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Abstract

 
We present a technique for the random generation of well-typed expressions. The technique
requires only the definition of a type-system in the form of inference rules and auxiliary
functions, and produces random expressions satisfying the type system. In addition, we detail the
implementation of a generator using this approach as part PLT Redex, a lightweight semantics
modeling language and toolbox embedded in Racket. Specifically, we discuss a specialized
constraint solver we have developed to support the generation of random derivations, and how
Redex definitions are compiled into inputs for the solver during the process of generating a
random type derivation. 

Since our motivation for developing this generator is to do a better job at random testing, we also
evaluate its random testing performance. To do so, we have developed a random-testing
benchmark of Redex models. We discuss the development of the benchmark and show that our
new approach to random generation often performs better on it than an older approach previously
used by Redex. 
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ABSTRACT

The Random Generation of Well-Typed Terms

Burke Fetscher

We present a technique for the random generation of well-typed expressions. The technique

requires only the definition of a type-system in the form of inference rules and auxiliary functions,

and produces random expressions satisfying the type system. In addition, we detail the imple-

mentation of a generator using this approach as part PLT Redex, a lighweight semantics modeling

language and toolbox embedded in Racket. Specifically, we discuss a specialized constraint solver

we have developed to support the generation of random derivations, and how Redex definitions are

compiled into inputs for the solver during the process of generating a random type derivation.

Since our motivation for developing this generator is to do a better job at random testing,

we also evaluate its random testing performance. To do so, we have developed a random-testing

benchmark of Redex models. We discuss the development of this benchmark and show that our

new approach to random generation does markedly better on it than an older approach included

with Redex.
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Note:

The ESOP 2015 paper Making Random Judgments: Automatically Generating Well-Typed Terms

from the Definition of a Type-System by Fetscher, Claessen, Pałka, Hughes, and Findler contains

an updated presentation of much of the material in this dissertation, specifically a cleaner version

of the derivation generator model, and a newer evaluation including an additional case study.
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CHAPTER 1

Introduction

Testing is universally considered an integral part of the software development process. It is

less widely accepted as a useful tool for semantics engineering, where formal proofs are the tool

of choice. Since its inception, PLT Redex [10] has challenged that assumption as a lightweight

workbench for semantics modelling that utilizes testing, and specifically random testing, as an

integral part of its toolbox. Redex has used a straightforward approach to random generation

which has been effective as a basis for random testing. In this work, we enrich Redex’s random

testing capabilities by providing automatic support for generating terms that satisfy relations and

functions defined in Redex. We then evaluate the potential of this approach to random testing by

comparing it to several others.

Redex already provides significant support for random testing, inspired by the well-known

Haskell testing library QuickCheck [5]. After writing a model of a semantics in Redex, users can

define a property they wish to test and Redex is then able to randomly generate terms satisfying a

grammar which are used as test cases to try to falsify the property. This approach, and variations

thereof, has been used to successfully find counterexamples in many real-world semantics mod-

els. [18, 19, 20] However, it suffers from the deficiency that useful testable properties usually have

a precondition that is stricter than the language grammar, so that the vast majority of randomly

generated terms are not valid test cases.

To attempt to remedy this situation, we have extended Redex’s “push-button” approach beyond

language grammars with the capability to generate random terms from richer relations on terms
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that are frequently defined as part of a semantic model. Type systems are a primary example. With

the old method of random testing, Redex users would frequently define a property of well-typed

terms, and then generate terms from a grammar, using the type system as a filter before testing the

property. The new approach allows test cases to be automatically generated from the type system

as the user has already written it down.

This approach to generating random terms is more complex and necessarily slower than using

a grammar, so it is not immediately clear that it is more effective as a testing method. To evaluate

its effectiveness, we first compared it to the old method on a benchmark of Redex models to which

we have added bugs by hand. We find that the new generator does much better than this naive

grammar-based method, finding bugs the old method does not and in much shorter times.

Because of the relative scarcity of test cases generated from a grammar, most Redex testing

efforts incldue hand-written extensions to the automatic random generation capabilities. We have

also compared the new random generator against a handcrafted test generator of this type, a pre-

existing model of the Racket Virtual Machine [20] that already had many hours of development

effort behind it. The handcrafted generator performs better than the new method, finding bugs

faster and exposing one bug the new generator wasn’t able to find.

This dissertation continues by giving a more in-depth tour of Redex and its test and random

generation capabilities in Chapter 2. Chapter 3 then explains how the new method of random term

generation works, and Chapter 4 details work to evaluate its effectiveness. Chapter 5 discusses

related work and Chapter 6 concludes.
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CHAPTER 2

Random Testing in PLT Redex

We begin with brief tour of the basics of Redex and the approach to semantics that it is chiefly

designed to support in Section 2.1. Section 2.2 describes the facilities available for random testing

in Redex as they existed prior to the present work, contrasting their demonstrated effectiveness and

their shortcomings.

2.1. Overview of PLT Redex and Reduction Semantics

Redex is a domain-specific language for modelling programming languages. Users of Redex

construct a model of a programming language using a notation that mimics as closely as possi-

ble the style used naturally by working language engineers in their papers. Redex models are

executable and come with facilities for testing, debugging, and typesetting. Redex is embedded

in Racket, so the full power of the Racket language, libraries and development infrastructure are

available to to the Redex user.

Programming languages are modeled in Redex using reduction semantics, a concise form of

operational semantics that is widely used. An operational semantics imparts meaning to a lan-

guage by defining how computation takes place in that language. This is often done in terms of

transformations on the syntax of the language. Reduction semantics uses a notion of contexts to

define where and when computational steps may take place. In this section we demonstrate how

reduction semantics works with a small example, and show how this example may be formalized

using Redex. We pay special attention to details that will be important later in this dissertation. A
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Figure 1: A reduction semantics and type system for the simply-typed lambda calculus.

thorough introduction to reduction semantics can be found in Felleisen et al. [10]; they were first

introduced in Felleisen and Hieb [11].

Figure 1 shows a reduction semantics for the simply-typed lambda calculus. The lambda cal-

culus [3] models computation through function definition (abstraction) and application and is the

basis of functional programming languages. The untyped lambda calculus, with an appropriate
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evaluation strategy1 and some extensions, is a model of the core of Scheme, whereas the typed

lambda calculus, as in this example, is the basis of languages such as ML. The grammar in the up-

per left of figure 1 delineates what valid terms in this language may look like. The e non-terminal

describes the shapes of valid expressions. The v non-terminal denotes values, a special category of

expressions that we are regarding as valid “answers” in this system — in this case they are lambda

expressions (functions), or n’s. Here n is used as a shorthand for numbers, and x as a shorthand

for variables. The E non-terminal describes contexts, used in the reduction relation, and τ and Γ

respectively describe types and the type environment, used in the type judgment.

The grammar of figure 1 can be expressed in Redex as:2

(define-language STLC
(e ::= (e e) (if0 e e e) (+ e e) x v)
(v ::= (λ (x τ) e) n)
(n ::= number)
(x ::= variable-not-otherwise-mentioned)
(τ ::= num (τ → τ))
(E ::= (E e) (v E) (+ E e) (+ v E)

(if0 E e e) hole)
(Γ ::= (x τ Γ) •))

The define-language form is used to describe a grammar and is usually the first element in a

Redex program, since most other operations in Redex take place with respect to some language. It

defines the language and binds it to an identifier, in this case our language is bound to STLC. After

the language identifier comes a list of nonterminal definitions, each of which means that the non-

terminal (left of ::=) may be satisfied by some set of patterns (right of ::=). Patterns are lists built

from Racket constants, built-in Redex-patterns, or non-terminals. Here number and variable-

not-otherwise-mentioned are built-in Redex patterns that respectively match Racket numbers

1Such a strategy is defined here through contexts and the reduction relation.
2In fact, figure 1 is generated using Redex’s typesetting facilities from precisely the code seen here, and the same is
true for all the code corresponding to figure 1 in this section.
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and symbols that do not appear in productions in the grammar (λ is excluded, for example). Once a

language is defined, the redex-match form can be used to ask Redex to attempt to match a pattern

of literals and non-terminals against some term:

> (redex-match STLC (e_1 e_2)
(term ((λ (x num) x) 5)))

(list
(match (list (bind ’e_1 ’(λ (x num) x)) (bind ’e_2 5))))

Here (e_1 e_2) is the pattern we’re attempting to match, a two-element list of terms that parse

as e’s according to the grammar. A nonterminal followed by an underscore denotes a distinguished

instance of that nonterminal, or a pattern metavariable. term is Redex’s syntax for constructing

s-expressions, in this case it is equivalent to Racket’s quote. The result is a list of matches, each

of which is a list of bindings for non-terminals in the pattern supplied to redex-match, and tells

us what values e_1 and e_2 take for the match to succeed. In this case, only one match is possible,

although in general there may be more.

The rest of the grammar is straightforward, with the exception of contexts, represented by the

E non-terminal in this language. A context is distinguished by the fact that one of its productions is

[], denoting a “hole”, which is a placeholder for some subexpression. The bulit-in Redex pattern

hole is used to capture the notion of contexts, and is typeset as “[]”. In patterns, contexts are used

to decompose a term into the part outside the hole and the part inside the hole, and decomposed

terms can be reassembled by “plugging” the hole with some new term. The notation E[n] is a

pattern that matches some E context with a number in the hole, and E[5] would plug the hole and

replace that number with 5.

The redex-match form is useful for experimenting with contexts:

> (redex-match STLC (in-hole E (+ n_1 n_2))
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(term ((λ (x num) x) (+ 1 2))))
(list
(match
(list
(bind ’E ’((λ (x num) x) hole))
(bind ’n_1 1)
(bind ’n_2 2))))

Redex’s equivalent to the E[] notation is in-hole. The result indicates that this term can be

successfully decomposed into a context containing an addition expression. Redex also allows us

to experiment with decomposition and plugging:

> (redex-let STLC ([(in-hole E (+ n_1 n_2))
(term ((λ (x num) x) (+ 1 2)))])

(term (in-hole E ,(+ (term n_1) (term n_2)))))
’((λ (x num) x) 3)

The decomposition is identical to the previous example, but redex-let binds the matches

for use in term, where in this case the addition expression is replaced with an appropriate result.

This example also demonstrates how term behaves similarly to Racket’s quasiquote; the comma

escapes out to Racket so we can use its “+” function.

The reduction relation, pictured below the grammar in figure 1, describes how computation

takes place. The relation is described as a set of reduction rules, each of which matches a specific

scheme of expressions on the left hand side of the arrow, and performs some transformation to a

new scheme on the right hand side. Each rule is meant to describe a single step of computation.

The left hand side of a rule is a pattern, which attempts to parse a term according to the grammar,

and if it succeeds, the non-terminals of the pattern are bound for use in the right hand to reconstruct

a new term. Thus the relation pairs terms which match the left hand side to terms constructed by

the right hand side, given the bound non-terminals from the match.
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For example, ignoring reduction contexts for the moment, the rule for “+” is particularly simple

— it simply transforms the addition expression of two numbers to the number that is their sum,

exactly like the decompose/plug example above. The other rules describe function application by

the substitution of the argument for the function’s parameter (this rule is known as β-reduction)3,

and replace an “if” expression by one of its branches depending on the value of the test expression.

The reduction of a term according to this relation describes computation in this language, and the

interaction of the structure of the context and the form of the reduction relation together determine

the order of reduction and computation.

The reduction relation can be formalized in Redex as:

(define STLC-red
(reduction-relation STLC
(--> (in-hole E ((λ (x τ) e) v))

(in-hole E (subst e x v))
β)

(--> (in-hole E (if0 0 e_1 e_2))
(in-hole E e_1)
if-0)

(--> (in-hole E (if0 n e_1 e_2))
(in-hole E e_2)
(side-condition (term (different n 0)))
if-n)

(--> (in-hole E (+ n_1 n_2))
(in-hole E (sum n_1 n_2))
plus)))

Each --> takes a pattern as a first argument and a term (with the bindings from the pattern) as

a second argument to create a reduction rule, and the relation itself is simply the union of all the

rules.

3For simplicity, discussion of the subtle aspects of capture-avoiding substitution in the lambda calculus is omitted.
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The apply-reduction-relation form allows the Redex user to interactively explore the

operation of the reduction relation on arbitrary terms. For example:

> (apply-reduction-relation
STLC-red
(term ((λ (x num) x) (+ 1 2))))

’(((λ (x num) x) 3))

Where the structure of the context E and the form of the rules determine where rules may be

applied, and which rules may be applied. Here the rule for + reduces (+ 1 2) to 3 in an E context

of the form ((λ (x num) x) []). Note that the result is actually a list of values, since in general

an expression may be reduced in several ways by a reduction relation (in this case there is only one

reduct).

It is useful to describe computation in terms of individual steps for accuracy, but ultimately

a semantics is interested in the final result of evaluating and expression, or an answer. This is

expressed by taking the transitive-reflexive closure of the reduction relation, denoted by→*. If the

transitive-reflexive closure of the reduction relates an expression e1 to an expression e2 that is not

in the domain of the reduction relation (does not take a step) then we say that the e1 reduces to e2,

or that e2 is a normal form4 of e1. Redex allows users to reduce expressions completely through the

apply-reduction-relation* form, which returns a list of the final terms in all non-terminating

reduction paths originating from its argument (when this is possible).5

> (apply-reduction-relation*
STLC-red
(term ((λ (x num) x) (+ 1 2))))

’(3)

4Not all expression have normal forms, and it is usually desirable that normal forms of allowable expressions other
properties (i.e., are values). We use a type system to address these issues, which is described shortly.
5Although not detailed here, Redex also has support for exploring the details of reduction graphically.
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Here Redex tells us that 3 is the result of the only possible sequence of reductions:

((λ (x num) x) (+ 1 2))→ ((λ (x num) x) 3)→ 3

where the first rule applied is plus, and the second is β.

The Eval function (at the base of figure 1) captures a complete notion of expression evaluation.

It says that if the transitive-reflexive closure of some expression contains a number, the result

of evaluating that expression is a number. If it contains a function, the result is simply the token

function, which corresponds to what Racket and most languages that include first-class functions

return when the result of an expression is a function.

Of course, Eval is unfortunately not defined for all expressions that satisfy the e non-terminal of

our grammar. The evaluation of some expressions may terminate in non-values (known as “stuck”

states), and some evaluations may never terminate. Non-terminating expressions are useful, but

expressions that terminate in non-values don’t have a defined answer and should be considered

errors. We can apply a type system to eliminate expressions that result in stuck states.6 Type sys-

tems are relations between expressions and types, which denote what kind of value an expression

will evaluate to. Thus an expression that has a type will reduce to a value. Types in our language

match the τ non-terminal, and can correspond to either numbers (“num” types) or functions (“ar-

row” types). The type system is delineated by the inference rules of figure 1, which inductively

describe a ternary relation between type environments Γ, expressions, and types. The statements

above the horizontal lines are premises of each inference, and that on the bottom is the conclusion.

This type of relation is known as a “judgment form”, since it is typically used to make a decision

about some syntactic object. (See Harper [14] for more on judgment forms and type systems.)

Judgment forms are typically used in practice by starting with a conclusion we wish to prove and

6The type system will necessarily also eliminate some expressions that don’t result in stuck states, and in the case of
the simple type system of this example, it also excludes non-terminating expressions.
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attempting to construct a derivation of that conclusion. In this case one might start with an ex-

pression and try to construct a derivation that relates it to some type in the empty environment.7 A

“well-typed” expression is precisely that, one that satisfies the type judgment for some type in an

empty environment, i.e. the expression e is well-typed if • ` e : τ , for some τ .

Type judgments and other judgment-forms are expressed in Redex using the define-judgment-

form form. The following code, for example, implements the type system from figure 1:

(define-judgment-form STLC
#:mode (tc I I O)
[--------------
(tc Γ n num)]

[(where τ (lookup Γ x))
----------------------
(tc Γ x τ)]

[(tc (x τ_x Γ) e τ_e)
---------------------------------
(tc Γ (λ (x τ_x) e) (τ_x → τ_e))]

[(tc Γ e_1 (τ_2 → τ)) (tc Γ e_2 τ_2)
-----------------------------------
(tc Γ (e_1 e_2) τ)]

[(tc Γ e_0 num)
(tc Γ e_1 τ) (tc Γ e_2 τ)
---------------------------
(tc Γ (if0 e_0 e_1 e_2) τ)]

[(tc Γ e_0 num) (tc Γ e_1 num)
-----------------------------
(tc Γ (+ e_0 e_1) num)])

This corresponds closely to what is shown in figure 1, with the exception of the mode keyword

argument. Redex requires that users provide a mode specification [14] for a judgment form, which

indicates how one or more of its arguments may be determined by other arguments. In this case,

the mode indicates that the type environment and expression determine the type. Internally, Redex

7For this reason it is desirable that such judgments are “syntax directed”, or that the form of the expression alone
determines which rule applies in any case.
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treats I mode positions as patterns and O positions as terms in the conclusion of a judgment (and the

reverse in the premises). Thus a user asks Redex if a judgment form can be satisfied by providing

terms for all the I positions, and Redex attempts to construct terms for the O positions by matching

against patterns in the conclusions and recursively calling the judgment in the premises. This is

done using the judgment-holds form:

> (judgment-holds
(tc • ((λ (x num) x) (+ 1 2)) τ))

#t

> (judgment-holds
(tc • (+ (λ (x num) x) 2) τ))

#f

Here we ask Redex if the tc judgment can be satisfied for any type with the empty type envi-

ronment and two expressions. (If necessary, Redex can also suppply the resulting type or types.)

The first expression is well-typed (we have already seen that it reduces to a value), and the second

is not (and would be a stuck state for the reduction).

Depicted below the reduction relation in figure 1, lookup is a metafunction used in the typing

judgment. While a reduction relation may relate a term to multiple other terms if it matches the left

hand side of multiple rules (or the same rule in multiple ways), a metafunction attempts to match

the left hand sides of its cases in order, and the input term is mapped to the right hand side of the

first successful match.8 The pattern matching and term construction processes are similar to the

reduction relation. Metafunctions are expressed in Redex using the define-metafunction form:

(define-metafunction STLC
[(lookup (x τ Γ) x)
τ]

[(lookup (x_1 τ Γ) x_2)

8Redex considers multiple matches for the left-hand side of a single metafunction clause an error.
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(lookup Γ x_2)]
[(lookup • x)
#f])

The lookup metafunction takes a variable x and an enviroment Γ and first tries to match x to

the beginning of the environment, returning the corresponding type τ if it succeeds. Otherwise,

it recurs on what remains of Γ. The final case indicates that lookup fails and returns #f, or false,

when passed an empty environment. Metafunctions are functions on and in the object language

but are defined in the meta-language (the language of the semantics: in this case, Redex) – in

Redex, metafunctions may only be used inside of term (including implicit uses of term, such as

the right-hand sides of reduction relations or metafunctions themselves). For example:

> (term (lookup (a num
(b (num → num)

(b num •)))
b))

’(num → num)

> (term (lookup (a num
(b (num → num)

(b num •)))
c))

#f

2.2. Random Testing in Redex

Prior to the present work, all random test case generation in Redex followed a remarkably

simple strategy based solely on grammars. Given a Redex pattern and its corresponding gram-

mar, the test case generator chooses randomly among the productions for each non-terminal in the

pattern. If the non-terminal itself is a pattern, then the same strategy is used recursively. Since

an unbounded use of this strategy is likely to produce arbitrarily large terms, the generator also

receives a depth parameter which is decremented on recursive calls. Once the depth parameter
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reaches zero, the generator prefers non-recursive productions in the grammar. After some brief

examples we will discuss the effectiveness of this strategy in the context of producing terms which

satisfy some desirable property (such as well-typedness). Klein [18] discusses the implementation,

application, and inherent tradeoffs of this testing strategy in detail.

Test case generators can be called directly with the generate-term form, which take a lan-

guage, a pattern, and a depth limit as parameters. To generate a random expression in the simply-

typed lambda calculus model from the previous section:

> (generate-term STLC e 5)
’((+ (U (if0 0 (if0 L V eo) 2)) Y) 0)

We can see that this term satisfies the grammar. We can also see that it has a number of free

variables, so it is not well-typed and will result in a “stuck state” (a normal form that is not a value)

for this reduction relation – a point we will return to momentarily.

First, let’s examine how we might test our system in actuality using Redex’s testing infrastruc-

ture. We may wish, for example, to test that expressions in our language do not result in stuck

states. To do so, one might write a predicate checking for that property, and then generate a col-

lection of terms and check that the predicate is never false. This is a common situation, so Redex

provides redex-check, a form that conducts such testing automatically, given a user-provided

predicate. The following code checks a property asserting that terms always reduce to values:

> (redex-check STLC e
(redex-match STLC v

(car (apply-reduction-relation*
STLC-red
(term e)))))

redex-check: counterexample found after 1 attempt:
fp
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The first two arguments tell redex-check to generate terms in the STLC language matching the

pattern e (i.e. expressions). The third is the predicate that defines the property we wish to check; in

this case, it says that taking the transitive-reflexive closure of the generated expression with respect

to the reduction relation should produce a value. (For simplicity the assumption has been made

that the reduction sequence always terminates in a single unique result, which happens to be true

in this case but is not in general.) Here a counterexample, a free variable, is found quickly. Of

course this is because in this case the property being tested is incorrect: we first need to check that

the expression is a valid program, or that it is well typed. Here is the test adjusted accordingly:

> (redex-check STLC e
(or (not (judgment-holds (tc • e τ)))

(redex-match STLC v
(car (apply-reduction-relation*

STLC-red
(term e))))))

redex-check: no counterexamples in 1000 attempts

And now Redex is unable to find any counterexamples in the default 1000 test cases. That

is encouraging, but we may wonder how good our test coverage is. We can wrap the previous

test with some code asking Redex to tell us how many times each rule in the reduction relation is

exercised:

> (let ([red-coverage (make-coverage STLC-red)])
(parameterize

([relation-coverage (list red-coverage)])
(redex-check STLC e

(or (not (judgment-holds (tc • e τ)))
(redex-match STLC v

(car (apply-reduction-relation*
STLC-red
(term e))))))

(covered-cases red-coverage)))
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Term characteristic Percentage of Terms
Well-typed 11.36%
Reduces once or more 7.03%
Uses if-else rule 3.03%
Uses if-0 rule 2.88%
Uses β rule 0.95%
Uses plus rule 0.70%
Reduces twice or more 0.69%
Well-typed, not a constant or constant function 0.51%
Well-typed, reduces once or more 0.26%
Reduces three or more times 0.07%

Figure 2: Statistics for 100000 terms randomly generated from the stlc grammar.

redex-check: no counterexamples in 1000 attempts
’(("if-0" . 0) ("if-n" . 0) ("plus" . 3) ("β" . 0))

The result reports that the “plus” reduction rule was used 3 times over the 1000 test cases, and

none of the other rules was used even once. Clearly, the vast majority of the terms being generated

are poor tests. To give an idea of what kind of terms are generated, figure 2 shows some statistics

for random terms in this language, and exposes some of the difficulty inherent in generating “good”

terms. Although about 10% of random expresssions are well typed, only 0.5% are well-typed and

not a constant or a constant function (a function of the form (λ (x τ ) n)). The terms that are good

tests for the property in question, those that are well-typed and exercise the reduction, are even

rarer, at 0.26% of all terms. Thus it is unsurprising that test coverage is so poor.

The use of a few basic strategies can significantly improve the coverage of terms generated us-

ing this method. Redex can generate terms using the patterns of the left-hand-sides of the reduction

rules as templates, which increases the chances of generating a term exercising each case. How-

ever, it is still likely that such terms will fail to be well-typed. Frequently this is due to the presence

of free variables in the term. Thus the user can write a function to preprocess randomly generated

terms by attempting to bind free variables. Both approaches are well-supported by redex-check.
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The strategy of using strategically selected source patterns and preprocessing terms in some

way is typical of most serious testing efforts involving Redex, and has been effective in many

cases. It has been used to successfully find bugs in a Scheme semantics [18], the Racket Virtual

Machine [20], and various language models drawn from the International Conference on Func-

tional Programming [19]. However, given the apparent rarity of useful terms even in a language

as simple as our small lambda calculus example, one may wonder if there is not a more effective

term generation strategy that requires less work and ingenuity from the user.

The remainder of this dissertation details work on the approach of attempting to generate terms

directly from Redex judgment-forms and metafunctions, since those terms will in many cases

inherently have desirable properties from a testing standpoint. We then attempt to compare the

effectiveness of this strategy to the one explained in this section.



24

CHAPTER 3

Random Term Generation

This chapter explains the method used to generate terms satisfying judgment forms and meta-

functions. To introduce the approach, it begins by working through an example generation for a

well-typed term. The generation method is then explained in general, starting with a subset of

Redex’s pattern and term languages, which is used as a basis for describing judgment-form based

generation. The generation method works by searching for derivations that satisfy the relevant

relation definitions, using a constraint solver to maintain consistency during the search.

Following the explanation of the basic generation method, metafunction generation is intro-

duced along with some necessary extensions to the constraint solver. Then the constraint solver

is explained in some detail. Finally the methods used to handle Redex’s full pattern language are

discussed.

3.1. An Example Derivation

The judgment-form based random generator uses the strategy of attempting to generate a ran-

dom derivation satisfying the judgment. To motivate how it works, we will work through the
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Figure 3: Typing judgment for the simply-typed lambda calculus



25

generation of an example derivation for the type system shown in figure 3. We can begin with a

schema for how we would like the resulting judgment to look. We would like to find a derivation

for some expression �
� with some type �

� in the empty environment:

� � �
�
� �

�

Where we have added superscripts to distinguish variables introduced in this step from those

introduced later; since this is the initial step, we mark them with the index 0. The rule chosen

in the initial generation step will be final rule of the derivation. The derivation will have to end

with some rule, so we randomly choose one, suppose it is the abstraction rule. Choosing that rule

will require us to specialize the values of �
� and �

� in order to agree with the form of the rule’s

conclusion. Once we do so, we have a partial derivation that looks like:
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Variables from this step are marked with a 1. This will work fine, so long as we can recursively

generate a derivation for the premise we have added. We can randomly choose a rule again and try

to do so.

If we next choose abstraction again, followed by function application, we arrive at the following

partial derivation:
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Abstraction has two premises, so now there are two branches of the derivation that need to be filled

in. We can work on the left side first. Suppose we make a random choice to use the variable rule

there, and arrive at the following:
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Figure 4: Lookup as a metafunction (left), and as a judgment form.
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At this point it isn’t obvious how to continue, because lookup is defined as a metafunction,

and we are generating a derivation using a method based on judgment forms. To complete the

derivation for lookup, we will treat it as a judgment form, except that we have to be careful to

preserve its meaning, since judgment form cases don’t apply in order and, in fact, the second case

of lookup overlaps with the first. So that we can never apply the rule corresponding to the second

case when we should be using the first, we will add a second premise to that rule stating that x1 6=

x2. The new version of lookup is shown in figure 4, alongside the original. If we now choose the

lookup rule that recurs on the tail of the environment (corresponding to the second clause of the

metafunction), the partial derivation looks like:
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This branch of the derivation can be completed by choosing the rule corresponding to the first

clause of lookup to get:
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It is worth noting at this point that the form of the partial derivation may sometimes exclude

rules from being chosen. For example, we couldn’t satisfy the right branch of the derivation in the

same way, since that would eventually mean that ��� � ���
�
� �

��, leaving us with no finite value for

��
�. However, we can complete the right branch by again choosing (randomly) the variable rule,

followed by the rule corresponding to lookup’s first clause, arriving at:

�
� � �

� ����������� ���� � �
�� ��� �� �� � ���

�
� �

��

����������� ��� ��� ���� � �
�� ���� �� �� � ���

�
� �

��

��� ��
� ��� ���

�
� �

�� ��� � �
� � ���

�
� �

��

����������� ��� ��� ���� � �
�� ���� �� �� � ��

�

��� ��
� ��� ���

�
� �

�� ��� � �
� � ��

�

��� ��
� ��� ���

�
� �

�� ��� � ��� ��� � �
�

��� ���
�
� �

�� �� � �� ��� ��
�� ��� ���� � ���

�
� �

��

� � �� ��� ���
�
� �

��� �� ��� ��
�� ��� ����� � ����

�
� �

�� � ���
�
� �

���

At this point we have a complete derivation for a pattern of non-terminals that is valid for any

term that matches that pattern as long as the new premise that �� � �
� is also satisfied. Thus we

can simply pick appropriate random values for �� and all other non-terminals in the pattern to get a

random term that satisfies the typing judgment. An example would be:

� � �� �� ���� � ����� �� �� ���� �� ���� � ����� � ���� � ���� � �����

and the constraint that f 6= a is satisfied. We note however, the importance of this constraint, since

a term that does not satisfy it, such as �� �� ���� � ����� �� �� ���� �� ����, is not well-typed.

In the remainder of this chapter, the approach used in this example is generalized to all Redex

judgment forms and metafunctions.
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Figure 5: Simplified grammar for Redex patterns (p) and terms (t).

3.2. Patterns and Terms in Redex

Redex handles two s-expression-based grammars internally: patterns and terms. Simplified

forms of both are shown in figure 5. Terms t are essentially s-expressions built from Racket con-

stants a, except that Redex provides a term environment with bindings for term variables1 x and

metafunctions f. When a metafunction is a applied in a term, the result will be a term, and the

result term is inserted in place of the application. Term variables are simply bound to other terms

and are replaced by their values. They are bound at the successful match of a pattern variable.

Patterns p are used to match against and decompose terms. They are composed of literals a

which match themselves only, and built in patterns b which match some set of literals — number,

which matches any Racket number, is one example. Pattern variables x match against a term and

bind the variable to the term. Finally, lists of patterns may be matched against lists of terms.

The term generator actually operates on patterns and produces a pattern as an intermediate

result. The conversion of the resulting pattern to a term is straightforward. As a first step in gener-

ation, then, terms in judgment form and metafunction definitions are converted into corresponding

patterns (as described in more detail below).

3.3. Judgment Form Generation

A judgment form in Redex is defined in the following manner, as a set of inference rules:

1Variables are just Racket symbols that are bound or in binding positions in Redex’s term context. In pattern they are
in a binding position, and are bound when they appear in a term.
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Where the J non-terminals indicate judgment form ids, and a single judgment form is defined by a

set of rules with matching ids in the conclusion. Note that that the number of patterns and terms in

the conclusion of a single judgment form must be a constant k. The premise of a single rule (above

the line) consists of the conjunction of some further set of judgments. To derive the conclusion

of a judgment, there must exist derivations of all of its premises; the complete derivation of a

judgment is the tree generated by satisfying all such recursive derivations. A judgment form J then

inductively defines a relation over a k-tuple of terms, such that the k-tuple 〈t1, ... ,tk〉 is in the

relation if there exists a complete derivation of (J t1 ... tk) using the available inference rules.

In Redex, judgment forms are required to have a specified mode determining which positions

in the judgment definition are inputs, and which are outputs. (These are also sometimes referred

to as positive and negative positions.) In the conclusion of a judgment, input mode positions are

patterns, which deconstruct input terms, and in the premises, input positions are considered terms,

which are used as inputs to recursive attempts to satisfy the judgment. Output positions in premises

are patterns which deconstruct the results of recursive calls, and in the conclusion output positions

are terms which are the result of trying to satisfy the judgment for some set of inputs. Pattern

positions may bind parts of a successful match for use in building terms in the term positions.

Thus a judgment may be executed as a function by providing input terms, the result of which

will be some (possibly empty) set of term tuples corresponding to possible values of the output

positions of the judgment.
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For random generation of terms satisfying a judgment, however, it isn’t practical to maintain

the distinction between modes of different judgment positions, because it is very difficult to suc-

cessfully pick a set of input terms that will satisfy a judgment. Instead we choose to attempt to

construct a random derivation tree, maintaining the invariant that a partial derivation is valid as we

do so. Since this precludes choosing values for term position, all positions of the judgment must

be treated as patterns. Thus the judgment is pre-processed by traversing all pattern positions in the

appropriate order to extract binding identifiers, which are used to rewrite terms in term positions

into patterns. Binding identifiers then create constraints between the patterns in the rule, as the

same identifier may appear in multiple patterns. Metafunction applications are also transformed

during this this step, as is explained in the next section on metafunction generation.

To try to generate terms satisfying a given judgment J, we can attempt to construct some ran-

dom derivation that ends with of one the rules defining J. A randomly chosen rule will have the

form:

��� �� ���� ��� ��� ��������

�� �� ����

(Where the p’s are meant to reflect that all positions have now been rewritten as patterns.) If this

rule is chosen, in order to complete the derivation, m sub-derivations must be generated as well,

one for each judgment (Jk pk ...) in k = 1...m. Generation thus proceeds recursively, generating

goals of the form (Jg pg ...) which are to be filled in with subderivations. In general, a rule with a

conclusion (Jc pc ...) can be used to attempt to generate a derivation for the goal (Jg pg ...) if rule

defines the correct judgment, i.e. Jc = Jg, and the set of equations {pc = pg, ...} has solutions. Thus

a derivation will generate a set of equational constraints, which are solved by successively unifying

the patterns in each equation. The result of unification is a substitution for the pattern variables

that satisfies the constraints, or failure, if such a substitution does not exist. (Unification and
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Figure 6: Derivation generation

disunification over Redex patterns are addressed in more detail Section 3.5.) The final substitution

can be applied to the original goal to extract terms satisfying the judgment.

The derivation procedure is presented as a set of reduction rules in figure 6. The rules presented

here are based on the operational semantics for constraint logic programming [16], used for their

clarity and extensibility with respect to the constraint domain, as it will be necessary to add some

new constraints to deal with metafunctions. The rules shown correspond exactly to those in Jaffar

et al. [16], meaning the derivation generator is actually a random constraint logic programming

system.

The rules operate on a program state S, which consists of the program P, the current goal G, and

the current constraint store C. A “program” corresponds to judgment form definitions in Redex,

and consists of a set of inference rules (L← L ...), written here such that the conclusion is left of the

arrow and the premises are on the right. The current goal is a list of literals L, which correspond to
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subderivations yet to be completed, and constraints c, which are just equations between terms. The

constraint store is either C, which represents a consistent set of constraints, or ⊥, which represents

inconsistent constraints and indicates a failed derivation. (For simplicity the constraint store is kept

opaque for the moment.)

The rules process the current goal and modify the constraint store until the goal is empty, at

which point the derivation process is finished. When a constraint is the first element in the goal, it

is checked for consistency with the procedure add-constraint, which returns an updated current

constraint store on success or ⊥ on failure (rules new constraint and invalid constraint).

When a literal (J pg ...) is the first element of the goal, the procedure select is used to choose

a rule from the program that can be used to satisfy the indicated subderivation. The rule must be

from the correct judgment (the judgment id of its conclusion must match that of the literal), and

if such a rule cannot be found select may fail (rule invalid literal). Otherwise, the reduce

rule applies and the rule is freshened to yield an instance ((J pf ...) ← Lf ...) of the rule with

uniquely named variables. Then constraints pg = pf ... equating the patterns in the goal literal and

the conclusion of the rule are added to the current goal, along with the premises Lf ... of the chosen

rule, which all must now be satisfied to complete the derivation.

The specification of the select function is especially important from the standpoint of ran-

dom generation. The rules for derivation generation are deterministic aside from the behavior of

select, which may affect the form of a derivation by varying the rule used to attempt to satisfy a

literal. To generate a random derivation, select simply chooses randomly among the set of valid

candidate rules for a given literal goal. However, this behavior can easily lead to non-terminating

or inconveniently large derivations, since the reduce rule may expand the size of the goal. To

account for this, once a certain depth bound is reached, rules are selected according to the number
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of premises they have, from least to greatest. This makes it much more likely for a derivation to

terminate finitely.

Finally, the model shown in figure 6 doesn’t address the search behavior of the implementation.

Specifically, when an attempted derivation results in failure, the generator backtracks to the state

before most recent application of the reduce rule and tries again, with the constraint that select is

no longer allowed to choose the rule that led to the failed derivation. This introduces the possibility

of the search getting stuck in an arbitrarily long cycle, which is avoided by introducing a bound on

the number of times such backtracking can occur in a single attempt to generate a derivation.

3.4. Metafunction Generation

In this section the requirements of adding support for metafunctions to term generation are

considered. Aside from generating inputs and outputs of metafunctions directly, we have to handle

the fact that metafunction application may be embedded inside any term, specifically term positions

in judgment forms and metafunctions themselves. This is dealt with during the preprocessing

phase that transforms terms into patterns by lifting out all metafunction applications and providing

variable bindings for the result of the application. The applications are then added as premises of

the rules used by the term generator. Exactly what it means for a metafunction application to be

the premise of a rule will become clear as metafunction compilation and generation is explained.

Metafunctions are defined in Redex as a sequence of cases, each of which has some sequence

of left-hand-side patterns and a right-hand-side, or result, term:
����� �� ��� ��
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Where the p’s are the left-hand-side patterns, and the t’s are the result terms for the n clauses.

Metafunctions are applied to terms, and metafunction application attempts to match the argument
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term against the left-hand-side patterns in order from 1 to n. The result is the term corresponding

to the first successful match, i.e. if the pattern pk from clause k matches the input term, and none

of the patterns p1 ... pk-1 does, then the term tk is the result. The pattern may bind parts of the

match for use in constructing the result term.

To handle metafunctions in the derivation generation framework discussed in the previous sec-

tion, the strategy of treating them as relations is adopted. First metafunctions are preprocessed in

the same way as judgment forms, transforming terms into patterns and lifting out metafunction

applications. Then, for a clause with left-hand side pl and right-hand side pr, a rule with the con-

clusion (f pl pr) is added, where f is the metafunction name. For a metafunction application of (f

pinput) with result poutput, a premise of the form (f pinput poutput) is added, and poutput is inserted

at the location of the application:
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The lifting of applications to premises occurs in both metafunction and judgment-form compila-

tion, and transforms recursive metafunctions into recursive judgments. For example, if the term

tr in the illustration above contained a call to f, that call would become a premise of the resulting

judgment, and its position in the pattern pr would be replaced by the variable in the output position

of the premise.

This translation accomplishes the goal of producing judgments as inputs for the generation

scheme, but it doesn’t preserve the semantics of metafunctions. Treating a metafunction definition

as a relation ignores the ordering of the metafunction clauses. For a metafunction f with left-hand-

side patterns p1...pn, if the generator attempts to satisfy a goal of the form (f pg) with clause k, a

constraint of the form pk = pg will be added. But it is possible that pg is eventually instantiated as
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some term that would have matched some previous pattern pj, 1≤ j< k. In this case, an application

of f to the term in question should have used clause j, but the generator has instead generated an

application that used clause k. To avoid this situation, constraints that exclude the possibility of

matching clauses 1 through k - 1 must be added; to generate an application that uses clause k the

necessary condition becomes pk = pg ∧ p1 6= pg ∧ ... ∧ pk-1 6= pg.

This seems sufficient at first, but further thought shows this constraint is not quite correct.

Consider the following definition of the metafunction g:

������ ��� �� ��� �
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Where in this context we can consider p to be pattern variable that will match any pattern, equiv-

alent to any in Redex. Suppose when generating an application (g pin) of this metafunction the

second clause is chosen. This will generate the constraint pin = p ∧ pin 6= (p1 p2). (The fact that

variables aside from pin will be freshened is elided.) Now suppose that later on in the generation

process, the constraint pin = (p3 p4) is added, so the relevant part of the constraint store will be

equivalent (after a bit of simplification) to:

pin = (p3 p4) ∧ p1 6= p3 ∧ p2 6= p4

The problem at this point is that it is possible to satisfy these constraints simply by choosing p3 to

be anything other than p1, or p4 anything other than p2, but pin will still be a two element list and

thus would match the first clause of the metafunction.

The constraint excluding the first clause must be strong enough to disallow any two element

list, which can be satisfied by requiring that:

∀ p1 ∀ p2 pin 6= (p1 p2)
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This suggests the general recipe for transforming metafunctions into judgments suitable for use

in the derivation generator. Each clause is transformed into a rule as described above, with the

addition of premises that are primitive constraints excluding the previous rules. For example, if

clause k is being processed, the constraints will be of the form ∀ x ... pk 6= pi, for i = 1...k-1, where

pk is the left hand side of clause k. There will be one constraint for each previous clause where the

disallowed pattern pi is the left hand side pattern of clause i, and all of the variables in pi must be

universally quantified, i.e. for constraint i, Variables(pi)={x ...}.

The derivation generation framework of figure 6 can easily be modified to handle the addition

of the new constraints, the c non-terminal is simply extended with a single new production to be:

�������� � ��

����� �� ���� � � ��

Disequational constraints in a judgment resulting from a metafunction transformation are added

to the goal by the reduce rule and are handled in the same way as the equational constraints

by the new constraint rule, provided that the constraint solver, no longer a simple unification

algorithm, can deal with both types of constraints. The constraint solver and its extension to deal

with disequations is discussed in the next section.

3.5. Equational and Disequational Constraints

This section presents a model of the constraint solver that operates on a simplified language.

First, the operation of the solver on exclusively equational constraints, where it performs straight-

forward syntatic unification, is presented. Then the extension of the unifier to handle the form of

disequational constraints introduced in the previous section is discussed. Finally issues specific to

Redex’s full pattern language are addressed.
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Figure 7: Grammar for the constraint solver model.

The grammar for the constraint solver model is shown in figure 7. The model operates on the

simplified term language of the t non-terminal, which has only two productions, one for f, a single

multi-arity term constructor, and one for variables x. This corresponds closely to the Redex pattern

language, which also has one multi-arity constructor, list. For now other complexities of the

pattern language are ignored, as they don’t directly impact the operation of the constraint solver.

A problem P is a list of constraints c, which can be equations between terms eq or disequations

dq (where some variables in the disequations are considered to be universally quantified). Given

a problem, the solver constructs (and maintains, as the problem is extended) a substitution S that

validates the equations and a set of simplified disequations D, such that S also validates D, and if

D is valid, so are all the original disequations in P. The substitution2 is written as a set of equations

x=t between variables and terms, with the understanding that it can be applied to a term by, for

each equation, finding each occurrence of x in the term and replacing it with t. A substitution

validates an equation if both sides of the equation are syntactically identical after the substitution

is applied.

3.5.1. Syntactic Unification

The portion of the solver that deals with equational constraints performs straightforward syntactic

unification of patterns. The algorithm is well known; Baader and Snyder [2] provide a particularly

2To be more precise, S is actually the equational representation of some substitution γ, where γ is defined by its
operation on terms. We will refer to the two interchangeably unless it is necessary to differentiate between them.
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Figure 8: The metafunction U performs unification over the language of figure 7 . (Cases apply in
order.)

good survey of theory in this area, including a similar presentation of syntactic unification that

goes into greater detail.

The metafuction that performs unfication, U, is shown in figure 8. It operates on a problem

P, a current substitution (or solution) S, and a current set of disequational constraints D, which is

ignored by U. (Except in one case that will be addressed along with the disequational portion of

the solver.) The result of U is either the the pair (S : D) of the substitution S and the disequations

D that validate the entire problem, or ⊥, if the problem is inconsistent.

The cases of U apply in order and dispatch on the first equation in P. In the first case, the

equation is between two identical terms, and the equation is dropped before recurring on the rest

of P. In the second case, the equation is between two terms applying the function constructor f

to the same number of arguments; here the arguments in each position are equated and added to

P before recurring. In the third case, two terms are contructed with f but have different numbers

of arguents, in this case U fails and returns ⊥ since it is impossible to make the terms equal.

The fourth case equates a variable x with a term that contains the variable, which again leads

to failure. (The metafunction occurs? takes a variable and a term, and returns true if the term
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contains the variable, false otherwise.) The fifth case equates a variable x and a term t, where

it is known (because the fourth case has already been attempted) that x does not occur in t. In

this case t is substituted for x in the remaining equations of the problem c..., the equations of the

current substitution cs..., and the current disequations dq..., after which the equation x=t itself is

added to the current substitution before recurring. The second to last case of U simply commutes

an equation with a variable on the right hand side before recurring, after which the equation in

question will be handled by one of the previous two cases. The final case returns S and D as the

solution if the problem is empty.

To make a precise statement about the correctness of U, a few definitions are necessary. In the

following, for a term t and substitution σ, σt is written to mean the application of σ to t.

Given two substitutions σ = ((xσ = tσ) ...) and θ = ((xθ = tθ) ...), their composition, written

θσ, is θσ = ((xσ = θtσ) ... (xθ = tθ) ...), where trivial bindings of the form (x = x) are removed

and when there is a duplicate binding (xσ = θtσ) and (xθ = tθ) where xσ = xθ, then (xθ = tθ) is

removed.

Two substitutions σ and θ are equal, σ = θ, if for any variable x, σx = θx. A substitution σ is

more general than a substitution θ, written σ ≤ θ, if there exists some substitution γ such that θ =

γσ.

A substitution σ is called the most general unifier of two terms s and t if σs = σt and for any

substitution γ such that γs = γt, σ ≤ γ. Similarly, σ is a unifier for a unification problem P = ((s

= t) ...) if for every equation s = t in P, σs = σt. It is a most general unifier for P if for every γ that

is a unifier of P, σ ≤ γ.

Finally, we can state that U is correct (again, ignoring the D part of the result for now):
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Theorem 1 For any problem P, ������������ terminates with ⊥ if the equations

in P have no unifier. Otherwise, it terminates with (Smgu : D) where Smgu is a

most general unifier for P.

Proofs of this proposition can be found in many references on unification, for example Baader and

Snyder [2].

The version of U shown in figure 8 corresponds fairly closely with the implementation in Re-

dex, except that the current substitution is represented as a hash table and the function recurs on

the structure of input terms instead of using the current problem as a stack (as in the decomposition

rule). As shown here, U has exponential complexity in both time and space. The space complexity

arises because the substitution may have many identical terms, so by using a hash table it may be

represented as a DAG (instead of a tree) with sharing between identical terms and linear space.

However the worst-case running time is still exponential. Interestingly, this is still the most com-

mon implementation of unification because in practice the exponential running time never occurs,

and in fact it is usually faster than algorithms with polynomial or near-linear worst-case complex-

ity. [15]

3.5.2. Solving Disequational Constraints

This section extends the constraint solver of the previous section to process disequational con-

straints of the form (∀ (x ...) (s 6= t)) as well as the equational constraints already discussed. To

handle disequations, U is extended with four new clauses. The new function is called DU, as

this form of constraint solving is sometimes referred to as disunification [8]. The new clauses are

shown in figure 9 along with the auxiliary metafunction param-elim. We now provide an informal

explanation of DU’s operation. A formal justification can be found in Appendix A.
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Figure 9: Extensions to figure 8 to handle disequational constraints. DU extends U with four new
clauses.

The first three clauses of DU all address the situation where the first constraint in the problem

P is a disequation of the form (∀ (x ...) (s 6= t)). Actually in all three cases, the metafunction

U (recall that U is the portion of the solver that applies exclusively to equations) is called with a

problem containing the single equation (s = t) and an empty substitution. The result of this call

is passed to the metafunction param-elim along with a list of the parameters, which is where

special handling of the universally quantified variables takes place. (Borrowing the terminology of

Comon and Lescanne [8], the universally quantified variables are referred to as “parameters”.) It

is the result of this process that determines which of the first three cases of DU applies. Of course,

in the Redex implementation, the calls to U and param-elim occur only once.
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The call to U will return either ⊥ or (S : ())). If the result is ⊥, then param-elim does nothing

and DU simply drops the constraint in question and recurs. (This is the second clause of DU.) The

reasoning here is that it is impossible to unify the terms, so the disequation will always be satisfied.

If U returns a value of the form (S : ())), then S is a most general unifier for the equation in

question, so for any substitution γ such that γs = γt, S≤ γ. Thus S is used to create a new constraint

excluding all such γ. In the absence of parameters, for S = ((x = tx) ...), this would involve simply

adding a constraint of the form (x 6= tx) ∨ ..., since validating any one of the disequations excludes

S (and by doing so excludes all γ where γ ≤ S). If S contains any parameters not underneath a

function constructor, they are eliminated by param-elim, the intuition being that it is impossible

to satisfy a disequation of the form (∀ (x) (x 6= t)) since x cannot be chosen to be a term other than

t.

The auxiliary metafunction param-elim takes a substitution S and a list of parameters (x ...) as

its arguments, and returns a modified substitution S’ such that the intersection of both the domain

and the range of S’ with (x ...) is empty. (Although either may contain terms that contain variables

in (x ...)). A parameter x is eliminated by param-elim by simply dropping the disequation x 6= t,

if x does not occur as the right or left-hand side of any other equation in S. Otherwise if there are

equations {x 6= t1, ..., x 6= tn}, it is eliminated by replacing those equations with {ti 6= tj, ...}, where

i ≤ i,j ≤ n, i 6= j. 3

If after this process S is empty, then DU fails (the first clause), since it is impossible to find a

substitution to make s and t different. Otherwise (DU’s third clause), a constraint of the form (∀

(xa ...) (f x ...) 6= (f t ...)) is added. This is equivalent to the disjunction (x 6= t) ∨ ..., under the

quantifier with parameters xa ... (which may remain because we have only eliminated them at the

top level of the terms t ...).

3The elim-x metafunction, seen in the specification of param-elim in figure 9, implements this find/pair operation.
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Finally, if it is ever the case that a constraint in D no longer has at least one disequation x 6=

t where the right hand side is a variable, then it is removed and added to the top of the current

problem P (DU’s final clause). The intuition is that as long as one disequation in a constraint looks

like x 6= t, where x is not a parameter, it can be satisfied by simply choosing x to be something

other than t. Otherwise it may be invalid so it must be checked by applying U and param-elim

once again.

Theorem 2 For any problem P, ������������� terminates with⊥ if the equations

in P have no unifier consistent with the disequational constraints in P. Otherwise,

it terminates with (SΩ : D) where SΩ is a most general unifier for the equations

in P, and SΩ is consistent with the disequational constraints in P. The constraints

in D are equivalent to the originals in P.

A proof of this theorem is given in Appendix A. This method of solving disequational con-

straints is based on the approaches detailed in Colmerauer [6] and Comon and Lescanne [8].

Colmerauer [6] shows how to solve disequational constraints by using a unifier to simplify them, as

we do here, however his constraints do not include universal quantifiers. Comon and Lescanne [8],

on the other hand, show how to solve the more general case of problems of the form ∃ x... ∀ y...

φ where φ is a formula consisting of term equalities and their negation, disjunction, and conjunc-

tion. They give their solution as a set of rewrite rules, and although their approach will solve the

same constraints as ours, the equivalence of the two isn’t completely trivial. One advantage of the

approach we take is that it can be easily understood and implemented as an extension to the unifier.

3.6. Handling More of the Pattern Language

Up to this point term generation and the constraint solver have been presented using a very

simplified version of Redex’s internal pattern language. Here the extension of both to handle
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Figure 10: The subset of the internal pattern language supported by the generator

a more complete subset of the pattern language is discussed. The part of the pattern language

actually supported by the generator is shown in figure 10. Racket symbols are indicated by the

s non-terminal, and the c non-terminal represents any Racket constant (which is considered to be

equal to itself only by the matcher and the unifier.) The generator is not able to handle parts of

the pattern language that deal with evaluation contexts, compatible closure, or “repeat” patterns

(ellipses).

The extensions to the pattern language are enumerated by the new4 productions of the p non-

terminal in figure 10. We now explain briefly each of the new productions along with the approach

used to handle it in the generator.

Named Patterns These corrsepond to variables x in the simplified version of the pattern lan-

guage from figure 5, except now the variable is attached to a sub-pattern. From the matcher’s

perspective, the (name s p) production is intended to match a term with a pattern p and then bind

the matched term to the name s. In the generator named patterns are treated essentially as logic

variables. When two patterns are unified, they are both pre-processed to extract the pattern p for

each named pattern, which is rewritten into a logic variable with the identifier s. This is done by

finding the value for s in the current substitution, and unifying p with that value. The result is used

4New with respect to figure 5
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to update the value of s in the current substitution. (If s is a new variable, then its value simply

becomes p).

Built-in Patterns The b and v non-terminals are built-in patterns that match subsets of Racket

values. The productions of b are self-explanatory; integer, for example, matches any Racket

integer, and any matches any Racket s-expression. From the perspective of the unifier, integer

is a term that may be unified with any integer, the result of which is the integer itself. The value

of the term in the current substitution is then updated. Equalities between built-in patterns have

the obvious relationship; the result of an equality between real and natural, for example, is

natural, whereas an equality between real and string simply fails. As equalities of this type

are processed, the values of terms in the current substitution are refined.

The v non-terminals match Racket symbols in varying and commonly useful ways; variable-

not-otherwise-mentioned, for example, matches any symbol that is not used as a literal else-

where in the language. These are handled similarly to the patterns of the b non-terminal within the

unifier.

Mismatch Patterns These are patterns of the from (mismatch-name s p) which match the

pattern p with the constraint that two mismatches of the same name s may never match equal terms.

These are straightforward: whenever a unification with a mismatch takes place, disequations are

added between the pattern in question and other patterns that have been unified with the same

mismatch pattern.

Non-terminal Patterns Patterns of the form (nt n) are intended to successfully match a term

if the term matches one of the productions of the non-terminal n. (Recall that patterns are always

constructed in relation to some language.) It is less clear how non-terminal patterns should be dealt

with in the unifier. It would be nice to have an efficient method to decide if the terms defined by

some pattern intersected with those defined by some non-terminal, but this reduces to the problem
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of computing the intersection of tree automata, which is known to have exponential complexity. [7]

Instead a conservative check is used at the time of unification and the non-terminal information is

saved.

When a pattern is equated with a non-terminal, the non-terminal is unfolded once by retrieving

all of its productions and replacing any recursive positions of the non-terminal with the pattern

any. The pattern is normalized by replacing all variable positions with any. Then it is verified

that the normalized pattern unifies with at least one of the abbreviated productions. The check is

relatively inexpensive, and the results can be cached. This method is effective at catching cases

where a pattern should obviously fail to unify with a non-terminal, but because it may succeed

where a more complete method would fail, a later check is necessary.

When a pattern successfully unifies with a non-terminal, the pattern is annotated with the name

of the non-terminal in the current substitution. The intention of this is that once a pattern be-

comes fully instantiated (once it becomes a term), it becomes simple to verify that it does indeed

match one of the non-terminal’s productions. All annotated non-terminals are verified when result

patterns are instantiated as terms.

This approach to handling grammar information in a unifier is somewhat ad-hoc, and it might

be interesting to consider more fully how such structure could be used to aid unification.

3.6.1. Instantiating Patterns

The result of the derivation generation process is a pattern that corresponds to the original goal,

an environment that corresponds to the substitution generated by the generation process, and a

set of disequational constraints. The final step is to perform the necessary random instantiations

of pattern variables to produce a term as the result. Variables in the environment will resolve

to patterns consisting of list constructors, racket constants, non-terminals, and built-in patterns.
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The portion of the environment necessary to instantiate the goal pattern is processed to eliminate

built-in patterns and non-terminals by using the context-free generation method, and list terms

are converted to racket lists. Then the disequational constraints are checked for consistency with

the new environment. Finally, the goal pattern is converted to a term by using the same process

and resolving the necessary variables.
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CHAPTER 4

Evaluating the Generator

This chapter describes the evaluation of the new random generator. The generator was evalu-

ated by comparing it to other methods of random generation that can be applied to similar specifi-

cations. Generators were compared in terms of their testing effectiveness, measured by how long

they took to find known counterexamples.

The first section discusses the comparison of the derivation-based generator with a straightfor-

ward approach based on grammars, as originally provided by Redex and explained in Chapter 1.

For this comparison, we developed a benchmark of several Redex models, introducing a number

of bugs into each, and evaluated the performance of the two generators on each model/bug pair.

We then compared the performance of the derivation-based generator with pre-existing Redex

model and test framework for the Racket Virtual Machine, as explained in Section 4.2. This effort

had a more refined approach to random generation that post-processed terms generated from the

grammar to make them more likely to be valid test cases. In this case we reintroduced several

bugs found during the original effort and compared the ability of the two generation approaches to

produce counterexamples.

4.1. A Bugfinding Benchmark

To compare the performance of the derivation-based generator to the original grammar-based

approach used in Redex, we developed a bugfinding benchmark. The benchmark is not necessarily

limited in application to the two approaches we have used it with; it could in principle be used with
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any generation method that that takes some part of a semantic model (i.e. a type system, reduction

relation, or type system) as its input and generates terms automatically. It couldn’t be applied as

easily, however, with approaches that are not “push-button” and require some human ingenuity1 to

implement the generator.

The benchmark consists of six different Redex models, each of which consists of a grammar,

a dynamic semantics in the form of a reduction relation or metafunction, and some static well-

formedness property formulated with judgement forms and metafunctions. (The last is usually a

type system.) Finally, each has some predicate that relates the dynamic properties of the system to

the static properties. Type soundness, for example, states that reducing a well-typed term that is

not a value is always possible and always preserves the type of the term.

For each model, several “mutations” provide the tests for the benchmark. The mutations are

made by manually introducing bugs into a new version of the model, such that each mutation is

identical to the correct2 version aside from a single bug. The models used are:

• stlc A simply-typed lambda calculus with base types of numbers and lists of numbers,

including the constants cons, head, tail, and nil (the empty list), all of which operate

only on lists of numbers. The property checked is type soundness: the combination of

subject reduction (that types are preserved by the reductions) and progress (that well-

typed non-values always take a reduction step). 9 different mutations (bugs) of this system

are included.

• poly-stlc This is a polymorphic version of stlc, with a single numeric base type, polymor-

phic lists, and polymorphic versions of the same constants. Again, the property checked

is type soundness. 9 mutations are included.

1On the other hand, such approaches have the advantage of being limited only by the ingenuity of the implementor.
2So far as we know. The “correct” versions satisfy our unit tests and had no bugs we were able to uncover with random
testing.
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• stlc-sub The same language and type system as stlc, except that in this case all of the er-

rors are in the substitution function. Type soundness is checked. 9 mutations are included.

• list-machine An implementation of the list-machine benchmark described in Appel et

al. [1], this is a reduction semantics (as a pointer machine operating over an instruction

pointer and a store) and a type system for a seven-instruction first-order assembly lan-

guage that manipulates cons and nil values. The property checked is type soundness as

specified in Appel et al. [1], namely that well-typed programs always step or halt (“do

not get stuck”). 3 mutations are included. This was a pre-existing implementation of this

system in Redex that we adapted for the benchmark.

• rbtrees A model implementing red-black trees via a judgment that a tree has the red-black

property and a metafunction defining the insert operation. The property checked is that

insert preserves the red-black tree property. 3 mutations of this model are included.

• delim-cont A model of the contract and type system for delimited control described in

Takikawa et al. [23]. The language is essentially PCF extended with operators for de-

limited continuations and continuation marks, and contracts for those operations. The

property checked is type soundness. 2 mutations of this model are included, one of which

was found and fixed during the original development of the model. This was a pre-existing

model developed by Takikawa et al. [23] which was adapted for the benchmark.

For each mutation and each generation method, the benchmark repeatedly generates random

terms and tests the correctness property, tracking how long the model runs for before the property

is falsified and a counterexample is found. For each mutation/method instance, we ran the tests

for increasing intervals of time from 5 minutes up to 24 hours, stopping if the average interval

stabilized. The tests were run for a maximum of 48 hours total for each instance. Thus if a
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generation method failed to find a counterexample for some mutation, it ran for 2 days without

finding a single counterexample.

The results of the benchmark for the grammar-based generator and the derivation based gener-

ator are shown in figure 11. In each of these tests, the grammar-based generator is used to generate

terms from the grammar which are then discarded if they fail to be well-typed. If they are well-

typed, then the correctness property is checked. The derivation-based generator, on the other hand,

generates terms that are already well-typed so the correctness property can be checked for every

term that it generates.

The relative performance of the two generators is related to two metrics which are not visible

in figure 11: the rate at which terms are produced, and the ratio of counterexamples to terms

produced. In fact, the grammar-based generator produces terms at rates up to greater than one

hundred times as fast as the derivation generator. On the other hand, the ratio of counterexamples

to terms produced is much better for the derivation generator — if we had used this for our metric,

in fact, the the difference between the two would appear to be even greater. The metric used here

was chosen to reflect as closely as possible the effective difference between the two approaches in

actual application during the development process. However, we note in passing that there could

be significant payoff to increasing the speed of the derivation generator, and it seems likely there

is much more room for optimization here than in the grammar-based approach.

The averages in figure 11 span nearly 6 orders of magnitude from less than a tenth of a second

to almost two hours, and are shown on a logarithmic scale. The error bars shown reflect 95%

confidence intervals in the average, meaning there is a 95% chance that the actual average falls

within the delineated interval. The derivation-based generator (“search”) succeeded on each of the

34 tests, and the grammar-based generator (“grammar”) succeeded on only 26. As noted before,
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Figure 11: Comparison of the derivation-based generator (‘‘search,’’ the red triangles) and the
grammar-based generator (‘‘grammar,’’ the green circles) on the bug-finding benchmark tests.
The y-axis is the average time to find the bug in seconds, in a log scale. The error bars are 95%

confidence intervals in the average.

for each failure this generator ran for 48 hours without finding a counterexample. The derivation-

based generator is consistently faster (with three exceptions), by a factor of up to over 1000 in

some cases. The ratio of the two averages varies dramatically, however. In the few cases where

the grammar-based generator is faster, both averages are near a second, indicating that these aren’t

particularly difficult bugs to find, and the ratio between the two is not large.
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4.2. Comparison with an Established Redex Testing Effort

To further evaluate the performance of the derivation-based generator, we compared it with a

pre-existing test framework for the Racket virtual machine and bytecode verifier. [20] This testing

approach was based on a Redex model of the virtual machine and verifier, and used the approach

of generating random bytecode terms and processing them with a “fixing” function that modifies

the terms to make them more likely to pass the verifier. This testing approach proved effective,

successfully finding more than two dozen bugs in the machine model and a few in the actual

Racket implementation.

Figure 12 compares the performance of the derivation generator and the grammar-based gen-

erator with a “fixing” function. The derivation generator is used to directly produce bytecode that

will pass the verifier. The other generation method is that used by Klein et al. [20] and uses Re-

dex to automatically produce terms satisfying the byte-code grammar, which are then passed to

the fixing function. The main changes performed by the fixing function are to adjust stack offsets

to agree with the current context and replace some references with values, greatly increasing the

chance that the randomly generated bytecode will be verifiable.

The two generation methods were compared on 6 bugs discovered during the development

of the virtual machine model by Klein et al. [20] and found to be difficult to uncover with their

random-testing efforts. (The labels in figure 12 correspond to those from figure 28 in that paper.)

Interestingly, using the same generation methods as they did, we were able to find one bug they

failed to find in over 25 million attempts, and failed to find one bug they uncovered with random

testing. This is yet more evidence of the sensitivity of random testing to seemingly unrelated

changes in the model, and the difficulty of repeating specific random results.
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Figure 12: Comparison of bug-finding effectivenesss of the typed term generator vs. the grammar
generator and a ‘‘fixing’’ function. The generators were compared on 6 bugs, one of which both

failed to uncover. Again, the y-axis is the average time to find a bug in seconds on a log scale, and
error bars are 95% confidence intervals in the average.

The results of the comparison are shown in figure 12. These were indeed all difficult bugs to

find, with the lowest average time to find a bug being several minutes and the largest close to a

full day. (We ran these tests for up to a total of nearly four days for each instance.) The derivation

generator is about a factor of ten slower in the four cases where it succeeded. Thus in this case the

grammar/fix method is significantly more effective. (There is some reason to believe this specific
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case may be especially difficult for the derivation generator and perhaps easier for a fixing function,

as discussed below.)

The fixing function used in this case was developed simultaneously with the model and doesn’t

provide the same “push-button” feedback we hope for from the derivation generator. Writing such

functions requires some amount of cleverness on the part of the user and imposes some cognitive

overhead on the development process. On the other hand, there are significant constraints (also

addressed below) placed on the form of the model to make it compatible with derivation generation.

Finally, we note that the ability of the derivation generator to find these bugs is encouraging in

the sense that they indicate it is at least minimally effective when applied to models of production

systems, and could be used for testing efforts extending beyond “toy” semantic models.

4.2.1. Translating the model and effects on term generation

Since this effort dealt with a pre-existing Redex model of non-trivial complexity, it provides an

opportunity to consider the limitations of the derivation generator from the perspective of the effort

needed to translate the model into a form the new generator could handle.

As already noted, the derivation generator isn’t able to handle ellipses (“repeat” patterns) or

uses of unquote. Ellipses provide rich ways of destructuring and constructing lists and unquote

allows escaping to arbitrary Racket code from inside of Redex. Removing ellipses and unquotes

from the judgment forms and metafunctions of the verifier followed a process simliar to other

efforts to translate pre-existing Redex code into a form the new generator can process. Lists had

to be replaced with an explicit representation using pairs, and uses of ellipses to process lists had

to be replaced with metafunctions dispatching on cons and nil. In the verifier, uses of unquote

almost exclusively escaped to Racket to do arithmetic on natural numbers for indexing into the
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stack and verifying offsets. This was replaced with an explicit unary representation of arithmetic,

and related list operations such as length and indexing.

Besides the pain of forcing users to avoid ellipses and roll their own unary arithmetic opera-

tions, these changes can have a significant effect on the performance of the generator. Clearly list

operations and unary arithmetic defined using Redex are much slower than Redex’s internal list

processing or Racket’s number operations. Also, the recursive nature of the definitions skews the

generator towards producing shorter lists and smaller numbers. In fact, since the generator chooses

equally between alternatives, simply using it to produce unary numbers will result in a distribution

where the probability of generating a number falls off exponentially with its size.

The specification of the bytecode and verifier prove to be especially difficult for the derivation

generator to handle in this case. Interestingly, they make a “fixing” function whose main transfor-

mation is to fix stack offsets somewhat easier to write, since that functions main task is to track

and adjust a few natural numbers. Fixing functions for properties with richer recursive structure

may present more difficulty. In those cases where a good fixing function becomes more like a

reimplementation of the type system, using the derivation generator may be a better option.

This comparison also exposes some opportunities to improve the derivation generator. Adding

natural number arithmetic and finite domain constraints might make it much more effective for

cases like this by avoiding the inefficient and poorly distributed unary representation. Similarly,

adding support for repeat patterns would provide gains in both expressiveness and testing effec-

tiveness. (Pattern and sequence unification [21] might be a productive area to investigate in this

direction.)
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CHAPTER 5

Related Work

Quickcheck [5] is a widely-used library for random testing in Haskell. It provides combinators

supporting the definition of testable properties, random generators, and analysis of results. Al-

though Quickcheck’s approach is much more general than the one taken here, it has been used to

implement a random generator for well-typed terms robust enough to find bugs in GHC. [22] This

generator provides a good contrast to the approach of this work, as it was implemented by hand,

albeit with the assistance of a powerful test framework. Significant effort was spent on adjusting

the distribution of terms and optimization, even adjusting the type system in clever ways. Our

approach, on the other hand, is to provide a straightforward way to implement a test generator,

ideally by simply writing down the type system, the inherent tradeoff being that an automatically

derived generator is almost certain to be much slower and likely to have a less effective1 distribu-

tion of terms. The interesting question is how large this tradeoff is. We hope to provide an answer

to this question by investigating a comparison with this work similar to the one we conducted for

the Racket Virtual Machine model.

Random program generation for testing purposes is not a new idea and goes back at least to

Hanford [13], who details the development and application of the “syntax machine”, essentially a

tool for producing random expressions from a grammar similar to Redex original term generation

method. The tool was intended for testing compilers, a common target for this type of random

1Less effective in the sense of less likely to find bugs. The term distribution of Palka [22] is essentially optimized in
this way, as much as is possible.
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generation. Other uses of random testing for compiler testing throughout the years are discussed

in the 1997 survey of Bourjarwah and Saleh [4].

In the area of random testing for compiler, of special note is Csmith [24], a highly effective tool

for generating C programs for compiler testing. Csmith generates C programs that avoid undefined

or unspecified behavior. These programs are then used for differential testing, where the output

of a given program is compared across several compilers and levels of optimization, so that if

the results differ, at least one of test targets must contain a bug. Csmith represents a significant

development effort at 40,000+ lines of C++ and the programs it generates are finely tuned to be

effective at finding bugs based on several years of experience. This approach has been effective,

finding over 300 bugs in mainstream compilers as of 2011.

Efficient random generation of program terms has seen some interesting advances in previous

years, much of which focuses on enumerations. Feat [9], or “Functional Enumeration of Alge-

braic Types,” is a Haskell library that exhaustively enumerates a datatype’s possible values. The

enumeration is made very efficient by memoising cardinality metadata, which makes it practical

to access values that have very large indexes. The enumeration also weights all terms equally, so a

random sample of values can in some sense be said to have a more uniform distribution. Feat was

used to test Template Haskell by generating AST values, and compared favorably with Smallcheck

in terms of its ability to generate terms above a certain size. (QuickCheck was excluded from this

particular case study because it was “very difficult” to write a QuickCheck generator for “mutual

recursive datatypes of this size”, the size being around 80 constructors. This provides some insight

into the effort involved in writing the generator described in Palka [22].)

Another, more specialized, approach to enumerations was taken by Grygiel and Lescanne [12].

Their work addresses specifically the problem of enumerating well-formed lambda terms. (Terms

where all variables are bound.) They present a variety of combinatorial results on lambda terms,
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notably some about the extreme scarcity of simply-typable terms among closed terms. As a by-

product they get an efficient generator for closed lambda terms. To generate typed terms their

approach is simply to filter the closed terms with a typechecker. This approach is somewhat in-

efficient (as one would expect due to the rarity of typed terms) but it does provide a uniform

distribution.

Instead of enumerating terms, Kennedy and Vytiniotis [???] develop a bit-coding scheme

where every string of bits either corresponds to a term or is the prefix of some term that does.

Their approach is quite general and can be used to encode many different types. They are able to

encode a lambda calculi with polymorphically-typed constants and discuss its possible extension

to even more challenging languages such as System-F. This method has the potential to be used for

random generation by decoding randomly chosen bit strings.
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CHAPTER 6

Conclusion

We extended the random testing capabilities of PLT Redex to support the generation of terms

satisfying judgment forms and metafunctions. The previous method was an approach based on

recursively unfolding the non-terminals of a grammar. The new method outperformed the old

on a benchmark of bugs we developed, but a hand-written generator based on the old method

outperformed the new at finding bugs in a model of the Racket virtual machine.

Random generation based on recursively expanding productions in a grammar with no addi-

tional processing or heuristics is really the simplest possible “pushbutton” strategy, so performing

better than this approach should be considered only an initial hurdle for any alternative strategy.

As such, it is encouraging that our derivation-based generation strategy performed much better

than the grammar generator on the benchmark, but that doesn’t mean we should necessarily em-

brace this as a better strategy. Indeed, our experience with the virtual machine model shows that

post-processing terms generated from a grammar can perform much better than derivation based

generation for at least one system. (Although, as we point out in Chapter 4, there are some specific

characteristics of this system that are difficulties for the derivation generator.) The approach of

using the grammar generator with a fixing function is more fully developed, and we expect to be

able to improve the derivation generator as we gain more experience with it.

The benchmark we developed for comparing the grammar-based generation strategy to the

derivation-based strategy is a valuable foundation for the evaluation of future work on random
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testing. There are a variety of possible strategies that, if implemented successfully, could be eval-

uated immediately with this benchmark. For example, it may be possible to generate well-typed

terms from judgment form definitions using approaches similar to those of Duregard et al. [9] or

Kennedy and Vytiniotis [???]. If we are able to implement such an idea, the benchmark we already

have could be used to compare it to both of Redex’s existing generation methods.

The benchmark itself should still be considered a work in progress. Extending it with a further

variety of systems could prove illuminating. Possibilities include adding type systems for imper-

ative programming languages, or systems based on pre-existing models with realistic bugs. We

plan to make the benchmark more modular and work to extend it with new bugs and systems when

appropriate. As we continue to develop the benchmark we hope that it will prove more and more

useful in improving Redex’s random testing capabilities.

In terms of generating well-typed terms, there are many alternative strategies and variations and

improvements on the strategy that we have used that remain to be explored. We believe that the

results obtained with our method make a good argument for continuing with those investigations.

This work is certainly not the final word in random generation based on rich properties such as

type judgments. However, it does demonstrate the potential of such an approach, both in terms of

its utility and feasibility. We hope that it can serve as a basis for more valuable work to be done in

this area.
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APPENDIX A

Proof of Theorem 2

For a substitution σ = {x 7→ t . . . }, Range(σ) = {x . . . }, Domain(σ) = {t . . . }. We write

∀~xφ to indicate ∀x1∀x2 . . . ∀xnφ where ~x = {x1, x2, . . . , x3}. We write [σ] for {x = t, . . . }, the

equational representation of σ.

A substitution σ is idempotent if σσ = σ, equivalently ifRange(σ)∩V ariables(Domain(σ)) =

∅. We write U [s = t, ...] to mean unifying the equations s = t, ..., the equivalent of applying the

function U from Chapter 2 with the problem s = t, ... and an empty substitution and disequa-

tional constraint set. We make use of the fact that U always returns an idempotent substitution if it

succeeds.

Lemma 1. If σ is idempotent then θ = θσ ⇔ σ ≤ θ.

PROOF. The forward direction holds by definition. For the reverse direction, by definition

there must be some ψ such that ψσ = θ, so for any x,

θσx = ψσσx = ψσx = θx

where the middle equality depends on the idempotency of σ. Since they agree on all variables,

θ = θσ. �

Lemma 2. If U [s, t] = γ = {x1 7→ t1 . . . xn 7→ tn}, then for any unifier θ of s and t, θxi = θti,

for any 1 ≤ i ≤ n.

PROOF. Since γ ≤ θ and γ is idempotent, θ = θγ (Lemma 1), so θxi = θγxi = θti. �
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Lemma 3. For U [s = t] = {x1 7→ t1 . . . xn 7→ tn},

U [ωs = ωt] = ⊥ ⇔ U [ω(x1 . . . xn) = ω(t1 . . . tn)] = ⊥

PROOF. For the forward direction, by definition there is no φ such that φωs = φωt. Now

suppose there is some ρ such that U [ω(x1 . . . xn) = ω(t1 . . . tn)] = ρ. Using the fact that

ω(x1 . . . xn) = (ωx1 . . . ωxn) and ω(t1 . . . tn) = (ωt1 . . . ωtn) along with U [(ωx1 . . . ωxn) =

(ωt1 . . . ωtn)] = U [ωx1 = ωt1, . . . , ωxn = ωtn], it’s clear that for any i, ρωxi = ρωti. This

gives us ρωγxi = ρωti = ρωxi, and implies that γ ≤ ρω, so ρωs = ρωt, a contradiction. Thus

there can be no such ρ and U [ω(x1 . . . xn) = ω(t1 . . . tn)] = ⊥.

For the reverse direction, distributing the substitution and the decomposition as before results

in U [ωx1 = ωt1, . . . , ωxn = ωtn] = ⊥, which means that for some i, U [ωxi = ωti] = ⊥ and

there is no φ such that φωxi = φωti. Since any unifier ρ of s and t must satisfy ρxi = ρti for all i

(Lemma 2), this implies that there is no unifier of ωs and ωt, so U [ωs = ωt] = ⊥. �

We are interested in the validity of the constraint ∀~xs 6= t, with respect to some substitution σ,

or the validity of ∀~xσs 6= σt. (σ corresponds to the current substitution in the constraint solver,

so this corresponds to maintaining consistency between the substitution created by the equational

constraints and the disequational constraint.) We consider ∀~xσs 6= σt to be consistent with σ so

long as there is some substitution ω such that ∀~xωσs 6= ωσt is true. Note that both σ and ω are

only substitutable in the constraint if they don’t contain any variables bound by the quantifier, so

we must require (without loss of generality) that V ariables(σ)∩~x = ∅ and V ariables(ω)∩~x = ∅.

Now note that

∀~xωσs 6= ωσt⇔ ¬∃~xωσs = ωσt
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If ∃~xωσs = ωσt, then we can construct a substitution σ~x such that σ~xωσs = σ~xωσ, i.e. there is a

unifier (σ~x) for ωσs and ωσt. The negation means there cannot be such a unifier, so

¬∃~xωσs = ωσt⇔ U [ωσs, ωσt] = ⊥

and as long as such an ω can be constructed, the constraint ∀~xs 6= t is still consistent with the

substitution σ. We now show how the results of the unification U [s, t] can be used to check for the

existence of ω.

In what follows, U [s = t] = γ = {x1 7→ t1 . . . xn 7→ tn}, and we are considering the

existence of some ω given some σ so that U [ωσs = ωσt] = ⊥. Both ω and σ are subject to the

restriction that V ariables(ω) ∩ ~x = ∅ and V ariables(σ) ∩ ~x = ∅ for some set of variables ~x. (~x

corresponds to the universally quantified variables of the constraint.) From Lemma 3, we know

that if U [ωσs = ωσt] = ⊥, then U [ωσx1 = t1, . . . , ωσxn = ωσtn] = ⊥, or that for some i,

U [ωσxi = ωσti] = ⊥; we call xi = ti (or {xi 7→ ti}) the part of γ that is excluded by ω. First we

prove some lemmas that allow us to restrict the excluded part of γ.

Lemma 4. If γ = {x 7→ tx}γ′ and x ∈ ~x, then ω excludes [γ] iff ω excludes [γ′].

PROOF. Because γ is idempotent, x does not occur elsewhere in γ. The variable restriction

means that ωσx = x, and since x is otherwise unrestricted, it can never be the case that U [x =

ωσtx] = ⊥. Thus if ω excludes [γ], it must exclude [γ′]. Clearly if ω already excludes [γ′], it

excludes [{x 7→ tx}γ′]. �

Lemma 5. If γ = {y1 7→ x} . . . {yn 7→ x}γ′, where yi /∈ ~x and x ∈ ~x, then ω excludes [γ] iff

ω excludes {yi = yj|1 ≤ i, j ≤ n} ∪ [γ′].
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PROOF. ω may exclude [{y1 7→ x} . . . {yn 7→ x}] = {y1 = x, . . . , yn = x}, if U [ωσyi =

ωσyj] = ⊥, for any 1 ≤ i, j ≤ n, since there is then no valid value for ωσx. This is equivalent

to excluding an element of the set of equations {yi = yj|1 ≤ i, j ≤ n}. Thus excluding [γ] is

equivalent to excluding {yi = yj|1 ≤ i, j ≤ n} ∪ [γ′]. �

Lemma 6. If γ = {y 7→ x}γ′, where y /∈ ~x and x ∈ ~x and x does not occur anywhere in γ′,

then ω excludes [γ] iff ω excludes [γ′].

PROOF. Analagous to that of Lemma 4. �

Lemma 7. If [γ] has at least one element xi = ti such that σxi = xσ, σti /∈ ~x, and xσ /∈ ~x,

then there is an ω that excludes [γ].

PROOF. Simply choose ω such that U [ωxσ = ωσti] = ⊥. It will always be possible to do so

because xσ is otherwise unrestricted. �

The strategy used by the function DU is to first apply the transformation of Lemma 3 to get

some set of equations ψ, and then apply the trasformations of Lemmas 4, 5 and 6 until ψ has a

form that can be checked using Lemma 7.

Lemma 8. Given some set of equations ψ and ω restricted by the varibles ~x, ω excludes ψ iff

ω excludes the result of param-elimJψ, ~xK.

PROOF. The first case of param-elim applies the transformation of Lemma 4, and the second

case applies the transformations of Lemmas 5 and 6. The other cases don’t change ψ. In all cases

the property that ω excludes the new set of equations is preserved. �

Lemma 9. DU preserves the consistency of disequations in P and D with the current substi-

tution or fails, if a disequation is no longer consistent with the current substitution.
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PROOF. The first three cases process the first constraint in P , of the form ∀~xs 6= t. (At this

point the current substitution has already been applied to the constraint). First U [s = t] = γ is

computed to get the set of equations ψ = [γ]. Then param-elim is applied to ψ to get ψ′. That

these operations preserve consistency follows from Lemmas 3 and 8. Now we examine the cases

of DU in order.

Case 1. ψ′ is empty. The unification U [s = t] cannot be excluded, so the constraint cannot be

satisfied and DU fails with ⊥.

Case 2. U [s = t] failed in the first place. There is no unifier for s and t, so the constraint will

always be satisfied, thus it is dropped.

Case 3. ψ′ has a form such that currently every equation in it agrees with Lemma 7, so it is

currently satisfiable. Lemma 3 is used to combine the equations in ψ′ into a single disequational

constraint, which is added to D. Lemmas 3 and 8 guarantee the current substitution is consistent

with the new constraint iff it is consistent with the original.

Case 4. If any constraint in D no longer satisfies the check of Lemma 7, it is added again to P ,

where its consistency will again be checked as above. When the current substituion is changed, it

is applied to the constraints in D (the last case of the function U), so the action of Case 4 ensures

that all constraints remain consistent. �

Lemma 10. DU always terminates.

PROOF. Define the lexicographic ordering 〈n1, n2, n3, n4〉 on the P and D arguments to DU,

where:

n1 = the number of variables in P and D that are not universally quantified



70

n2 = the number of unsimplified constraints inD, where a simplified constraint has a non-

quantified variable in at least one subterm of the left-hand side. (A simplified constraint

meet the consistency criteria of Lemma 7.)

n3 = the number of symbols in P

n4 = the number of equations in P of the from t = x where t is not a variable

This ordering is well-founded, and decreases with every recursive call in DU. �

Theorem 2 follows immediately from Theorem 1, Lemma 9 and Lemma 10.
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