NORTHWESTERN
UNIVERSITY

Electrical Engineering and Computer Science

Compiling Minimum Incremental Update
for Modular SDN Languages

March 26, 2014

X. Wen, C. Diao, X. Zhao, Y. Chen, L. Li, B. Yang, K. Bu
Technical Report NU-EECS-14-01

Abstract

Measurement results show that updating rules on switches poses major latency overhead during
the course of the policy update. However, current SDN policy compilers do not handle policy
updates well and generate large amount of redundant rule updates, most of which modify only
the priority field. Our analysis shows that the lack of knowledge on the rule dependency
and the consecutively distributed priority numbers are the fundamental problems behind the
redundancy. In this paper, we tackle the problems through 1) a series of efficient algorithms
that build rule dependency along with the compilation, and 2) an online optimization algorithm
that maintains a scattered priority distribution with constant amortized cost. Our prototype
evaluation demonstrates that our proposed patch eliminates nearly all the priority updates.



Compiling Minimum Incremental Update
for Modular SDN Languages

Xitao Wen
Northwestern University

Yan Chen

Northwestern University

ABSTRACT

Measurement results show that updating rules on switches
poses major latency overhead during the course of the policy
update. However, current SDN policy compilers do not
handle policy updates well and generate large amount of
redundant rule updates, most of which modify only the
priority field. Our analysis shows that the lack of knowledge
on the rule dependency and the consecutively distributed
priority numbers are the fundamental problems behind the
redundancy. In this paper, we tackle the problems through
1) a series of efficient algorithms that build rule dependency
along with the compilation, and 2) an online optimization
algorithm that maintains a scattered priority distribution
with constant amortized cost. Our prototype evaluation
demonstrates that our proposed patch eliminates nearly all
the priority updates.

1. INTRODUCTION

Control plane modules are dynamic. The forwarding
policies generated by the controller modules often have to
dynamically react to network events with changes to the
forwarding behaviors. Static forwarding policies that are too
large to fit in a single flow table may also need dynamic
swapping in reaction to the changing traffic patterns [4].
Although SDN allows a centralized approach to modify the
forwarding policies installed in distributed switches, it does
not avoid the significant latency overhead in altering the
states of switches. According to the recent measurement
results [3], state-of-the-art OpenFlow (OF) switches can
only process tens to a few hundreds of flow-mod instructions
per second, which implies that a full refresh of a 5K-
length flow table could lead to tens of seconds of volatile
inconsistent window on the data plane. Although recent
proposals on consistent updates can eliminate the potential
erroneous forwarding behaviors, they significantly increase
the latency overhead by introducing multi-stage synchro-
nization. Therefore, given a policy change, it is desirable
to generate rule updates as compact as possible.

Policy composition of SDN policy languages makes the
generation of compact updates challenging. In fact, paral-
lel composition and sequential composition interleave the
dependency relation among many rules and end up with

Chunxiao Diao
Northwestern University

Li Erran Li

Bell Labs, Alcatel-Lucent

Xun Zhao
Tsinghua University

Bo Yang, Kai Bu
Zhejiang University

one rule dependent on the policies from multiple modules.
Our experiments show that a single-rule insert often results
in modifying over half of the rules in a flow table with
the straightforward update strategy on NetKAT [1]. The
obscure dependency among rules forces the compiler to
reassign a priority value to a rule even when its content
aligns with an existing rule. The same problem applies to
all current compilers that support policy composition. We
observe the rule updates produced by several compilers, and
identify two major types of rule updates: content update
and priority update. Content updates, which involve the
modification of the predicates or actions of the rules, are
mostly direct results of the changing policy content. On
the other hand, priority updates, which only modify the rule
priorities, are mostly caused by poorly distributed priority
levels and unnecessary priority shifts. Surprisingly, the
priority updates often dominate the size of the total updates,
implying that the poorly handled priority is the major blame
for the inflated update size. In this paper, we focus on
eliminating unnecessary priority updates.

Our observation reveals two fundamental problems that
prevent the compilers from generating good priority updates.

1. Missing rule dependency clue. Although OF rules
are associated with sequential priority values, the depen-
dency relationship among rules actually forms a directed
acyclic graph (DAG) [4]. Unlike the DAG representation
that characterizes the minimum set of dependencies a-
mong rules, the sequential representation actually brings
in plenty of non-existent dependencies and oftentimes
makes avoidable priority updates necessary. Figure 1
shows an example where the dependency clue is essential
to eliminate unnecessary priority updates.

2. Consecutive rule priority. All state-of-the-art SDN
compilers generate rules with consecutive priority values
for simplicity. However, consecutive priority values
prevent an update generator from inserting rules between
two adjacent priority levels without affecting either of
them. In fact, OF specification allocates a 16-bit integer
for flow priority that allows 65536 different priority lev-
els, whereas the total number of priority levels is usually
much smaller than 65536, implying the possibility to
scatter priority values.



(a) An example of rule update.

(b) Update without dependency clue.

(c) Update with dependency clue.

Figure 1: Comparison of incremental update with vs. without dependency clue. In (b), due to the unawareness of
the independency of the left and right rule chains, the update generator has to honor the priority levels set by the
compiler and modify the priority of Rule 5, 6 and 7. While in (c), the optimal update requires only inserting Rule 8

in a new priority level.

In order to eliminate unnecessary priority updates, in
this paper we propose 1) to guide update generation with
rule dependency, and 2) to actively maintain the value gaps
between priority levels.

The challenge of the first goal rests on how to obtain the
dependency DAG. Intuitively, we can restore the dependen-
cy DAG directly from the output rules of the compiler with
an existing algorithm [4]. However, we find such algorithm
entails unacceptable O(n*) worst case computation com-
plexity, where n is the size of the flow table. For this reason,
we explore to build the dependency DAG gradually along
the compilation process, which leads to a series of O(n?)
algorithms that build dependency DAG during composition
operations. With the dependency DAG, we can generate a
provable minimum-size update with regard to continuous
priority levels (i.e., new levels can be arbitrarily inserted
between two levels).

When mapping to discrete priority values, priority updates
are sometimes necessary to make room for new levels. Intu-
itively, scattered priority values reduce the chance of future
priority shifts. Abstractly, to maintain scattered priorities
requires an online optimization strategy that makes proactive
priority updates to minimize the estimation of future priority
shifts for an undetermined policy update sequence. In this
paper, we propose k-factor strategy that maintains the
lengths of all gaps between [%k] times the average gap
length. K -factor strategy achieves k-factor gap distribution
with O(1) amortized cost of priority shifts.

To quantitatively estimate the benefit, we implement an
initial prototype as an extension to NetKAT policy compiler,
and evaluate it through benchmarks. Our experiments show
that the dependency information and a scattered priority
distribution enable the compiler to eliminate nearly all the
priority updates, and reduce the update size by an order of
magnitude.

2. BACKGROUND

Related Work.

Figure 2: The intersection of Rule A and B is shadowed
by Rule C. Thus A and B are independent, i.e. the
vertical order does not change their match space.

Several SDN policy languages (e.g., Frenetic [2], Net-
Core [5] Maple [7] and NetKAT [1]) have been proposed in
recent years. Generally, a policy language compiler takes
high-level policy descriptions and generates flow tables
that fulfill the semantics of the policies. Except Maple,
most compilers do not provide any support for incremental
policy updates. In practice, they simply compile the new
policies and replace the entire flow table of each switch.
A straightforward improvement can be made by updating
only the rules whose content or priority changes. Yet for
the aforementioned problems, a considerable number of
unnecessary rule updates still have to be conducted. On
the other hand, although Maple does not support policy
composition, it introduces tree-style abstraction to support
incremental flow table updates. However, Maple compiler
still makes a large amount of priority updates due to the
consecutive priority values.

Rule Dependency.

Intuitively, two rules are independent when their priority
order does not change the header space classification. It
is straightforward that two rules with disjoint predicates
are independent. However, the opposite statement is not
always true. For example, in Figure 2 the predicates of
A and B intersect at a non-empty area, which is shadowed
by the predicate of another rule C with higher priority. In
this case, although A N B # &, they do not depend on
each other in terms of representing the correct semantics.
Therefore, we define two rules as directly independent iff



the predicates of two rules are disjoint or their intersection is
entirely shadowed by other rules they both depend on. This
is different from the dependency defined in several other
works [7, 4], which do not consider the shadowing area.

Further, we define the indirect dependency, or depen-
dency for short, by taking a transitive closure on the direct
dependency relations, i.e. rule A is indirectly dependent on
rule B iff 3 length-n sequence of rules Seq (n € N°) that
satisfies 1) A directly depends on Seqi; 2) Vk < n, Seqy
directly depends on Seqy+1; 3) Segq,, directly depends on B.
Obviously, the dependency relation induces a strict partial
order in a flow table, and therefore forms a DAG of rules.
The dependency DAG reveals the inherent relationship a-
mong rules in a sense that it represents the minimum set
of the priority constraints in order to keep the flow space
classification semantics.

3. SOLUTION OVERVIEW

Ideally, a minimum policy update only involves the rules
whose content has changed. Having the existing flow table
and the updated one, it is easy to find the rules whose content
(except priority level) holds. However, the priority values of
these content-invariant rules may have changed in the new
table. To avoid changing the content-invariant rules, we have
to shift their priorities in the new table to the old values.
Meanwhile, such shifts may require further changes on the
rules that are dependent on the content-invariant rules, or
the rules those content-invariant rules depend on. Therefore,
the minimum set of rule dependency of the new table is the
key in generating of the minimum policy update. Such logic
leads us to the design of the update generation framework as
shown in Figure 3.

Preserving Dependency in Compilation.

In our framework, the policy compiler outputs the rule
dependency DAG to describe the dependency among rules.
Since the current compilers typically maintain the dependen-
cy via priority value, it is feasible to restore the dependency
DAG from the flow table through calculation. However,
due to the high computation complexity of the restoration,
we opt for the alternative approach to track the dependency
during compilation (§4).

Comparing Updated Flow Table with Existing One.

To find the minimum rule update, the comparer identify
all the content-invariant rules by comparing the updated
flow table with the existing one. For those content-invariant
rules, we will try the best to reuse their current priority
values unless there is a new priority level inserted into two
priority levels that are currently mapped to two consecutive
priority values. Other newly arrived rules are tagged on the
dependency DAG to feed the prioritizer. At the end, those
newly arrived rules are realized either by modifying retired
rules or inserting new ones.

Assigning Priority Values to Priority Levels.

Initially, the priority levels should be evenly scattered on
the priority value space. Upon each update, the prioritizer
assigns priority values to priority levels based on their old
values and the new dependency relation. The prioritizer
maintains the distribution of the priority gaps with certain
online strategy.

4. PRESERVING RULE DEPENDENCY

There are two ways to obtain rule dependency: to restore
from flow table after compilation, or to gradually construct
during the compilation, especially the module composition.
In our analysis, we find the dependency construction al-
gorithm proposed in CacheFlow [4] has time complexity
of O(n?) ~ O(n*) with regard to the length of the flow
table. In this section, we show the complexity analysis of the
dependency construction algorithm. Meanwhile, we explore
the latter approach and find a a series of O(n?) algorithms
to build the dependency DAG during compilation. We
describe these algorithms on the abstractions of NetKAT
local compiler. The algorithms can be easily adapted to other
compilers that conduct similar policy composition.

4.1 Constructing Dependency DAG from Flow
Table

We modify the dependency construction algorithm of
CacheFlow to reflect our slightly different definition of the
rule dependency as depicted in Algorithm 1. We then
analyze the runtime complexity of the algorithm.

input : Flow table T’
output: Dependency DAG G

foreach rule R in T in descending priority order do
C' = R.match;
foreach R; in T with R; < R in descending
priority order do
if C N R;.match # 0 then
G =GU(R, Ry);
C = C — R;.match;
R;.match = R;.match — R.match;
end
end
end

Algorithm 1: Constructing the dependency DAG.

THEOREM 1. Given the set expression representation
of flow matches, the dependency construction algorithm
has a time complezity of O(n*).

PRrROOF. The time complexity of the algorithm is de-
termined by the set operations, including set intersection
at Line 4 and set difference at Line 6 and 7. The time
complexity of set operations depends on the data structure
of the match set, which is typically represented by the set
expressions of unit predicates.



Policies from

| D Policies from
D different modules
| L different modules b

effective

b |

Syntax Compiler

‘ flow: space

‘ Policy Compiler ‘

Module
IR

<
Dependency
+ DAGs
<

(a) Match space of an ONF atom.

¢
OpenFlow

% flow table +
<

‘ Composition Compiler ‘

‘ Comparer
JL Current
DAG-level update

‘ <:I % % Composed IR@+

flow table &

o

a |

Rule Generator ‘

Prioritizer ‘ % OpenFiow
@ flow table
Flow table update

Figure 3: Overview of the solution.

Now we formally define the set expression representation
of matches. We denote unit predicates as U;, U;, which
represent any header sets that can be characterized with a
single ternary header pattern (a string of 0, 1 or wildcard).
Since unit predicates do not form a closure with regard to set
operations, the results of set operations may be represented
as expressions, such as E,, = U; U (U; N Uy) and E,, =
U; —U; = U; N 7] Further, in order to determine
whether a predicate expression is an empty set (Line 4 of
Algorithm 1), the expression has to be reduced to disjunctive
normal form (DNF) or conjunctive normal form (CNF). We
define the length of an expression as one plus the minimum
number of union operations in any equivalent form of the
expression. For example, the length of F,,, and F,, is 3 and
2 respectively.

With the above the set expression representation, it is easy
to see the time complexity of the union operation is linear to
the product of the length of both operands. We can show
that in worst cases the length of result expressions of set
difference is linear to the sum of the length of both operands,
namely O(D) = O(Ny + N2). In fact,

E,, — E,
=E,NE,

=(JUmii) V(Y Unij) (Definition of DNF and CNF)
e R

L)

:(U ﬂ Unmij) N (U ﬂm) (De Morgan’s Law)

L)

= U(ﬂ Upij N ﬂ Unkj) (Distributive Property)
ik J J

The main structure of Algorithm 1 is a nested loop.

o

Figure 4: SDN policy compilation and
our proposed patch.

(b) Hierarchical dependency of ONF
atoms.

Figure 5: Conceptual structure of

ONF atoms.

Originally, the match of each rule (i.e., R;.match) has a
constant length. However, as the outer loop proceeds, the
length of R; grows linearly with the iteration index (Line 7).
Thus the initial length of the cumulative variable C' of the
inner loop is linear to the iteration index of the outer loop.
Consider the runtime of Line 4,

O(T)

:O(zn:l*i—l—zn:Q*i—l—...—i—zn:n*i)
i=1 i=2 i=n
ZO(zn:En:o*i)

o=1 i=o0

:O(Zo*(nfo)*(n+o))

=0(n")
U
4.2 SDN Compiler Background

The compilation of high-level SDN policy languages
typically contains three major tasks, as depicted in Figure 4.
First, the syntax compiler transforms a module’s policy
from the high-level language to an intermediate representa-
tion (IR) of rule tables. Second, the composition compiler
combines the potentially conflicting rule tables from differ-
ent modules into a consistent rule table, according to the
composition relationship among modules. Third, the rule
generator translates the IR of rule tables into OpenFlow-
compatible flow table.

To preserve the dependency DAG, we propose to explic-
itly preserve dependency information during all three tasks.



First, we need the syntax compiler to output the dependen-
cy DAG, since it is a natural side product of the syntax
compilation. Second, we need the composition compiler to
maintain the dependency DAG during composition. Third,
since the rule IR may not have a one-to-one mapping with
the final OF rules, the rule generator also needs to maintain
the dependency DAG as it adds or merges rules.

NetKAT uses OpenFlow Normal Form (ONF), a subset
of NetKAT language, as the intermediate representation
towards OpenFlow flow table. An ONF flow table is
comprised of abstract ONF rules, or atoms. Structurally,
ONF forms a degenerate if-else binary tree representing
the abstract atom sequence. Conceptually, the predicate of
each abstract atom can be seen as a flow space filter with
an outline match and possibly some holes representing the
effect of the atoms it depends on, as depicted in Figure 5.

The compilation of NetKAT can be mapped to the com-
pilation framework in Figure 3. NetKAT compiler first
transforms the predicates and actions into if-else binary
trees, corresponding to the syntax compilation step. Then,
the compiler eliminates the composition operators through
ONF tree transformation, corresponding to the composition
compilation step. Finally, the rule generator transforms the
abstract atoms into concrete flow rules, corresponding to the
rule generation step.

As depicted in Figure 3, our goal is to explicitly build
the dependency DAGs along each step of the the com-
pilation. Particularly, during the compilation each ONF
fragment should be associated with a dependency DAG,
whose vertices represent ONF atoms and edges represent the
dependency between atoms.

4.3 Initiating Dependency DAG in Syntax Com-
pilation

After syntax compilation, NetKAT policies are essentially
ONF fragments connected by composition operators. Partic-
ularly, at this stage each ONF fragment contains only one
ONF atom. Therefore, the dependency DAGs associated
with all of the ONF fragments are the same single-node
graphs.

4.4 Preserving Dependency DAG in Composi-
tion

At this stage, NetKAT compiler recursively eliminates
the composition operators and gradually combines the ONF
fragments into a single ONF flow table. In each recursion,
the compiler combines two ONF fragments connected by a
composition operator into a single ONF fragment. Since
each composition operator also combines the dependency
DAGs of two ONF fragments, the goal of our extension is to
combine and maintain the dependency DAG during NetKAT
policy composition.

Parallel Composition.
Generally, the result of parallel composition contains

three parts of policies, i.e., S = P, — P2, So = P, — P
and S5 = P; N P», as shown in Figure 6. Since dependency
essentially can be seen as the holes in the match space,
intuitively each of the three parts inherits a subset of the
dependency (or holes) from the operands. Specifically, the
parallel composition of two ONF fragments is calculated
by taking cross-product of predicates and actions. Thus,
each rule in S; (or S3) originates from a rule in P; (or
P5). Because the match of the new rule is a subset of that
of the original rule, it inherits a subset of the dependency
from the original rule. Similarly, the rules in S5 may inherit
dependency from both operands. Therefore, a superset of
the result dependency DAG can be obtained by taking
the cross-product of the operands’ dependency DAGS.

Then, the edges of the result DAG have to be validated.
We can simply take the intersection of the two rules on both
ends of an edge. The dependency is still valid if and only if
the intersection is not empty.

At last, one special treatment has to be made on the holes
in S3. Since these holes are compiled to new rules, we need
to add dependency between them and Ss.

Sequential Composition.

The result of sequential composition only contains one
part of rules, i.e., P; N P} in Figure 7. In fact, the sequence
of two ONF fragments P; and P» can be seen as the union
of P; and Py, which is the projection of P prior the actions
of P;. Since the actions preserve the dependency relations,
the result ONF fragment inherits a subset of the dependency
from both operands. In other words, considering a result
rule R that originated from R; € P; and Ry € P>, R may
be dependent on every rule that originates from R; and Ro.
Like in parallel composition, all the dependency relations
have to be validated by checking the overlapping of the two
relevant rules.

Priority Composition.

To demonstrate the flexibility of the dependency DAG,
we also devise a new binary composition operator, priority
composition. The semantics of the priority composition is
like setting different priority levels for two operands, as
depicted in Figure 8. In other words, the second operand
only takes effect on the flows that do not match the first
operand. Generally, the priority union of two ONFs is
calculated by taking a literal union of the operands’ ONF
rules with proper priority configuration.

The compilation of priority composition is made possible
by the flexibility of dependency DAG. As the example in
Figure 8, we just need to set the rules from P, to be inferior
to the rules from P». Then, similar with other compositions,
we validate the added dependency by checking the overlap-
ping. Also, the holes have to be treated specially.

4.5 Maintaining Dependency DAG in Rule
Generation



Figure 6: Parallel composition’s effect on Figure T7:

dependency DAG.

In the rule generation stage, the rule generator splits an
ONF atom into one base OF rule plus multiple shadow OF
rules (i.e., the holes). The effect to the dependency DAG is
treated in Algorithm 2.

input : Dependency DAG G = (V, E), Mappings from
DAG vertices to OF base rule and shadow
rules M : v — {b, S}

output: New dependency DAG G’ = (V', E')

G'=(0,0);

foreach Mapping v — {b, S} do

V' =V’ + {v, v}, ...,v‘ss‘};

foreach Edge e = (u,v) € E,u # v do

| E'=E + (u,v);
end
foreach Edge e = (v,u) € E,u # v do
foreach i € [1,|S]] do
if vl.match N u.match # () then
| E'=E'+ (vi,u);
end
end
end
foreach i € [1,|5]] do
B = B+ (o),
end
end

Algorithm 2: Maintaining Dependency DAG in Rule
Generation

S. MAINTAINING SCATTERED PRIORITY
VALUES

Assigning priority values is an online strategy: upon each
update, the prioritizer assigns the priority values to all new
rules and possibly some old rules without the knowledge
of the future updates. Intuitively, a more evenly scattered
distribution of priority values reduces the chance of future
priority updates with the cost of proactive priority updates.
In this section, we describe the k-factor strategy, which
actively maintains all gap lengths within the range of [%, k]
times the average gap length [,, where k is a configurable
parameter within the range [1,+00). The k-factor strategy
costs amortized O(1) maintenance updates to achieve its gap
distribution.

Without loss of generality, we assume the update is an

Sequential composi-
tion’s effect on dependency DAG.

dependency DAG.

insert or delete of a single rule. K -factor strategy works as
follows. It first assigns all content-invariant rules with old
priority values.

o If the update is a single-rule insert, the priority level
of the new rule must be located between two existing
priority levels on the priority DAG. Thus, the prior-
itizer allocates a new priority value between the two
levels, and the gap is halved. If the lengths of the
new gaps are less than the lower bound limit [, /%, the
prioritizer must shift the neighboring levels to meet the
limit. Particularly, denoting the new level as mth level,
the prioritizer determines the least number of neigh-
boring levels n that satisfies |(X171;)/n] > 1./k

r (27, nli)/n] > 1,/k. Finally, the prioritizer
shifts the priority values of the n neighboring levels to
equally partition the gaps.

e The process is similar for a rule delete except that the
prioritizer now tests the upper bound limit kl,, instead
of the lower bound limit /, /.

The parameter & balances the evenness of the gap distribu-
tion and the maintenance cost. At one end of the spectrum,
when k equals 1, the prioritizer always maintains a uniform
priority distribution, which costs more priority shifts for
maintenance. At the other end, if k is large enough, the
prioritizer only make priority shifts when no middle value
is available for assignment.

6. EVALUATION

In this section, we evaluate how much size of the rule
updates our proposed techniques can reduce.

Methodology.

We implement a prototype of the update generation frame-
work based on NetKAT policy compiler. Our extension com-
prises two components: the DAG generator and the k-factor
prioritizer. The DAG generator constructs the dependency
graphs from prioritized OF rules with an algorithm adapted
from CacheFlow. The k-factor prioritizer compares the new
rules with the existing ones and assigns priority value to
the incremental rules with the k-factor strategy. We slightly
modify NetKAT to allow the bit-wise IP prefix matches in
our policy benchmark. We set parameter k to 2.

Figure 8: Priority composition’s effect on



Total 2% 4% 6%
#Rules | Naive DAG Optimal | Naive DAG Optimal | Naive = DAG  Optimal
fwl 898 592.40 52.03 37.06 589.39 92.10 66.03 493.81 113.25 79.23
fw2 376 215.06 19.94 14.78 240.21 31.81 23.36 251.64  44.37 32.31
acll 121 56.50  3.19 2.61 71.58  7.18 5.46 80.37  11.71 8.77
acl2 594 91.17  8.00 6.30 420.76  78.08 55.58 346.50 84.45 60.84
ipcl 303 119.79 11.69 9.05 130.38 18.67 13.94 173.18  32.69 23.96
ipc2 243 100.00 6.98 5.27 105.47 12.30 9.27 173.67  28.99 20.76

Table 1: Number of rules and mean size of rule updates of 100 successive policy updates. Correspondingly 2, 4 or 6
percent of the filters are replaced in each round of policy update.

Naive
900 r DAG
Optimal -
0
Q
]
S 600
)
Q
=)
x
S
S 300
60 100
Round
Figure 9: The update sizes of 100 successive policy

updates on trace fwl.
replaced in each update.

Two percent of the filters are

We build the base policies from filter sets generated by
ClassBench [6]. We build the initial policy by randomly
selecting 100 filters from the filter set, and then generate
policy updates by randomly replacing a portion (2%, 4% or
6%) of filters in the previous policy. For each configuration,
we evaluate 100 successive rounds of policy updates.

We compare the update size generated by our framework
(denoted as DAG) with 1) a naive strategy that updates the
diff of flow tables, and 2) the optimal updates that contains
no priority updates but only content updates.

Results.

Table 1 shows the mean size of the 100 rounds of updates
for each configuration. And Figure 9 shows all the size
comparison of all 100 rounds of updates at the configuration
[fwl, 2%], which represents a typical case in our experi-
ments. We observe that the update size of the DAG cases
is close to the optimal cases and is usually one order of
magnitude smaller than that of the naive cases.

7. CONCLUSION AND FUTURE WORK

In this paper, we propose an update generation framework
that utilizes the rule dependency information to minimize
the number of rules to be modified in a policy update. We
present the key techniques in the framework including how

to obtain dependency information and how to maintain the
scattered distribution of priority values. We further evaluate
the benefit of our framework through benchmarks.

For future work, we would like to implement the incre-
mental dependency construction on NetKAT policy compiler
and evaluate the runtime performance gain. We will also
explore other priority assignment strategies, especially the
one that makes constant priority shifts in worst cases.

8. REFERENCES

[11 ANDERSON, C. J., FOSTER, N., GUHA, A.,
JEANNIN, J.-B., KOZEN, D., SCHLESINGER, C.,
AND WALKER, D. NetKAT: Semantic Foundations for
Networks. In Proceedings of POPL ’14 (2014), ACM,
pp- 113-126.

[2] FosTER, N., HARRISON, R., FREEDMAN, M. J.,
MONSANTO, C., REXFORD, J., STORY, A., AND
WALKER, D. Frenetic: A network programming
language. In ACM SIGPLAN (2011), vol. 46.

[3] Huang, D. Y., YocuMm, K., AND SNOEREN,

A. C. High-fidelity Switch Models for
Software-defined Network Emulation. In Proceedings
of HotSDN ’13 (New York, NY, USA, 2013), ACM,
pp. 43-48.

[4] KaTTA, N., REXFORD, J., AND WALKER, D.
Infinite cacheflow in software-defined networks. Tech.
rep., TR-966-13, Department of Computer Science,
Princeton University, 2013.

[5] MonsaNTO, C., FOSTER, N., HARRISON, R.,
AND WALKER, D. A compiler and run-time system
for network programming languages. In ACM
SIGPLAN Notices (2012), vol. 47, ACM,
pp- 217-230.

[6] TAYLOR, D. E., AND TURNER, J. S. ClassBench:
A Packet Classification Benchmark. JEEE/ACM
Trans. Netw. 15,3 (June 2007), 499-511.

[7]1 VoELLMY, A., WANG, J., YANG, Y. R., FORD,
B., AND HuDAK, P. Maple: simplifying SDN
programming using algorithmic policies. In
Proceedings of SIGCOMM ’13 (2013), ACM,
pp- 87-98.



