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Abstract 
 
Research efforts that require the use of virtual agents face significant challenges 
in prototyping and developing virtual agents. Not only do virtual agents require 
significant technical and artistic skills, but they also must frequently be 
modernized as the underlying operating systems, rendering libraries and system 
hardware become more advanced. In order to mitigate these challenges, we are 
cooperating with an international effort to standardize the development of virtual 
agents. Some recent products of this effort are a standard for behavior realization 
called the Behavior Markup Language and systems designed to implement it. We 
have taken one such system, a combination of the SmartBody realizer and the 
Panda3D rendering engine, and modified it to meet the needs of a research 
agenda that includes significant interactions between agents and their 
surroundings. These modifications include the addition of viseme support and the 
development of new language tags for grasping objects and executing other 
more abstract actions in the virtual world. Our resulting system allows us to 
realize agents that move their lips to either pre-recorded or text-to-speech 
utterances and that manipulate objects such as Lego blocks in the virtual world. 
These behaviors can be applied to any of our agent character models and easily 
prototyped through behavior markup scripts.  While the current system is limited 
to using key-framed gestures, we have some short-term strategies that will allow 
agents to place objects at arbitrary locations. Our long-term plan is to incorporate 
procedural controllers into the SmartBody realizer to facilitate referential gestures 
such as grasping or pointing at objects located arbitrarily in the virtual world. 
 
Introduction 
 
Virtual agents are simulated characters that interact with human beings. Previous 
research undertaken by members of our lab has involved agents that help users 
select a home, give directions on campus and engage children in storytelling. 
The development of these virtual agents presents a significant technical and 
artistic challenge. Virtual agents require a sophisticated mix of graphics, audio, 
sensing and cognitive technologies that can rarely run on the same machine, 
under the same operating system or in the same language. In an effort to make 
the prototyping and development of virtual agents more manageable, an 
international effort has begun to standardize interfaces between constituent parts 
identified in the agent realization process. Our goal has been to support this 
effort by embracing and augmenting the software it has produced and to make 
contributions to a standardization effort that reflect the goals of our particular 
research. 
 
One recent work developed in our lab was NUMACK, Northwestern University 
Multimodal Autonomous Conversational Kiosk [1]. This highly successful effort 
generated an agent capable of generating gestures that typical direction givers 
make while explaining how to find campus buildings. The resulting system was a 
combination of several different operating systems, programming languages and 



hardware configurations running a completely autonomous system. The 
significant complexity of such a system can make appropriating it for alternate 
uses extremely difficult. The NUMACK character, for example, was hard-coded 
into the system using OpenGL Performer, making any alterations to its shape or 
abilities very cumbersome. These difficulties are also compounded by the fact 
that each successive research effort is likely to need a modernization of 
hardware and software to accommodate its new requirements. The difficulty of 
maintaining and reconfiguring the NUMACK system influenced the design of the 
next project undertaken at the lab. The Collaborative Storytelling with a Virtual 
Peer project sought to avoid the technical overhead of prior efforts by relying on 
short vignettes of agent behavior created with Macromedia Flash and controlled 
directly by the researcher [2]. While this approach greatly simplified the creation 
of agent content and avoided complicated dialog managers by using a Wizard-of-
Oz (WOZ) approach, it presented serious limitations to the modification and re-
use of agent behaviors [3]. Merely changing the color of the shirt worn by the 
agent would require making changes to every flash animation in the system.  
 
Motivated by the difficulties of developing virtual agents, an international effort 
has recently begun to commoditize and componentized the development of 
virtual agent systems. This effort, called the SAIBA initiative, has resulted in a 
draft specification for a language to describe the behaviors that an agent must 
realize [4]. Our goal is to embrace this effort by attempting to utilize and enhance 
the languages and software products it has produced in our research. Our 
current research effort, targeted at children in the context of playing games and 
building structures, requires agents that can not only speak and gesture but can 
also interact with objects in the virtual world. Our software architecture for virtual 
agent prototyping and development has several other requirements. We require 
a system that allows content such as characters, objects and gestures to be 
easily modified and re-used in alternate situations. We also need any scripted 
behaviors of agents, including speech and gesture, to be re-usable and easily 
altered. 
 
The SAIBA Initiative 
 
The Situation, Agent, Intention, Behavior and Animation (SAIBA) initiative is an 
effort to break the requirements for agent development into its constituent parts. 
The framework has identified three main functional units for virtual agents: 1) 
planning of a communicative intent, (2) planning of a multimodal realization of 
this intent and (3) realization of the planned behaviors. These separate units 
effectively seek to separate high-level planning, modality specific behaviors and 
the rendering of those behaviors. The framework has proposed two standard 
languages to facilitate the communication between these units: Functional 
Markup Language (FML) and Behavior Markup Language (BML). The 
development of the Behavior Markup Language, between multimodal behavior 
specification and their realization, has been considered the more tractable task 



and, as a result, is the first product of the initiative. A draft specification for BML 
is available and is actively being developed [5]. 
 
Behavior Markup Language divides behaviors into “acts” carried out by individual 
agents. Each act can consist of any number of specific behaviors such as 
speech, gesture or facial expression. The XML-based language provides for the 
creation of sync points that can be used to synchronize the behaviors within an 
act. For example, one might seek to synchronize a gesture with the speaking of a 
particular word in an utterance. In the sample below, a beat gesture has been 
designated to perform its most effortful part, the stroke, when the agent speaks 
the word “red”. 
 
<bml> 
    <speech id=”sp1”>Meet me at the <sync id="tm1"/>red barn</speech> 
    <gesture id=”g1” type=”beat” stroke=”sp1:tm1”/> 
</bml> 
 
The synchronization points that have been identified, in the order of execution, 
are: start, ready, stroke-start, stroke, stroke-end, relax and end (figure 1). These 
seven synchronization points can be attributed to any behavior. The current 
specification for BML also includes the following behavior tags: face, head, gaze, 
posture and locomotion. The face tag is used to control agent facial expression 
while the head and gaze tags are used to control head nods and looking at 
objects and agents in the world respectively. 
 

 
Figure 1: The seven gesture synchronization points defined within BML 

apply not only to gestures but also to other behaviors such as gaze. 
 



Existing Realization Engines 
 
Given a method of describing multimodal behavior such as BML, one must then 
build a system that can realize the behaviors it describes. This section describes 
two systems SmartBody/BMLR and ECAT/ACE that could potentially act as a 
behavior realization system for our research. The discussion below details how 
we decided to pursue using the SmartBody/BMLR system for our virtual agent 
development.  
 
The NUMACK project utilized an underlying motion engine called the Articulated 
Communicator Engine (ACE) [6]. The ACE system is capable of aligning speech 
and gesture as proposed by the BML specification. This technology, developed 
by Stefan Kopp, is unique because it allows agent arm gestures to be defined in 
terms of their individual components such as hand shape, palm orientation and 
the like. Given the required position of end effectors such as the hand, ACE uses 
inverse kinematics to move the position and orientation of the remaining agent 
skeletal joints smoothly through spline curves. This procedural approach 
facilitates developing gestures that point to objects in the environment or 
describe objects of variable size (i.e. the length of a fish). The ACE system uses 
a language that was influential in the development of BML called MURML 
(Multimodal Utterance Representation Markup Language). The ACE system 
does not manage facial visemes nor does it have any facility for animating the 
type of key-framed animations favored by character modelers. 
 
The output created by the ACE system is confined to the single character model 
it supports known as MAX. The rendering engine for the MAX agent is tightly 
integrated with the ACE engine and makes using different agent representations 
very difficult. An effort was recently undertaken to create ECAT, the Embodied 
Conversational Agent Toolkit, which effectively disconnects the rendering engine 
from ACE so that any rendering engine can be used with it [7]. The ECAT project 
does not attempt to migrate the MURML interpreter to the newer BML language 
but such a migration has been suggested for sometime in the future. ACE does 
provide a working interface between ACE and the SGI OpenInventor graphics 
library and does provide some preliminary work on an interface to the Panda3D 
graphics engine. An interface between any realizer and Panda3D is attractive to 
our work because we have been investigating using the open source rendering 
engine for some time. 
 
The SmartBody behavior realizer is a system developed at UCS by Stacy 
Marsalla and his team working in collaboration with the Institute for Creative 
Technology (ICT) [8]. The SmartBody system can align speech and gesture, 
produce facial visemes and supports key-frame animated gestures. SmartBody 
currently only supports one type of procedural animation, a controller that allows 
characters to gaze at objects and other characters within the screen. SmartBody 
uses the proprietary Unreal game engine to realize its characters. A separate 
research group, the Center for Analysis and Design of Intelligent Agents 



(CADIA), at the University of Reykjavik has developed a realizer for SmartBody 
that uses the Panda3D rendering engine [9]. The current code, known as BMLR, 
provides a straightforward pipeline for creating and animating characters using 
either the Maya or Blender modeling applications. While the SmartBody realizer 
using the Unreal engine implements facial expressions and speech aligned 
visemes, the BMLR realizer has not yet implemented this feature. Another 
feature, the movement of the agent eyes when tracking a target was also not 
considered by the BMLR developers. 
 
A desire to provide legacy support for prior projects was also a concern in 
choosing a platform to develop. Our projects using Flash animations and the 
existing WOZ control panels we had developed were of primary concern. 
Although the ECAT system made some preliminary development efforts to 
support our existing WOZ control panels, no progress was made on the actual 
translation of their content into the MURML that would be required for ECAT to 
support them. Neither SmartBody nor ACE have any facility that would support 
synchronizing pre-recorded or synthesized speech with Flash animations. Even if 
such a facility could be developed, the effort required would likely obviate its 
utility. Table 1 lists the criteria considered in evaluating the two potential 
development platforms. We chose to pursue development of the SmartBody and 
BMLR combination primarily because SmartBody already supports a preliminary 
version of BML and it was unclear when if ever we could expect the ACE and 
ECAT combination to support that interface. Although it does not support 
procedural animations, we felt that SmartBody could be modified to support them 
because a gaze controller had already been implemented for the system. 
 

Table 1: Relative merits of the two evaluated development systems 
 
 SmartBody/BMLR ACE/ECAT 
Input BML MURML (maybe BML) 
Output Panda3D OpenInventor (maybe Panda3D) 
Key-frame Animation yes no 
Procedural Animation only gaze yes 
Visemes partially supported no 
Flash Animation no no 
Sam/WOZ input no no 
 
Another factor in deciding to develop on the SmartBody/BMLR platform was the 
relative ease with which we felt it could be modified to meet our needs. In 
addition to adding viseme support, our research needs agents that can interact 
with objects in the virtual world. SmartBody already maintains the position of 
objects within the virtual world through the use of what are called pawns. We 
decided that this existing infrastructure would make grabbing and moving them 
more easily accomplished. We developed a plan to make three main 
contributions to the existing SmarBody/BMLR code base, 1) add viseme support 
to the Panda3D implementation, 2) develop BML tags for agent interactions with 



objects and 3) develop a simple inverse kinematics solution that would allow 
procedural animations such as pointing at or reaching for objects. We 
accomplished the first two of our goals and have made some progress towards 
the final goal of procedural controllers. The following section describes in detail 
the changes we made to the SmartBody and BMLR code to accomplish our 
goals. 
 
Adding Viseme Support 
 
Visemes are the visual analog to phonemes. Adding viseme support to virtual 
agents requires synchronizing lip movement with speech generated by the agent. 
A simple technique for generating lip movement of virtual agents is to modulate 
the opening of the mouth with the level of the agent audio. For more accurate 
representations of human speech, the phonemes that make up an utterance are 
converted into a smaller set of mouth forms known as visemes [10]. The 
SmartBody system already has a facility for using the list of visemes associated 
with an utterance to synchronize the transmission of commands for their 
execution to the rendering engine. The developers of the BMLR code were not 
focused on providing this functionality and therefore did not build it into their 
system. Adding viseme support to the BMLR code requires building a character 
model that can controlled to display a vocabulary of visemes. The code then 
needs to be modified to receive viseme commands from SmartBody and 
manipulate the appropriate parameters in the character model. 
 
The BMLR code developed at CADIA consists of a number of Python classes 
that allow the creation of SmartBody characters in a Panda3D scene along with 
the sending of BML messages to SmartBody to define their behaviors. The 
BMLR code reads in a character and unpacks the skeletal joints associated with 
the character. After building our own character, our animator only needed to 
complete the part of the skeleton associated with the head in accordance with 
the SmartBody specifications to get the eyes to track targets.  
 
The recommended procedure for creating facial animations in Panda3D is to use 
what are known as morph targets. Creating morph targets involves making 
numerous copies of a character’s head and manipulating the skeletal joints of the 
face to achieve individual expressions. A separate set of sliders called blend 
shapes, one for each expression, are then created. These blend shapes can then 
be adjusted between negative one and one for each facial expression, or each 
mouth position in the case of generating lip visemes, to create a morphed 
expression of the character face that represents a weighted blend of each of the 
blend shapes. 
 
To accommodate finding blend shapes in each character and adjusting them, the 
file ClassCacher.py was augmented to read a *.morphs file for each character 
loaded. This file establishes a mapping between a viseme number determined by 
SmartBody and the name of a blend shape within the character model file. 



Because facial expressions such as eye blinks and lip visemes may require 
different processing, blend shape names pre-pended with “viseme:” are stored in 
a separate array. The file CharacterPawn.py was then altered to search for the 
stored blend shapes in the already loaded character model and expose the 
morph joints. A routine, setViseme, was also added to set those morph joints. We 
use a python LerpFunc call to smoothly blend morph targets from their current 
value to their new value when the viseme duration is above a threshold. Because 
our primary focus was on lip visemes, we are currently managing both facial 
expressions and lip visemes in the same manner. The parser in Scene.py was 
then altered to call setViseme for each character when “SetActorViseme” 
messages are received from SmartBody. It is worth noting that the mechanism 
for producing character blinking currently only works for a single character in 
each scene. For testing, we directed all visemes to a single character, but in the 
future this problem will need to be addressed in SmartBody. 
 
SmartBody has two mechanisms for generating visemes, using pre-recorded 
audio files with associated phoneme files or through a remote text-to-speech 
server. Our changes to the BMLR code allowed us to generate lip action for 
characters executing the pre-recorded audio and phoneme files provided with 
SmartBody. The phoneme files used by SmartBody, called *.ltf files, have been 
created using a proprietary piece of software called the Unreal Impersonator. 
Because it was our desire to use a different piece of software, wave2lips, 
developed by Jacques H. de Villiers at the Center for Spoken Language 
Understanding, we made several modifications to the sbm_speech_audiofile.cpp 
file. In order to accommodate any number of different phoneme file formats, we 
created a data structure to store phoneme names as characters strings along 
with their timing information. We then wrote routines to extract that information 
from either *.ltf files or our own *.pho files. The code was altered to look for a 
“phoneme” attribute in the speech XML tag during parsing to determine the 
proper phoneme file extension to open along with an audio file.  
 
The phoneme files are used to construct a list of corresponding visemes from a 
map file. The default map file was called doctor.map, but we moved to using a 
map file located within the same directory as each character named 
phoneme2viseme.map. Not all researchers use the same set of phonemes or 
visemes and the set used by SmartBody was hard-coded into the system. In 
response, we modified the code reading the map file to accommodate a flexible 
number of visemes associated with each phoneme and a flexible number of 
possible phonemes. This allows us to create viseme to phoneme mappings 
based on different phoneme vocabularies. In a similar vein, SmartBody also uses 
a fixed mapping between visemes and the viseme number sent on to the 
rendering engine. This hard-coded list of visemes includes a number of facial 
expressions developed for the Unreal engine renderer. However, we wanted the 
flexibility to create any morph targets in our characters and modified the code 
within comappi.cpp to read a viseme2network.map file to allow additional 



mappings between visemes (i.e. eyebrow_raiser) and viseme numbers sent to 
Panda3D.  
 
Each pre-recorded utterance is referenced by name using a “ref” attribute within 
the BML speech tag. In order to synchronize pre-recorded utterances with 
gestures, an utterances.map file was used to store the text of each utterance. 
This system appears to have been designed to synchronize gestures to words in 
the utterance by means of an annotation scheme. For example, synchronizing a 
gesture stroke to sp1:T3 indicates that the stroke should occur when the third 
word in the utterance is spoken. However, we decided to place the text of the 
utterance directly into the BML description. This allows us to place 
synchronization points at arbitrary points within the text. The functionality is 
controlled by the getMarkTime function within the sbm_speech_audiofile.cpp file. 
We altered this function to search for standard BML sync points and then 
estimate the time within the audio file at which the word is uttered by using the 
same word count method already included in the code. 
 
The SmartBody system makes use of a client-server messaging protocol called 
ActiveMQ to handle requests to the remote TTS server and the list of visemes it 
returns. However, the BMLR designers were hesitant to include such overhead in 
their system and removed ActiveMQ from their compilation of the SmartBody 
code. We added a condition to the code in sbm_speech_audiofile.cpp that allows 
a speech utterance to be generated using a local TTS system if the “ref” attribute 
is not included among the speech tag attributes. This modification makes a 
system call to Cepstral's TTS synthesizer and then wav2lips generates a 
phoneme file from the resulting audio file. Unfortunately this method causes 
unacceptable delays in the SmartBody processing and as a result we plan to 
develop our own hashing method for text utterances. This hashing mechanism 
will allow us to easily prototype utterances by merely adding them to BML files. 
Once the utterance has been synthesized a first time, the system will find the 
hashed audio and phoneme files then play them without delay in subsequent 
executions. 
 
Interactions With Objects 
 
Our primary requirement is that agents can grasp objects, move them to another 
location and release them. To accommodate this, a new tag was added to the 
BML language called “grasp”. The grasp tag takes two attributes, “target” and 
“joint”. The target attribute indicates the name of a SmartBody pawn that should 
become attached to the agent. The joint attribute indicates at which joint the 
attachment should occur. The coordination of pawn attachment and dropping is 
accomplished through the standard gesture sync points. The point synchronized 
to the stroke of the gasp tag (i.e. <grasp stroke=sp1:red>) indicates the time at 
which the target pawn should become attached to the specified agent joint. 
Subsequently, the end sync point of the grasp indicates when the agent should 
drop the pawn. If an end point has not been specified, no drop will occur. This 



allows an agent to grab an object during one behavior act and then drop it at a 
later time. 
 
In order to accommodate this new behavior, several changes had to be made to 
both the BMLR code and the SmartBody code. The BMLR code was handling a 
coordinate system mismatch between the one used by SmartBody and the one 
used by Panda3D by rotating the Panda3D model by 180 degrees. Although this 
allows characters in the scene to correctly orient themselves towards pawns in 
the scene, it did not handle attaching pawns to agent joints correctly. To fix the 
problem, the model rotation in ClassCacher.py file was replaced by a 180 degree 
rotation of the skeleton base. The ProcessCommand function in Scene.py was 
then modified to recognize an “AttachActorPawn” message delivered through the 
commapi interface. Depending on the boolean value received, the parsing calls 
either a GrabPawn or DropPawn function that was added to the file 
CharacterPawn.py. The GrabPawn function makes the BMLR Pawn class object 
a child of the Panda3D NodePath associated with the designated skeletal joint of 
the agent. Currently, both the grab and drop functions reset the Pawn position 
and orientation to prevent any discontinuity. This functionality could easily be 
altered to move the object into a predetermined orientation with respect to the 
joint (i.e. for matching a tool handle to the hand orientation). 
 
The grasp BML tag was added to SmartBody by adding it as a function handled 
by the SbmCharacter class. The process of adding a new behavior involves first 
modifying bml_processor.cpp to add the TAG_GRASP token, catch XML DOM 
elements of that name and pass their contents to a function called 
parse_bml_grasp. This grasp function in turn creates a member of a 
GraspRequest class that was added into the bml.cpp file. The constructor for this 
class initializes the default joint to “r_wrist”. The schedule method was 
overwritten to force the stroke->time variable into the end time. The request is 
then scheduled by adding a command to the SmartBody command stack of the 
form: char <name> grab <pawn> <joint> or the form: char <name> grab <pawn> 
<joint>. The sbm_character.cpp file was modified to catch these new SmartBody 
commands and call the SbmCharacter:attach_pawn method. This method, in 
turn, calls the CommapiCharacter:AttachPawn method added to commapi.cpp to 
construct the appropriate “AttachActorPawn” method and send it on to the 
Panda3D rendering engine. 
 
In our testing with the version of SmartBody that the BMLR developers used, we 
had some difficulty synchronizing our new grasp behavior with the sync points of 
gestures. More specifically, we found that behaviors (i.e. a grasp or a head nod) 
could be synchronized to start at the stroke or end of a gesture but that their end 
time could not be synchronized. We did find that both a stroke and end time 
could be set for a grasp behavior by synching these points to other sync points 
with manually specified times (i.e. <sync name=”red” time=”3”>). The SmartBody 
developers indicated that this earlier version of SmartBody might not fully enforce 
synch points and, as such, we did not pursue modifying the code to fix this issue. 



Interactions with the Virtual Environment 
 
For the purposes of our research, simply moving objects in the virtual world may 
not be adequate. For example, we might want to initiate a command to correct 
the orientation of an object when it is dropped. We decided that we also needed 
to be able to place arbitrary XML commands within the BML language that are 
passed through SmartBody and into Panda3D. However, it remains important 
that these commands themselves can also be synchronized with behaviors (i.e. 
at the end of a grasp behavior). To accommodate this need we added an “emit” 
tag to the BML parsed by SmartBody. This behavior tag can be synched to any 
gesture sync point and passes all of its children nodes as XML on to the 
Panda3D renderer. The version 1.0 specification of the BML language already 
includes the emit tag but its implementation is focused primarily on emitting 
events that influence the execution of other BML behaviors. The emit tag had not 
been implemented by SmartBody and our changes do not affect any existing 
functionality. Although it may be acceptable to have any tags bellow the emit tag 
that are not recognized as BML passed on down to the rendering engine, some 
refinement of this formalism by be necessary in the future. 
 
The changes made to the BMLR and the SmartBody code to add the emit 
behavior are very similar to those undertaken for the grasp behavior. The new 
tag was parsed within bml_processor.cpp and an instance of EmitRequest 
created and scheduled. The EmitRequest scheduling like the GraspRequest 
scheduling adds a command to the SmartBody command stack of the form: emit 
<xml>, where <xml> is a text string of the collapsed DOM children under the 
grasp BML tag. A send_xml method was added to the sbm_character.cpp file 
along with the necessary parsing to call it. Finally, the commapi.cpp file was 
modified to send an “ActorXML” message onto the Panda3D rendering engine. 
We also modified the BMLR code to capture and parse the XML for use in the 
Python environment. Python is very flexible about constructing commands from 
character strings and we will likely be using this method to directly pass the name 
of Python functions to call along with their appropriate arguments. 
 
We took the route of adding the emit behavior to the SbmCharacter class 
because it was expedient. However, an argument can be made that it is not 
necessarily appropriate that all XML passed onto the renderer be attribute to an 
agent. For example, one might want to make adjustments to more global 
variables in the virtual world that. If disconnected from a specific character, it 
might be more appropriate to use the method used by the BMLR developers to 
add their text_speech element to SmartBody. This involved adding their own 
include text_speech.h include file into mcontrol_util.h and callbacks in the 
sbm_main.cpp file. 
 



Procedural Controllers 
 
Our current approach to interacting with objects in the virtual environment 
definitely limits the ease with which new scenarios can be easily prototyped and 
developed. A more general solution than key-framed gestures is the ability to 
have the agent reach for an object in an arbitrary location and orientation. In 
addition, we are also exploring scenarios where a user in the physical world 
makes adjustments to physical objects that are tracked and acknowledged by the 
virtual agent. Whether referring to virtual or physical objects, the ability of an 
agent to make referential pointing gestures towards objects is of real value to our 
research. We have begun developing a procedural controller for the SmartBody 
system based on the existing system that controls actor gaze through the 
manipulation of multiple joints of the spine and eyes. We have implemented a 
simplified geometry-base inverse kinematics system in the Panda3D 
environment but have yet to move the implementation into the SmartBody 
environment. 
 
Some problems in human kinematics are more difficult than others. In the 
general case, a solution for an under-constrained set of equations must be found 
by iterative methods such as Newton-Raphson. The SmartBody gaze controller 
manipulates a range of spine and eye joints to direct agent gaze towards pawns 
in the environment. The implementation of this behavior is accomplished in a 
relatively straightforward manner by spreading the heading and pitch of the head 
amongst the spine joints using an a priori set of weights. Although this means 
that that SmartBody contains no built-in equation solver, this does not present a 
problem for doing some well constrained inverse kinematics with the arms. As 
long as the system behaves as a two joint chain, simple geometric equations and 
some additional constraints on the joints can lead to acceptable results (figure 2). 
In the case of the arm, as long as joints up the hierarchy from the shoulder joint 
are not used for reaching, a two joint chain can be used if the wrist position is 
chosen as the end effector.  Adequate results can be achieved in grasping and 
pointing at objects with this constraint. For both the gasping and pointing 
gestures, the object and some heuristics can be used to constrain the position 
and orientation of the hand and thus fix the wrist position. 
 



 
Figure 2: Given the wrist position, the angle of the shoulder away from the wrist and the 

angle of the elbow joint are a function of the lengths of the arm segments. 
 
The calculation of arm joint rotations proceeds by first breaking the shoulder joint 
into three transformations, a rotation towards the wrist position 
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A heuristic for determining the rotation due to elbow position 

� 

Me  can be formed 
by noting that the elbow is influenced by the physiology of the shoulder joint. 
When the wrist moves below the shoulder, the arm tends to rotate the elbow 
down and towards the body. As the wrist rises to shoulder height, regardless of 
its distance from the body, the arm rotates the elbow out from the body. 
 
When grasping an object, the position of the wrist is dictated by the location of 
the palm relative to the object. One solution to determining the palm location 
involves creating a priority list of grasping locations for each object. For each 
grasp location, the distance from palm to object boundary (and subsequently 
required hand shape) can either be determined a priori and included in this list or 
calculated dynamically at runtime. The orientation of the object to the agent body 
can then be used to rank potential grasp locations. Choosing a candidate grasp 
location and calculating the resulting wrist location then becomes straightforward. 
While this approach in no way guarantees a completely natural grasp gesture, it 
should allow the object designer a sufficient degree of control over where and 
how objects are grasped. 
 
Pointing gestures can be assumed to determine the shape and orientation of the 
hand. We have developed a simple heuristic for determining hand location during 
a pointing task. First, we constrain the position of the hand to a plane formed by 
the head, the referent object and the shoulder doing the pointing (figure 3). Then, 
we constrain the hand to lie on a line that is calculated using the maximum 
distance between the agent head and elbow. Although the elbow position is 
determined later by a separate heuristic, this roughly minimizes the angle 
between the wrist and the forearm. To determine the distance along the line to 
the object, we constrain the hand to lie just on the edge of a conic viewing 
frustum for the agent. Finally, a minimum distance from the object is enforced 
which overrides this viewing frustum constraint. 
 



 
Figure 3: During pointing tasks, the wrist lies on a line between the object and the elbow 

at its maximum distance from the head. A minimum distance from the object and the 
edge of the viewing frustum constrain the final position of the wrist on that line. 

 
Given our proposed heuristics for calculating the joint angles of the hand and arm 
during grasping and pointing gestures, our task becomes integrating these 
equations into the SmartBody system. We first implemented our equations for the 
shoulder and elbow position relative to wrist position directly within the Panda3D 
environment. We attached additional models to the shoulder joint of a virtual 
agent and used its wrist joint position during key-framed gestures as the end 
effector. This process allowed us to easily visualize if our calculations where 
correct or our elbow rotation heuristic was adequate. The arm kinematics can be 
easily accomplished using Panda3D data types and helper methods such as 
those that orient a quaternion towards a point in space. However, we formulated 
our calculations without these tools in order to match to the functionality currently 
provided by SmartBody. 
 
The SmartBody system uses a series of hierarchical controllers to layer and 
blend the underlying key-framed gestures onto the agent joints. In order to use 
our procedural controller in this context, we can represent it in a manner similar 
to that already used by key-framed animations. This requires defining a function 
that takes a time value as input and gives joint values as output. By defining a 
duration to the stroke of our grasping or pointing gesture, we can interpolate the 
joint values between the current arm position and the final arm position. This 
requires calculating the final joint position of the arm and then simply 
interpolating those joints using through quaternions. The final joint values must 



be recalculated at each call because we have no guarantee that the shoulder 
joint or the target object has not changed since the last function call. 
 
Conclusion 
 
In response to the increasing difficulty of developing complex virtual avatar 
systems, we have embraced the componentized model of agent development 
proposed by the SAIBA initiative. We evaluated two potential development 
environments that have come out of the initiative and chose to use the 
SmartBody BMLR solution from the CADIA at the University of Reykjavik. We 
identified three necessary improvements to the code that our research requires: 
viseme support for pre-generated and TTS generated speech, BML language 
support for interacting with objects within the agent environment, and procedural 
controllers for executing those behaviors in arbitrary configurations. We detailed 
the code changes we made to the SmartBody and BMLR Python code to achieve 
the first of two of these improvements, including the addition of “grasp” and “emit” 
tags to the BML variant understood by the SmartBody system. We then outlined 
our strategy for adding procedural behaviors to the SmartBody system by using a 
simplified kinematic model of the arm and some simple heuristics to determine 
elbow and wrist position during pointing and grasping. We feel that we have 
succeeded in contributing to an effort that will allow us to easily prototype and 
develop virtual agents in the future with a minimum of technical effort. 
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