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Abstract

In this work we build a computational model of several auditory perceptual
learning experiments. The modeled experiments show a pattern of learning inter-
ference which may help shed light on the structure of both short and long term
stores of perceptual memory. It is our hypothesis that the observed interference
patterns can be explained by the relationship of stimuli across tasks and how these
relationships interact with the limits of human memory. We account for the fact
that information is shared across tasks in our model through use of methodology
from the machine learning community on transfer learning. When we introduce a
set of plausible limits on memory, such a model demonstrates the same pattern of
learning interference observed in the human experiments.

Keywords: Perceptual Learning; Perceptual Memory; Consolidation; Acqui-
sition; Learning Interference; Transfer Learning

1 Introduction

Note to reader: This is an extend technical report of a conference paper accepted to
33rd Annual Conference of the Cognitive Science Society in Boston, MA. It includes
the full body of the conference paper along with some additional implementation de-
tails in the appendices.

With sufficient practice, human beings are able to enhance the acuity of their sen-
sory systems. This is known in the literature as perceptual learning. Recent work in
perceptual learning (e.g. Banai et al., 2009; Yotsumoto et al., 2008), has shown that
learning on one task (which we call the farger) may be prevented when a second task
(which we call the distractor) is practiced either during or shortly after practice of the
target: this is called learning interference. These results suggest distinct properties of
short and long term stores of perceptual memory because what interfered with learning



during practice was distinct from what interfered after practice (see the Human Data
section for more detail).

Our working hypothesis is that the learning interference observed in these exper-
iments is a consequence of how information is shared across tasks and the limits of
human memory. We have built a computational model in an effort towards fully spec-
ifying and testing this hypothesis (see the Modeling section for details). An ideal ob-
server would only benefit from sharing information across tasks. However, with the
introduction of limited memory, sharing information can also lead to learning interfer-
ence.

Such sharing of information across tasks is used to accomplish transfer learning
in the machine learning community. We call a computational technique intended to
accomplish transfer learning, computational transfer learning. If a system (living or
machine) can be seen to have better performance on one task after experience on some
prior task, we call this observable transfer learning. Prior computational models of
perceptual learning, though they have considered observable transfer learning, have ig-
nored matters of computational transfer learning, either by modeling only a single task
(e.g. Jacobs, 2009) or by treating learning across several tasks as a single monolithic
learning problem (e.g. Petrov et al., 2005). Because of this, none of these models pro-
vide an account of how people appropriately segregate and share information across
tasks. There are computational models concerned with human memory that can be un-
derstood to have some form of computational transfer learning (e.g. McClelland et al.,
1995; Anderson, 2002), but these systems do not provide the detail needed to model
the current experiments.

In this paper we model one set of learning interference experiments (Wright et
al., 2009; Banai et al., 2009) using an ideal observer (Geisler, 2003). We do this by
incorporating a method used for computational transfer learning (Roy & Kaelbling,
2007) (see the method section for details). On top of this ideal observer, we introduce
a plausible set of memory limits. This approach has the merit of avoiding conflation
between task constraints (which both humans and the ideal observer are subject to) and
psychological constraints (which only humans are subject to). We hypothesize memory
limits that a.) affect the number of distinct stimuli that could be remembered and that
b.) introduce a process of consolidation, meaning that over a period of time memories
move from a labile, short term form to a stable long term form. We found that when
introducing all (and only all) of our limits, our model demonstrated the same pattern of
learning interference observed in humans (see the evaluation for details).

2 Human Data

The experiments in Banai et al. (2009) and Wright et al. (2009) suggest two function-
ally distinct stages of perceptual learning. The first stage occurs during practice of a
task. We call this stage acquisition. The second stage occurs after practice is com-
plete and is called consolidation. This is supported by the way the target task, T1 (see
Figure 1(a)) was interfered with. One task (T2) interfered during practice of the target
but not afterwards, and the task (F1) interfered after practice of the target but not dur-
ing. This dissociation between acquisition and consolidation makes the experiments



interesting to model: straightforward interpretations for one half of the data can lead to
contradictory predictions of the remaining data.

A point of clarity: throughout our work here we use the word learning to mean
that some form of memory (either human or computational) is updated to reflect a new
experience. When we need to make a distinction we use the term observable learning
to mean a behaviorally observable improvement in task performance.

The conditions in this experiment involved three tasks: one target (T1) and two
distractors (T2 and F). The target is an interval discrimination task. By the term task
we mean a specific set of stimuli, and the responses expected for these stimuli (in
perceptual learning T1 and T2 would often be referred to as the same task). In the
target task (T1), the participant had to make a two interval forced choice, indicating
which of the two presented stimuli contains a longer temporal interval: the stimuli for
the task are shown on the first row of Figure 1(a). Participants heard the two stimuli
in a randomized order and received feedback after each trial. The stimuli in T1 each
contained two short sinusoidal tones at 1000 Hz, separated by a temporal interval that
varied in length. One stimulus (called the standard) always contained a 100ms interval.
The other stimulus (called the comparison) varied in length. The difference between
the standard and the comparison is called the delta. Over the course of a block (60
trials), the delta was adjusted so that a subject’s threshold was found. The threshold is
the delta at which a person gets 79% of their responses correct (Levitt, 1971).

The two distracting tasks are related to the target in distinct ways. Task F (second
row of Fig. 1(a)) is a frequency discrimination task meaning that instead of varying the
interval of the comparison its frequency was varied over the course of learning. Task
T2 (last row of Fig. 1(a)) was a second temporal interval discrimination task, where
the standard was 350ms. All stimuli in task F have the same temporal interval as the
standard of T1 (shown on the second row of Fig. 1(a)), and all stimuli in task T2 contain
distinct temporal intervals from those present in T1. This is shown in Figure 1(a): a box
is drawn around all stimuli that contain a 100ms temporal interval. All other stimuli
contain a distinct interval.

There were four conditions in which one of the two distracting tasks was introduced
either during acquisition of T1—by interleaving practice with T1—or during consoli-
dation of T1—by presenting it in a block after T1 (also called blocked presentation).
Figure 1(b) shows that task T2 interfered with the observable learning of T1 during
acquisition and task F interfered with the observable learning during consolidation.
Observable learning was said to occur if a subject showed a significantly greater im-
provement in their threshold, when compared to controls. Controls perform only a pre-
and post-test. Participants performed a pre-test, at least 6 days of practice, and then a
post-test.

Our hypothesis is that F prevents observable learning on T1 during consolidation
because stimuli in T1 and F contain the same temporal interval. T2 prevents observable
learning during acquisition because T1 and T2 have distinct temporal intervals. F1 and
T2 place distinct strains on human memory which manifest as a different pattern of
learning interference.
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(b) A diagram of the results. Blocks represent number and type of tasks pre-
sented on a single day of practice. T2 only interfered with observable learning
of T1 during acquisition, and F only interfered with observable learning of T1

during consolidation.

Figure 1: A summary of the results from Wright et al. (2009) and Banai et al. (2009)



3 Modeling

Our model provides one explanation for why distinct temporal intervals across tasks
would lead to interference during acquisition, and why having the same temporal in-
tervals would interfere during consolidation. The idea is that some part of our memory
cares solely about intervals, and this is the locus of learning. During acquisition having
too many distinct temporal intervals means that there is too much to keep track of; dur-
ing consolidation having the same temporal interval across tasks prevents consolidation
of the first task because the memories are too similar.

It is certainly possible that features other than temporal interval are relevant to the
observed interference. However, our model is a demonstration that by using a set of
plausible limits on human memory, these features are not necessary to explain the hu-
man data. To show this we built an ideal observer (Geisler, 2003) of our tasks but made
use of only the temporal information in the stimuli. An ideal observer defines what
“optimal” behavior is given the same information that humans have to perform a task.
Our observer is ideal in the sense that it makes optimal use of the temporal information
available in the stimuli. The ideal observer is useful as a baseline to compare to human
performance. It is not intended to be psychologically plausible. On top of this ideal
observer we introduce a set of memory limits.

Key to the observed learning inteference is our model’s item limit and recall limit.
During acquisition the number of distinct stimuli that can be represented in memory
is limited (the item limit), this limitation leads to inteference during acquisition when
there are many distinct temporal intervals in the stimuli. During consolidation stimuli
that resemble each other can cause a memory previously marked for long term storage
to be returned to short term memory (the recall limit) leading to interference during
consolidation when stimuli have similar temporal intervals across tasks. More details of
our memory limits, and their justification are discussed in the subsection Hypothesized
Psychological Limits.

We center our discussion of the model around the concept of a stimulus model.
We start by describing the input provided to our model. We define the meaning of a
stimulus model and how it relates to the input during decision making. Then we discuss
how the model input is used to learn a better stimulus model, and how the psychological
limits affect the results of learning. For full implementation details of our model we
refer the reader to the appendices.

3.1 Model Input

As shown in Figure 2, each auditory stimulus, s, presented to the model is transformed
to an internal representation x by the function R(s). The ideal observer is meant to find
the best possible decision, given the same information people have. Thus R(s) should
be consistent with our understanding of the pertinent information people have to make
a decision. We assume for modeling purposes that the data can be explained solely in
terms of the intervals present in a stimulus, so this is the only information present in
R(s).

The input to R(s) is an audio file and the output is a 32 term vector describing the
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Figure 2: The input to and the output from the ideal decision maker. Arrows towards
a box represent input, arrows away from a box represent output. The decision maker
is presented two stimuli (s; and s,), transformed according to R(s). Along the x-axis
of each x are the intervals from 10 to 1000ms on a log scale. Along the y-axis is the
correlation of onsets in the stimulus to a particular interval. The decision maker is given
the distribution of the standard (p(x | #,y = S)) and the comparison (p(x | t,y = C)) as
determined by the ideal learner. These distribuions are called stimulus models and are
depicted along the same axes as the input.

temporal intervals present in the stimulus!. R(s) applies a windowed auto-correlation
function over the onsets in the audio file s, where the window is always proportional to
the length of the interval in question. The result of this process is consistent with the
model of human interval perception presented in (Buonomano, 2000), in the case where
the input contains a single interval. The use of this representation is also supported by
the fact that learning on temporal intervals does not generalize to untrained intervals,
or to other tasks using the same standard (Wright et al., 1997).

A Gaussian random value is added to each term of the representation x, with an ex-
perimentally determined standard deviation 6. This reflects the noise present in sensory
systems.

In Figure 2 we represent an observed stimulus with a graph showing all 32 terms
of x. Each term corresponds to a time interval from 10 to 1000ms along a log scale
(shown along the x-axis of x; in Fig. 2). The value at each term of the vector (shown
along the y-axis of x;) corresponds to the correlation in the stimulus to that particular
interval: the highest peak in x; is near 100ms, because the original stimulus s; has a
100ms interval in it.

Note that for reasons of speed, the number of terms in R(s) (32) was chosen to be the smallest number
that clearly prevented quantization error from being a limiting factor of model performance.



3.2 Stimulus Models and Decision Making

Intuitively, a stimulus model can be understood as a perceptual template. During de-
cision making, each stimulus (x) is compared to these templates to determine which
observed stimulus is most like the standard (e.g. the shorter interval in task T1) and
which is most like the comparison (e.g. the longer interval in task T1). Formally, a stim-
ulus model is a probability distribution over an internal representation of a stimulus (x)
conditioned on a particular task ( = T1,T2 or F) and stimulus type (y = Standard(S) or
Comparison(C)). Bayes rule can be applied to these distributions to find the probability
that the first observation (X;) is the standard. A decision is then made by choosing the
most probable answer (i.e. “The standard was first.” or “The comparison was first.”).

3.3 Learning Stimulus Models

Each stimulus model is learned by a processes that can be understood as an averaging
over many observations of X. As more stimuli are observed, this average becomes
more accurate, leading to more accurate decisions on the part of the model. If there
have been no observations presented to the model, then the response given is random.
In Figure 2 a standard and comparison stimulus model are shown. The graphs of these
stimulus models are along the same axes as the input, and show the mean and variance
of the distribution of x for the given stimulus type.

For the ideal observer, learning occurs after each trial. The input consists of a
series of observations. Each trial of a task is a two interval forced choice, meaning that
there are two stimuli. Each observation corresponds to one of the two stimuli in a trial,
and includes the stimulus (x), the correct label for the stimulus (y)—either standard or
comparison—and the task (¢) that the stimulus was presented during—T1, T2 or F. The
correct label is determined by the feedback provided at the end of a trial. The output
of learning is a stimulus model for each task and stimulus type. The goal of learning
is to determine how to update stimulus models such that they accurately reflect future
observations, leading to better decisions.

To accomplish computational transfer learning for the experiments in question, our
ideal observer learns which stimuli are drawn from the same distribution. This appears
to be the only way in which tasks are relevant to each other in this set of experiments.
As noted in the Human Data section, stimuli in task F have the same 100ms interval
that the standard has in T1. Because only interval information is represented, our
ideal observer represents these three sets of stimuli with the same distribution. The
remaining types of stimuli (the standard and comparison for T2 and the comparison
for T1) follow their own distinct distribution. Note that although the length of the
comparison within each task varies over the course of learning, all comparisons within
a task can be represented with the same stimulus model. In the ideal observer the
sharing of distributions across tasks only improves learning (at least for the modeled
tasks).

Due to considerations of space we do not provide a detailed explanation of how
our model learns which stimuli across tasks share a distribution (see the appendices for
more details). In short we make use of a Dirichlet processes prior to cluster similar
stimuli. This basic approach to transfer learning has been considered elsewhere (e.g.



Roy & Kaelbling, 2007). We assume that observations follow a Dirichlet process prior
with a base distribution where each input x is distributed according to a multivariate
Normal distribution, ¢ a Bernoulli distribution and y a Bernoulli conditioned on ¢.

Prior to observing any trials of a given task humans are capable of above chance
performance on the tasks. To represent this prior knowledge we initialize our model
by presenting it an experimentally-determined number of trials. Psychological limits
are not introduced until after these initial trials, meaning that learning during initial-
ization is optimal. The trials presented during initialization had a comparison whose
delta varied around a mean m and standard deviation s, both of which were determined
empirically.

3.4 Hypothesized Psychological Limits

We hypothesize four limits on top of our ideal observer for the modeled tasks. To
distinguish it from the ideal observer, we refer to the full model as the Limited Memory
Model. All versions of our model made an ideal decision given the stimulus models
they were provided, but the way these stimulus models were learned was not always
optimal.

Our choice to express limits in terms of stimulus models means that we are assum-
ing people have something like a stimulus model in their brain: this is a reasonable
assumption because to learn anything about a task, the stimuli from the task must be
remembered, and a stimulus model is simply a compact representation of previously
observed stimuli.

3.4.1 Single Task Limits

There are two limits that apply during the learning of a single task.

The first limit we call the volatility limit. It states that during acquisition, trials
are represented in a short term store. Stimulus models in this store are said to be
volatile. Volatile stimulus models decay according to a loss parameter L. Thus, instead
of being an average, a volatile stimulus models is more like a moving average. Because
of this decay the effective number of trials that a voltile stimulus model represents
will depend on the rate at which stimuli are presented. The more time that passes
without observing more trials, the fewer effective number of stimuli a volatile stimulus
model represents. There is evidence suggesting a distinction between short and long
term stores of memory and that this short term store is transient (e.g. Izquierdo, 1999;
Cowan, 2008). Recent work has shown that when trials are separated this appears to
affect the effective number of trials a subject has observed (Zhang & Wright, 2010).

The second limit we call the consolidation limit. 1t states that after a short period
of time (15 simulated minutes) during which trials for a task have not been observed,
all volatile stimuli with a sufficient effective number of trials 7' are copied to a long
term store. (In the full model this not an instantaneous processes, see the recall limit).
Stimulus models in the long term store are said to be consolidated, and do not decay
anymore. There is evidence both for a period of memory consolidation (McGaugh,
2000) and that this consolidation does not occur unless enough trials within each day
are observed (Wright & Sabin, 2007). During decision making the stimulus models



present in the long term store (not the short term store) are used. The model works this
way because there is no observable learning within a day of practice for the modeled
tasks (Wright & Sabin, 2007).

3.4.2 Multiple Task Limits

The third limit we call the item limit. It limits the effective number of stimulus models
(or items) allowed in the short term store. Specifically it states that decay (L) is pro-
portional to the total number of volatile stimulus models. This item limit is consistent
with the notion that short term memory can only effectively store a limited number of
items (e.g. Cowan, 2008). This limit explains why learning fails during the interleaved
practice of T1 and T2, but not during interleaved practice of T1 and F. There are four
distinct stimulus models when practicing T1 and T2 (the standard and the comparison
for both tasks), all of which are volatile during interleaved practice: this means stimu-
lus models decay too quickly and so the effective number of trials is never large enough
for consolidation to occur. There are only two distinct stimulus models during inter-
leaved practice of T1 and F (since there are two distinct intervals across these tasks),
and so much less decay occurs, allowing consolidation.

The fourth limit we call the recall limit. Tt states that there is a period of time be-
fore models become fully consolidated when a stimulus model is being moved from
the short to long term store. During this period, in which the model is said to be trans-
ferring, the stimulus models can be recalled, meaning they return to a volatile state. At
this point they will only be consolidated for the same reasons that any volatile stimulus
model is consolidated. This recall occurs when a newly observed stimulus belongs to
one of the transferring stimulus models. In our model stimulus models move from a
transferring to a consolidated state at the end of a simulated day. This limit is consis-
tent with the idea that consolidation is not an instantaneous process: more permanent
memories are formed over extended periods of time, and before consolidation is com-
plete, it can be interrupted (e.g. McGaugh, 2000).

The recall limit explains why learning is interfered with during blocked practice of
T1 and F, but not T1 and T2. When task F begins, T1 begins to be consolidated, and so
T1’s stimulus models are transferring. However, task F shared a stimulus model with
T1 and so all the transferring stimulus models are recalled. During blocked practice
of T1 and T2, T2 shares no stimulus models with T1, and so the stimulus models of
T1 can safely transfer from the short to the long term store. Note that T1 and F must
also be consolidated during interleaved practice, and so the reader might view the recall
limit as preventing learning in this case: however, because the consolidation limit states
that consolidation begins shortly after a task is complete, and consolidates all stimulus
models with sufficient trials, both tasks’ stimulus models are consolidated as a single
unit in this case.

4 Evaluation

The purpose of our evaluation was to demonstrate that our limited memory model qual-
itatively matched the learning interference patterns observed in Wright et al. (2009) and



Banai et al. (2009) and that this behavior of the model was due to all of our hypothe-
sized limits.

To evaluate the hypothesized psychological limits we compared six different mod-
els: the ideal observer, the limited memory model—which included all hypothesized
limits—and four more versions, each with one of the limits removed. If all limits are
necessary to explain the data then all but the full model should fail to predict when
learning interference will occur for humans.

We simulated the experiments from Wright et al. (2009) and Banai et al. (2009) in
the following way. For each task there were 60 trials per block and 6 blocks per day of
practice. For each condition we ran 11 simulations (to simulate 11 participants). There
was noise present in every stimulus, which meant each simulation of the experiment
was different. We used 11 simulations for each condition because this is the maximum
number of subjects for any condition used in Wright et al. (2009) and Banai et al.
(2009). For each simulation we presented the stimuli to the model, following the same
adaptive tracking procedure (to find the model’s threshold). The model provided the
response it predicted to most likely be the correct response. After all 360 trials for
each task were presented for a “day” the model was allowed to “sleep”. During this
period of the simulation the system finished consolidation of any stimulus models still
transferring, and all volatile stimulus models were fully forgotten if any decay was
present. In this way the simulation of the trained conditions was made as parallel as
possible to the human experiment.

Condition
Interleaved Blocked
Learner | T1/F T1/T2 | TI/F TI1/T2
Human X - - X
Ideal X X X X
LMM X - - X
LMM - volatile X X X X
LMM - consolidated - - - -
LMM - item X X - X
LMM - recall X - X X

Table 1: Qualitative results across all learners. An X in a column indicates that the
given learner showed observable learning on task T1 when interleaved or blocked with
the specified task. LMM stands for the limited memory model, and LMM - L indicates
that limit L was removed from the LMM model.

We simulated 11 control subjects by running two blocks (60 trials each), where no
learning step was performed. This differed from the procedure used for control subjects
in Wright et al. (2009) and Banai et al. (2009) in that some learning may have occurred
during the pre- and post-test. This was because our model only simulated behavior
during days of learning, not the pre- and post-test behavior. Model parameters (e.g.
input noise ) were held constant across all computational models.

If there was a significantly greater difference from pre- to post-test of a model,
compared to control subjects, for a given condition, the model was said to have learned
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on this condition. This was determined by performing a two time (day 1 to day 6) by
two group (trained vs. control) ANOVA, with time as a repeated measure. Table 1
summarizes the results for all models. For all simulations marked with an X, p values
were below 0.013, and all dashes where above 0.18. The results for the human data
are taken from the prior analysis in Wright et al. (2009) and Banai et al. (2009). This
table shows that, among the models we tested, only the limited memory model shows
the same pattern of learning interference that humans showed.

5 Conclusions

In closing, we have presented a framework from which a variety of learning interfer-
ence experiments might be modeled and studied, and have shown that this framework
is capable of predicting the qualitative results of one challenging set of human data.
Our work was grounded in the hypothesis that learning interference was an effect of
how information is shared across tasks and the limits of human memory.

The model provides concrete predictions concerning future experiments. It predicts
that if two tasks are interleaved they will interfere if there are many distinct stimuli
across tasks. It predicts that during blocked presentation interference can occur when
there are identical or very similar stimuli used across tasks. This is a consequence of
the item limit, which limits how many distinct stimuli can be remembered at one time
and the recall limit, which prevents consolidation of one task when a new task contains
similar stimuli. These limits in turn have implications for the form and function of
short and long term stores of perceptual memory.
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A Internal Representation Implementation

This appendix describes the representation used by our model. This is found using
the function R(s). R(s) takes in an audio file and outputs a 32 term vector x where
each term corresponds to an interval from 10ms to 1000ms along a log scale. This is
produced from the initial audio file according the following steps.

Initial Representation Each audio file is given to our front end as a PCM audio file
at a sampling rate of 8000Hz, which we denote as a.

Auditory Model The audio file is transformed into a spectrogram-like representation
according to the model of the peripheral auditory system described in Wang &
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Shamma (1994). The model uses a set of logarithmically spaced asymmetric
band-pass frequency filters resembling the observed shape of human auditory
filters in the cochlea. The resulting output is a matrix F(a), where each row
F(a); . is the response of a single frequency filter across all points in time, and
each column F(a), ; is a single point in time across all filters. There are several
parameters for this model discussed in Wang & Shamma (1994): we use a frame
length of 2ms, an integration constant of 4ms, and no compression.

“Onset” Detection To identify intervals onset detection is used. The output is a vector
whose ith term is denoted o[i]. Given the very simple nature of our audio input
we use the following formula:

OM :max{O,ZF(a)NH—ZF(a)N} (1)

Temporal Analysis A temporal analysis over the onsets was performed as an inter-
mediate step to encode the intervals in a stimulus. The analysis resembled an
autocorrelation function. For lag y and time ¢ a single real number is found ac-
cording to the following formula.

Tly.d] = M<0*%)[’] % (0 W)t —] @

In Equation 2 the ‘*” denotes convolution, and (o * Wy) is the resulting function
of convolvling the onsets with W,, which is a Gaussian window. The window
was determined using the MATLAB function gausswin, with a length equal to
Ly-0.9]. W,[n] is defined as follows.

p— . 2
W,[n] = C-exp [; (2.5%) ] 3)

The value n ranges from 0 to |y-0.9]. The constant C is set such that the eu-
clidean norm of W, is equal to one. This ensured responses were on the same
scale across all values of y. We evaluated T'[y,¢] for 32 values of ¢ evenly spaced
along a logarithmic scale from 10ms to 1000ms. Research suggests that intervals
from about 10ms to 1000ms are represented qualitatively differently than lengths
above and below this range (Buonomano & Karmarkar, 2002). The number 32
was chosen to be the smallest number that clearly prevented quantization error
from being a limiting factor of model performance.

Interval Representation The final interval representation was a 32 term vector X,
where term x, = max; {7'[y,?]}. A normally distributed zero mean random value
was added to each term in this vector, whose standard deviation, G, was experi-
mentally determined.
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B Ideal Observer Learning

We explain learning in the ideal observer in three steps. We begin by describing how
learning would work without transfer learning. We then describe a simplified version of
transfer learning, and then describe the actual method used for learning. This serves as
a gentle introduction to how transfer learning can be accomplished using the Dirichlet
process prior: very similar approaches have been described in Roy & Kaelbling (2007)
and Xue et al. (2007), for example. Throughout the following description we use a
lower case letter to indicate a random variable and a subscripted lower case letter to
indicate a specific observation from this random variable.

Recall that each observation during learning consists of a stimulus x, a type y and
a task 7. We denote the set of all previous observations {x;,y;,#;}, as D. Without
considering transfer between tasks, learning a stimulus model is a matter of finding the
following probability distribution over some new observation with index n.

p(Xn ‘ynvtnvD):p(Xn ‘Dyrntn) (4)

In Equation 4 D), denotes the set of all observations with index i such that y; =y and
t; =t. Assuming that x is drawn from a Normal distribution, and that our prior over
this Normal distribution is conjugate, Equation 4 can be calculated for a given data
set using standard results for the exponential family of distributions (Gelman, 2004).
The assumption of conjugacy is made merely as a matter of convenience. Whether this
assumption is actually sensible will depend on the particular application. In our case
we chose to use conjugacy lacking any strong evidence that anything more complicated
was necessary.

We now introduce a simplified form of transfer learning. Recall that for our tasks
the key objective of transfer learning is to identify which stimuli follow the same dis-
tribution (e.g.. the standard of T1, and the standard and comparison of F all follow
the same distribution). We first explain transfer learning as if the distribution that each
stimulus comes from is known. In this case each observation includes the value z;,
which is a natural number indicating which distribution the observation x; belongs to.
The the value of z; can range form O to N where N is the number of observations.
Learning is now a matter of calculating the following distribution.

p(xn |Znayn7tnaD):p(Xn ‘Dzn) (5)

In Equation 5, D,, denotes all observations with index i such that z; = z,,, and this is
calculated, as above, assuming a conjugate prior for the distribution of x.

In the above description z is an observed variable. In reality this is information
the ideal observer does not have during learning, and so it must infer the value of
each z; given each observation (x;,y;,#;). In a Bayesian context this means assuming
some distribution over the set Z = {z, ...,z 2}, using Bayes rule to find the posterior
distribution of Z, and then marginalizing over Z, as follows.

P | Ynsta, D) =Y p(%n | D2,)p(2n | Yusta; D, Z\2a)p(Z | D) (6)
Z

P(zn |ynvtnvaZ\Zn) < p(Ynstn ‘ DZn)p(Z’l ‘ Z\ zn) @)
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The sum in Equation 6 is a sum over all possible assignments to the variables in Z. To
calculate Equation 6 a distribution over Z, y and ¢, must be defined. These will be given
below. The sum in Equation 6 is computationally intractable, so in practice we use a
Sequential Monte Carlo technique introduced in Fearnhead (2004). This means that
we essentially perform a randomized greedy search over some limited number of clus-
terings (M): as each new observation is introduced, the possible ways this observation
could be added to each clustering becomes a new possible clustering to be considered.
This increases the number of possible clusterings considered. To avoid an exponential
explosion of possible clusterings, we sample back down to M clusterings at each step,
favoring the more probable clusterings.

To calculate Equation 6 we must assume a distribution over Z, y and ¢, and their
priors (even in a non-Bayesian context such an assumption would be made during
clustering, it just wouldn’t be explicit). Below we include the distribution over x for
completeness.

X |z~ (4, Zz) t | z ~ Bernoulli(T:) (8)
y|z,t ~ Bernoulli(Y,,) z~ GEM(Q) )

The distribution GEM () is a specific formulation of the Dirichlet process. We refer

the reader to Neal (2000) for an introduction to Dirichlet processes. The distribution

over t is assumed to take only two values (and hence a Bernoulli) because only two

tasks are seen in any experimental condition. We chose to condition y on ¢ because

the label of a stimulus in one task may change when it is used in another task. For the

above parameters to be learned, we must assume some distribution over T, Y, u and X.
We assume the following priors over 7, Y, u and X.

WX~ ANIW(m,r,S.d) T ~W(a) (10)
Y ~ W (b) (1)

W(x;a) = (0.5—a)d(x—¢€)+ad(x—0.5)+(0.5—a)d(x— (1 —¢)) (12)

In the above AL I W denotes the Normal inverse Wishart distribution, which is the con-
jugate prior to the Normal distribution (Gelman, 2004). The distribution W (x;a) is
defined using the dirac delta distribution 5. We define € to be exp(10~2°). This prior
encodes the assumption that a distribution is either shared across tasks (in which case
the distribution of ¢ is evenly divided between tasks) or it is not shared (in which case
it is very nearly always), like-wise, distributions either make a distinction between a
label (e.g. the data is relevant to the task), or they don’t (e.g. the data is not relevant to
the task). We found that these hard and fast distinctions lead to improved performance
of our ideal observer for the modeled tasks.

The final model includes the following free parameters: a, b, m, r, S, d, and a. In
the current experiments these parameters were selected by hand to qualitatively match
the human data when all computational limits were present.
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C Memory Decay

Here we describe how memory decay is implemented in our limited memory model.
This memory decay is used to implement the effects of the volatility and item limits. In
the above model, a stimulus model given z is defined by the distribution of all obser-
vations (X;,y;,#;,z; = z). Because these distributions come from the exponential family
(Gelman, 2004), the posterior over the distributions parameters ¢ can be expressed in
the following form.

(0] Dz) = h(9)exp{n(0)- YT (xi,yi,1r) —nA(0)} (13)

In the above equation 7T (x;,y;,#;) is called the sufficient statistic of the ith observa-
tion, and n is the number of observations seen so far. Thus, to find the posterior over
¢ we use the number of observations n and a sum of the sufficient statistics of all ob-
served stimuli from z. A decay is applied the sufficient statistics, to reduce the amount
that is remembered.

First, let us re-express the sum of sufficient statistics recursively:

So=0 (14)
Sn:T(xi7yiati)+Sl’l—1 (15)

In the volatile memory store we add a decay term L, which is a function of the number
of distinct values in Z, as follows.

Sn:T(xi;yiyti)+Sn71 L(Z) (16)

L(Z) can be appplied to n in a similar way. The function L(Z) determines the amount
of decay and depends on the number of clusters present in the short term memory store.

L(Z) = [1+exp (—L - (count(Z) — L,))] " (17)

In Eqution 17 count(Z) is the number of distinct values in Z. Z comes from the volatile
memory store. The parameters Ly and L, were chosen by hand to qualitatively match
the human data. A sigmoid function was chosen because this constrained the decay
to be within 0 to 1. A decay of 0 means the model learns optimally and a decay of 1
means the model learns nothing.
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