these rules will potentially alter the appearance of a
page, as well as the set of hosts and third parties that
clients contact, they must be generated directly be op-
erators and cannot be generated automatically.

In order for Oak to alter the operation of a site in a
meaningful way, it performs actions specified by a set
of operator defined rules. These rules consist of: A rule
type, a block of text representing a default object, a
block of text representing an alternative object, a time
to live, a scope, and a potential list of sub-rules. For
each user, each rule can then be activated. The result of
the activation, and how the rule is activated, depends
on the type of rules. The time to live indicates how long
the rule should remain activated before it is deactivated,
and the scope is a path or regular expression which in-
dicates to which pages within a site a rule should be
applied.



Oak allows for three types of rules. The first, Type
1, indicates that the block of text representing the de-
fault object should be removed if the rule is activated.
No alternative object is necessary for Type 1 rules. A
Type 2 rule indicates that the specified object can be
replaced with the same object at an alternative source,
specified by the alternative object text. Oak will simply
replace occurrences of the default object text with the
alternative object text. Finally, Type 3 indicates that
the default object can be replaced with a non-identical
object specified by the alternative object text.

By specifying alternatives to Oak using this format,
operators authoring rules are able to easily single out
both directly included objects (e.g., <img> tags), or
larger more abstract objects, such as inline scripts, or
even collections of objects that have some abstract form
(e.g., many scripts and objects together). We discuss
the specifics of how rules are activated and applied in
Section 4.2.2.

Rules may also load sub-rules. These rules are sim-
ple replacements which occur only if the parent rule is
activated. These allow operators to specify potentially
more elaborate changes to a page in the event of the
initial rule activating, without requiring the trigger of
more full-fledged rules.

As an example, consider the following rule, which re-
places an externally included JavaScript in a script tag
with the same JavaScript at an alternative source:

(2, #Replacement Type

"<script src="http://sl.com/jquery.js">",
"<script src="http://s2.net/jquery.js">",
0, # Never Expire

*) # Site wide

This rule is given a rule type 2, as the alternative pro-
vides an identical object. The replaced blocks replace
script tags which refer to an alternate server. In this
example, we’d like our rule to be permanent, and there-
fore set a TTL of 0. Finally, as this particular object
is used site wide, we set the scope to be the entire site,
allowing Oak to direct the user to a better server for all
sub pages. While the example demonstrates a simple
tag replacement, the rules could describe much larger
objects, for example in-lined JavaScript, or a number of
tags.

4.2 Performance Analysis

When a user submits performance information, Oak
must process this information in a way that allows it
to meaningfully measure the performance of external
providers. This task is made challenging by the large
amount of noise that HTTP servers regularly demon-
strate, as well as the variation in file size, and therefore
the relative cost of overhead.

To develop a sane measure in such an environment,
Oak begins by grouping all objects by the IP address to

which the client ultimately connected, keeping track of
all related domain names. We then consider the aver-
age time for small objects, and the average throughput
for large objects. Small objects are defined to be any
object less than 50 KB. We measure the average time
to download each of these small objects. For larger ob-
jects, in excess of 50 KB, we consider the throughput
achieved in downloading each object and then compute
the average throughput for all objects collected from
that IP.

In this way, Oak is able to generate a server-oriented
report of the performance a client achieved, considering
the average performance of small and large objects for
each. These reports make no decisions on what objects
may need to be acted on, but instead stores the raw
information about the observed performance.

4.2.1 Violator Detection

Next, using the provided report, Oak performs a page
analysis. Specifically, it will determine which of the ex-
ternal servers it contacted are under-performing relative
to the others, as seen by the client. Since clients may
be widely distributed over networks and geography, it is
critical that this determination be made in a way that is
specific for this user, and relative to the performance of
other servers. For example, users on narrow-bandwidth
long-haul links will likely see low performance no matter
which servers they are communicating with, and Oak
need not waste its time with such cases.

To this end, we compute the Median Absolute De-
viation (MAD) for the small objects timings and the
large object throughputs. The MAD gives the median
value of the deviation from the median of a population,
providing a measure of variance that is less effected by
outliers than a standard deviation. We compute the
MAD for the loading of a site with object times (or
throughputs) z; as

MAD = median;(|z; — median;(z;)|).
We then label all servers whose performance was worse
than the median (i.e., longer time, lower throughput) by

more than twice the MAD as being potential violators.
Formally, the server x; is a violator if

time(xz;) > mediangme(x;) + 2 * MADyime,
or
tput(z;) < median,y(z;) — 2 % MAD pyt.

In the event that a server has both small and large ob-
jects, a violation of either type will result in the server
being labeled as a violator. We explore the sensitivity
of such a criteria in Section 5.

4.2.2  Rule Activation

Next, Oak must determine if the client-reported per-
formance warrants the activation of an operator speci-
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Figure 6: A simple example of connection dependence.
The client must contact each of the downstream servers
for some piece of content.

fied rule. In particular, this means that Oak must de-
termine which specified rules should be activated for
the current user based on the performance of individual
servers.

To this end, Oak considers each of the servers which
it determined to be in the set of violators. Then for
each rule, the rule is activated for that user if any of
the following conditions are met:

e Did the rule contain a reference to an explicit ob-
ject hosted on a domain that resolved to the vio-
lating server?

e Did traffic from the violating server include any
domain names which appear in the default object
text of the rule?

e Did the rule contain external JavaScript which sat-
isfies either of the above?

We now consider a detailed breakdown of the above
conditions. It is important to note that Oak is not con-
cerned with the execution or loading dependencies as
previous systems have been [8, 20, 33, 34]. Instead, Oak
simply needs to know if a block on a page (i.e., a rule)
caused the connection to an external server, a weaker
condition, which we call a connection dependency.

Figure 6 gives a simple example of connection depen-
dence. In the example, a user loads page.html from the
origin server, which includes an external script, which
it then loads from Server 1. This script, in turn, causes
the loading of another object, image2.jpg. As described,
Oak isn’t concerned with any execution, ordering, or
load dependencies: Oak need only determine that the
original script tag on the HTML page resulted in the
connections to Server 1 and 3.

Direct Inclusion We refer to the first two of the
above conditions as direct inclusion. In particular, these
are objects which directly appear on a page that we can
tie to a violating server. The first condition scans the
rule for src attributes in HTML tags. If it finds a source
which matches a domain that lead to a violating server,
we know that tag lead to the loading of an object from
that server, and the rule should be activated.

Rule: <text, alt, type, ttl, scope>

Unmatched ! Matched
1
1
S; S, i
i
!
S, € text
S3 S4 ——— S4
1
]

Figure 7: If a server matches a rule, that rule is then
activated.

In addition to src attributes, a page may include
inline scripts which refer to external objects. These
scripts may populate existing portions of the page’s
DOM tree and otherwise load objects from external
sources. However, these scripts often do not contain
well formed URLSs, and instead construct the final URL
programatically. In this case, we perform a regular ex-
pression search of the rules for the domains associated
with each violator. If such a domain exists in the script,
it is likely responsible for the ultimate connection to
that server. Figure 7 shows an example where a server,
Sy is explicitly included in the text of a rule, and there-
fore moved from the set of unmatched servers to the
matched servers.

External JavaScript However, not all JavaScript
on a page is inline: a common model is to load scripts
from external sources, which may then load objects from
additional external servers. Indeed, our first two con-
ditions would fail to detect the connection between a
violating server and a rule which contains such scripts,
as seen in Figure 6.

We therefore consider the following additional pro-
cedure. When the user submits object timings, Oak
considers all external scripts loaded by the user. It
then checks the source domain of each of these exter-
nal scripts against the rules under consideration. If the
script domain appears in a rule (using either of the
above conditions), the script is then labeled as being
activated by that rule. Oak then collects the labeled
JavaScripts, loading them directly from the external
sources. Next, Oak reconsiders the first two conditions
on each violating server and rule, but now searches not
only the text of the rule but the text of any external
scripts that the rule loads. In this way Oak is able to
extend its view to externally loaded objects. Impor-
tantly, Oak does not modify these external scripts, it
simply uses them to expand the surface to which a rule
might match.

To demonstrate that this methodology is able to cap-
ture the performance of a significant fraction of the be-
havior of a page using the above methodology, we con-
sider the following experiment. On a local machine, we
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Figure 8: CDF of fraction of servers that were matched
for each of the Alexa Top 500.

load the Alexa Top 500, once with the Oak client, gen-
erating a record of all contacted servers, and once with
a simple wget command, which downloads the initial in-
dex page. We’d like to know what fraction of servers can
be mapped to a potential rule that describes a section
of the collected indices. We therefore treat the entire
index page as a single rule, and attempt to match each
server to it. Any servers which do not match therefore
represent objects that are loaded as the result of scripts
or other methods which mask the origin from Oak.

Figure 8 shows a CDF of the match rates for each
of the three levels. When considering only strict in-
cludes, we are only able to match 42% of servers in the
median case, meaning that at this level we may fail to
activate a significant set of rules. By adding in text
matches, this number improves significantly, with the
median case now matching 60% of servers. Finally, by
including the first layer of included JavaScript objects,
we see that the median performance further increases
to 81%, allowing rules to specify a significant fraction
of most servers. We note that this process could be
continued to an additional layer of external inclusion,
however, the payoff is rapidly diminishing. The remain-
ing contacted servers generally consist of servers likely
contacted by way of dynamic scripts, which decide on a
server on the fly, or in response to external inputs, for
example internal page management, or external track-
ing and analytics scripts.

4.2.3 Rule History

In the course of operation, it may occur that Oak
has activated a rule, but the alternate server is later
deemed a violator. In such cases, Oak must determine
whether or not to leave the rule active, or to deacti-
vate it. To address this, when Oak activates a rule, it
records the difference between the median performance
and the performance of the violator responsible for the
rule activation. If, at a later time, the alternate becomes
a violator, Oak considers the alternate’s distance from
the median. Oak then chooses the action which min-
imizes this distance, attempting to retain rules which
outperform the default.

4.2.4  Policy

In addition to the technical components of the rule
activations described above, Oak can also be configured
with operator specified policies. Such policies are nec-
essary to accommodate the often complex relationships
between a site operator and their third party providers.
For example, in the case of a CDN, using an alterna-
tive provider may represent a significant expense, and
should only be done sparingly. In such cases, Oak can
tighten the restrictions on when a rule can be activated,
for example by only activating a rule after 3 violations.

Oak further allows for the specification of multiple
alternatives in each rule. By default, Oak progresses
through the list linearly with each activation, however
this can further be configured via a selection policy.
Since Oak is able to observe clients directly via the web
server, it could further discriminate the activation of
rules based on client information, for example by IP
subnet, or other network level features.

The scope parameter of rules further allows for the
implementation of a rule-specific policy. Rules can be
set with very wide scope, for example to include all the
pages on a particular site. In such a situation the in-
formation Oak learns when a users first navigates to a
site could be effectively implemented on all subsequent
pages. This could be especially useful when a problem-
atic provider is used throughout a site.

4.3 Page Modification

Finally, we discuss the alterations Oak makes to a
page before finally delivering it to a client. When the
client connects, it presents Oak with a unique user ID
via HTTP cookie. Oak then loads the requested page
via the existing web server. Oak applies the user’s active
rules, removing text where specified by Type 1 rules,
and replacing text for Type 2 and 3 rules. Finally, Oak
serves this customized page to the user and the process
repeats.

In the case of a type 2 rule in which an external host
is replaced with another that serves an identical ob-
ject, there is potential for interference with traditional
browser chaching. In particular, since the location of
a resource was altered, the browser may re-fetch an
identical object, ignoring a usable copy in its cache
and therefor incurring fresh download costs. In order
to avoid such pathological behavior, Oak informs the
browser of objects subject to type 2 rules by way of a
custom HTTP response Header. The client is then able
to determine if an object in its cache is potentially still
applicable.

Critical to Oak’s operation is the fact that rule acti-
vation and subsequent changes to the page are done on
a user-by-user basis. Therefore any changes that a user
observers are in direct response to the performance that
the user reported. This per-user approach allows users



to only induce changes that effect them. Oak works
to provide a user customized experience to such users,
aiming to optimize page performance in terms of that
user alone, rather than aiming for best general-case so-
lutions.

S. EVALUATION

Here we consider the performance of the Oak system
and demonstrate a number of the underlying component
behaviors.

Implementation The client implementation of Oak
consists of modified versions of the WebKit browser and
PhantomJS which collect and send page reports, using
infrastructure designed for use with outputting HAR
files. Our page reports includes only a limited set of
fields: the loaded URL, the size of the loaded object,
and the timing information of that object.

The server is implemented as a multi-threaded server
in Python, which serves a dual purpose as both the web
server and the Oak server platform. We use regular
expressions in order to apply active rules, allowing for
straight forward and rapid replacement of text before
each page is served.

In addition to the information necessary for Oak to
perform, the server also maintains log information on
the objects downloaded from particular servers, the ac-
tivation and removal of rules, as well as aggregate site
performance. For the majority of our experiments, Oak
is run on a single machine on our campus network, al-
lowing it the full bandwidth of the available connec-
tion. All other servers in this experiment are either pro-
duction servers beyond our control, or multi-threaded
Python servers which simply respond to requests for
files and employ HTTP 1.1 with no modification.

Unless otherwise stated, when considering file servers,
we consider servers spread across North America on
Planet Lab nodes selected for geographic diversity. Our
clients consist of 25 Planet Lab nodes, half of which
are in North America, and the remainder evenly spread
between Europe and Asia (including Oceania).

In order to evaluate the functionality of Oak, we first
consider Oak’s ability to respond to degrading perfor-
mance of a single server. Next, we demonstrate Oak’s
ability to converge to the best performing set of pages
when loading from multiple external services. Finally,
we demonstrate that Oak is able to make appropriate
decisions and improve resource download time on repli-
cated versions of existing sites.

5.1 Sensitivity

First, we demonstrate Oak’s ability to respond to de-
grading performance using a relative performance mech-
anism. In particular, we’d like to show that in cases
where clients experience strong performance in general,
Oak is able to detect servers that begin to perform
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Figure 9: PLT Ratio between the default and Oak for
increasing injected delays.

poorly as soon as they begin to degrade. On the other
hand, servers which see a generally worse performance
have a higher threshold for detection.

We consider a scenario in which a page is loaded from
a client who loads objects of varying sizes from 5 exter-
nal servers. We repeatedly load this page. With each
subsequent load, a single external host adds a small de-
lay before responding to HT'TP requests. For each iter-
ation, we perform this process once with Oak configured
with an alternate for that server, and once with the de-
fault server. We repeat the entire experiment for 20
iterations with 11 different delays ranging from 250ms
to 5s. We further consider 3 clients in North America
(“NA”), Europe (“EU”), and Asia (“AS”).

Figure 9 shows the average ratio of page load times
(PLT) between the default and Oak cases, where er-
ror bars show a standard deviation. We see that in
the case of North America, when all servers are travers-
ing short paths and performing similarly, Oak detects
the delay early on, with delays as small as .75 seconds.
On the other hand, in the case of Europe, where paths
become longer, and therefore the user-observed perfor-
mance more spread, delays reach above 2 seconds be-
fore Oak begins to respond. In the extreme cross-global
case, delays go unnoticed until they reach 5 seconds.

This varied sensitivity demonstrates the value of Oak’s
relative performance mechanism. By only reacting to
poorly performing servers relative to other servers at
the same time, Oak avoids activating rules inappropri-
ately. While here we use geographic distance to vary
performance this principle applies in other scenarios of
reduced functionality, for example when using a mobile
device.

5.2 Benchmark Detection

Next, we show that Oak’s MAD-based selection crite-
ria results in improved performance. Specifically, we’d
like to demonstrate that Oak is able to identify under-
performing servers and make decisions that drive it to-
wards improved user performance. To test this, we con-
sider a simple website which consists of 6 sets of simple
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Figure 10: Min/Median ratio for both Oak and default
loads.

objects. Each set consists of files sized 30, 50, 100, and
500KB. The first set of these objects are hosted on the
same machine as the page index. Each of the remaining
5 sets are hosted on different external servers, in this
case 5 randomly selected North American Planet Lab
nodes. Each object is provided with headers to prevent
cacheing.

An additional 5 sets of the same objects are created
on another randomly selected set of 5 servers. A rule is
created for each of the original sets that specifies one of
the second set as an alternative using only Type 2 rules.
We thereby pair each of the 5 sets with an alternative
that serves an identical set of objects. No modification
was done to the servers to ensure differences in the pairs
hosting performance: they were selected randomly. We
then host the entire page on a web server at our local
institution running Oak with the described configura-
tion.

Next, we load the page with references to all 6 sets of
objects from 25 client locations around the world, once
with Oak enabled, allowing the system to apply any
rules which are active, and once with all rules disabled,
i.e, the default page. The pages are reloaded every 30
minutes for 72 hours.

Figure 10 shows the CDFs of the Min/Median ratio
for both the Oak loads and the default loads across all
clients. In the case of a poorly performing server, we
expect a higher occurrence of lower ratios, i.e., a smaller
Min/Median ratio. In the case of more consistent per-
formance, we expect a higher ratio, as the minimum will
sit closer to the median. We see that Oak has provided
exactly this difference, increasing the median ratio from
.3 t0 .7, and pushing 90% of loads to a ratio of above .5.
We emphasize that the magnitude of the performance
gains are a function of the network state and the quality
of the providers and reiterate that the value of Oak lies
in its ability to detect these cases of poor performance,
regardless of their underlying cause, and move towards
a well behaved configuration for each user.

During this experiment, we found that 2 of the Planet
Lab servers were performing significantly worse than
the others. As these 2 servers were used in the default
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Figure 11: The average PLT ratio over 3 days. Regular
variations can be seen in the performance gains.

page, Oak was readily able to detect them and switch to
the alternative providers, which provided consistently
improved performance. To quantify the improvement
seen overall by avoiding these non-performant servers,
we consider the ratio of total page load time between
the default and Oak loads over time.

Figure 11 shows the average ratio over all 25 clients
for the duration of the experiment, where the error bars
show a standard deviation. We see that during the
night, Oak performance was near that of the default.
As the default providers became busy during the day,
Oak was able to significantly improve the total page
load time. While in these cases Oak was able to im-
prove the load times by over 10x, these gains are ex-
actly proportional to the delays incurred at the poorly
performing servers. Oak is able to avoid incurring poor
performance after the first load, as long as a suitable
alternative is available.

5.3 Performance on Existing Sites

While our previous evaluation demonstrated the abil-
ity of Oak to detect non-performant servers on real
Internet links, and our analysis in Section 2 showed
that there exist non-performant objects on real web-
sites, we’d like to demonstrate Oak’s ability to detect
and correct such issues on existing sites. We therefore
consider the following experiment built on this premise.

Here, we replicate existing sites by copying them onto
a server in our control which is running Oak. Externally
hosted objects are still hosted at third-party production
servers that we do not control. We then load the site
from external clients and demonstrate that Oak is able
to identify the violating servers to which the site directs
clients, and switch to viable alternatives when available.

Selecting Sites First, we select a set of sites to repli-
cate. We again consider the Alexa Top 500. Necessar-
ily, there exist two main categories of sites: (i) Low-
expectation sites, which have a small to moderate num-
ber of external servers, hence their performance is less
likely to be improved by Oak. (i) High-expectation
sites, which utilize a large number of external servers,
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H1 H2
youtube.com ok.ru
msn.com flipkart.com
wordpress.com qunar.com
naver.com hulu.com
adcash.com xhamster.com

Table 2: Selected sites for low and high expected im-
provement.

hence their performance is likely to be improved by
Oak. We emphasize, however, that all sites would ben-
efit from implementing Oak, since there may still exist
clients in circumstance which would benefit from using
alternate servers. We indeed show that this is the case.

To select sites from the first category we consider 5
sites with more than 5 but fewer than 15 external hosts.
We label these HI sites. Likewise, we take 5 sites with
more than 15 external hosts and label them as H2 sites.
In both cases, we select sites which were able to achieve
the highest rule-activation match rate. Table 2 shows
the selected sites.

Generating Rules To run Oak on such sites, we
must configure Oak with a set of rules, providing al-
ternatives for each site. To this end, we consider every
external domain contacted during a normal load of each
site. We then generate a type 2 replacement rule for ev-
ery observed domain, allowing Oak the greatest oppor-

11

tunity to offer each site improvement, though we note
that not all of these rules will necessarily be activated
during the course of the experiment.

Alternative Servers In order to offer alternative
servers which offer improved performance, we replicate
all external objects to 3 web servers: one in each of
North America, Europe, and Asia. Each client is then
directed to its closest alternative when a rule is acti-
vated. This setup allows us to emulate an alternate
provider, which may present clients with reasonably
close replicas.

Performance We load each page from each of the
clients 15 times with three conditions: the default page
without Oak, Oak with all rules activated, and Oak with
the usual rule behavior. Since a portion of our sites
come from each North America, Europe, and Asia, we
have clients which load resources from servers at varying
distances. We are thus able to consider two classifica-
tions: close and far. Therefore, we consider 4 possible
conditions: H1 sites with close and far clients, and H2
sites with close and far clients. In our evaluation, we
consider cases in which rules were activated, i.e. we ig-
nore cases in which no rule was ever activated, as the
performance matches the default exactly.

First, we wish to explore how often Oak correctly
chose to activate or deactivate a rule. We therefore
must first determine a correct value for each rule. To
make this determination, we consider the timing results



of our loads without Oak (i.e., the default server) and
with all rules forced on. If the default server is faster
for the majority of objects within a rule, the correct
setting is to disable the rule. If the active-rule value is
faster, the correct setting is to enable the rule and use
the alternate.

Figure 12 presents the fraction of correct choices over
all collections for each of our 4 groups. In a perfect
scenario (no errors), we would expect all the figures to
show a vertical line at x = 1.0. We note that all con-
ditions feature cases with incorrect choices. A portion
of these are due to Oak’s experiential approach: Oak
must use a server before it has information about that
server. It must necessarily activate rules which are later
deactivated when the alternate was non-performing. In
the H1 cases, nearly 80% of choices are entirely cor-
rect, i.e., as shown in Figures 12(a) and (b). In the H2
case, approximately 74% of choices are always correct,
as shown in Figures 12(c) and (d). Notably, there are
more rules in the H2 cases, as there are more external
domains, creating the more varied results.

Figure 13 presents the resulting difference in object
performance: here we consider the ratio of the default
object timing to the timing for the choice Oak made
(either the default or an alternate). With the H1-Close
condition, we see close-to-even-spread performance, as
the alternates and default server provided very similar
performance, though Oak’s choice was an improvement
for 57% of cases. In the remaining three conditions,
Oak’s choices offered improvement for significant frac-
tions of users: 66% for H1-Far, 80% for H2-Close, and
77% for H2-Far. In nearly all cases where the default
performs better, the difference is within normal varia-
tions.

The performance variation across conditions demon-
strates the scenarios where Oak is most readily able to
offer gains: when a site is well provisioned with few ex-
ternal objects (H1-Close), Oak generally offers no stan-
dard gains, but will protect against performance dips.
In cases where clients see varied performance (H1-Far,
H2-Far), Oak is able to correctly switch to alterna-
tives. Finally, in cases of complex sites with many exter-
nal providers (H2-Close), Oak is able to detect under-
performing providers and activate possible alternatives.

Individual vs. Common Problems Here, we ex-
plore if Oak resolves common problems, seen by many
clients accessing a site, or individual problems, seen by
only a small fraction of users. The idea is to see which
types of problems Oak is solving: specific issues that
may be dependent on the particular conditions of a
client, or more general issue with external providers.
To this end, we examine how often each of our rules is
activated across users and sites.

Figure 14 presents a CDF of rules over the fraction
of users which activated the rule on a site. We see that
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Figure 14: Cumulative activation by fraction of rules.

Individual
vdp.mycdn.me
imgl.qunarzz.com
i.ytimg.com
ut06.xhcdn.com
imgla.flixcart.com

Common
fonts.googleapis.com (88%)
insights.hotjar.com (63%)
ad.doubleclick.com (38%)

adsl.msads.net (32%)
pubads.g.doubleclick.net (31%)

Table 3: Examples of providers domains from individ-
ual (< 18% of activations) and commonly (> 18%) ac-
tivated rules.

80% of rules never account for more than 18% of their
sites activations: most rules are only activated by a few
users and may be the result of a client-oriented condi-
tion, for example a resource always being in a distant
location from the user. The first column of Table 3
presents examples of such sites. These domains gener-
ally seem to be associated with externally hosted site
resources, such as images, and may likely reflects the
regional nature of the sites (e.g. Resources for Chinese
travel site qunar.com performs poorly only for clients
outside of China).

As we see in the figure, the remaining 20% of rules ac-
count for higher fractions of activations, with the most
active rule, an object from Google’s public font API,
accounting for 88% of wordpress.com rule activations.
The larger fraction taken by each of these external do-
mains suggest that a potentially significant number of
clients are seeing sub-par performance from those ad-
vertising providers.The second column of Table 3 shows
that ad providers are some of the most frequent com-
mon offenders. Here, the percentages of activations are
per site, so all rules add up to greater than 100%. The
presence of such frequent violators, as well as the high
rate of less-commonly activated rules, emphasizes the
importance of Oak’s user-oriented approach, which can
simultaneously address both scenarios.

6. DISCUSSION

While Oak could employ absolute conditions of per-
formance, for example a maximum time or minimum
throughput for a specific object, we chose to focus on
relative performance. In particular, we use the median
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and the MAD to determine which external providers are
not performing well. By doing so Oak is able to accom-
modate clients who may encounter generally poor per-
formance. Using a relative measure further eliminates
the need to perform parameter selection that might oth-
erwise require regularly updated measurements.

Oak’s client-reported approach further enables it to
readily function with dynamic pages. By performing
its analysis on only those resources which the client
observed, Oak is able to make generic determinations
about their performance, regardless of what might be
expected, i.e., operators need not specify which servers
and providers a client will contact before-hand in order
for Oak to analyze the performance. Operators could
therefore indicate a large scale set of rules, providing
alternatives for any component of the site which may
ultimately damage user performance.

Furthermore, by bringing client-observed performance
directly into the process of selecting external servers,
Oak creates incentive for third-party services to improve
their performance. Indeed, if these services perform
poorly, they will actively lose business, as Oak selects
better performing options. Examining which rules are
being activated by clients enables site operators to de-
termine which components of their sites are performing
poorly, effectively using the performance reports of Oak
as an offline auditing tool.

Overhead The added communication performed by
Oak is not without overhead. Indeed, communicating
the performance report back to the server means clients
must explicitly send data back. The size of these re-
ports is further dependent on the total number of ob-
jects fetched while loading the page. As described in
Section 4, Oak uses a report format similar to a HAR
file, but with a limited set of information. Figure 15
presents the distribution of report file sizes when an Oak
client loads the Alexa Top 500. We see that these values
remain entirely within manageable ranges for all clients.
In the median case reports are below 10KB, and in the
worst-case only 345KB. Because performance reports
are uploaded to a server after the page has been down-
loaded, this process does not affect the user-perceived
performance.

Alternative Mechanisms In addition to reports
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which rely on browser modification, other mechanisms
could plausibly be used. In particular, the JavaScript
Resource Timing API provides a mechanism by which
client-side JavaScript can report network performance
information back to servers [1]. However, for the re-
source timing API to function with external objects,
which is the purpose of Oak, the external provider must
explicitly include an authorizing header. This opt-in be-
havior means many providers are not visible with the
API, rendering Oak less effective. We therefore believe
that client modification is the best solution at present.

7. CONCLUSIONS

In this paper, we presented Oak, a system that pro-
vides a mechanism by which site operators can take con-
trol of the complexities of modern websites and provide
users with targeted resources. Indeed, by using perfor-
mance feedback directly from individual users, Oak can
understand the full performance of a site and optimizes
the end-user experience for each user individually, pro-
viding user-targeted HTTP performance. Oak does so
by focusing on limiting exposure to user-reported per-
formance outliers. Moreover, Oak provides a straight-
forward rule specification scheme which allows site op-
erators to specify precisely how they would like Oak to
respond to such outliers. We demonstrated that Oak
is successfully able to detect outliers in our benchmark
experiments, where it was able to avoid servers which
were causing clients to experience poor page load per-
formance. We further demonstrated that Oak is able to
detect such outliers on existing websites. When given
the opportunity to provide clients with an alternative,
Oak was able to improve performance. Our chief con-
tribution lies in providing a system that empowers sites
with an exceptional auditing mechanism; the mecha-
nism helps sites fundamentally regain control over the
performance seen by their clients, while tailoring con-
tent for each client individually.
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