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involving 25 users, and one specific smartphone, the Android G1.  The goal of our work 
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frequent low battery indicators; (2) we characterize the system-level power consumption 

to show that the screen and CPU are two of the most power hungry components on a 

smartphone; (3) we characterize EDGE and wifi session, providing insight into 
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ABSTRACT
We present a comprehensive analysis of real smartphone us-
age during a 6-month study, involving 25 users, and one spe-
cific smartphone, the Android G1. The goal of our work is
to study the high-level characteristics of smartphone usage,
and to understand the implications on optimizing smart-
phones, and their networks. We present 11 findings that
cover general usage behavior, interaction with the battery,
power consumption, network activity, frequently-run appli-
cations, and modeling usage states. We then discuss the
implications of these findings on optimizing and/or model-
ing smartphones and their networks. Some of our findings
include the following: (1) we show that battery manage-
ment is a significant part of the user experience, with near
daily charging and frequent low battery indicators; (2) we
characterize the system-level power consumption to show
that the screen and CPU are two of the most power hungry
components on a smartphone; (3) we characterize EDGE
and wifi session, providing insight into developing models
for smartphone networks; and (4) we demonstrate that real
user activity can be clustered to yield a small number of ma-
chine states, and state transitions, that can form the basis
for modeling smartphone devices.

1. INTRODUCTION
Advances in computing and communication technology

have recently converged in the form of mobile smartphones.
Mobile smartphones, or smartphones for short, are mobile
phones integrated with PC-like hardware and software, i.e.,
a microprocessor, storage devices, wifi, and a full-blown op-
erating system. The unique combination of portable compu-
tation and communication not only enables general-purpose
applications on mobile phones, but also enables a new class
of mobile applications such as push email and location-aware
social network services. Similar to mobile phones, which
were adopted faster than any technology in history [1], the
market for smartphones is expected to grow significantly in
coming years, with predictions of outselling PCs by as early
as 2011 [17].

.

Looking forward, there are two trends we can expect: (1)
a significant growth in the smartphone market, and (2) a
constant demand from the market for more functionality.
Increasing functionality requires computation and commu-
nication, both of which consume energy. However, the form
factor of a smartphone limits battery size, and, ultimately,
the available energy store. Smartphones must be optimized
for energy efficiency, in order to provide more functional-
ity while maintaining a reasonable battery life. In addition,
the rapid growth in the number of devices, and an increase
in the traffic per device, will drastically increase network
traffic load. This effect has already been demonstrated,
with the load of iPhone users on AT&T’s wireless data net-
work [11][19]. Thus, it will also be increasingly important
to optimize the operation of the communication networks
supporting smartphones.

The first step towards optimization is usually to iden-
tify and characterize representative workloads for the tar-
get computing platform. Workload characterization is crit-
ical for identifying components that should be targeted for
optimization, as well as finding trends or patterns in the
workload to develop optimizations.

In the case of a smartphone, what is the workload? Al-
though it is possible to answer this question at several levels,
our answer is simple: the workload of a smartphone is the
end user. This is intuitive; the activity of a smartphone is
either driven directly by user interaction, or indirectly via
the user’s network or environment. For a more concrete ex-
ample, let us consider two different users; the first uses the
device primarily as a web browser, and the second uses the
device solely as a phone. If our goal is to reduce power con-
sumption, we would focus on optimizing the general-purpose
microprocessor for the first user, but ignore it for the sec-
ond user (smartphones typically have a dedicated modem
processor for the cellular phone functionality). While this
example may be simplistic, it demonstrates the importance
of considering the usage of the end user when characterizing
the system-level workload of a smartphone.

Despite the importance of the end user in understanding
workloads, there does not exist a comprehensive study for
analyzing and modeling user behavior at a system-level on
smartphones. To fill this need, we collect real smartphone
usage from real users on real devices, and present a compre-
hensive analysis of the data from several perspectives. In all,
we collect logs of of real smartphone usage from a 6-month
study, involving 25 users, and one specific smartphone, the
Android G1. The main goal of our study is to observe the
high-level workload characteristics of real smartphone users
in the wild, and understand the implications of these char-
acteristics for optimizing smartphones, and their networks.



General Observations (Section 3) Implications
1. Users recharge their phones on a daily basis, and use their
phones until the battery is low in ∼ 20% of the cases when
it is unplugged for over 4 hours.

Battery management is a significant part of the smartphone
user experience, including daily charging and frequent low
battery indicators.

Improving Energy Efficiency (Section 4) Implications
2. There is significant variation in the usage behavior of our
users. For example, User 4 is a heavy phone user, User 17
mostly leaves the phone in Idle mode, and User 22 is a heavy
wifi user.

It is critical to perform real user studies when studying
smartphones. There are large variations across our users that
are manifested as significant changes in power consumption.

3. The Active state consumes 53.7% of the total system
power, even though it only accounts for 11% of the usage
time. Of the hardware components, the screen and the CPU
consume the most power, 19.5% and 7.3% of the total power,
respectively.

The Active consumes the majority of the power, even though
it accounts for a small fraction of the total use time. The
screen and CPU require the most attention with respect to
energy efficiency.

4. On average, the phone is in the Idle state 89% of the time
and accounts for 46.3% of the total system power.

Reducing the power consumption of the Idle state should
also be a high priority for improving battery life.

5. Most users do not switch between multiple brightness
levels, nor do they install power management software.

Automatic brightness adjusting optimizations should be in-
cluded with smartphones. Considering the magnitude of sys-
tem power attributable to the screen among all hardware
components, there is an underutilized opportunity for power
optimization.

6. The CPU utilization is typically either at 100%, or under
10%.

Dynamic CPU scale-down optimizations, such as dynamic
voltage and frequency scaling, should be used for saving
power.

Networking (Section 5) Implications
7. EDGE network session durations follow a power-law dis-
tribution, and the network traffic is highly dependent on the
time of day.

Session durations can be modeled with a General Pareto Dis-
tribution, with a a shape parameter of 2.7454 and a scale
parameter of 2.4732.

8. Wifi network session durations appear to be the sum of
several distributions and the wifi network traffic is highly
dependent on daily usage modes.

Modeling wifi session durations warrants more investigation
and shows promise of revealing trends in user behavior. Ses-
sion durations can be modeled with a MMPP.

Application Usage (Section 6) Implications
9. A significant portion of CPU utilization is attributable to
OS-level processes.

From the perspective of mobile computing, OS developers
must be aware of the broader impacts of frequently-run
code (e.g., on power consumption due to the CPU).

Usage Patterns (Section 7) Implications
10. From a large space of possible states, only a few sig-
nificant states and transitions are required to meaningfully
represent smartphone usage patterns.

Building a useful state-transition graph to model smartphone
user behavior from a large dataset is tractable.

11. Automatic clustering of usage logs closely matches man-
ually selected states of interest.

Meaningful states may be extracted automatically from in-
put data in order to build a state-based model of user be-
havior.

Table 1: Summary of our findings, including references to the section containing the details of each finding.

Specifically, we are interested in the following questions:

• What does typical user activity look like? How does it
differ across users?

• What are the most power consuming hardware compo-
nents? What are the execution characteristics of the
most power hungry components?

• What are the network connectivity characteristics on
a smartphone?

• How can we detect high-level patterns in user activity?

We first discuss our methodology, including a logger appli-
cation we have developed for studying user activity and our
user selection process (Section 2). We then present general
characteristics of the data that is logged, as well as battery
usage (Section 3). Afterwards, we characterize the total sys-
tem power consumption, identify the hardware components

that consume the most power, and provide an in-depth anal-
ysis of execution characteristics for these hardware compo-
nents (Section 4). We explore the characteristics of EDGE
and wifi traffic on mobile phones and their implications with
respect to modeling smartphones (Section 5). We present
the commonly used application in Section 6. Finally, we
demonstrate that commonly-seen phone usage states can be
automatically extracted, via clustering, and can be used to
build a model of user transitions through several usage pat-
terns (Section 7). We present related work in Section 8, and
conclude the paper in Section 9.

For the convenience of the reader, we summarize our find-
ings in Table 1. The table includes our 11 main observations,
their implications energy-efficient design and optimization,
and forward references to the sections describing each ob-
servation.
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Figure 1: High-level overview of the target mobile
architecture.

2. METHODOLOGY
In this section, we provide a general overview of the An-

droid G1, our logger application, and the power model we
use for estimating power consumption of the Android G1.

2.1 The Android G1
Our target smartphone in this paper is the HTC Dream,

marketed as the Android G1, a cellular phone platform built
by HTC that supports the open source Google Android mo-
bile device platform [6]. At the time of our studies, there
were two Android G1 phones; the G1 Android Developer
Phone (ADP1), and the commercially released T-Mobile G1
phone. Both phones are identical, except that the ADP1 is a
rooted and SIM-unlocked version for developers. Although
we focus on a specific smartphone, our contributions and
findings could easily extend to other devices.

The software on the Android G1 is the open-source An-
droid platform, which consists of a slightly modified 2.6
Linux kernel, and a general framework of C, C++, and
Java code. The framework includes the Dalvik Virtual Ma-
chine (VM), a variant of Java implemented by Google. All
userspace applications are Dalvik executables which run in
an instance of the Dalvik VM.

A high-level diagram of the Android G1 is shown in Fig-
ure 1. The ADP1 has a 3.2inch HVGA 65K color capac-
itive touch screen, uses a Qualcomm MSM7201A chipset,
and a 1150mAh lithium-ion battery [18]. The Qualcomm
MSM7201A chipset contains a 528MHz ARM 11 apps pro-
cessor, a ARM 9 modem processor, QDSP4000 and QDSP5000
high-performance digital signal processors, 528MHz ARM 11
Jazelle Java hardware acceleration, quadband GPRS and
EDGE network, integrated bluetooth, and wifi support.

To the best of our understanding, the ARM 11 apps pro-
cessor runs the Android platform and executes the applica-
tions on the device. It is rated at 528MHz and supports
dynamic frequency scaling (DFS), but is scaled down in the
platform to run at 124MHz, 246MHz, and 384MHz. The
highest frequency of 528MHz is not used. The ARM 9 mo-
dem processor is a separate processor that runs a proprietary
operating system and is in charge of the communications of
the phone. The Jazelle Java hardware acceleration processor
is not used as the Android platform runs Dalvik executables
which are not fully compatible.

2.2 Logging User Activity
To study the real usage of the Android G1, we have devel-

oped a logger application that logs user activity events, as

well as system-level performance measurements. The log-
ger is developed as a normal Dalvik executable using the
Java standard libraries available in the Android framework.
Thus, it runs on both of the Android G1 devices without
any special hardware or OS support. At a high-level the log-
ger application consists of two parts; (1) a GUI application
which looks like a normal Android GUI application (com-
plete with a clickable icon), and (2) an associated back-
ground service to provide logging functionality. We release
the logger on Android Market, the portal for Android users
to browse and download Android applications.

The GUI application. When opened by the user, the
GUI application begins the background service and displays
information about the logger on the screen. The information
includes an overview of our project, a complete list of the
information we capture, a disclaimer regarding user consent
for volunteering their log data, a start/stop button to control
the background service, and a link to the project webpage
including project information and F.A.Q.

Background service. The background service imple-
ments the logging functionality, continually logging user be-
havior and system performance characteristics. It periodi-
cally looks for a network connection and sends the anonymized
logs logs back to our server.

A complete list of the data in the traces is shown below,
including the method of data collection, and the sampling
interval for sampled data. Note that the sampling interval
accounts for active phone time. Thus, if the phone is in
an idle mode, we do not sample anything. If not listed,
the data is collected via a Android platform library call or
callback. The data is categorized by represented hardware
component, if applicable, from Figure 1.

• Apps Processor

– CPU utilization from /proc/stat [1sec]
– System load from /proc/loadavg [1sec]

• DSP

– Whether media (music / video) is playing

• Display

– Display brightness and state (on/off)

• Phone/EDGE Radio

– Phone state (airplane mode, signal strength)
– Phone call state (ringing, call, idle)
– Data plan connectivity (i.e., EDGE)
– Bytes sent/received from EDGE network from

/proc/self/net/dev [1sec]

• Wifi Radio

– Wifi state (connectivity, signal strength)
– Bytes sent/received from wifi network from

/proc/self/net/dev [1sec]

• SD Card

– SD Card traffic from /proc/self/net/dev [1sec]

• Other

– Opening and closing of the logger application
– Location, from the cellular network and GPS (only

sampled when the user triggers the Android loca-
tion services) [30sec]

– Battery charging state
– Statistical sample of application usage similar to

top Unix/Linux utility (via /proc/pid/stat) [5min]



2.3 User Selection
To obtain users for the study, we posted online adver-

tisements and physical flyers for anonymous volunteers on
various university campuses, technical news web sites, and
Android-related forums. The only prerequisite for the study
is that users own an Android G1 phone. Overall, we col-
lect logs from 52 users from April–November 2009. For this
paper, we use the logs from the 25 users with the longest to-
tal recorded time. The data from these 25 users represents
approximately 1329 days (∼ 3.6 years) of real user activity,
with an average of approximately ∼ 53 days of logged user
activity per user.

Any user-based study should be carefully designed to re-
duce sources of bias, including observer bias and selection
bias. Observer bias refers to the bias induced by the ob-
server. Selection bias refers the bias induced when using a
non-random volunteer selection process.

On observer bias. For our study, there are two poten-
tial sources of observer bias. First, it is possible that the
users may change their behavior because they know that
they are being logged. To minimize this source of bias, we
were completely transparent with our volunteers. The GUI
application was clear about the data collected. The An-
droid Market and logger application both contained links to
an email address, and a web page for the project. We re-
sponded to all questions received via email and maintained
a frequently asked questions section on the webpage. We
also guaranteed anonymity. We made it clear that all data
was anonymized and that it was impossible for us to trace
any data to a specific person. The second potential source
of bias comes from the logger application. If it significantly
perturbs the usage of the phone, it may change user behav-
ior. In order to minimize impact on user experiences, we
implemented the logger application to incur a low overhead.
The logger typically incurs less than 4% CPU overhead dur-
ing active phone use, and only consumes network bandwidth
to transfer log data. Before transferring log data, we com-
pressed the logs with gzip to minimize network traffic.

On selection bias. With respect to selection bias, we
did not attempt to control the selection or demographics
of our participants. The users are anonymous volunteers
responding to advertisements posted on multiple university
campuses and various publicly viewable online communities.
We must note that the anonymous nature of this process has
pros and cons with respect to selection bias. On one hand,
it removes our potential biases in selecting participants. On
the other hand, our process also makes it impossible for us
to guarantee or track any information about the volunteer
pool. When considering these tradeoffs, we believed that the
benefits of anonymous user selection outweighed the draw-
backs, especially considering that our anonymous approach
also aids in minimizing the observer bias.

2.4 Power Estimation
We use a regression-based power estimation model for the

Android G1 that has been proposed and validated in prior
literature [16]. We first transform our log data into a form
amenable to the power model. This involves processing the
logs, which contain different types of samples (asynchronous
events and timer-based samples), to create the samples to
feed the power model. Each sample is a vector that contains
the various parameters needed in the power model. We then
use the power estimation model to accurately estimate the

User # Sessions Total Time Hrs/Session

User1 7 454.6 hrs 64.9 hrs
User2 11 529.3 hrs 48.1 hrs
User3 131 1060.8 hrs 8.1 hrs
User4 12 297.2 hrs 24.8 hrs
User5 145 2784.2 hrs 19.2 hrs
User6 242 572.2 hrs 2.4 hrs
User7 7 361.0 hrs 51.6 hrs
User8 34 3415.6 hrs 100.5 hrs
User9 11 435.2 hrs 39.6 hrs
User10 58 422.3 hrs 7.3 hrs
User11 94 1770.5 hrs 18.8 hrs
User12 47 657.8 hrs 14.0 hrs
User13 84 725.1 hrs 8.6 hrs
User14 190 3178.2 hrs 16.7 hrs
User15 101 1093.9 hrs 10.8 hrs
User16 362 2479.1 hrs 6.8 hrs
User17 84 3368.8 hrs 40.1 hrs
User18 96 909.1 hrs 9.5 hrs
User19 41 1132.1 hrs 27.6 hrs
User20 9 449.0 hrs 49.9 hrs
User21 131 3216.0 hrs 24.5 hrs
User22 11 257.8 hrs 23.4 hrs
User23 126 939.4 hrs 7.5 hrs
User24 35 1032.1 hrs 29.5 hrs
User25 6 354.9 hrs 59.1 hrs
Total 2075 1329.0 days 28.5 hrs

Table 2: Statistics on logger sessions per user.

total system power consumption, as well as derive a power
breakdown between the hardware components.

At a high level, the power model splits the phone usage
into two modes, Active and Idle. During Active time, the
apps processor and/or the DSP processor is in use. To esti-
mate the power consumption during Active time, the power
model uses parameters that correspond to characteristics of
different hardware components on the smartphone, includ-
ing he CPU, screen, cellular phone radio, EDGE/wifi radios,
etc. It includes a catch-all system parameter for the compo-
nents that the model does not take into account (y-intercept
for the linear regression). During Idle time, the power con-
sumption is small, and relatively constant. The model uses a
constant of ∼ 70 mW for each of these samples. We process
the traces from the logger to divide each trace into samples
for the power estimation model. We use a 4 second sliding
window to generate a sample of the system-level parameters
for every second. We have performed experiments in the lab
for various usage scenarios and found that the absolute error
rate for these scenarios were, on average, 6.6%.

3. GENERAL USAGE BEHAVIOR
In this section, we provide an overall picture of the time

intervals within our log data, and then present general be-
havior on battery usage.

3.1 Logger Sessions
We first discuss the characteristics of the time intervals

that we are able to account for. The logger does not always
provide a steady stream of data. There may be gaps in
time that we are unable to account for, such as when the
phone is shut down, the operating system fails, the battery
is removed, etc. Thus, we first process our logs is to extract



Figure 2: CDF of logger session intervals.

logger sessions, time intervals we know we can account for
based upon the log data.

Table 2 shows statistics on the logger sessions for each of
our users. The table includes the number of logger sessions,
the total time of the logger sessions, and the average logger
session time. Overall, we extract 2075 logger sessions that
account for approximately 1329 days of user activity. On
average, our logger sessions account for 28.5 hours of con-
tinuous data samples. There is a high variation in average
logger session time, ranging from 2.4 hours for User 6 to
100.5 hours for User 8. Although we cannot be certain, we
believe that the users with very short logger session are most
likely Android developers who tend to restart their phones
often (as we know from experience in developing the logger).
Although there are many short logger sessions, they do not
account for a considerable fraction of the total logged time.
Figure 2 shows a CDF representing the logger session time
versus the total cumulative time. The CDF shows that over
80% of the logged time can be attributed to logger sessions
that account for over 24 consecutive hours. The short logger
sessions that are under 1 hour account for 43% of the logger
sessions, but less than 1% of the logged time.

3.2 Battery Usage
To study the battery usage of our users, we extract battery

intervals from each of the logger sessions. A battery inter-
val represents a time interval where we can account for the
battery being plugged or unplugged. Figure 3 shows a his-
togram showing the distribution of unplugged battery inter-
vals based upon their duration (note the y-axis has log scale).
Although there are some very long intervals, the majority of
unplugged battery intervals are less than 20 hours. This
demonstrates that most of our users recharge their phones
at least on a daily basis.

Table 3 shows battery interval statistics, with each row
representing the set of battery intervals with a time dura-
tion of n+ hours. For each row, we show the percent of time
unplugged, the number of unplugged battery intervals, and
the number of unplugged battery intervals that included a
low battery indicator (the phone notifies the user when less
than 15% of the battery remains). Overall, the phone is un-
plugged ∼ 68% of the time. Many of the unplugged battery
intervals are filtered out when we remove the short inter-
vals (over half of the intervals when filtering out intervals
less than 2 hours). In addition, the low battery indicator
appears a significant number of times – once for every 3.2
days of recorded phone use – in spite of the trend of daily
charging.

Figure 3: Histogram of battery intervals when the
phone is not charging.

Intervals % Time # Times # Battery
of n+ hrs Unplugged Unplugged Low (%)

0+ hrs 67.3% 3852 417 (10.8%)
2+ hrs 68.2% 1625 273 (16.8%)
4+ hrs 68.2% 1213 236 (19.5%)

Table 3: Summary statistics on battery usage.

Finding 1: Users recharge their phones on a daily basis,
and use their phones until the battery is low in ∼ 20% of
the cases when it is unplugged for over 4 hours.
Implication: Battery management is a significant part of
the smartphone user experience, including daily charging
and frequent low battery indicators.

4. CHARACTERIZING G1 USAGE:
POWER PERSPECTIVE

We now characterize the Android G1 usage from a power
perspective. In this section, we are primarily interested in
the unplugged battery intervals (as described in Section 3.2)
since they represent regular battery-constrained usage. We
first present a time breakdown of usage, and then present a
power breakdown to characterize the most power consuming
hardware components. We then study the two most power
hungry components in more detail: the screen, and the CPU.

4.1 Time Breakdown
To account for the time in the unplugged battery intervals,

we divide each interval into Idle time and Active time. The
Active time is further divided between time when the screen
is on, and when the screen is off (if there is music playing,
the phone may be in Active mode with the screen off). The
results are shown in Figure 5. Not surprisingly, the phone
is Idle most of the time (89%), and in the Active mode for
significantly less (11%). During Active time, the screen is
on 8% of the time, and is off the 3% of the time.

4.2 System-Level Power Breakdown
Next, we study the total system power breakdown using

the power estimation model discussed in Section 2.4. The
power breakdown is useful in providing a high-level view of
user activity with respect to power consumption, and can be
used to determine the hardware components that consume
the most power.

The power breakdown from each of the users is shown
in Figure 4. The x-axis represents each of the users and
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Figure 4: Total system power breakdown with and without considering the Idle state time.

the y-axis represents the percentage of total system power.
The product terms for each of the hardware components
are combined for the power breakdown. To provide a clear
breakdown in the Active state, Figure 4 also shows the power
breakdown omitting the Idle state.

Observing the power breakdown in combination with the
time breakdown (described in Section 4.1) across our users
results in three findings.

Finding 2: There is significant variation in the usage
behavior of our users. For example, User 4 is a heavy
phone user, User 17 mostly leaves the phone in Idle mode,
and User 22 is a heavy wifi user.
Implication: It is critical to perform real user studies
when studying smartphones. There are large variations
across our users that are manifested as significant changes
in power consumption.

Finding 3: The Active state consumes 53.7% of the total
system power, even though it only accounts for 11% of the
usage time. Of the hardware components, the screen and
the CPU consume the most power, 19.5% and 7.3% of the
total power, respectively.
Implication: The Active consumes the majority of the
power, even though it accounts for a small fraction of the
total use time. The screen and CPU require the most
attention with respect to energy efficiency.

Finding 4: On average, the phone is in the Idle state 89%
of the time and accounts for 46.3% of the total system
power.
Implication: Reducing the power consumption of the
Idle state should also be a high priority for improving
battery life.

Although the Idle state may often dominate the total sys-
tem power, in this paper, there are three reason to be con-
cerned with the Active state. First, the power consumed

Idle!
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Active-

Screen 
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8%!

Active-

Screen 

Off!

3%!

Figure 5: Time breakdown when the phone is not
charging.

during the Idle state (≈ 68 mW) is orders of magnitude
lower than the power that can be consumed in the Ac-
tive state (up to 2000+ mW). Second, the Active state
contributes highly to the user experience since the user is
actively engaged during the Active state. Any application
that requires the apps processor would require the device to
wake up and exit Idle mode. Finally, the Active state still
accounts for the majority of the total system power.

4.2.1 Screen
As discussed in the previous section, the screen consumes

a significant percentage of the total system power during
Active time. The screen power can be divided into two ma-
jor components: the backlight power and the power due to
the screen brightness. Although the screen backlight power
is constant, the screen brightness consumes about ∼ 50% of
the screen power and can be adjusted to trade-off bright-
ness with battery life. Table 4 shows the number of changes
in screen brightness, the number of discrete brightness lev-
els (0 (low)–255 (high)), and the average brightness used
by each user over time. Of the 25 users, 16 use one screen
brightness, 6 manually switch between 2–7 brightness levels,
and 3 use automatic screen adjustment (they have signifi-
cantly more brightness changes than the other users, signi-
fying an automatic mechanism).



# Brightness # Brightness Average
User Changes Levels Brightness

User1 0 1 150.0
User2 0 1 102.0
User3 0 1 133.0
User4 0 1 102.0
User5 11 7 84.3
User6 0 1 102.0
User7 0 1 102.0
User8 1 2 143.4
User9 0 1 102.0
User10 0 1 102.0
User11 2 2 100.8
User12 67 5 52.3
User13 0 1 75.0
User14 2 3 67.1
User15 0 1 102.0
User16 2 3 65.1
User17 0 1 46.0
User18 202 7 105.7
User19 0 1 192.0
User20 0 1 102.0
User21 0 1 255.0
User22 0 1 30.0
User23 162 4 61.2
User24 18 12 141.8
User25 0 1 57.0

Table 4: Summary statistics on screen brightness.
Brightness levels on the Android G1 range from
0 (lowest) to 255 (highest).

Finding 5: Most users do not switch between multiple
brightness levels, nor do they install power management
software.
Implication: Automatic brightness adjusting optimiza-
tions should be included with smartphones. Considering
the magnitude of system power attributable to the screen
among all hardware components, there is an underutilized
opportunity for power optimization.

4.2.2 CPU
We next study the CPU activity, as it is the second largest

power consumer during the Active state. Figure 6 shows a
histogram of the CPU utilization samples across all of our
users during the unplugged battery intervals when the screen
is on. Note that our logger application causes a very small
overhead, which shifts the CPU utilization up by 1 to 3%.
For the most part, the CPU utilization is significantly di-
vided between high and low utilization. The phone is typi-
cally at 100% utilization or below 10% utilization, spending
the majority of time in the latter case. As discussed in Sec-
tion 2.1, the CPU frequency control on the Android G1 is
naive, only controlled by the screen state. These results in-
dicate that a more aggressive frequency scaling scheme may
save significant power.

Finding 6: The CPU utilization is typically either at
100%, or under 10%.
Implication: Dynamic CPU scale-down optimizations,
such as dynamic voltage and frequency scaling, should be
used for saving power.

Figure 6: Histogram of CPU utilization samples
across all users.
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Figure 7: Probability distribution function of EDGE
network session durations. The tail of plot is cut
off for readability. The red line corresponds to our
fit to a General Pareto Distribution, described in
Section 5.1.

5. CHARACTERIZING THE G1:
NETWORK PERSPECTIVE

Understanding network behavior is important for model-
ing the networks that support smartphones. In this section,
we study EDGE and wifi characteristics for the entire logger
sessions, including both plugged and unplugged time. We do
this because all of the device traffic is of interest to network
designers.

5.1 EDGE Network
We extract 9044 EDGE sessions from all of our users, to-

taling 1142 days worth of connectivity and averaging 181.9
minutes per session. The EDGE network shared resources
with the cellular networking, and thus, is connected the ma-
jority of the time, covering 86% of all logged time. Overall,
the EDGE network traffic is highly dominated by the in-
bound traffic, which accounts for 82.3% of the bytes trans-
ferred to/from the device.

5.1.1 EDGE Session Durations
Figure 7 shows the probability distribution function (PDF)

for the session durations across all of our users. The data
follows a power-law distribution, with many short durations
that dominate the samples. We also note that the data has
a long tail, with single samples in the range of hundreds and
even thousands of minutes. We omit them from the graph
to improve readability. The PDF matches very closely to



Figure 8: EDGE and wifi network traffic with
respect to the time of day (x-axis on a 24-hour
timescale).

a General Pareto Distribution with a shape parameter of
2.7454 and a scale parameter of 2.4732. We have verified
this fitting with a correlation of determination, R2, of 0.96.

5.1.2 EDGE Traffic
Figure 8 shows the EDGE network traffic accumulate over

all the users, when first mapped to the users’ local time of
day. The network traffic follows a daily pattern, with light
traffic during sleep hours (between midnight and 7am for
this user) and heavy, bursty, traffic during the day time, in-
cluding peak activity patterns between 7–10am and 1–3pm.
Similar patterns are shared across all users, indicating that
there are predictable daily modes of EDGE traffic usage.
These traits indicate that a Markov-Modulated Poisson Pro-
cess (MMPP), which covers each of the main phases of usage
behavior and makes decisions based on time of day, may be
effective for modeling EDGE network traffic activity.

Finding 7: EDGE network session durations follow a
power-law distribution, and the network traffic is highly
dependent on the time of day.
Implication: Session durations can be modeled with a
General Pareto Distribution, with a a shape parameter of
2.7454 and a scale parameter of 2.4732.

5.2 Wifi Network
We extract 6173 wifi connectivity sessions, totaling 37.6

days worth of connectivity and averaging 8.8 minutes per
session. Since wifi is dependent upon an open wireless access
point, as well as wifi enabled (which may require explicit
user control), the wifi connectivity is not as pervasive as the
EDGE network connectivity, and the session durations are
significantly shorter. Of our users, only 9 had significant
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Figure 9: Probability distribution function of wifi
network session durations.

Type # Wifi Mean/Max Mean/Peak
Program Sessions Time (min) KB/s

Light 2608 13.8/865 3.6/514
Medium 2226 4.3/1003 11.6/1027

Heavy 1017 8.6/604 57.9/2506

Table 5: Types of wifi sessions based upon average
traffic: light (< 10 KB/s), medium (< 65 KB/s), and
heavy (> 65 KB/s).

patterns of wifi usage. The wifi network traffic is highly
dominated by the inbound traffic, which accounts for 88.3%
of the bytes transferred to/from the device.

5.2.1 Wifi Session Durations
We now study the durations of wifi sessions. Figure 9

shows the PDF of wifi session durations across our users.
We should note that the spike in the left-most data point
is cut off and goes up to ∼ 50%. Also, we omit a long tail,
with sparse single samples out to hundreds and thousands
of minutes. As shown in the figure, the PDF for wifi is con-
siderably more complex than the EDGE sessions. At a high
level, it appears to be a combination of a power law distri-
bution and a bimodal Poisson-like distribution with peaks
around 2.5 and 15 minutes. We believe that the two peaks
may be due to the aggregate of two main types of wifi ses-
sions: short sessions and long sessions. Short sessions may
be due to activities such as checking the weather, while long
sessions may include web surfing.

5.2.2 Wifi Traffic
Figure 8 shows the wifi network traffic aggregated across

all users and mapped to the users’ local time of day. The
wifi traffic also exhibits daily time-based patterns that al-
most line up directly with the EDGE network traffic. How-
ever, compared to the EDGE daytime traffic, the wifi day-
time traffic appears more noisy. Similar patterns are shared
across all 9 wifi users, indicating that a MMPP may also be
effective for modeling wifi traffic.

We can use wifi traffic to differentiate between different
types wifi sessions. Figure 10 shows a histogram of the wifi
session binned by their average network traffic. There are
two significant inflection points in the graph (marked by the
dotted black lines), near 10 and 65 KB/s, that divide the
sessions into light, medium, and heavy traffic sessions. We
provide more details on these three categories in Table 5,
showing the total number of wifi sessions, the mean/max
time duration, and the mean/peak throughput in each of



Figure 10: Histogram of the average traffic rate for
wifi sessions. The dotted lines specify the break-
down between three categories of sessions: light traf-
fic (< 10 KB/s), medium traffic (< 65 KB/s), and
heavy traffic (> 65 KB/s).

these categories. From these results, we see that there are
two times more light/medium sessions than heavy sessions,
and that mean and peak traffic both clearly distinguish be-
tween these categories. We also learn that the medium cat-
egory, with a short mean duration and a long maximum du-
ration, makes it difficult to use duration as a distinguishing
factor between wifi sessions.

Finding 8: Wifi network session durations appear to be
the sum of several distributions and the wifi network traf-
fic is highly dependent on daily usage modes.
Implication: Modeling wifi session durations warrants
more investigation and shows promise of revealing trends
in user behavior. Session durations can be modeled with
a MMPP.

6. APPLICATION USAGE
Android devices support a variety of programs download-

able through the Android Market. The Android Market
groups programs into Applications and Games. To get some
idea about how often these programs are actually used on
the devices, the logger periodically records information sim-
ilar to the common top command (henceforth referred to
as top samples for simplicity). Considering only the top
samples when the screen is on, these log entries represent a
random sampling of how often programs are used, and how
much available computation power they consume.

These two metrics are represented as the percent of top
samples containing the program, and the percent of CPU
utilization reported by top. Programs are categorized as:

• Applications: Non-Game Programs

• Games: Game Programs

• Phone/MMS: Phone and MMS processes

• OS: OS-level processes

Programs not available in the Android Market which are
not games, such as T-Mobile Self Help, provided on T-
Mobile phones, are grouped into Applications. Only sam-
ples which occur when the screen is on and the phone is not
charging are considered.

The types of programs observed by top, with correspond-
ing average CPU utilization and frequency observed, is shown

Program Seen in % of Average CPU
Type top Samples Utilization (%)

Applications 15.89% 2.63%
Games 0.10% 27.77%

Phone/MMS 91.22% 1.14%
OS 100% 11.38%

Table 6: Types of programs in top samples.

Figure 11: Ratio of top Samples with Applications,
Per-User.

in Table 6. The logging program is isolated from other Ap-
plications, and not represented in these numbers.

OS processes must be present in each sample; all Android
user-level programs run as virtual machines, and the virtual
machine server process is part of the OS. Therefore, when-
ever a program runs (including the logging program and UI
programs), the server process must also be running. Like-
wise, to receive events regarding new messages and calls, the
Phone and MMS programs keep daemon processes running
with occasional small CPU utilization. Thus, these process
types are present in most, if not all, of the samples (shown
in the middle column of Table 6).

Figure 11 shows the ratio of top samples, for each individ-
ual user, which include an Application as defined above. In
the figure, the red bar represents the ratio averaged across
users, light-blue bars represent users whose ratio is above the
average, and blue bars represent users whose ratio is below
the average.

The data shows that, on average, significant contributions
to the CPU load by Applications occur in only 16% of the
samples. Furthermore, when Applications are present in a
sample, the average combined CPU utilization by all Appli-
cation processes is 2.6%. Games contribute an even smaller
portion of the workload, being present in a tiny fraction of
the samples (0.1%).

The overall effect on CPU utilization by Applications and
Games are actually significantly smaller than the effect of
the OS-level processes. These processes are present in all
samples, with average CPU utilization of 11.4%.

To some degree, this observation may be skewed by ex-
ternal factors. For example, while the Android Marketplace
does have a section for games, and the platform supports
OpenGL for game development, the selection of games pales
in comparison to other mobile gaming platforms. If people
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Manually Selected
1 14.9% 1 1 – Phone Call
2 0.6% 0 1 2 – Phone Ringing
3 12.7% 0 0 1 1 3 – Wifi w/Traffic
4 3.8% 0 0 1 0 4 – Wifi w/out Traffic
5 15.9% 0 0 0 1 5 – Cell w/Traffic
6 4.7% 0 0 0 0 1 6 – Media On
7 47.4% 0 0 0 0 0 7 – Misc.

Automatically Selected
0 7% 1 1 65.21 5 – Cell w/Traffic
1 3% 1 1 19.75 6 – Media On
2 3% 1 8.24 1 – Phone Call
3 3% 1 1 5.86 25.51 1 – Phone Call
4 7% 1 18.09 6.17 7 – Misc. (∼ 6% CPU)
5 3% 1 15.41 4.17 6 – Media On
6 4% 1 1 4.68 4.64 4 – Wifi w/out Traffic
7 12% 1 1.52 8.91 7 – Misc. (∼ 9% CPU)
8 1% 1 0.06 1 1 52.57
9 5% 1 2.16 66.67 7 – Misc. (∼ 67% CPU)

10 14% 1 1 1 10.12 3 – Wifi w/Traffic
11 3% 1 25.97 12.98 7 – Misc. (∼ 13% CPU)
12 1% 0.2 1 14.68 37.43
13 0% 0.11 45.6 4.28
14 2% 1 1 1 9.57 51.81 5 – Cell w/Traffic
15 5% 1 2.73 20.9 7 – Misc. (∼ 21% CPU)
16 19% 1 5.56 0.94 7 – Misc. (∼ 1% CPU)
17 9% 1 1 8.03 41.74 5 – Cell w/Traffic
18 1% 1 1 1 60.9 3 – Wifi w/Traffic

Table 7: Manually and automatically selected states.

become more likely to play games on their Android device
than as observed in this study, CPU utilized by gameplay
would correspondingly be much more significant.

Still, with the OS-level processes consuming one tenth of
the available computing capabilities, this represents a large
portion of the workload.

Finding 9: A significant portion of CPU utilization is
attributable to OS-level processes.
Implication: From the perspective of mobile computing,
OS developers must be aware of the broader impacts of
frequently-run code (e.g., on power consumption due to
the CPU).

7. DISCOVERING AND MODELING
USAGE PATTERNS

In order to better understand how people use mobile plat-
forms, a useful representation for the data would be us-
age states, specifying how the device is being used at any
recorded time. With such a representation, state changes
and common patterns over time may be observed more clearly.
To develop such a model, we analyze the Active state, since
this represents time the user is interacting with the phone.

For representing usage states, a subset of potentially mean-
ingful fields are selected:

• Phone on call (off-hook)
• Phone ringing
• Wifi on
• Wifi active (communicating)
• Cell data active (communicating)
• Screen on
• SD card being read/written
• Media (music / video) being played
• CPU utilization (at medium CPU frequency and high

CPU frequency)

7.1 Selecting Representative States
To map samples to states, a set of states is chosen as

a representative set of meaningful states. This essentially
maps a vector of the above values (as boolean) to activities,
such as a phone call, or listening to music. The mapping
is performed as a binary tree, splitting on one variable at a
time. A list of these states, and the values they represent,
is shown in Table 7.

With a mapping from gathered statistics to meaningful
usage states, a time-series representation of the statistics
may be converted to a series of transitioning usage states.



 

























 

















































Figure 12: Common transitions between classified usage states.

Data in this form may be fed into any of multiple existing
random state change prediction models.

One such state change prediction model is a Markov deci-
sion process (MDP). Applying the collected Active data to
the MDP model results in the graph shown in Figure 12.

• Each node represents a state within the manually se-
lected set of usage states, described in Table 7.

• Each edge represents a state transition; an arrow marks
each tail state. The probability of following the tran-
sition labels each edge. Edges with a probability be-
low 0.1% are not shown. Transitions from a node to
itself (loopback) are shown in blue. For each node,
edges with a 15% or higher probability of being the
exit path (excludes loopback) from the node are solid
and red. Other edges are dashed and black.

• A “dummy” state of Idle is inserted at the beginning
of each Active usage session.

• “Misc.” state can be thought of as a combination of
a transitional state, on the path between other states,
and a general use state, when the phone is Active,
but neither communicating nor playing media. Fur-
ther insight may be gained by dividing this state in a
meaningful way, since it comprises nearly half (47%)
of the Active time.

Consider a user associated with a wifi access point, whose
activity is not causing significant wifi traffic. Such a user is
in state (4), Wifi w/out Traffic. This occurs for 3.8% of the
Active time (state 4 in the top of Table 7). The probability
that a representative user’s activity will cause significant
traffic in the following second is roughly 14.4% (indicated
by a red arrow from state (4) to state (3) in Figure 12).

The full utility of such a representation is well beyond the
scope of what can be presented here; however, we would like
to provide some example uses. Firstly, since user interaction
determines state transitions, this type of model may be used
to extrapolate information about the users’ interactions with
the smartphone. Second, such a probabilistic model may be
used to construct user-like platform workloads for modeling
and testing purposes. Finally, since a meaningful model can
be constructed with a manageably small number of states
and transitions, a compact representation of complex be-
havior patterns is possible.

7.2 Automatic State Detection
A set of states is manually selected to represent input

data in the previous section. Depending on the number of
variables, and the complexity of the state space, manually
selecting a subset of meaningful states may not be trivial.
For the set of selected variables, even if all values are treated
as booleans, the set of potential states to select is 29 = 512,
and this number increases exponentially with the number
of variables introduced. To demonstrate a method for auto-
matically selecting representative usage states in cases where
manual selection is impractical, a clustering algorithm is ap-
plied to the data.

The clustering algorithm included in the SimPoint 3 [15]
program phase analysis suite is applied to the Active state
data. SimPoint 3 is a software suite designed to automati-
cally extract program phases from samples of executed code
with low error (less than 10% error [15]). Specifically, Sim-
Point 3 uses a k-means clustering algorithm[10], guided by
statistical analysis, to extract representative states, or cen-
troids, for the input data. Of the large set of potential states,
SimPoint selects 19 centroids, shown in the “Automatically
Selected” section of Table 7 to cover the data set.

Comparing the two sections of Table 7 shows a strong
similarity between the characterizing attributes chosen man-
ually (top) and automatically (bottom). In some cases,
a single manually-chosen state is represented by multiple
automatically-chosen states (clusters 0, 14, and 17 all corre-
spond to samples where the phone is transferring data via
the cell network). Some comparisons:

• “Misc.” is split across many centroids (4, 7, 9, 11,
15, and 16). This state in the manually selected set
represents a large portion (nearly half) of the input
data, which the clustering algorithm divided accord-
ing to CPU utilization. A state transition model with
correspondingly defined states might be used to model
“bursts” of CPU activity on the order of, ex, seconds.

• Three centroids (8, 12, and 13) are not clearly repre-
sented by manually selected states; however, accord-
ing to SimPoint, these clusters represent a small por-
tion (2%) of the data.

• The phone ringing is not represented in the centroids.
This is due to the small amount of time the ringing
state is observed (0.6%).



Finding 10: From a large space of possible states, only a
few significant states and transitions are required to mean-
ingfully represent smartphone usage patterns.
Implication: Building a useful state-transition graph to
model smartphone user behavior from a large dataset is
tractable.

Finding 11: Automatic clustering of usage logs closely
matches manually selected states of interest.
Implication: Meaningful states may be extracted auto-
matically from input data in order to build a state-based
model of user behavior.

8. RELATED WORK
There exist several benchmark suites for the embedded

and mobile domain that target processor-oriented workloads [4,
7]. However, the real workload of mobile smartphone is more
complex, and involves studying user activity.

There are several prior studies related to logging mobile
devices. Phillips studies user activity for predicting when
put a wireless mobile devices [12]. MyExperience [5] is a
tracing infrastructure that incorporates explicit user feed-
back for studying high-level user actions. Demumiex studies
real usage to breakdown commonly used applications, and
percentage of time on the phone [3]. Shye [16] performs a
power breakdown and develops the power estimation model
used in this paper. Rahmati [13, 14] reports on a user study
regarding the non-voice aspects of smartphone use.

There are several works that have that are similar to our
work, or have come to similar conclusions. MyExperience [5]
includes a battery study for estimating the remaining bat-
tery life. Rahmati [13] performed a similar study and pro-
vides suggestions on improving the human battery interface.
Li finds that the operating system code is important on a
mobile platform. Li also makes a case for the importance
of the operating system [9] in embedded platforms. Bal-
achandran characterizes the public WLAN environment [2]
and also map session durations to a General Pareto Distri-
bution. To the best of our knowledge, this is the first work
that comprehensively studies the whole system and network
activity for implications on optimization and modeling.

Numerous works have been published on the topic of net-
work characterization. Henderson [8] observes trends in traf-
fic on a university campus wireless network, showing varying
phases over time. Yang [20] investigates general traffic self-
similarity to motivate the use of a model based on power
law. Our work models network traffic of mobile devices on
both wifi and smartphone data networks, and notes charac-
teristics specific to smartphone network activity.

9. CONCLUSION
In this paper, we study the smartphone usage of 25 users,

representing a combined total of over 3 years worth of recorded
use. To the best of our knowledge, we are the first to present
a comprehensive analysis of the usage behavior, system per-
formance, and network characteristics with respect to smart-
phone usage. We present 11 findings with implications on
improving energy efficiency, modeling EDGE and wifi traf-
fic, and automatically extracting usage patterns from trace
data to develop model for user activity.

We must note that the data in this paper is from the An-
droid G1 during the early stages of smartphone adoption,

and may not represent the activity of other smartphones.
However, there are likely to be similar characteristics across
smartphones in the near future. In the long term, we be-
lieve that the design and optimization of future mobile archi-
tectures will benefit from subsequent studies across various
settings and scenarios.
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