
!

Electrical Engineering and Computer Science Department

Technical Report
Number: NU-EECS-13-06

July, 2013

Silverback: Scalable Association Mining For Massive Temporal Data in
Columnar Probabilistic Databases

Yusheng Xie, Diana Palsetia, Kunpeng Zhang, Ankit Agrawal,
Goce Trajcevski, Alok Choudhary

Abstract

 We investigate large scale probabilistic association mining on modest hard- ware infrastructure.
We first propose a probabilistic columnar infrastructure for storing the transaction database.
Using Bloom filters and reservoir sampling techniques, the storage is efficient and probabilistic.
Then we propose an accurate probabilistic algorithm for mining frequent item-sets. Our
algorithm relies on the Apriori principle but has a novel probabilistic pruning technique, which
reduces frequent item-set candidates without counting every candidate’s support size. In the
experiments, our Silverback framework, with satisfying accuracy, outperforms Hadoop Apriori
implementation in terms of run time. Silverback has been commercially deployed and developed
at Voxsup Inc. since May 2011.

Keywords

Association Mining, Frequent pattern mining, consumer behavior,
Facebook , Twitter

Silverback: Scalable Association Mining For Massive

Temporal Data in Columnar Probabilistic Databases

Yusheng Xie12, Diana Palsetia13, Kunpeng Zhang3, Ankit Agrawal3,
Goce Trajcevski3, Alok Choudhary2

1: authors contributed equally,
2: Voxsup, Inc., 3: Northwestern University,

2: {yves,alok}@voxsupinc.com,
3: {drp925,kzh980,ankitag,goce}@eecs.northwestern.edu

Abstract

We investigate large scale probabilistic association mining on modest hard-

ware infrastructure. We first propose a probabilistic columnar infrastructure

for storing the transaction database. Using Bloom filters and reservoir sam-

pling techniques, the storage is e�cient and probabilistic. Then we propose

an accurate probabilistic algorithm for mining frequent item-sets. Our al-

gorithm relies on the Apriori principle but has a novel probabilistic pruning

technique, which reduces frequent item-set candidates without counting ev-

ery candidate’s support size. In the experiments, our Silverback frame-

work, with satisfying accuracy, outperforms Hadoop Apriori implementation

in terms of run time. Silverback has been commercially deployed and

developed at Voxsup Inc. since May 2011.

Northwestern Tech Report July 13, 2013

1. Introduction

Behavioral targeting refers to techniques used by advertisers whereby they

can increase the e↵ectiveness of their campaigns by capturing data gener-

ated by user activities. With the advent of social media sites there has been

massive growth of user generated content. In the context of social websites

behavioral data is generated in the form of likes, posts, retweets, or com-

ments. Behavioral data is foremost characterized by its large volume. For

example in March 2012, nearly 1 billion of public comments or post likes

were generated by Facebook users alone, according to our estimation.

Mining valuable knowledge from behavioral data relies on the same set of data

mining techniques developed for more traditional data sources. Analyzing the

public social web and extracting the most relevant items (i.e. frequent item-

sets) for a given commercial interest is a valuable application of association

rule mining to large behavioral databases. An interest could mean a group

of online users, a brand or a product. For example, the brand “Nikon” is

a description of an interest in cameras. For a set of given interests and a

large behavioral database of transactions of user activities in online social

networks, an interesting task would be finding a list of relevant interests that

share a similar demographic. In other words, this operation is analogous

to finding frequent item-sets and association rules from a large number of

transactions of co-occurrences of the items (6).

But unlike traditional association mining, we work with a more complex and

2

much bigger database in the online behavioral world. In fact, scale is the

one factor really making this challenge di↵erent from the existing works on

association mining. We are challenged with a behavioral database containing

over 10 billion transactions, up to 30,000 distinct items and is growing by

over 30 million transactions every day. Performing association mining at such

scale with modest hardware forces our team to look for an e�cient algorithm

and a scalable storage scheme alternative to existing methods.

The massive scale of our behavioral database, besides being a formidable

challenge, is also an opportunity to fully exploit statistical power. Statistical

estimations and probabilistic treatments are key in taking scalability and

performance to the next level in both the mining algorithm and database

storage, provided that such estimations do not noticeably a↵ect the accuracy

of the mining results.

1.1. Our Contribution

To handle association mining from a very large live database with modest in-

frastructure, we propose Silverback, a probabilistic framework for accurate

association rules and frequent item-sets mining at massive scale. First, we

propose a column-based storage for storing and updating a large database of

transactions. By incorporating Bloom filters and sampling techniques in our

storage solution, it results in a much faster probabilistic database with sat-

isfying accuracies. We show that the column-based storage is more e�cient

3

and more scalable than traditional row-based databases. Further, we pro-

pose an Apriori-based algorithm that e�ciently and probabilistically prunes

the candidates in constant time without support counting for every candi-

date item-set. In the experimental section, we compare the performance of

Silverback with a more powerful ad-hoc Hadoop cluster; evidences suggest

that Silverback is significantly more e�cient than a generic MapReduce

implementation.

The described framework and algorithm have been successfully deployed at

large scale for commercial use and progressively improved to the current

version since May 2011.

2. Problem Formulation

Given large databases of user activity log, the challenge in our application is

to parsimoniously and accurately compute target-driven frequent item-sets

and association rules with real-time on-demand response.

In technical terms, let D denote a long list of users’ activities across public

walls in the Facebook network (or handles from Twitter). D = {(u
i

, w
i

, t
i

, a
i

)|i =

0, 1, . . . , |D|}, where each four-element tuple is a transaction of user activity.

For the i-th transaction, user u
i

made activity of type a
i

on wall w
i

at times-

tamp t
i

. Each u
i

belongs to U , the set of all user IDs; each w
i

belongs to W ,

the set of all wall IDs. In practice, |U | << |D| and |W | << |U |.

4

Aggregating the wall IDs in transactions from D by user ID generates D
U

,

a database of behavioral transactions. There is a clear analogy between D
U

and the famous supermarket example of frequent item-sets mining. User

IDs in D
U

are equivalent to transactions of purchase; walls that a particular

user has activities on are equivalent to the items purchased in a particular

transaction. In this paper, we use wall and item interchangeably.

A frequent item-set F , given minimal support level ↵, is a subset of W

such that there are at least ↵ number of transaction in D
U

. F
k

, a k-item-

set, denotes a frequent item-set with exactly k number of items. A target-

driven rule is generally defined as an implication of the form X) Y where

X, Y ⇢ W , X \ Y = ;, X [Y = F
k

, and Y is given as the target.

The goal, given a live and rapidly growing D and a target Y , is to e�-

ciently discover rules that imply Y . D
U

in our challenge is equivalent to

an 800-million-by-30,000 table that would have over 20 trillion cells in full

representation.

3. Related Work

Table 1: Comparison with popular association mining algorithms
Algorithm Trnsctn. Freq. Itms. Db. Memory Cluster Empirical Support Lines of Accuracy

storage Reprsntn. scans Footprint scalability e�ciency count code
Apriori Row-based Row-based Many Large Good(24) benchmark Yes ⇠1,000 Exact

Max-Miner Row-based Row-based Many Large Fair(11) ⇠ 5⇥ Yes Unknown Exact
Eclat Columnar Flexible A few Small Poor(26) 3⇥ ⇠ 10⇥ Yes ⇠2,000 Exact

FPGrowth Row-based FP tree 2 Enormous Very Good(17) 5⇥ ⇠ 10⇥ Yes 7,000+ Exact
Silverback Columnar Flexible A few Tiny Good > 15⇥ Const. time ⇠2,000 Probabilistic

5

3.1. Association Mining

Association Mining is a well known technique for finding correlations between

items in a dataset. Despite recent advances in parallel association mining al-

gorithms (24) (18), the core technique is largely unmodified. Apriori (7) is

the most popular and successful algorithm. It proceeds by identifying the

frequent items by starting with small item-sets, and only proceeding to larger

item-sets if all subsets are frequent. However, Apriori is very expensive be-

cause in every count step it scans the entire database. Many techniques have

been proposed to improve issues of Apriori such as counting step, scanning

and representing database, generating and pruning candidates and ordering

of items. We discuss Max-Miner in the context of generating and pruning

candidates, FP growth and Eclat in the context of counting strategy, scan-

ning, and representing database.

3.1.1. Max-Miner

Max-Miner (8) addresses the limitations of basic Apriori by allowing only

maximal frequent item-set (long patterns) to be mined. An item-set is max-

imal frequent if it has no superset that is frequent. It is able to reduce the

search space by pruning not only on subset infrequency but also on superset

infrequency.

Max-Miner uses a set enumeration tree which imposes a particular order on

the parent and child nodes but not its completeness. Each node in the set

6

enumeration tree is considered as a candidate group (g). A candidate group

consists of two item-sets. First called head (h(g)), which is the item-set

enumerated by the node. The second called tail (t(g)), which is an ordered

set and contains all items not in h(g). The ordering in the tail item-set

indicates how the sub-nodes are expanded. The counting of support of a

candidate group requires computing the support of item-sets h(g), h(g)[t(g),

h(g) [{i}, 8i 2 t(g). Superset pruning occurs when h(g) [t(g) is frequent.

This implies that item-set enumerated by sub-node will also be frequent

but not maximal, and therefore the sub-node expansion can be halted. If

h(g) [{i} is infrequent then any head of a sub-node that contains item i is

infrequent, and therefore subset pruning can be implemented by removing

any such tail item from candidate group before expanding its sub-nodes.

Although Max-Miner with superset frequency pruning reduces search time,

it still needs many passes of the transactions to get all long patterns just like

basic Apriori. It is ine�cient in terms of both memory and processor usage

(i.e. storing item-sets in a set and iterating through the item-sets in the set)

when working with sets of candidate groups.

3.1.2. FP Growth

FP-Growth allows frequent item-set discovery without candidate item-set

generation. This makes it faster than Apriori. FP-Growth approach builds a

compact data structure called the FP-tree. The FP-tree can be constructed

by allowing two passes over the data-set. Traversing through the FP-tree

7

allows frequent item-sets to be discovered.

In the first pass, the algorithm scans the data and finds support for each

item, allowing infrequent items to be discarded. The items are sorted in

decreasing order of their support. The latter allows common prefixes to be

shared during the construction of FP-Tree. In the second pass, the FP-tree

is constructed by reading each transaction. If nodes in the transaction do not

exist in the tree, then the nodes are created with the path. Counts on the

nodes are set to 1. Transactions that share common prefix item, the frequent

count of the node(i.e. prefix item) is incremented.

To extract the frequent item sets, a bottom up approach is used (traversal

from leaves to the root). It also adopts divide and conquer approach where

each prefix path sub-tree is processed recursively to extract the frequent

item-sets and the solutions are then merged.

Allowing fewer scans of the database comes at the expense of building the

FP-Tree. The size of the tree may vary and may not fit in memory. Also the

support can only be computed once the entire data-set is added to FP-Tree.

3.1.3. Eclat

Like FP-growth, Eclat employs divide and conquer strategy to decompose the

original search space (25). It allows frequent item-set discovery via transac-

tion list(tid-list) intersections and is the first algorithm to use column-based

representation of the data rather than row-based representation. The sup-

8

port of an item-set is determined by intersecting the transaction lists for two

subsets, and the union of these two subsets is the item-set.

The algorithm performs depth-first search on the search space. For each item,

it scans the database to build a list of transactions containing that item (step

1). It forms item-conditional database(if the item were to be removed) by

intersecting tid-list of the item with tid-lists of all other items (step 2). It

then repeats step 1 on item-conditional database. This process is repeated

for all other items as well.

Like FP-Growth, Eclat performs fewer scans of the database but at the ex-

pense of maintaining several long transaction lists in memory, especially for

small item-sets.

3.1.4. Distributed and Parallel Algorithms

Discovering patterns from a large transaction data set can be computation-

ally expensive and therefore almost all existing large scale association rule

mining utilities are implemented on the MapReduce framework. Such exam-

ples include Parallel Eclat (26), Parallel Max-miner (11), Parallel FP growth

(17) and Distributed Apriori (24).

Table 1 compares our proposition with other popular existing methods in

many aspects including their scalability to more nodes.

9

3.2. Modern Applications of Bloom Filters

Capturing demographic between any two interests can be very high in space

complexity as it requires membership operation to be performed. A bloom

filter is popular space-e�cient probabilistic data structure used to test mem-

bership of an element (9). For example, Google’s BigTable storage system

uses Bloom filters to speed up queries, by avoiding disk accesses for rows or

columns that don’t exist (10). Similar to Google’s BigTable, Apache modeled

HBase, which is a Hadoop database. HBase employs bloom filters for few

di↵erent use-cases. One is access patterns with a lot of misses during reads.

The other is to speed up reads by cutting down internal lookups.

A nice property of bloom filters is that the time needed either to add items

or to check whether an item is in the set is a fixed constant, O(k) where k

is the number of hash functions, and therefore independent of the number of

items already in the set. The only caveat is that it allows for false positives.

For a given false positive probability p, the length of a Bloom filter m is pro-

portionate to the number of elements n being filtered: m = �n ln p/(ln 2)2.

3.3. OLAP and Data Warehouse

Traditional OLAP (On-Line Analytical Processing) queries are usually gen-

erated by aggregation along di↵erent spatial and temporal dimensions at

various granularity. For example, OLAP queries for a typical job posting

website (23) include job views by day/week/month, job views by city, and

10

job views by company. To achieve e�cient OLAP queries, queries are issued

against specifically designed data warehouses. Current industrial practices

usually build a data warehouse from three steps. The first step is cubifying

of the raw data. The second step is storing the cubes. And the third step is

mapping OLAP queries into cube-level computations.

Web-scale real-time applications like Twitter and Facebook pose tremendous

challenges to the three simple steps of building data warehouses.

Insights-seekers basically demand real-time summary statistics about the

website at any granularity. To support such stringent demands, a modern

data warehouse is typically first built from existing log data and incremen-

tally updated by setting up a river. A river is a persistent link between

source and destination carrying real-time data stream. In addition, powerful

and elastic MapReduce frameworks like Hadoop (19) are usually deployed to

handle the first step, the cubification of web-scale data, and the third step,

mapping queries to cube-level computations. Durable and scalable key/value

pair storages like Cassandra (16) are often necessary to fulfill the second step

of building a web-scale data warehouse. In short, more hardware and scala-

bility seem to be the two hosts that keep the system going.

What if there isn’t more hardware or if a Big Data startup simply could’t

a↵ord su�cient computing power? The pressure is not as much for Face-

book’s or Twitter’s in-house engineers compared to the ones with their much-

smaller-in-scale partner startups. Many such startup companies have one or

11

two database engineers to design a system that would need to handle basically

inundating amount of data sent from their larger social network partners.

Constraints on the budget and even considerations for energy-saving comput-

ing call for design alternative to simply “put it on more machines and scale”.

The priority, for the smaller entities/companies, should not be inventing

general-purpose, idealistic scalable framework for exa-scale computing. The

goal for smaller entities/companies is immediate practicality with reasonable

scalability on commodity hardware.

4. Storage and Infrastructure

Given the scale of D
U

in our problem, traditional row-based storage assumed

by (7) (13) would become out of depth. An e�cient and clever storage

scheme is the foundation of performance and scalability. Our goal here is not

to invent a general-purpose advanced distributed storage engine to add to the

already abundant list of such engines and file systems. Instead, we are more

interested in an application/data-driven ad-hoc solution. We discover that

a probabilistic column storage is very e↵ective for us to tackle the massive

scale.

4.1. Scalable Column Storage

One key observation taken into consideration in our design of the storage

is the sparsity of D
U

. The full representation of D
U

would require over

12

Figure 1: Facebook user activity distribution (2008 June to 2012 January, vertical axis is
in log scale)

20 trillion cells (740M users by 32K walls), which is impractical even in

distributed environment, for any reasonable budget. But of the 20 trillion

cells, less than 1% are populated. That is, for an average user, he/she accesses

less than 14 of the 32K walls, according to our estimation. The sparsity of

D
U

is not a coincidence and does not surprise us at all. In fact, the global

sparseness in a social graph and the power-law decay in its node degree

distribution are part of the asymptotic behavior that we can safely assume.

Figure 1 shows the distribution of Facebook users and the number of walls

(items) they access. It shows that the number of users accessing x number

of walls drastically decrease as x increases. Over 40% of the users only

access less than 5 of the 32,000 walls. The spike on the right side is due to

aggregating all users with more than 100 accessed walls into a single category.

Figure 1 implies that most transactions in D
U

only contain a small number

of items.

13

col 1 col 2 col n......

u1

u3

u4

u5

u2

u7u7

u8

u9

u7

u6

u9

u10

u5

u4

u1

u3

......

trnsc.

trnsc.

trnsc.

trnsc.

trnsc.

trnsc.

trnsc.

trnsc.

trnsc.

trnsc.

..
.

Bloom filter op.

bf 1 bf 2 bf n

1,3,4,
7,8,...

2,5,7,
9,...

1,3,4,5,6,
7,9,10,...

disk

cache

R
e

se
rv

o
ir

 S
a

m
p

le
r

Figure 2: Illustration of the columnar storage in place of traditional row-based transactions
and its probabilistic enhancement

We use a sparse representation of the massive D
U

called “list of lists” (LIL)

(4) (or “Column Family” in Cassandra (16)). LIL typically stores a mas-

sive sparse matrix by using a list to record the non-zero cells for each row.

But unlike most existing implementations of LIL, a column-based “list of

columns” (LIC) representation is implemented for representing D
U

. That is,

the LIC representation of D
U

contains a wall-column for each wall ID; each

wall-column only contains the active user IDs of the 800 million users. The

upper part of Figure 2 illustrates how the traditional row-based transactions

of items in a database are stored as columns.

One of the advantages in this columnar storage is data independency. The

14

LIC representation of the database D
U

can be partitioned by columns and we

can store the columns as physically di↵erent files on di↵erent hosts. Inserts,

deletes, and updates to any wall will only a↵ect its column and therefore

avoids database locks, which is particularly helpful when the database is live

like D
U

.

4.2. Probabilistic Enhancement

An important characteristic about the LIL representation of D
U

is that the

lists/columns for the walls will have drastically di↵erent lengths due to the

sparsity in D
U

. The wall-list for Coca-Cola on Facebook contains over 30

million user IDs while small (albeit important) interests like ACM SIGMOD

have less than 100 user IDs in their lists.

An immediate problem caused by the massive size di↵erences is resource al-

location. The resource allocator would face a combinatorial problem, where

each host has a capacity and each column has di↵erent sizes. The situation

would be much easier to deal with if all columns are similar in size, which

would allow the allocator to treat all columns equally. To solve this problem,

two approaches seem natural. One way is to shard the longer columns like

Coca-Cola. But this approach introduces extra complexity as it diminishes

the strong inter-column independency, which is important for us to scale

easily. Extra locks would be required at column-level and shard-level for

di↵erent chunks of a sharded column. The situation becomes more compli-

cated if the column is so big that its shards reside on multiple hosts. Indeed,

15

sharding functionality is available in existing products like MongoDB (2).

But MongoDB 2.1 generically implements readers-write lock and allows one

write queue per database, which is not desirable in our case and may have

unforeseeable impact at large scale.

Instead, our philosophy is simple: solve the locking problem by avoiding it.

Like (14), we impose each column file to be single-threaded and therefore, no

lock mechanism or extra complex management is needed at all. The trade-o↵

here is the need to make sure each column file size can be handled by a single

thread in reasonable delay. Sampling can alleviate the size di↵erence among

columns and make large columns controllable by a single-thread. Reservoir

sampler (22) is used for exceedingly long columns. In practice, we sample

500,000 IDs for columns with more than 500,000 IDs. A bonus of using

Reservoir sampler is the ability to incrementally update the pool as new IDs

are added to the column and guarantee that the pool is a uniform sample of

the entire column at any given moment. For each sampled column, an extra

field is required to record the sampling rate.

However, the column files still cannot fit into the main memory of our modest

cluster, even after sampling on large columns. Loading all column files of the

described D
U

requires roughly 300GB after sampling. The practical goal

here is to reduce the representation of D
U

from 300GB down to about 25GB,

which needs to be done without breaking data independency, performance

or scalability. With such constraints, our options are limited. Sampling

16

based techniques cannot be used since any sampling would have happened in

the previous stage; coding-based information compression is also undesirable

because of its impact on performance and updatability.

Bloom filter, in the given scenario, seems a legitimate choice. A Bloom

filter is a space-e�cient probabilistic data storage (9). The idea here is to

construct a bloom filter for each column, as depicted in the bottom part in

Figure 2. When the Bloom filters are built, they are meant to be cached in

memory while the much larger columns can reside on slower disks. In our

experience, Bloom filters’ e�ciency is about 5 to 7 bits per ID, where each

ID is originally stored as a string of 10 to 20 ASCII characters, depending

on the chosen column. In addition to drastically shrinking the storage size,

Bloom filter files can be incrementally updated as more IDs are added to the

corresponding column file, which means no rebuild is necessary for the filters.

Although the Bloom filters created for di↵erent columns can use di↵erent

number of hash functions, di↵erent false positive rate, or di↵erent number

of set bits, we need to make sure all Bloom filter arrays are of the same

size. In practice, we enforce the Bloom filter size to be 7, 000, 000 bits =

854.5 KBytes, which guarantees less than 0.1% false positive rate with 500,000

expected inserts, and doing the same for all 30,000 columns would yield

854.5 KBytes · 30, 000 < 24.5 GBytes. That is, we expect at most 500,000

(the number of max sample size) IDs to be added to any Bloom filter. And

suppose that each ID sets 7 di↵erent bits in the filter, at most 50% of the

17

bits in the Bloom filter will be set, which guarantees the false positive rate

on the filters.

Together, the sampling limit and the size of the filter guarantees decent accu-

racy. This equal-in-size requirement might seem unnecessary and superfluous

now, but it is imposed to enable bit operations between any two Bloom filters,

which is critical in our association mining algorithm.

One can not get away with using sampling and Bloom filter without dis-

cussing their actual impact on the accuracy. In the experimental section,

concrete evidences are provided to support the case. In short, both sampling

and Bloom filter have very limited impact on the accuracy of the results.

4.3. Deployment of Silverback

The commercially deployed Silverback system consists of three major

parts: 1) columnar probabilistic database of transactions, 2) a computation

cluster, and 3) storage for output rules and frequent item-sets.

The database of transactional records, D, is implemented using modified

versions of MySQL (3) and MongoDB (2) on top of 6 relatively powerful

nodes. Since the database infrastructure is shared with other data ware-

housing purposes, databases are served from dedicated servers (free of other

computational chores) to achieve high I/O throughput.

The computation nodes are the ones executing the Silverback mining al-

gorithms, which are described in Section 5. Algorithms are implemented

18

as web services and are served from scalable web servers like Tornado (5).

Therefore, most communication between the database and the computation

cluster is through internal HTTP requests. About 30 nodes are deployed in

this cluster, which is a shared resource among several computation-intensive

purposes including association mining. The cluster is logically organized as

master server, shadow master servers for fault-tolerance, and slave servers.

But physically, several slave servers can reside on a same actual node; and

the master server is run alongside with slave servers on a same node as well.

All the slave servers are designed to recover from crash and resume from its

last checkpoint.

Two important design decisions in our computation infrastructure are, first,

implementing the computation as web service-based transactions and, sec-

ond, the ideological separation between logical servers and physical nodes.

A substantial advantage of turning computation tasks into service-based

transactions is the elimination of startup cost of loading dictionaries, lookup

tables from disk, since the end points for those web services are persistent.

More precisely put, the Bloom filter structures, which are small in memory

footprint, once fit into the main memory of the web servers, can be tested,

copied, and updated without touching the disk as long as the hosting web

services do not restart themselves. Service-based system also makes logging

much easier and can be readily integrated with frameworks like Scribe (1).

Another advantage particularly interesting for our commercial application

19

is web-servers’ builtin handling for timeout requests. Suppose the system

is calculating frequent item-sets on-the-fly from end clients’ requests. The

expectation is not finding complete and exact frequent item-sets in as little

time as possible. Instead, the clients expect to explore as many frequent

item-sets as possible after a tolerably short delay, say, 1 second. Service-

based implementation makes such expectations easy to achieve.

Separation between logical servers and physical nodes is a very powerful idea

on a shared computation cluster. The motivation of sharing a bigger cluster

among several di↵erent services is to allow better utilization of resources. If

the cluster is split into smaller ones, each of which is dedicated to a partic-

ular service, then service A cannot use the idle resources in cluster B even

when service B is not actively using cluster B. To avoid such ine�ciency,

both service A and B are deployed on the whole cluster. Dynamically re-

ducing/increasing the slave servers running on each cluster node within just

a few minutes can maximize the utilization of available resources and also

reduce energy consumption in real time.

5. Algorithm

New algorithms are designed to work with the proposed probabilistic database.

Popular and successful algorithms like Apriori (7) and FP-Growth (13), even

their distributed implementations (24), proceed by row-based execution. A

transaction row is taken for granted as the execution unit. However, given

20

P
e

p
s

i

u1

u2

u3

u4

u5

P
1

1

1

1

1
0
0
0
1
0
1
0

K
F

C

u1

u3

u5

u6

K
1

0

1

0

1
1
1
0
0
1
0
0C

o
k

e

u1

u2

u3

u4

u5

C
1

1

1

1

1
1
0
0
1
0
1
1

B
M

W

u2

u4

u5

u6

B
0

1

0

1

1
1
0
0
0
0
0
1

u6

A
T

&
T

u1

u3

u4

u5

1

0

1

1

1
0
0
1
0
0
1
1

A

C
o
ke

,
P

e
p
si

u1

u2

u3

u4

u5

CP

1

1

1

1

1
0
0
0
1
0
1
0

B
M

W
,C

o
k

e

u2

u4

u5

u6

BC

0

1

0

1

1
1
0
0
0
0
0
1

AND-mask
B & C,
C & P

B
M

W
,C

o
ke

,P
e

p
si

u2

u4

u5

BCP
0

1

0

1

1
0
0
0
0
0
0
0

AND-mask
BC & CP

{ }

B C K PA

AC AK AP BCAB BP CK CP KPBK

ABK ABP ACK ACPABC BCK BCP BKP CKPAKP

ABCP ABKP ACKP BCKPABCK

{ABCKP}

Initial
database
with
Bloom
Filters

Figure 3: Correspondence between Silverback and lattice representation of frequent
item-sets

the proposed storage scheme, this assumption is no longer valid and exist-

ing algorithms are hard to generalize to accommodate our storage due to

the fundamental di↵erences in data scanning between row-wise storage and

columnar storage.

21

5.1. Two Item-set Algorithm

We first demonstrate the column-oriented algorithm in the case of finding

frequent two-item-sets {X = {x}, Y = {y}}, where X and Y are both single

item-sets, with minimal support ↵. The two item-set algorithm is often used

in our commercial practice, where the owner of a brand y is interested in

finding out other brands that are most frequently associated with y.

All possible candidates for x are elements from W , the set of all items. Our

algorithm starts by filtering out the unqualified candidates whose support is

below ↵. This process can be done very e�ciently by scanning O (|W |� 1)

numbers, since the algorithm simply queries the length of each column file.

We use W 0 to denote a subset of W such that W 0 contains all walls whose

column size is above ↵. For each y 2 W 0, the algorithm loads the user IDs

from column y into a set U
y

. Since the actual user IDs are not explicitly stored

in Bloom filter and sit on a much slower disk, reading user IDs from disk only

happens once per wall to avoid cost, and U
y

at each iteration is small enough

to fit in memory. In other words, the algorithm scans the whole database

from disk only once. Then for each wall’s Bloom filter representation b
x

,

where x 2 W 0, the algorithm tests if u is a member of b
x

for 8 u 2 U
y

.

By testing U
y

against b
x

, the algorithm e↵ectively finds (with false positives

introduced by the use of Bloom filter) y\x, the intersection between y column

and x column. At this stage, confidence and support filtering is applied and

all qualified y columns are put into the output set O. The x � y constraint

22

says that x must come after y in atomic order, which guarantees that {x, y}

and {y, x} are not calculated twice.

Since y\x is the set of user IDs that appear in both y column and x column,

y \ x is equivalent to {X [Y }, the rows of transactions that contain both y

and x. The equivalence between intersection of columns and union of item-

sets allows us to compute other association mining concepts like lift, using

the proposed storage and algorithm. This equivalence is best illustrated in

single item case, but the same property carries over to general case as shown

in (25) and in the following section.

5.2. Two Issues With Apriori

We first review the Apriori principle and the key steps in the original Apriori

algorithm, which would help to understand how our version of Apriori can

further exploit the Apriori principle with column-based sparse database and

Bloom filters.

Apriori Principle: If an item-set is frequent then all of its subsets are also

frequent, or if an item-set is infrequent then all its supersets are infrequent.

Moreover, maximal frequent item-sets uniquely determine all frequent item-

sets (25). An item-set S is called maximal frequent if there does not exist an

item-set T such that S ⇢ T and T is frequent.

Two particular operations in the Apriori algorithm significantly slow the al-

gorithm down. The first is the multiple scans of transactions. The other

23

Algorithm 1: Column-oriented algorithm for finding two frequent
item-sets and association rules
Input: ↵, minimal support, W , set of all items, D

U

, the database of
transactions

Output: O, set of all frequent two item-sets
1 W 0 {x|x 2 W, length of x column � ↵}; O {}
2 for each y 2 W 0 do
3 U

y

 IDs from y column
4 for each x 2 W 0 and x � y do
5 support

x,y

 0
6 bf x column’s Bloom filter
7 for each u 2 U

y

do
8 if u in bf then
9 support

x,y

+ = 1
10 end

11 end
12 if support

x,y

� ↵ then
13 append {x, y} to O
14 end

15 end

16 end
17 return O

operation that significantly contributed to the temporal cost of traditional

Apriori is candidate pruning, which requires counting support for each can-

didate generated. To overcome those two drawbacks, various pruning and

optimization techniques are proposed, as discussed in the related work sec-

tion.

24

Algorithm 2: apriori-gen algorithm for generating and probabilistically
pruning candidates

Input: F
k�1, frequent (k � 1) item-sets; ↵, minimal support;

H1(c), . . . , Hf

(c), sorted lists that holds the Bloom hash
indices for 8c 2 F

k�1; Sc

for 8c 2 F
k�1, support counts for all

frequent (k � 1) item-sets
Output: C

k

, set of candidates for frequent k item-sets after pruning
1 C

k

 {}
2 for c1, c2 2 F

k�1 ⇥ F
k�1 do

3 if c1 and c2 satisfy Equation 1 then
4 for i 2 {1, . . . , f} do
5 SIG(h

i

(c1)) first m indices in H
i

(c1)
6 SIG(h

i

(c2)) first m indices in H
i

(c2)
7 SIG(h

i

(c1 [c2)) find the smallest m elements from
SIG(h

i

(c1)) [SIG(h
i

(c2));

8 Calculate \J
i

(c1, c2) based on Equation 5
9 end

10 \J
hybrid

(c1, c2)
P

f

i=1

\
Ji(c1,c2)

f

11 if \J
hybrid

(c1, c2) · (Sc1 + S
c2) � ↵ then

12 c c1 [c2
13 order elements in c
14 append c to C

k

15 end

16 end

17 end
18 return C

k

5.3. Minimizing scans of transactions

Apriori algorithm classifies candidate item-sets and explores their candidacy

by the cardinality of the item-set. And at each cardinality level, the algorithm

scans D
U

, the entire database of transactions, for counting the supports of the

candidate sets at that cardinality level. The problem then becomes obvious:

25

the entire execution of the algorithm scans the database multiple times, which

is not desirable.

Minimizing the iterations of scanning the database is critical in improving

the overall e�ciency of association mining algorithms, especially for enor-

mous databases. Previously, FP-Growth (13) is successful partially due to

the fact that it only scans the database of transactions twice in building the

FP tree structure. However, the size of the FP tree structure can be large

and reading frequent patterns from the FP tree requires traversing through

the tree. In other words, FP-Growth algorithm avoids intensive loads on

database scans by shifting the load to its own data structure, which is more

concise. Eclat (25) finds another way to avoid excessive database scans with-

out creating extra self-defined data structures. Benefiting from its columnar

storage, Eclat (25) reads activities/transactions column by column and only

the necessary columns and intersections of columns are retrieved into mem-

ory when checking the candidacy of each candidate. Similar to Eclat, our

proposition only retrieves the necessary column files each time and further

minimizes the I/O by replacing intersections of columns by AND-masked

Bloom filters.

5.4. Candidate Generation and Probabilistic Pruning

Traditional approaches to address the issue of exponential candidate item-

sets was by the Apriori principle and other algorithmic improvements (8),

which prune the unqualified candidate item-sets and prevent the algorithm

26

from exploring all 2|W | possible candidates. Apriori principle becomes espe-

cially e↵ective when D
U

is sparse and contains large number of items and

transactions, which exactly suits our practical usage.

The apriori-gen function in Algorithm 3 uses F
k�1⇥Fk�1 method (20) to gen-

erate, C
k

, the set of candidates for frequent k-item-sets. apriori-gen function

then uses a new, minHash-based (12) pruning technique to drastically reduce

the candidates in C
k

and to bring C
k

as close to F
k

as possible. Minimizing

the cost of reducing C
k

to F
k

is key in achieving much higher performance

than previous Apriori-based techniques.

F
k�1 ⇥ F

k�1 method was first systematically described in (20). The method

basically merges a pair of frequent (k�1)-item-sets, F
k�1, only if their first k�

2 items are identical. Suppose c1 = {m1, . . . ,mk�1} and c2 = {n1, . . . , nk�1}

be a pair in F
k�1. c1 and c2 are merged if:

m
i

= n
i

(for i = 1, . . . , k � 2), and m
k�1 6= n

k�1. (1)

The F
k�1 ⇥ F

k�1 method generates O (|F
k�1|2) number of candidates in C

k

.

The merging operation does not guarantee that the merged k-item-sets in

C
k

are all frequent. Determining the F
k

from the usually much larger C
k

becomes a major cost in Apriori execution.

Can one e�ciently determine if c 2 F
k

for any c 2 C
k

? This is the question

people have been trying to directly address. But we think one can alterna-

27

tively ask, based on the F
k�1 ⇥ F

k�1 method, Can one e�ciently determine

if c 2 F
k

for any c such that c = c1 [c2 and c1, c2 2 F
k�1? Dealing with

c directly basically throws away the known information about c1 and c2.

The important question then becomes how can c1 and c2 help determine the

candidacy of c.

The key clue lies in S(c), the support set of c. S(c) = S(c1) \ S(c2). From

previous research, pruning based on the cardinality of S(c) is very expensive.

Instead, we propose to consider the Jaccard similarity coe�cient (21) in the

apriori-gen function:

J (c1, c2) =
|S(c1) \ S(c2)|
|S(c1) [S(c2)|

. (2)

Measuring J (c1, c2) is just as costly, so apriori-gen uses minHash algorithm

to propose a novel estimator for J (c1, c2).

MinHash scheme is a way to estimate J (c1, c2) without counting all the

elements. The basic idea in minHash is to apply a hash function h, which

maps IDs to integers, to the elements in c1 and c2. Then h
min

(c1/2) denotes

the minimal hash value among h(i), 8i 2 c1/2. Then we claim:

Pr (h
min

(c1) = h
min

(c2)) = J (c1, c2) . (3)

The above claim is easy to confirm because h
min

(c1) = h
min

(c2) happens if

and only if h
min

(c1\c2) = h
min

(c1[c2). The indicator function, {hmin(c1)=hmin(c2)},

28

is indeed an unbiased estimator of J (c1, c2). However, one hash function is

not nearly enough for constructing a useful estimator for J (c1, c2) with rea-

sonable variance. The original plan is to choose k independent hash functions,

h1, . . . , hk

, and construct an indicator random variable, {hi,min(c1)=hi,min(c2)},

for each. Then we can define the unbiased estimator of J (c1, c2) as

\J (c1, c2) =
kX

i=1

{hi,min(c1)=hi,min(c2)}

k
. (4)

Before the above estimator can be implemented, it is critical to realize its

computational overhead in practice. Often k = 50 or more is chosen and

the k hash functions need to be applied to each ID in the support of each

candidate. At this stage, typical applications of minHash often use the single-

hash variant to reduce computation. Given a hash function h and a fixed

integer k, the signature of c, SIG(h(c)), is defined as the subset of k elements

of c that have the smallest values after hashing by h, provided that |c| � k.

Then an unbiased estimator of J (c1, c2) is

\J (c1, c2) =
|SIG(h(c1 [c2)) \ SIG(h(c1)) \ SIG(h(c2))|

|SIG(h(c1 [c2))|
, (5)

where SIG(h(c1 [c2)) is the smallest k indices in SIG(h(c1)) [SIG(h(c2))

and can be resolved in O(k).

In general, the single-hash variant is the best minHash can o↵er in terms

of minimizing computational cost. However, one still needs to hash all ele-

29

ments in c1 and c2 before he/she can find the signatures, which would make

Equation 5 basically as costly as Equation 2. The key step that makes min-

Hash estimation particularly e�cient in our case is to link it with the Bloom

filters assumed in our framework. Testing a member u in a Bloom filter

essentially requires finding several independent hash values that map u to

di↵erent indices in a bit array. Since the Bloom filter indices are comparable

integers, the idea here is to avoid extra hashing in minHash calculation by

re-utilizing these integer hash indices. Since all user IDs in the support sets

of all frequent item-sets will be tested by the same Bloom hash functions, it

guarantees the availability of these hash indices.

Suppose the Bloom filter test sets f number of bits (i.e. it runs the ID

through h1, . . . , hf

for each ID, whose membership is to be tested). The

direct attempt of utilizing the Bloom filter indices in minHash is simply:

\J (c1, c2) =
fX

i=1

{hi,min(c1)=hi,min(c2)}

f
(6)

by replacing k in Equation 4 with j. A potential problem with this scheme

is that, to achieve reasonable accuracies in Bloom filter and minHash, the

expectations on j and k are very di↵erent. Indeed, we find f = 7 is su�ciently

good for the Bloom filter while k is usually over 20 in order for minHash to

give reliable estimates.

To overcome the empirical di↵erence between f and k, we design a f -hash hy-

brid approach that uses the f already calculated Bloom hash indices. Choose

30

k to be a fixed integer such that k > f , k = f ·m, andm is also an integer. Let

h
i

, for i = 1, . . . , f , denote the i-th Bloom hash function. Then the i-th sig-

nature of c, SIG(h
i

(c)) is the subset of m elements of c that have the smallest

values after hashing by h
i

, provided that |c| � m. Applying the signatures

to Equation 5, we obtain f independent estimators, \J1 (c1, c2), . . . , \J
f

(c1, c2).

Finally, the hybrid estimator \J
hybrid

(c1, c2) is derived as

\J
hybrid

(c1, c2) =
fX

i=1

\J
i

(c1, c2)

f
. (7)

In fact, Equation 6 is a special case of the hybrid estimator. When k = f

and m = 1, Equation 7 becomes equivalent to Equation 6.

Further, we have

J (c1, c2) · (|S(c1)|+ |S(c2)|) =
|S(c1) \ S(c2)| · |S(c1)|+ |S(c2)|

|S(c1) [S(c2)|

� |S(c1) \ S(c2)|.
(8)

Since |S(c1) \ S(c2)| = |S(c)|, it follows that if |S(c)| � ↵, then J (c1, c2) ·

(|S(c1)|+ |S(c2)|) � ↵, where ↵ is the min support. Replacing J (c1, c2) with

\J (c1, c2) gives us the rule apriori-gen uses to reduce C
k

closer to F
k

. Observe

that apriori-gen applies the rule in reverse logical order, which introduces

false positives. This is why apriori-gen can only reduce C
k

to some superset

of F
k

, but not exactly F
k

.

31

5.5. The Silverback Algorithm

The general association mining algorithm with the proposed pruning tech-

nique is presented in Algorithm 3. Schematically, it is similar to the original

Apriori, but Silverback e↵ectively addresses the two issues brought up

earlier in this section.

The iterations of transaction scans are minimized. The columnar database

enables the algorithm to only load the necessary x column at each iteration.

Further, by sorting the item-sets in each candidate set C
k

and sorting the

items in each item-sets, we can make sure each column is loaded only once

from the disk and will stay in memory for iterations of all item-set candidates,

to which this column belongs.

Probabilistic candidate pruning is key in our proposed algorithm. Indeed,

we already show how it can prune o↵ the unworthy candidates. But we

are equally interested in its impact to the complexity of the algorithm. In

Algorithm 3, the only temporal performance impact is line 26, where the

hash indices (which we get for free when testing memberships with Bloom

filter) are inserted in H1(c), . . . , Hf

(c), each of which is a priority queue of

capped length m. The temporal cost for each ID in the test of each candidate

without insertions to priority queues would beO(f). The insertions introduce

an additional complexity O(f logm). In the apriori-gen function, for each

candidate, lines 5 and 6 cost is O(fm) and line 7 cost O(fm logm) due to

sorting. To claim that the temporal cost (and the spatial cost, which is

32

bounded by temporal) is basically constant, we need to show that both f

and m are small integers and the cost does not increase as the transactions

or unique items increase.

f , the number of Bloom hash functions, is said to be 7 in previous section

and it only grows logarithmically with respect to the total transactions. So

f = 10 would be su�cient for some 1 trillion transactions. m, on the other

hand, is determined by f and the minHash error rate. MinHash introduces

error ✏ ⇠ O(1p
m·f) to its Jaccard estimation Ĵ , which is between 0 and 1.

Suppose that ✏ < 0.06 is satisfactory and f = 7, then m = 40 is su�cient.

Further, if f increases to 10, m = 28 would be su�cient for achieving the

same ✏.

Silverback is scalable and can be deployed on a cluster. The column files

and Bloom filter files are distributed across the slave servers of the cluster.

An index file is stored on the master server to keep track of the slave, on

which a particular column file or Bloom filter is stored. A nice property

of Silverback is that only the user IDs from one column are necessary to

be loaded in memory at any given moment of the execution of Silverback.

This implies that the uncompressed, large column files are never moved from

slave to slave over the network. Only the compressed strings of Bloom filters

are loaded from other slaves when necessary. This property minimizes general

intra-cluster I/O tra�c and makes our algorithm scalable.

33

6. Experiments and Results

6.1. Dataset

Our data is collected from two widely used social media platforms: Facebook

and Twitter. Both Facebook and Twitter are a medium for individuals,

groups or businesses to post content such messages, promotions or campaigns.

The user comments/tweets, and user information from specific interests is

publicly available and collected using Facebook API1 and Twitter API2. In

the experiments, the data collected over 2012 is used. Table 2 shows the size

of the databases we are maintaining using the proposed infrastructure and

the amount of data used in the experiments.

6.2. Errors from Sampling and Bloom filter

As discussed earlier, a bloom filter allows for false positives. In this section

we discuss how di↵erent capacity sizes and false positive probabilities a↵ect

the target-driven rule calculation. Recall that target drive rule is given as

X) Y where W is the set of all interest IDs, X, Y ⇢ W , X \ Y = ;,

and Y is given as the target. With the introduction of the probabilistic data

structure, the computation of Supp{X [Y } i.e. the common users that have

shown interests in both interests X and Y is a↵ected, which in turn a↵ects

the order the relevant precise interests.

1http://developers.facebook.com/
2https://dev.twitter.com/docs/

34

True%Counts%(c)%

True%Counts%(a)% True%Order%(b)%

True%Order%(d)%

Figure 4: Bloom filter errors visualized as deviations from the red line

Table 3 shows precise interests generated for target interest amazon for the

period of July-December of 2012. For each interest we provide Total Men-

tions(TM), which is the number of users who expressed interest, Common

Mentions (CM), which is actual number of common users who expressed in-

terest for both interests(true positives), and di↵erent configurations of bloom

filters. Configurations C1, C2, and C3 have false probability 0.10, 0.002, and

0.02 respectively and a filter capacity of 100,000. Configurations C4, C5,

and C6 have false probability 0.10, 0.002, and 0.02 respectively and a filter

capacity of 200,000. Configuration C7 is the only configuration where the

bloom filter is built using sample(S) size equal to the capacity size (200,000)

35

if the TM is over the capacity size and its false probability is 0.02. In con-

figuration C7, the common mentions for the bloom filter is then estimated

proportionately based on the total mentions. Note the that total number of

mentions for amazon is 184,117.

Due to the probabilistic nature of the data structure, we use predictive anal-

ysis approach where we evaluate the e↵ective measure of our system by for-

mulating a confusion matrix, i.e., a table with two rows and two columns

that reports the number of false positives, false negatives, true positives, and

true negatives. The common mentions given by bloom filter comprise of

true positives and false negatives. Table 4 provides the number of false pos-

itive(fp), which deduced using common mentions from bloom filter and true

common mentions. The number of false negatives is always zero due to the

nature of bloom filter. Therefore, the true negatives (table not shown) are

easily deduced. Table 5 provides the number of true negatives. The accuracy,

precision and f-measure is provided in Table 6, 7 and 8 respectively.

As expected, for a given capacity, as the false positive probability decreases,

the accuracy ((tp+ tn)/(tp+ tn+fp+fn)) and precision (tp/(tp+fp)) both

increase. The recall (tp/(tp + fn)) is always 1.0 i.e. all relevant users were

retrieved because our system with bloom filter does not permit false nega-

tives. The precision for our system is always less than 1.0 as not every result

retrieved by the bloom filter is relevant. As the capacity is increased, the

accuracy and precision further improve. Note that when the total mentions

36

is greater than the capacity, the bloom filter has higher inaccuracy for a fixed

false probability. For example for EASPORTS , the accuracy is 15% lower

for capacity of size 100K vs. 200K for the false probability of 0.10. This

is due to the property that adding elements to the bloom filter never fails.

However, the false positive rate increases steadily as elements are added until

all bits in the filter are set to 1. To counter this e↵ect we sample data to

be added to bloom filter. Sampling can have an impact on the false positive

rate of Bloom filters depending on the sampling quality. For example the

number of false positives for EASPORTS, for bloom filter 200K, 0.002 and

200K, 0.002,S, are 61and 67 respectively. But the false positives drop for

techcrunch when sampling is used.

However, note that there can be times when are sampling could result in

zero common mentions. This situation does not occur with the shown ex-

periments but should deserve special attention when apply Silverback in

practice. A well-chosen sampling ratio can find balance between minimiz-

ing such cases and providing good performance without traversing through

excessive number of records.

Due to probability of false positives, the interests order arranged in decreasing

order of the common mentions count can be di↵erent. We use the Kendall

Rank Correlation coe�cient or short for Kendall’s tau(⌧) coe�cient (15)

to evaluate our results. Measuring the rank di↵erence instead of absolute

error that our probabilistic algorithm makes is due to practical interests. It

37

is more often the case that our customers would ask queries like the top

X number of frequent items associated with my brand. ⌧ is defined as

the ratio of the di↵erence between concordant and discordant pairs to the

total number of pair combinations. The coe�cient range is �1  ⌧  1,

where 1 implies perfect agreement between rankings. Table 9 provides the

Kendall statistics for two bloom filter configurations. Both configurations

approximately have ⌧ value of 0.98, implying that our rankings are very

close in agreement compared to original rank. Also since the 2-sided p-

value is less than 0.00001, this implies that the two orderings are related

and the ⌧ values are obtained with almost certainty. Figure 4 (a) and (c)

show how the cardinalities of the support sets of frequent item-sets produced

by our probabilistic algorithm di↵er from what would be produced by an

exact mining algorithm. Most dots are above the red line, which reflects the

false positive counts introduced by Bloom filters. Figure 4 (b) and (d), on

the other hand, show how the rankings of frequent item-sets produced by

our probabilistic algorithm di↵er from what would be produced by an exact

mining algorithm. A dot above/below the red line means our probabilistic

algorithm overestimates/underestimates its ranking among the frequencies of

all frequent item-sets. As we see from Figure 4 and Table 9, the pervasive false

positive counts introduced by Bloom filters do not vastly alter the eventual

ranking.

38

16#

32#

64#

128#

256#

512#

1024#

2048#

4096#

4# 8# 16# 32# 64# 128#

Ru
n$
%m

e$
(x
1,
00
0$
se
c.
)$

Numberofnodes$

Scalabili%esforvarious$algorithms$(1%$support)$
HA$ideal$
HA$
CS$ideal$
CS$
CSBF$ideal$
CSBF$
Silverback$ideal$
Silverback$

32#

64#

128#

256#

512#

1024#

2048#

4096#

8192#

4# 8# 16# 32# 64# 128#

Ru
n$
%m

e$
(x
1,
00
0$
se
c.
)$

Numberofnodes$

Scalabili%esforvarious$algorithms$(0.05%$support)$
HA$ideal$
HA$
CS$ideal$
CS$
CSBF$ideal$
CSBF$
Silverback$ideal$
Silverback$

Figure 5: Scalability comparison

6.3. Temporal Scalability and E�ciency

In addition to evaluating the accuracy of our probabilistic algorithms, we still

need to demonstrate their e�ciency and scalability. After all, good e�ciency

and scalability are expected trade-o↵s by sacrificing accuracy.

In Figure 5, we report the run times for di↵erent combinations of computing

nodes, and minimum support threshold values, for four di↵erent algorithms.

In the legend of Figure 5, HA denotes the naive implementation of Apriori

39

in the MapReduce framework (18). CS, CSBF, and Silverback denote our

proposed algorithm with progressively more features. CS denotes a dimin-

ished version, where only the columnar storage is used but not the Bloom

filter enhancement or the minHash pruning technique; CSBF is like CS but

implements the Bloom filter enhancement for each column file; and finally,

Silverback is the fully blown version that incorporates all techniques pre-

sented in our paper including the minHash pruning technique. In addition,

a dashed line of ideal scalability is included for each of the four methods

compared in Figure 5.

In both support levels (0.05% & 1%), HA seems to have the most reliable

speedup as the number of computation nodes increases. The CS method

significantly deviates from the ideal speedup as we increase up to 32 nodes.

We suspect its lack of scalability is due to the increase of I/O tra�c, since

the IDs in each column are not compressed like CSBF or Silverback and

would pose significant load on the I/O. Both CSBF and Silverback exhibit

superior scalability over CS, especially in the low support setup.

HA, the Hadoop solution, seems to have better scalability than all other

algorithms, although its absolute run time is not the lowest. Will HA be the

fastest eventually if the number of nodes keeps on increasing? We think the

relatively superior scalability in HA is mainly due to two aspects. First, HA,

unlike the other three methods, is implemented on a Hadoop cluster with

slightly better computational capability per node but much better inter-

40

node connections (32 Gbit/s InfiniBand). The budget cluster, on which CS,

CSBF, and Silverback are implemented, simply uses corporation-domain

IP addresses as node identifiers. Second, Silverback still has room to

improve its scalability to more nodes as this algorithm is only proposed in

this paper while Hadoop Apriori is much more mature.

The ranks of performance for the four methods are consistent under both sup-

port levels. The two probabilistic approaches, CSBF and Silverback, per-

form consistently faster than the exact ones, HA and CS, which is predicted

as we expect sacrificing accuracy would significantly boost the temporal per-

formance. CS performs consistently worst, which suggests that proposing a

columnar storage by itself does not quite solve any problem.

Investigating the relative changes in the inter-method gaps under di↵erent

support level reveals more on the impact of minHash pruning and Bloom filter

enhancement. First, the di↵erence made by using Bloom filters, as illustrated

by CS and CSBF, increases when min support level drops. Second, the use

of minHash pruning technique also amplifies its impact as the support level

decreases.

7. Conclusions

In this paper, we have worked on Silverback, a novel solution for associa-

tion mining from a very large database under constraints of modest hardware.

Silverback is both e�cient and scalable. We have proposed accurate proba-

41

bilistic algorithms for mining frequent item-sets. Our contributions include a

columnar storage, which is enhanced by Bloom filters and reservoir sampling

techniques, and an Apriori-based mining algorithm, which prunes candidate

item-sets without counting every candidate’s support. In the experimental

section, Silverback outperforms Hadoop Apriori on a more powerful cluster

in run time, while our probabilistic approach gives satisfying accuracy.

The Silverback framework has been successfully deployed and maintained

at Voxsup since May 2011. In the future, we aim to further improve our

system by incorporating a more e�cient inter-nodal communication solution,

as it would be critical to scale to hundreds or more nodes.

8. Acknowledgments

This research was supported by Voxsup, Inc.

References

[1] Facebook’s scribe technology, http://www.facebook.com/note.php?note id=32008268919.

[2] Mongodb, http://www.mongodb.org.

[3] Mysql, http://www.mysql.com.

[4] Sparse matrices (scipy.sparse), http://docs.scipy.org/doc/scipy/reference/sparse.html.

[5] Tornado, http://www.tornadoweb.org/en/stable/.

42

[6] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules be-

tween sets of items in large databases. In SIGMOD ’93, pages 207–216.

ACM, 1993.

[7] R. Agrawal and R. Srikant. Fast algorithms for mining association rules

in large databases. In Proc. VLDB Endow., VLDB ’94, pages 487–499,

San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[8] R. J. Bayardo, Jr. E�ciently mining long patterns from databases. In

SIGMOD ’98, pages 85–93, New York, NY, USA, 1998. ACM.

[9] B. H. Bloom. Space/time trade-o↵s in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, July 1970.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed

storage system for structured data. In OSDI ’06, pages 15–15. USENIX

Association, 2006.

[11] S. Chung and C. Luo. Parallel mining of maximal frequent itemsets

from databases. In ICTAI ’03, pages 134–139, 2003.

[12] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D.

Ullman, and C. Yang. Finding interesting associations without support

pruning. IEEE TKDE, 13(1):64–78, 2001.

[13] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate

43

generation. In SIGMOD ’00, pages 1–12, New York, NY, USA, 2000.

ACM.

[14] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,

E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and

D. J. Abadi. H-store: a high-performance, distributed main memory

transaction processing system. Proc. VLDB Endow., 1(2):1496–1499,

Aug. 2008.

[15] M. G. Kendall. A new measure of rank correlation. Biometrika,

30(1/2):pp. 81–93, 1938.

[16] A. Lakshman and P. Malik. Cassandra: a decentralized structured stor-

age system. SIGOPS Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[17] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Chang. Pfp: parallel fp-

growth for query recommendation. In RecSys ’08, pages 107–114. ACM,

2008.

[18] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh. Apriori-based frequent itemset

mining algorithms on mapreduce. In ICUIMC ’12, pages 76:1–76:8.

ACM, 2012.

[19] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed cube

materialization on holistic measures. In ICDE’11, pages 183–194, 2011.

[20] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.

Addison Wesley, 1 edition, May 2005.

44

[21] R. Turrisi and J. Jaccard. Interaction e↵ects in multiple regression,

volume 72. Sage Publications, Incorporated, 2003.

[22] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math.

Softw., 11(1):37–57, Mar. 1985.

[23] L. Wu, R. Sumbaly, C. Riccomini, G. Koo, H. J. Kim, J. Kreps, and

S. Shah. Avatara: Olap for web-scale analytics products. Proc. VLDB

Endow., 5(12):1874–1877, Aug. 2012.

[24] Y. Ye and C.-C. Chiang. A parallel apriori algorithm for frequent item-

sets mining. In SERA ’06, pages 87–94. IEEE, 2006.

[25] M. J. Zaki. Scalable algorithms for association mining. IEEE TKDE,

12(3):372–390, May 2000.

[26] M. J. Zaki, S. Parthasarathy, and W. Li. A localized algorithm for

parallel association mining. In SPAA ’97, pages 321–330. ACM, 1997.

45

Algorithm 3: Silverback - columnar probabilistic algorithm for find-
ing general frequent item-sets
Input: ↵, minimal support, W , set of all walls, D

U

, the database of
transactions

Output: O, set of all frequent item-sets
1 O {}
2 F1 {x|x 2 W, and support

x

� ↵}
3 F2 Algorithm1(↵,W,D

U

)
4 O O [F1 [F2; k 2
5 for each c 2 F2 do
6 S

c

 support counts from Algorithm1’s byproduct
7 H1(c), . . . , Hf

(c) obtained from Algorithm1
8 end
9 while F

k

6= ; do
10 k + = 1
11 C

k

 apriori-gen(F
k�1,↵,

12 {H1(c), . . . , Hf

(c), support
c

,
13 for 8c 2 F

k�1})
14 order elements in C

k

15 for each c 2 C
k

do
16 H1(c), . . . , Hf

(c) empty ascending priority queues each with
capped capacity m

17 support
c

 0; bf vector of 1s
18 y first item in c; U

y

 IDs from y column
19 for each x 2 c\y do
20 bf AND-mask(bf, x column Bloom filter)
21 end
22 for each u 2 U

y

do
23 h1, . . . , hf

 u’s indices in bf , respectively
24 if h1, . . . , hf

all set in bf then
25 support

c

+ = 1
26 append h1, . . . , hf

to H1(c), . . . , Hf

(c), respectively
27 end

28 end
29 if support

c

� ↵ then
30 append c to F

k

; append c to O
31 end

32 end

33 end
34 return O

46

Table 2: Datasets summary statistics

Statistic Facebook Twitter
Unique items/interests 32K+ 11K+
(used in experiments) 22,576 4,291
Total user activities 10B+ 900M+
(used in experiments) 226M 24.2M
Unique users/transactions 740M+ 120M+
(used in experiments) 27.4M 3.7M

Table 3: Common User Count
interest TM CM C1 C2 C3 C4 C5 C6 C7
YouTube 1323042 26176 182711 26176 179863 155803 101652 129730 19945

EASPORTS 242399 1647 33197 1647 10085 6611 1708 2136 1714

techcrunch 202812 12295 32579 12295 17105 15647 12950 13147 12496

iTunesMusic 189568 7265 24171 7265 10625 9698 7513 7640 7640

google 149877 12022 21352 12022 13797 13621 12605 12636 12636

facebook 120724 8904 14212 8904 9746 9859 9356 9365 9365

intel 113509 6830 10856 6830 7412 7431 7094 7101 7101

netflix 96357 7383 11754 7383 8562 8657 8302 8308 8308

Xbox 65048 4820 7829 4820 5273 5357 5096 5100 5100

eBay 63478 8317 9229 8317 8674 8700 8654 8654 8654

Microsoft 61996 5959 6703 5959 6208 6227 6189 6189 6189

bing 60261 2978 3529 2978 3097 3118 3080 3080 3080

AppStore 56953 3367 4016 3367 3559 3583 3544 3544 3544

iheartradio 54378 3059 3539 3059 3192 3214 3184 3184 3184

amazonmp3 48312 6534 6955 6534 6752 6765 6751 6751 6751

PlayStation 48286 3184 3516 3184 3290 3312 3289 3289 3289

sprint 47487 2790 3303 2790 2987 3002 2982 2982 2982

XboxSupport 45036 1589 2757 1589 2185 2213 2165 2165 2165

VerizonWireless 35330 3043 3250 3043 3180 3182 3180 3181 3181

nokia 35026 2589 2751 2589 2691 2697 2690 2690 2690

Table 4: False Positives
interest C1 C2 C3 C4 C5 C6 C7
YouTube 156535 149025 153687 129627 75476 103554 -6231

EASPORTS 31550 1402 8438 4964 61 489 67

techcrunch 20284 1085 4810 3352 655 852 201

iTunesMusic 16906 568 3360 2433 248 375 375

google 9330 648 1775 1599 583 614 614

facebook 5308 469 842 955 452 461 461

intel 4026 276 582 601 264 271 271

netflix 4371 922 1179 1274 919 925 925

Xbox 3009 280 453 537 276 280 280

eBay 912 337 357 383 337 337 337

Microsoft 744 230 249 268 230 230 230

bing 551 102 119 140 102 102 102

AppStore 649 177 192 216 177 177 177

iheartradio 480 125 133 155 125 125 125

amazonmp3 421 217 218 231 217 217 217

PlayStation 332 105 106 128 105 105 105

sprint 513 192 197 212 192 192 192

XboxSupport 1168 576 596 624 576 576 576

VerizonWireless 207 137 137 139 137 138 138

nokia 162 101 102 108 101 101 101

47

Table 5: True Negatives with Di↵erent Bloom Filter Configurations

interest C1 C2 C3 C4 C5 C6 C7
YouTube 1406 149025 4254 28314 82465 155803 101652

EASPORTS 150920 1402 174032 177506 182409 6611 1708

techcrunch 151538 1085 167012 168470 171167 15647 12950

iTunesMusic 159946 568 173492 174419 176604 9698 7513

google 162765 648 170320 170496 171512 13621 12605

facebook 169905 469 174371 174258 174761 9859 9356

intel 173261 276 176705 176686 177023 7431 7094

netflix 172363 922 175555 175460 175815 8657 8302

Xbox 176288 280 178844 178760 179021 5357 5096

eBay 174888 337 175443 175417 175463 8700 8654

Microsoft 177414 230 177909 177890 177928 6227 6189

bing 180588 102 181020 180999 181037 3118 3080

AppStore 180101 177 180558 180534 180573 3583 3544

iheartradio 180578 125 180925 180903 180933 3214 3184

amazonmp3 177162 217 177365 177352 177366 6765 6751

PlayStation 180601 105 180827 180805 180828 3312 3289

sprint 180814 192 181130 181115 181135 3002 2982

XboxSupport 181360 576 181932 181904 181952 2213 2165

VerizonWireless 180867 137 180937 180935 180937 3182 3180

nokia 181366 101 181426 181420 181427 2697 2690

48

Table 6: Accuracy
interest C1 C2 C3 C4 C5 C6 C7
YouTube 0.150 0.191 0.165 0.296 0.590 0.438 1.312

EASPORTS 0.829 0.992 0.954 0.973 1.000 0.997 1.000

techcrunch 0.890 0.994 0.974 0.982 0.996 0.995 0.999

iTunesMusic 0.908 0.997 0.982 0.987 0.999 0.998 0.998

google 0.949 0.996 0.990 0.991 0.997 0.997 0.997

facebook 0.971 0.997 0.995 0.995 0.998 0.997 0.997

intel 0.978 0.999 0.997 0.997 0.999 0.999 0.999

netflix 0.976 0.995 0.994 0.993 0.995 0.995 0.995

Xbox 0.984 0.998 0.998 0.997 0.999 0.998 0.998

eBay 0.995 0.998 0.998 0.998 0.998 0.998 0.998

Microsoft 0.996 0.999 0.999 0.999 0.999 0.999 0.999

bing 0.997 0.999 0.999 0.999 0.999 0.999 0.999

AppStore 0.996 0.999 0.999 0.999 0.999 0.999 0.999

iheartradio 0.997 0.999 0.999 0.999 0.999 0.999 0.999

amazonmp3 0.998 0.999 0.999 0.999 0.999 0.999 0.999

PlayStation 0.998 0.999 0.999 0.999 0.999 0.999 0.999

sprint 0.997 0.999 0.999 0.999 0.999 0.999 0.999

XboxSupport 0.994 0.997 0.997 0.997 0.997 0.997 0.997

VerizonWireless 0.999 0.999 0.999 0.999 0.999 0.999 0.999

nokia 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Table 7: Precision
interest C1 C2 C3 C4 C5 C6 C7
YouTube 0.143 0.149 0.146 0.168 0.258 0.202 1.312

EASPORTS 0.050 0.540 0.163 0.249 0.964 0.771 0.961

techcrunch 0.377 0.919 0.719 0.786 0.949 0.935 0.984

iTunesMusic 0.301 0.927 0.684 0.749 0.967 0.951 0.951

google 0.563 0.949 0.871 0.883 0.954 0.951 0.951

facebook 0.627 0.950 0.914 0.903 0.952 0.951 0.951

intel 0.629 0.961 0.921 0.919 0.963 0.962 0.962

netflix 0.628 0.889 0.862 0.853 0.889 0.889 0.889

Xbox 0.616 0.945 0.914 0.900 0.946 0.945 0.945

eBay 0.901 0.961 0.959 0.956 0.961 0.961 0.961

Microsoft 0.889 0.963 0.960 0.957 0.963 0.963 0.963

bing 0.844 0.967 0.962 0.955 0.967 0.967 0.967

AppStore 0.838 0.950 0.946 0.940 0.950 0.950 0.950

iheartradio 0.864 0.961 0.958 0.952 0.961 0.961 0.961

amazonmp3 0.939 0.968 0.968 0.966 0.968 0.968 0.968

PlayStation 0.906 0.968 0.968 0.961 0.968 0.968 0.968

sprint 0.845 0.936 0.934 0.929 0.936 0.936 0.936

XboxSupport 0.576 0.734 0.727 0.718 0.734 0.734 0.734

VerizonWireless 0.936 0.957 0.957 0.956 0.957 0.957 0.957

nokia 0.941 0.962 0.962 0.960 0.962 0.962 0.962

49

Table 8: F-measure
interest C1 C2 C3 C4 C5 C6 C7
YouTube 0.251 0.260 0.254 0.257 0.410 0.316 1.135

EASPORTS 0.095 0.701 0.281 0.401 0.982 0.569 0.980

techcrunch 0.548 0.958 0.836 0.893 0.974 0.932 0.992

iTunesMusic 0.462 0.962 0.812 0.881 0.983 0.929 0.975

google 0.720 0.974 0.931 0.952 0.976 0.964 0.975

facebook 0.770 0.974 0.955 0.964 0.975 0.970 0.975

intel 0.772 0.980 0.959 0.970 0.981 0.975 0.981

netflix 0.772 0.941 0.926 0.934 0.941 0.937 0.941

Xbox 0.762 0.972 0.955 0.963 0.972 0.968 0.972

eBay 0.948 0.980 0.979 0.980 0.980 0.980 0.980

Microsoft 0.941 0.981 0.980 0.980 0.981 0.981 0.981

bing 0.915 0.983 0.980 0.982 0.983 0.982 0.983

AppStore 0.912 0.974 0.972 0.973 0.974 0.974 0.974

iheartradio 0.927 0.980 0.979 0.979 0.980 0.980 0.980

amazonmp3 0.969 0.984 0.984 0.984 0.984 0.984 0.984

PlayStation 0.950 0.984 0.984 0.984 0.984 0.984 0.984

sprint 0.916 0.967 0.966 0.966 0.967 0.967 0.967

XboxSupport 0.731 0.847 0.842 0.844 0.847 0.845 0.847

VerizonWireless 0.967 0.978 0.978 0.978 0.978 0.978 0.978

nokia 0.970 0.981 0.981 0.981 0.981 0.981 0.981

Table 9: Kendall ⌧ Rank Correlation Table
Measure 200K,0.02 200K,0.002
Kendall ⌧ -statistic 0.98251 0.98455
2-sided p-value < 0.00001 < 0.00001
S, Kendall Score 3847 3855
Var (S) 79624.33 79624.34
S/⌧ , Denominator 3915.5 3915.5

50

