

Standardized Prototyping and Development
 of Virtual Agents

Technical Report
NWU-EECS-10-10

by

Alex S. Hill

for

Justine Cassell
Articulab Laboratory

School of Communication and
Mccormick School of Engineering

Northwestern University

November 25, 2008

Abstract

Research efforts that require the use of virtual agents face significant challenges
in prototyping and developing virtual agents. Not only do virtual agents require
significant technical and artistic skills, but they also must frequently be
modernized as the underlying operating systems, rendering libraries and system
hardware become more advanced. In order to mitigate these challenges, we are
cooperating with an international effort to standardize the development of virtual
agents. Some recent products of this effort are a standard for behavior realization
called the Behavior Markup Language and systems designed to implement it. We
have taken one such system, a combination of the SmartBody realizer and the
Panda3D rendering engine, and modified it to meet the needs of a research
agenda that includes significant interactions between agents and their
surroundings. These modifications include the addition of viseme support and the
development of new language tags for grasping objects and executing other
more abstract actions in the virtual world. Our resulting system allows us to
realize agents that move their lips to either pre-recorded or text-to-speech
utterances and that manipulate objects such as Lego blocks in the virtual world.
These behaviors can be applied to any of our agent character models and easily
prototyped through behavior markup scripts. While the current system is limited
to using key-framed gestures, we have some short-term strategies that will allow
agents to place objects at arbitrary locations. Our long-term plan is to incorporate
procedural controllers into the SmartBody realizer to facilitate referential gestures
such as grasping or pointing at objects located arbitrarily in the virtual world.

Introduction

Virtual agents are simulated characters that interact with human beings. Previous
research undertaken by members of our lab has involved agents that help users
select a home, give directions on campus and engage children in storytelling.
The development of these virtual agents presents a significant technical and
artistic challenge. Virtual agents require a sophisticated mix of graphics, audio,
sensing and cognitive technologies that can rarely run on the same machine,
under the same operating system or in the same language. In an effort to make
the prototyping and development of virtual agents more manageable, an
international effort has begun to standardize interfaces between constituent parts
identified in the agent realization process. Our goal has been to support this
effort by embracing and augmenting the software it has produced and to make
contributions to a standardization effort that reflect the goals of our particular
research.

One recent work developed in our lab was NUMACK, Northwestern University
Multimodal Autonomous Conversational Kiosk [1]. This highly successful effort
generated an agent capable of generating gestures that typical direction givers
make while explaining how to find campus buildings. The resulting system was a
combination of several different operating systems, programming languages and

hardware configurations running a completely autonomous system. The
significant complexity of such a system can make appropriating it for alternate
uses extremely difficult. The NUMACK character, for example, was hard-coded
into the system using OpenGL Performer, making any alterations to its shape or
abilities very cumbersome. These difficulties are also compounded by the fact
that each successive research effort is likely to need a modernization of
hardware and software to accommodate its new requirements. The difficulty of
maintaining and reconfiguring the NUMACK system influenced the design of the
next project undertaken at the lab. The Collaborative Storytelling with a Virtual
Peer project sought to avoid the technical overhead of prior efforts by relying on
short vignettes of agent behavior created with Macromedia Flash and controlled
directly by the researcher [2]. While this approach greatly simplified the creation
of agent content and avoided complicated dialog managers by using a Wizard-of-
Oz (WOZ) approach, it presented serious limitations to the modification and re-
use of agent behaviors [3]. Merely changing the color of the shirt worn by the
agent would require making changes to every flash animation in the system.

Motivated by the difficulties of developing virtual agents, an international effort
has recently begun to commoditize and componentized the development of
virtual agent systems. This effort, called the SAIBA initiative, has resulted in a
draft specification for a language to describe the behaviors that an agent must
realize [4]. Our goal is to embrace this effort by attempting to utilize and enhance
the languages and software products it has produced in our research. Our
current research effort, targeted at children in the context of playing games and
building structures, requires agents that can not only speak and gesture but can
also interact with objects in the virtual world. Our software architecture for virtual
agent prototyping and development has several other requirements. We require
a system that allows content such as characters, objects and gestures to be
easily modified and re-used in alternate situations. We also need any scripted
behaviors of agents, including speech and gesture, to be re-usable and easily
altered.

The SAIBA Initiative

The Situation, Agent, Intention, Behavior and Animation (SAIBA) initiative is an
effort to break the requirements for agent development into its constituent parts.
The framework has identified three main functional units for virtual agents: 1)
planning of a communicative intent, (2) planning of a multimodal realization of
this intent and (3) realization of the planned behaviors. These separate units
effectively seek to separate high-level planning, modality specific behaviors and
the rendering of those behaviors. The framework has proposed two standard
languages to facilitate the communication between these units: Functional
Markup Language (FML) and Behavior Markup Language (BML). The
development of the Behavior Markup Language, between multimodal behavior
specification and their realization, has been considered the more tractable task

and, as a result, is the first product of the initiative. A draft specification for BML
is available and is actively being developed [5].

Behavior Markup Language divides behaviors into “acts” carried out by individual
agents. Each act can consist of any number of specific behaviors such as
speech, gesture or facial expression. The XML-based language provides for the
creation of sync points that can be used to synchronize the behaviors within an
act. For example, one might seek to synchronize a gesture with the speaking of a
particular word in an utterance. In the sample below, a beat gesture has been
designated to perform its most effortful part, the stroke, when the agent speaks
the word “red”.

<bml>
 <speech id=”sp1”>Meet me at the <sync id="tm1"/>red barn</speech>
 <gesture id=”g1” type=”beat” stroke=”sp1:tm1”/>
</bml>

The synchronization points that have been identified, in the order of execution,
are: start, ready, stroke-start, stroke, stroke-end, relax and end (figure 1). These
seven synchronization points can be attributed to any behavior. The current
specification for BML also includes the following behavior tags: face, head, gaze,
posture and locomotion. The face tag is used to control agent facial expression
while the head and gaze tags are used to control head nods and looking at
objects and agents in the world respectively.

Figure 1: The seven gesture synchronization points defined within BML

apply not only to gestures but also to other behaviors such as gaze.

Existing Realization Engines

Given a method of describing multimodal behavior such as BML, one must then
build a system that can realize the behaviors it describes. This section describes
two systems SmartBody/BMLR and ECAT/ACE that could potentially act as a
behavior realization system for our research. The discussion below details how
we decided to pursue using the SmartBody/BMLR system for our virtual agent
development.

The NUMACK project utilized an underlying motion engine called the Articulated
Communicator Engine (ACE) [6]. The ACE system is capable of aligning speech
and gesture as proposed by the BML specification. This technology, developed
by Stefan Kopp, is unique because it allows agent arm gestures to be defined in
terms of their individual components such as hand shape, palm orientation and
the like. Given the required position of end effectors such as the hand, ACE uses
inverse kinematics to move the position and orientation of the remaining agent
skeletal joints smoothly through spline curves. This procedural approach
facilitates developing gestures that point to objects in the environment or
describe objects of variable size (i.e. the length of a fish). The ACE system uses
a language that was influential in the development of BML called MURML
(Multimodal Utterance Representation Markup Language). The ACE system
does not manage facial visemes nor does it have any facility for animating the
type of key-framed animations favored by character modelers.

The output created by the ACE system is confined to the single character model
it supports known as MAX. The rendering engine for the MAX agent is tightly
integrated with the ACE engine and makes using different agent representations
very difficult. An effort was recently undertaken to create ECAT, the Embodied
Conversational Agent Toolkit, which effectively disconnects the rendering engine
from ACE so that any rendering engine can be used with it [7]. The ECAT project
does not attempt to migrate the MURML interpreter to the newer BML language
but such a migration has been suggested for sometime in the future. ACE does
provide a working interface between ACE and the SGI OpenInventor graphics
library and does provide some preliminary work on an interface to the Panda3D
graphics engine. An interface between any realizer and Panda3D is attractive to
our work because we have been investigating using the open source rendering
engine for some time.

The SmartBody behavior realizer is a system developed at UCS by Stacy
Marsalla and his team working in collaboration with the Institute for Creative
Technology (ICT) [8]. The SmartBody system can align speech and gesture,
produce facial visemes and supports key-frame animated gestures. SmartBody
currently only supports one type of procedural animation, a controller that allows
characters to gaze at objects and other characters within the screen. SmartBody
uses the proprietary Unreal game engine to realize its characters. A separate
research group, the Center for Analysis and Design of Intelligent Agents

(CADIA), at the University of Reykjavik has developed a realizer for SmartBody
that uses the Panda3D rendering engine [9]. The current code, known as BMLR,
provides a straightforward pipeline for creating and animating characters using
either the Maya or Blender modeling applications. While the SmartBody realizer
using the Unreal engine implements facial expressions and speech aligned
visemes, the BMLR realizer has not yet implemented this feature. Another
feature, the movement of the agent eyes when tracking a target was also not
considered by the BMLR developers.

A desire to provide legacy support for prior projects was also a concern in
choosing a platform to develop. Our projects using Flash animations and the
existing WOZ control panels we had developed were of primary concern.
Although the ECAT system made some preliminary development efforts to
support our existing WOZ control panels, no progress was made on the actual
translation of their content into the MURML that would be required for ECAT to
support them. Neither SmartBody nor ACE have any facility that would support
synchronizing pre-recorded or synthesized speech with Flash animations. Even if
such a facility could be developed, the effort required would likely obviate its
utility. Table 1 lists the criteria considered in evaluating the two potential
development platforms. We chose to pursue development of the SmartBody and
BMLR combination primarily because SmartBody already supports a preliminary
version of BML and it was unclear when if ever we could expect the ACE and
ECAT combination to support that interface. Although it does not support
procedural animations, we felt that SmartBody could be modified to support them
because a gaze controller had already been implemented for the system.

Table 1: Relative merits of the two evaluated development systems

 SmartBody/BMLR ACE/ECAT
Input BML MURML (maybe BML)
Output Panda3D OpenInventor (maybe Panda3D)
Key-frame Animation yes no
Procedural Animation only gaze yes
Visemes partially supported no
Flash Animation no no
Sam/WOZ input no no

Another factor in deciding to develop on the SmartBody/BMLR platform was the
relative ease with which we felt it could be modified to meet our needs. In
addition to adding viseme support, our research needs agents that can interact
with objects in the virtual world. SmartBody already maintains the position of
objects within the virtual world through the use of what are called pawns. We
decided that this existing infrastructure would make grabbing and moving them
more easily accomplished. We developed a plan to make three main
contributions to the existing SmarBody/BMLR code base, 1) add viseme support
to the Panda3D implementation, 2) develop BML tags for agent interactions with

objects and 3) develop a simple inverse kinematics solution that would allow
procedural animations such as pointing at or reaching for objects. We
accomplished the first two of our goals and have made some progress towards
the final goal of procedural controllers. The following section describes in detail
the changes we made to the SmartBody and BMLR code to accomplish our
goals.

Adding Viseme Support

Visemes are the visual analog to phonemes. Adding viseme support to virtual
agents requires synchronizing lip movement with speech generated by the agent.
A simple technique for generating lip movement of virtual agents is to modulate
the opening of the mouth with the level of the agent audio. For more accurate
representations of human speech, the phonemes that make up an utterance are
converted into a smaller set of mouth forms known as visemes [10]. The
SmartBody system already has a facility for using the list of visemes associated
with an utterance to synchronize the transmission of commands for their
execution to the rendering engine. The developers of the BMLR code were not
focused on providing this functionality and therefore did not build it into their
system. Adding viseme support to the BMLR code requires building a character
model that can controlled to display a vocabulary of visemes. The code then
needs to be modified to receive viseme commands from SmartBody and
manipulate the appropriate parameters in the character model.

The BMLR code developed at CADIA consists of a number of Python classes
that allow the creation of SmartBody characters in a Panda3D scene along with
the sending of BML messages to SmartBody to define their behaviors. The
BMLR code reads in a character and unpacks the skeletal joints associated with
the character. After building our own character, our animator only needed to
complete the part of the skeleton associated with the head in accordance with
the SmartBody specifications to get the eyes to track targets.

The recommended procedure for creating facial animations in Panda3D is to use
what are known as morph targets. Creating morph targets involves making
numerous copies of a character’s head and manipulating the skeletal joints of the
face to achieve individual expressions. A separate set of sliders called blend
shapes, one for each expression, are then created. These blend shapes can then
be adjusted between negative one and one for each facial expression, or each
mouth position in the case of generating lip visemes, to create a morphed
expression of the character face that represents a weighted blend of each of the
blend shapes.

To accommodate finding blend shapes in each character and adjusting them, the
file ClassCacher.py was augmented to read a *.morphs file for each character
loaded. This file establishes a mapping between a viseme number determined by
SmartBody and the name of a blend shape within the character model file.

Because facial expressions such as eye blinks and lip visemes may require
different processing, blend shape names pre-pended with “viseme:” are stored in
a separate array. The file CharacterPawn.py was then altered to search for the
stored blend shapes in the already loaded character model and expose the
morph joints. A routine, setViseme, was also added to set those morph joints. We
use a python LerpFunc call to smoothly blend morph targets from their current
value to their new value when the viseme duration is above a threshold. Because
our primary focus was on lip visemes, we are currently managing both facial
expressions and lip visemes in the same manner. The parser in Scene.py was
then altered to call setViseme for each character when “SetActorViseme”
messages are received from SmartBody. It is worth noting that the mechanism
for producing character blinking currently only works for a single character in
each scene. For testing, we directed all visemes to a single character, but in the
future this problem will need to be addressed in SmartBody.

SmartBody has two mechanisms for generating visemes, using pre-recorded
audio files with associated phoneme files or through a remote text-to-speech
server. Our changes to the BMLR code allowed us to generate lip action for
characters executing the pre-recorded audio and phoneme files provided with
SmartBody. The phoneme files used by SmartBody, called *.ltf files, have been
created using a proprietary piece of software called the Unreal Impersonator.
Because it was our desire to use a different piece of software, wave2lips,
developed by Jacques H. de Villiers at the Center for Spoken Language
Understanding, we made several modifications to the sbm_speech_audiofile.cpp
file. In order to accommodate any number of different phoneme file formats, we
created a data structure to store phoneme names as characters strings along
with their timing information. We then wrote routines to extract that information
from either *.ltf files or our own *.pho files. The code was altered to look for a
“phoneme” attribute in the speech XML tag during parsing to determine the
proper phoneme file extension to open along with an audio file.

The phoneme files are used to construct a list of corresponding visemes from a
map file. The default map file was called doctor.map, but we moved to using a
map file located within the same directory as each character named
phoneme2viseme.map. Not all researchers use the same set of phonemes or
visemes and the set used by SmartBody was hard-coded into the system. In
response, we modified the code reading the map file to accommodate a flexible
number of visemes associated with each phoneme and a flexible number of
possible phonemes. This allows us to create viseme to phoneme mappings
based on different phoneme vocabularies. In a similar vein, SmartBody also uses
a fixed mapping between visemes and the viseme number sent on to the
rendering engine. This hard-coded list of visemes includes a number of facial
expressions developed for the Unreal engine renderer. However, we wanted the
flexibility to create any morph targets in our characters and modified the code
within comappi.cpp to read a viseme2network.map file to allow additional

mappings between visemes (i.e. eyebrow_raiser) and viseme numbers sent to
Panda3D.

Each pre-recorded utterance is referenced by name using a “ref” attribute within
the BML speech tag. In order to synchronize pre-recorded utterances with
gestures, an utterances.map file was used to store the text of each utterance.
This system appears to have been designed to synchronize gestures to words in
the utterance by means of an annotation scheme. For example, synchronizing a
gesture stroke to sp1:T3 indicates that the stroke should occur when the third
word in the utterance is spoken. However, we decided to place the text of the
utterance directly into the BML description. This allows us to place
synchronization points at arbitrary points within the text. The functionality is
controlled by the getMarkTime function within the sbm_speech_audiofile.cpp file.
We altered this function to search for standard BML sync points and then
estimate the time within the audio file at which the word is uttered by using the
same word count method already included in the code.

The SmartBody system makes use of a client-server messaging protocol called
ActiveMQ to handle requests to the remote TTS server and the list of visemes it
returns. However, the BMLR designers were hesitant to include such overhead in
their system and removed ActiveMQ from their compilation of the SmartBody
code. We added a condition to the code in sbm_speech_audiofile.cpp that allows
a speech utterance to be generated using a local TTS system if the “ref” attribute
is not included among the speech tag attributes. This modification makes a
system call to Cepstral's TTS synthesizer and then wav2lips generates a
phoneme file from the resulting audio file. Unfortunately this method causes
unacceptable delays in the SmartBody processing and as a result we plan to
develop our own hashing method for text utterances. This hashing mechanism
will allow us to easily prototype utterances by merely adding them to BML files.
Once the utterance has been synthesized a first time, the system will find the
hashed audio and phoneme files then play them without delay in subsequent
executions.

Interactions With Objects

Our primary requirement is that agents can grasp objects, move them to another
location and release them. To accommodate this, a new tag was added to the
BML language called “grasp”. The grasp tag takes two attributes, “target” and
“joint”. The target attribute indicates the name of a SmartBody pawn that should
become attached to the agent. The joint attribute indicates at which joint the
attachment should occur. The coordination of pawn attachment and dropping is
accomplished through the standard gesture sync points. The point synchronized
to the stroke of the gasp tag (i.e. <grasp stroke=sp1:red>) indicates the time at
which the target pawn should become attached to the specified agent joint.
Subsequently, the end sync point of the grasp indicates when the agent should
drop the pawn. If an end point has not been specified, no drop will occur. This

allows an agent to grab an object during one behavior act and then drop it at a
later time.

In order to accommodate this new behavior, several changes had to be made to
both the BMLR code and the SmartBody code. The BMLR code was handling a
coordinate system mismatch between the one used by SmartBody and the one
used by Panda3D by rotating the Panda3D model by 180 degrees. Although this
allows characters in the scene to correctly orient themselves towards pawns in
the scene, it did not handle attaching pawns to agent joints correctly. To fix the
problem, the model rotation in ClassCacher.py file was replaced by a 180 degree
rotation of the skeleton base. The ProcessCommand function in Scene.py was
then modified to recognize an “AttachActorPawn” message delivered through the
commapi interface. Depending on the boolean value received, the parsing calls
either a GrabPawn or DropPawn function that was added to the file
CharacterPawn.py. The GrabPawn function makes the BMLR Pawn class object
a child of the Panda3D NodePath associated with the designated skeletal joint of
the agent. Currently, both the grab and drop functions reset the Pawn position
and orientation to prevent any discontinuity. This functionality could easily be
altered to move the object into a predetermined orientation with respect to the
joint (i.e. for matching a tool handle to the hand orientation).

The grasp BML tag was added to SmartBody by adding it as a function handled
by the SbmCharacter class. The process of adding a new behavior involves first
modifying bml_processor.cpp to add the TAG_GRASP token, catch XML DOM
elements of that name and pass their contents to a function called
parse_bml_grasp. This grasp function in turn creates a member of a
GraspRequest class that was added into the bml.cpp file. The constructor for this
class initializes the default joint to “r_wrist”. The schedule method was
overwritten to force the stroke->time variable into the end time. The request is
then scheduled by adding a command to the SmartBody command stack of the
form: char <name> grab <pawn> <joint> or the form: char <name> grab <pawn>
<joint>. The sbm_character.cpp file was modified to catch these new SmartBody
commands and call the SbmCharacter:attach_pawn method. This method, in
turn, calls the CommapiCharacter:AttachPawn method added to commapi.cpp to
construct the appropriate “AttachActorPawn” method and send it on to the
Panda3D rendering engine.

In our testing with the version of SmartBody that the BMLR developers used, we
had some difficulty synchronizing our new grasp behavior with the sync points of
gestures. More specifically, we found that behaviors (i.e. a grasp or a head nod)
could be synchronized to start at the stroke or end of a gesture but that their end
time could not be synchronized. We did find that both a stroke and end time
could be set for a grasp behavior by synching these points to other sync points
with manually specified times (i.e. <sync name=”red” time=”3”>). The SmartBody
developers indicated that this earlier version of SmartBody might not fully enforce
synch points and, as such, we did not pursue modifying the code to fix this issue.

Interactions with the Virtual Environment

For the purposes of our research, simply moving objects in the virtual world may
not be adequate. For example, we might want to initiate a command to correct
the orientation of an object when it is dropped. We decided that we also needed
to be able to place arbitrary XML commands within the BML language that are
passed through SmartBody and into Panda3D. However, it remains important
that these commands themselves can also be synchronized with behaviors (i.e.
at the end of a grasp behavior). To accommodate this need we added an “emit”
tag to the BML parsed by SmartBody. This behavior tag can be synched to any
gesture sync point and passes all of its children nodes as XML on to the
Panda3D renderer. The version 1.0 specification of the BML language already
includes the emit tag but its implementation is focused primarily on emitting
events that influence the execution of other BML behaviors. The emit tag had not
been implemented by SmartBody and our changes do not affect any existing
functionality. Although it may be acceptable to have any tags bellow the emit tag
that are not recognized as BML passed on down to the rendering engine, some
refinement of this formalism by be necessary in the future.

The changes made to the BMLR and the SmartBody code to add the emit
behavior are very similar to those undertaken for the grasp behavior. The new
tag was parsed within bml_processor.cpp and an instance of EmitRequest
created and scheduled. The EmitRequest scheduling like the GraspRequest
scheduling adds a command to the SmartBody command stack of the form: emit
<xml>, where <xml> is a text string of the collapsed DOM children under the
grasp BML tag. A send_xml method was added to the sbm_character.cpp file
along with the necessary parsing to call it. Finally, the commapi.cpp file was
modified to send an “ActorXML” message onto the Panda3D rendering engine.
We also modified the BMLR code to capture and parse the XML for use in the
Python environment. Python is very flexible about constructing commands from
character strings and we will likely be using this method to directly pass the name
of Python functions to call along with their appropriate arguments.

We took the route of adding the emit behavior to the SbmCharacter class
because it was expedient. However, an argument can be made that it is not
necessarily appropriate that all XML passed onto the renderer be attribute to an
agent. For example, one might want to make adjustments to more global
variables in the virtual world that. If disconnected from a specific character, it
might be more appropriate to use the method used by the BMLR developers to
add their text_speech element to SmartBody. This involved adding their own
include text_speech.h include file into mcontrol_util.h and callbacks in the
sbm_main.cpp file.

Procedural Controllers

Our current approach to interacting with objects in the virtual environment
definitely limits the ease with which new scenarios can be easily prototyped and
developed. A more general solution than key-framed gestures is the ability to
have the agent reach for an object in an arbitrary location and orientation. In
addition, we are also exploring scenarios where a user in the physical world
makes adjustments to physical objects that are tracked and acknowledged by the
virtual agent. Whether referring to virtual or physical objects, the ability of an
agent to make referential pointing gestures towards objects is of real value to our
research. We have begun developing a procedural controller for the SmartBody
system based on the existing system that controls actor gaze through the
manipulation of multiple joints of the spine and eyes. We have implemented a
simplified geometry-base inverse kinematics system in the Panda3D
environment but have yet to move the implementation into the SmartBody
environment.

Some problems in human kinematics are more difficult than others. In the
general case, a solution for an under-constrained set of equations must be found
by iterative methods such as Newton-Raphson. The SmartBody gaze controller
manipulates a range of spine and eye joints to direct agent gaze towards pawns
in the environment. The implementation of this behavior is accomplished in a
relatively straightforward manner by spreading the heading and pitch of the head
amongst the spine joints using an a priori set of weights. Although this means
that that SmartBody contains no built-in equation solver, this does not present a
problem for doing some well constrained inverse kinematics with the arms. As
long as the system behaves as a two joint chain, simple geometric equations and
some additional constraints on the joints can lead to acceptable results (figure 2).
In the case of the arm, as long as joints up the hierarchy from the shoulder joint
are not used for reaching, a two joint chain can be used if the wrist position is
chosen as the end effector. Adequate results can be achieved in grasping and
pointing at objects with this constraint. For both the gasping and pointing
gestures, the object and some heuristics can be used to constrain the position
and orientation of the hand and thus fix the wrist position.

Figure 2: Given the wrist position, the angle of the shoulder away from the wrist and the

angle of the elbow joint are a function of the lengths of the arm segments.

The calculation of arm joint rotations proceeds by first breaking the shoulder joint
into three transformations, a rotation towards the wrist position

�

Mw , a rotation
related to wrist distance

�

Md and a rotation due to elbow position

�

Me . Given the
vector from the shoulder to the wrist

�

VW , upper arm length

�

Lu and forearm length

�

Lf , the shoulder matrix,

�

Ms , can be derived as:

�

Ms = Mw *Md *Me

where

�

Mw = Mx *Mz and

�

Mz =

Zy

Λ
− Z

Λ
x 0

−Z
Λ
x Z

Λ
y 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

where

�

Z
Λ

= VW x VW y 0[] and

�

Mx =

1 0 0

0 Xy

Λ
X
Λ
z

0 − X
Λ
z X

Λ
y

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where

�

X
Λ

= 0 Z
Λ
VW z

⎡
⎣ ⎢

⎤
⎦ ⎥ and

�

Md is the rotation matrix formed by

�

θ

where

�

θ = cos−1
Lu
2 + Vw

2 − Lf
2

2Lu − Vw

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

A heuristic for determining the rotation due to elbow position

�

Me can be formed
by noting that the elbow is influenced by the physiology of the shoulder joint.
When the wrist moves below the shoulder, the arm tends to rotate the elbow
down and towards the body. As the wrist rises to shoulder height, regardless of
its distance from the body, the arm rotates the elbow out from the body.

When grasping an object, the position of the wrist is dictated by the location of
the palm relative to the object. One solution to determining the palm location
involves creating a priority list of grasping locations for each object. For each
grasp location, the distance from palm to object boundary (and subsequently
required hand shape) can either be determined a priori and included in this list or
calculated dynamically at runtime. The orientation of the object to the agent body
can then be used to rank potential grasp locations. Choosing a candidate grasp
location and calculating the resulting wrist location then becomes straightforward.
While this approach in no way guarantees a completely natural grasp gesture, it
should allow the object designer a sufficient degree of control over where and
how objects are grasped.

Pointing gestures can be assumed to determine the shape and orientation of the
hand. We have developed a simple heuristic for determining hand location during
a pointing task. First, we constrain the position of the hand to a plane formed by
the head, the referent object and the shoulder doing the pointing (figure 3). Then,
we constrain the hand to lie on a line that is calculated using the maximum
distance between the agent head and elbow. Although the elbow position is
determined later by a separate heuristic, this roughly minimizes the angle
between the wrist and the forearm. To determine the distance along the line to
the object, we constrain the hand to lie just on the edge of a conic viewing
frustum for the agent. Finally, a minimum distance from the object is enforced
which overrides this viewing frustum constraint.

Figure 3: During pointing tasks, the wrist lies on a line between the object and the elbow

at its maximum distance from the head. A minimum distance from the object and the
edge of the viewing frustum constrain the final position of the wrist on that line.

Given our proposed heuristics for calculating the joint angles of the hand and arm
during grasping and pointing gestures, our task becomes integrating these
equations into the SmartBody system. We first implemented our equations for the
shoulder and elbow position relative to wrist position directly within the Panda3D
environment. We attached additional models to the shoulder joint of a virtual
agent and used its wrist joint position during key-framed gestures as the end
effector. This process allowed us to easily visualize if our calculations where
correct or our elbow rotation heuristic was adequate. The arm kinematics can be
easily accomplished using Panda3D data types and helper methods such as
those that orient a quaternion towards a point in space. However, we formulated
our calculations without these tools in order to match to the functionality currently
provided by SmartBody.

The SmartBody system uses a series of hierarchical controllers to layer and
blend the underlying key-framed gestures onto the agent joints. In order to use
our procedural controller in this context, we can represent it in a manner similar
to that already used by key-framed animations. This requires defining a function
that takes a time value as input and gives joint values as output. By defining a
duration to the stroke of our grasping or pointing gesture, we can interpolate the
joint values between the current arm position and the final arm position. This
requires calculating the final joint position of the arm and then simply
interpolating those joints using through quaternions. The final joint values must

be recalculated at each call because we have no guarantee that the shoulder
joint or the target object has not changed since the last function call.

Conclusion

In response to the increasing difficulty of developing complex virtual avatar
systems, we have embraced the componentized model of agent development
proposed by the SAIBA initiative. We evaluated two potential development
environments that have come out of the initiative and chose to use the
SmartBody BMLR solution from the CADIA at the University of Reykjavik. We
identified three necessary improvements to the code that our research requires:
viseme support for pre-generated and TTS generated speech, BML language
support for interacting with objects within the agent environment, and procedural
controllers for executing those behaviors in arbitrary configurations. We detailed
the code changes we made to the SmartBody and BMLR Python code to achieve
the first of two of these improvements, including the addition of “grasp” and “emit”
tags to the BML variant understood by the SmartBody system. We then outlined
our strategy for adding procedural behaviors to the SmartBody system by using a
simplified kinematic model of the arm and some simple heuristics to determine
elbow and wrist position during pointing and grasping. We feel that we have
succeeded in contributing to an effort that will allow us to easily prototype and
develop virtual agents in the future with a minimum of technical effort.

References

1. Kopp, S., Tepper, P. & Cassell, J. Towards integrated microplanning of language and

iconic gesture for multimodal output, Proceedings of the 6th international conference on
Multimodal interfaces, October 13-15, 2004, State College, PA, USA

2. Cassell, J. Towards a Model of Technology and Literacy Development: Story Listening

Systems, Journal of Applied Developmental Psychology, 25 (1): 75-105, 2004

3. Maulsby, D., Greenberg, S. & Mander, R. Prototyping an intelligent agent through Wizard

of Oz, Proceedings of the SIGCHI conference on Human factors in computing systems,
p.277-284, April 24-29, 1993, Amsterdam, The Netherlands

4. Kopp, S., Krenn, B., Marsella, S., Marshall, A., Pelachaud, C., Pirker, H., Thórisson, K. &

Vilhjálmsson, H. Towards a Common Framework for Multimodal Generation: The Behavior
Markup Language. Intelligent Virtual Agents 2006, p.205-217

5. http://wiki.mindmakers.org/projects:bml:main

6. Kopp, S. & Wachsmuth, I. Model-based Animation of Coverbal Gesture, Proceedings of

Computer Animation 2002, pp. 252-257, IEEE Press, Los Alamitos, CA, 2002

7. Van der Werf, R. The Embodied Conversational Agent Toolkit: A new modularization

approach, Master of Science Thesis in Human Media Interaction, University of Twente,
The Netherlands, April, 2008

8. Thiebaux, M., Marshall, A., Marsella, S. & Kallmann, M. SmartBody: Behavior Realization
for Embodied Conversational Agents, Proceedings of Autonomous Agents and Multi-Agent
Systems (AAMAS), 2008

9. http://cadia.ru.is/projects/bmlr

10. Fisher, C. Confusions among visually perceived consonants. Journal of Speech and

Hearing Research, 11(4):796–804, 1968

