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monitoring, however, rely on very small numbers of stationary nodes. Providing detailed 
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hundreds or thousands of potential nodes, freed from space and energy constraints, and 

reaching nearly every corner of modern metropolitan areas. C3R nodes, each equipped 

with low-cost pollution sensors and more standard location and communication devices, 

collect and disseminate pollution level information to other vehicles through a basic 

gossiping protocol. Each node maintains a real-time detailed air quality map that is 

shared with the driver, other vehicles and public agencies. We describe our current 

implementation of C3R and discuss some of the challenges we have addressed, including 
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Abstract
Detailed on-line measurements of city air quality are nec-
essary to support compliance with air quality standards
and emission strategy developments and to inform both
policy makers and the general public in a timely manner.
Current approaches to pollution monitoring, however, rely
on very small numbers of stationary nodes. Providing de-
tailed air quality information is a particularly hard chal-
lenge given the explosive and mostly uncontrolled growth
of urban populations and the high cost of typically em-
ployed monitoring solutions.

We present C3R, an alternative, participatory approach
to urban air quality monitoring. C3R takes advantage of
recent advances in vehicular ad-hoc networks and sens-
ing technology. Vehicular networks provide an ideal plat-
form for urban monitoring, with hundreds or thousands of
potential nodes, freed from space and energy constraints,
and reaching nearly every corner of modern metropolitan
areas. C3R nodes, each equipped with low-cost pollution
sensors and more standard location and communication
devices, collect and disseminate pollution level informa-
tion to other vehicles through a basic gossiping protocol.
Each node maintains a real-time detailed air quality map
that is shared with the driver, other vehicles and public
agencies. We describe our current implementation of C3R
and discuss some of the challenges we have addressed,
including the adaption of solid-state pollution sensors to
provide accurate measurements under dynamic vehicular
conditions.1

1 Introduction
Air pollution, including byproducts of industrial pro-
cesses and automotive emissions, is directly responsible
for a number of respiratory infections, asthma, heart dis-
ease and lung cancer. According to the World Health Or-
ganization, environmental risk factors contribute to 24%
of the global burden of disease from all causes and to 23%
of all deaths [9, 10].

1Currently under submission.

Detailed on-line measurements of city air quality are
necessary not only to support compliance with standards
and emission strategy developments, but to inform both
policy makers and the general public in a timely manner.
Current approaches to pollution monitoring, however, rely
on very small numbers of stationary nodes. For instance,
the 2009 Illinois air monitoring network includes fewer
than 20 monitoring sites for Chicago’s Cook County – the
second most populous county in the United States and the
worst in terms of dangerous air pollution [8].

Providing detailed air quality information is a particu-
larly hard challenge given the explosive and mostly un-
controlled growth of urban populations and the high cost
of typically employed monitors. A carbon monoxide sen-
sor costs nearly $20000, and particulate matter sensors
can cost as much as $30000 [2, 6]. As a city’s population
grows, the number of sensor sites needed to ensure appro-
priate coverage quickly becomes prohibitively expensive.

In this paper we present C3R, an alternative, participa-
tory approach [12] to urban air quality monitoring. C3R
takes advantage of recent advances in vehicular ad-hoc
networks and sensing technology. Vehicular networks
provide an ideal platform for urban monitoring, with hun-
dreds or thousands of potential nodes, freed from space
and energy constraints, and reaching nearly every corner
of modern metropolitan areas. C3R nodes, each equipped
with low-cost pollution sensors and more standard loca-
tion and communication devices, collect and disseminate
pollution level information to other vehicles through a ba-
sic gossiping protocol. Each node maintains a real-time
detailed air-quality map that is shared with the driver,
other vehicles, and public agencies.

Our latest realization of a C3R node incorporates a low-
cost (<$50) sensor apparatus for monitoring ambient tem-
perature, humidity and carbon monoxide concentrations.
Carbon monoxide (CO), a product of incomplete burning
of hydrocarbon-based fuels, is a colorless and odorless
but seriously toxic gas, and is particularly poisonous for
infants, elderly persons and individuals with respiratory
diseases. We limit the cost of our sensor apparatus by
adapting a Hanwei Electronics MQ-7 CO sensor [7] (with
a per unit cost of $9) for use at high-speed – a condition
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for which it was not originally designed.
Using a set of these nodes, we survey the distribution

of CO concentration in downtown Chicago and show sig-
nificant spatial variation with high concentration gradi-
ents (5 ppm over distances of less than a 100 m block),
that traditional, sparse and stationary monitoring stations
would fail to capture. We use our experimental ob-
servations to evaluate the possibility of a participatory,
VANET-based approach for building detailed maps of pol-
lution concentration. We do this through simulation, em-
ploying a basic, well-understood gossiping communica-
tion protocol [31], together with vehicular mobility [14]
and signal propagation [28] models. Our results show
that using a simple gossiping protocol, a new report can
spread quickly through the network, reaching 90% of the
nodes in an 8 km2 area in 12 minutes. This allows each
node to quickly assemble an up-to-date pollution map that
contains the majority of recently collected messages –
nearly 50% of the measurements collected in the previ-
ous 15 minutes. The map gives a picture of pollution that
is predominately composed of recent reports from within
1.0 km of the node’s location–the average distance from
the node to the pollution measurement’s position – but
also contains measurements from up to 2.4 km away. As a
result, the map provides local, relevant pollution measure-
ments to the driver, in contrast with a stationary sensor
that may not sample the air near the node.

The paper makes the following main contributions:

• A description of C3R, a new participatory approach
to urban pollution monitoring, and its realization.
C3R is the first (to our knowledge) mobile end-to-
end system for monitoring and reporting environ-
mental pollution concentrations.

• The design, implementation and evaluation of a low-
cost, mobile pollution monitoring platform.

• An analysis of the spatial distribution of urban pol-
lution showing the need for a distributed, mobile ap-
proach to monitoring.

• Results from a detailed simulation study showing the
timeliness and coverage of pollution measurements
that can be distributed through a basic VANET gos-
siping protocol.

The rest of the paper is structured as follows. After a re-
view of background and closely related work in Section 2,
we describe the C3R approach for urban environmental
monitoring in Section 3. Section 4 discusses the neces-
sary adaptations to allow accurate pollution sensing from
a moving vehicle. We examine the spatial distribution of
urban air pollution and demonstrate the feasibility of C3R
to provide a real-time map of pollution to drivers in Sec-
tion 5. Finally, we discuss future work and conclude in
Section 6.

2 Background

The significant health risks associated with elevated pol-
lution levels are strong motivations for air pollution mon-
itoring systems. Measurements can signal pollutants
reaching hazardous levels in a city, allowing government
to enact targeted programs to reduce the concentrations
of those most problematic pollutants. Monitoring systems
are able to reveal long term trends in pollution, and current
measurements can be compared to previous conditions or
quantified with metrics such as the Air Quality Index [1].

Current monitoring systems with stationary sensors are
limited in their ability to observe the actual spatial distri-
bution of air pollution, and as a result are unable to iden-
tify regions where air quality may be particularly poor [8].
Fine-grained measurement studies of urban pollution have
revealed significant variation in air quality (e.g. carbon
monoxide (CO) concentration) from street to street [16],
and indicated some of the factors that determine air pol-
lution levels such as freight transports, urban canyons and
wind direction [32]. Lena et al. [24], for instance, cor-
related increased heavy truck traffic with higher levels of
air pollution in the Hunts Peak neighborhood of New York
City.

It is important to identify localized peaks of pollution
because people in these areas may be subject to a higher
risk of disease. Without adequate monitoring spatial res-
olution, people may not be aware of their increased risk
factors. The results of the Hunts Peak study estimated that
some residents were exposed to pollution levels exceeding
thresholds that will cause respiratory problems [24]. Sim-
ple changes in freight routing can impact children health,
as it has been shown that children attending schools near
high truck traffic experienced more respiratory symptoms
relative to children at schools near low truck traffic [22].
A measurement system with a small number of station-
ary nodes lacks the spatial resolution to detect these lo-
calized peaks of pollution. If greater resolution were at-
tained, public officials could be alerted of the problem and
enact programs to address the pollution’s source.

Our work aims at enabling distributed, live pollutant
monitoring by leveraging advancements in sensing tech-
nology and vehicular network data dissemination proto-
cols. Low-cost, high-quality devices for sensing, stor-
age, and communication make wide adoption possible.
The high mobility of vehicular nodes results in an ever-
changing set of vantage points for measuring urban pollu-
tion, as well as a highly dynamic connectivity graph that
ensures rapid dissemination of measurements.

Several projects have studied environmental monitor-
ing from mobile devices (e.g. [5, 17, 18, 21, 23, 25, 26,
29, 33]). MIT’s CarTel project uses a deployment of in-
strumented vehicles to measure traffic conditions in the
road network, collecting data in a centralized database
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(a) C3R Soekris node (left) with Garmin GPS 18 (middle) and 7 dBi
802.11 antenna (right)

(b) C3R sensing components with PIC 18F4520 microcontroller (top
left), USB connection (left), Interface Board (bottom left), Hanwei
MQ-7 CO sensor (bottom middle) and Insulating Sensor Enclosure
(bottom right)

Figure 1: C3R Node and Sensing Hardware
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via opportunistic WiFi connections [21]. Instead of in-
strumenting vehicles, Nericell relies on mobile smart-
phones to infer road and traffic conditions [25]. Target-
ing the monitoring of infrastructure condition, the Pothole
Patrol uses instrumented vehicles to identify areas with
poor road surface, and tags their locations in a centralized
database [18]. Close in spirit, Walkability [29] aggregates
geotagged photos of sidewalk cracks submitted by users.

In the context of pollution monitoring, Ghanem et
al. [19] proposes the use of sensor grids of stationary
nodes for distributed sensing and discusses approaches
to the analysis and visualization of pollution data, while
Croxford et al. [16] examines the spatial diversity of ur-
ban pollution measurements in relation to the city’s street
grid using a deployment of stationary roadside pollution
sensor nodes. BikeNet collects data from bicycles in-
strumented with sensors that monitor environmental pa-
rameters (carbon dioxide–CO2) in addition to the rider’s
physiological statistics while riding [17]. North et al. [27]
presents the MESSAGE architecture for sensing multiple
pollutants from vehicular nodes over ad-hoc networks us-
ing a novel spectroscopic UV sensor. For semiconductor
sensors, drift over time of the sensitivity to CO is a known
issue. An alternative to periodic recalibration is proposed
by [30], in which vehicles could recalibrate their sensors
against each others’ measurements. The authors show that
periodically recalibrating against another vehicle’s mea-
surement eliminates drift trends. In contrast, C3R adopts
a participatory approach for mobile sensing building on
adapted, low-cost pollution sensors.

3 C3R Architecture

This section presents a detailed description of C3R, our
vehicular-based, participatory approach to urban pollution
monitoring, and its current realization.

The detailed on-line monitoring of air quality is a prob-
lem that fundamentally requires a mobile sensing solu-
tion. The observed variations in pollution concentration
levels across a region, the mostly uncontrolled growth of
urban environments, and the associated cost and logistic
complexities make infeasible any solution based on static
monitoring stations. C3R is motivated by the observa-
tion that vehicular networks can provide an ideal platform
for urban mobile sensing [21], virtually free of space and
power constraints and covering nearly every corner of the
city.

Each participating C3R vehicle is equipped with low-
cost pollution sensors, in addition to more common lo-
cation, communication and computational devices. Each
node monitors the environment, basically as a side-
effect of normal vehicular operation, and exchanges the
collected information with other participating vehicles

Temperature

Humidity

GPS

Pollution

Gossiping Protocol

Sensors

WiFi Interface

Pollution Map

Pollution Level
GPS Location

Measurements

Measurement

Figure 2: C3R Architecture. GPS and sensors are used
to periodically take pollution readings, which are added
to the map. The gossiping protocol exchanges measure-
ments with other nodes to propagate measurements and
build up its own map of pollution.

through a basic epidemic protocol [31]. Epidemic ap-
proaches for data distribution make minimal assumptions
about the connectivity of the underlying network, rely-
ing instead on communication between random pairs of
mobile nodes to distribute messages across the connected
parts of the network. The aggregated information can be
used to generate a detailed map of air quality that is made
directly available to the driver, and/or provided to third
parties (e.g. environmental monitoring agencies) without
compromising drivers’ privacy [20].

To ensure wide adoption, we designed C3R monitoring
platform (Figure 2) to be easy to build and very econom-
ical. Nodes require a GPS device for geolocation and a
WiFi radio to communicate with other nodes. A micro-
processor takes readings from the pollution, temperature,
and humidity sensors and reports the data to the node.
Our current implementation costs $580 for the node and
sensors, and includes a fanless Soekris net4801 system
($300), a Garmin GPS 18 device ($100), and an Ubiquiti
Networks SuperRange2 WiFi radio ($100) with a Pacific
Wireless 7dBi 802.11 antenna ($30) for communication
(Figure 1a). The sensing apparatus (Figure 1b), costing
approximately $50 in total, is built around a Microchip
PIC 18F4520 microcontroller ($8). We connect to the
PIC a Hanwei Electronics MQ-7 CO sensor [7] ($9), a
temperature sensor ($2), and a humidity sensor ($15). We
implement a well-understood gossiping protocol [31] over
which the nodes exchange their measurements. As nodes
communicate with each other, they build up their own map
of recent pollution measurements.
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4 C3R Pollution Data Acquisition
Although our approach is general, we focus this study on
the monitoring of a particular pollutant – carbon monox-
ide (CO). CO is a product of incomplete burning of
hydrocarbon-based fuels. This colorless and odorless gas
is highly toxic, especially to infants, elderly persons and
individuals with respiratory diseases. Each participating
C3R vehicle is equipped with a low-cost CO sensor that
is used to passively monitor the environment as aa side-
effect of the vehicle’s normal operation. Since vehicles
are a significant source of carbon monoxide – 40% of
all CO emissions in Cook County [11] – measuring from
the primary source of the pollution will capture the strong
spatial correlation between vehicles and elevated CO lev-
els.

There is a variety of high-end air pollution sensors that
provide highly accurate and precise measurements [15].
Their costs, however, make them unsuitable for large-
scale deployment. Non-Dispersive InfraRed (NDIR) sen-
sors, for instance, are general and highly accurate devices
with per unit cost of approximately $600 dollars. To en-
sure wide adoption for C3R, we opt instead for low-cost
pollution sensors such as electrochemical and solid-state
devices. Electrochemical sensors are relatively inexpen-
sive and offer sufficient sensitivity in a small form factor.
However, they rely on a depletable reactive element, and
they may have to be replaced more than than once a year.
We selected solid-state semiconductor sensors as they of-
fer a lifespan of years, are sufficiently sensitive to detect
typical urban CO levels, and are extremely affordable.

One of the main challenges of working with low-cost
sensors, in general, is that while most of them are effec-
tive in the controlled and fairly static settings for which
they were designed, their responses to uncontrolled sce-
narios are unknown. The following paragraphs introduce
the sensors we use for C3R, the process of calibration,
and the modifications we explored and implemented to
ensure their correct operation in the context of vehicular
networks.

4.1 Sensor Operation

We use the Hanwei Electronics MQ-7 CO sensor [7],
shown in Figure 3, which has a tin dioxide (SnO2) semi-
conductor element that reacts with CO. As the concentra-
tion of CO increases, the resistance of the SnO2 material
decreases. The right side of Figure 3 shows the semicon-
ductor element (the cylinder) and a built-in heating coil
(passing through the cylinder).

The heater alternates between high and low tempera-
ture, switching the sensor between its “purge” and mea-
surement cycles. The “purge” cycle at high heat frees the
CO that accumulated on the sensor in the previous mea-

Figure 3: MQ-7 Sensor, with external housing removed
on right.

surement, which serves to reset the sensor for the next
measurement cycle. The sensor’s specifications require
that a 60 second “purge” cycle at high heat (5 V across a
33 Ω resistor dissipates 760 mW of power) precedes ev-
ery 90 second measurement cycle at low heat (1.4 V, 33 Ω
resistor, 60 mW of power).

To drive this purge-measure heating cycle, perform
analog to digital conversions, and report measurements
to the node via a serial data connection, we program a
Microchip PIC 18F4520 microcontroller. In addition to
the CO sensor, we also utilize temperature and humidity
sensors to monitor ambient and sensor conditions. Fig-
ure 1 shows all the components of our sensing appara-
tus, as well as the Soekris embedded system that manages
data collection and provides location and communication
capabilities via a GPS device and IEEE 802.11b radio.

4.2 Sensor Calibration

To interpret data from low-cost sensors, it is necessary
to apply a series of conversions to translate from the low-
level measurement (e.g. sensor resistance) to a useful met-
ric. Gas concentrations are typically measured in parts
per million (ppm), which is defined as “a volume over
volume ratio which expresses the volumetric concentra-
tion of a gaseous air contaminant in million unit volumes
of gas” [3]–so, 1 ppm CO means that there is one unit
volume of CO for every million unit volumes of air. To
obtain concentration measurements, we first examine the
sensor circuit to determine how to measure sensor resis-
tance. Then, we account for variation in sensor output due
to temperature and humidity factors. Finally, we show
how we calibrate the CO sensor, which ultimately yields
a model that translates sensor resistance to CO concentra-
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Figure 4: Sensor measurement circuit. RS is the sensor;
its resistance varies with CO concentration. By measuring
the voltage drop over a resistor (VRL

) with known resis-
tance (RL = 10kΩ), we can determine the resistance of
the sensor.
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tion.
The sensor parameter we wish to measure is resistance,

but this is difficult to measure directly. We infer sensor
resistance (RS) by measuring the voltage drop over a re-
sistor (VRL

) with known resistance (RL = 10 kΩ) that
is in series with the sensor (circuit shown in Figure 4).
Analog-to-digital conversion takes a voltage (in this case,
VRL

) and returns an n-bit integer that represents a fraction
of the circuit voltage (VC = 5 V). With this data, we can
calculate RS given VRL

[7]:

RS

RL
=

VC − VRL

VRL

Figures 5 and 6 show normal VRL
and RS values over

the course of a purge-measurement cycle in clean air and
150 ppm CO. The x-axis is the time in the cycle, where
zero is the transition from the purge phase to the measure-

 1000

 10000

 100000

 1e+06

-60 -40 -20  0  20  40  60  80  100

R
es

is
ta

nc
e 

(O
hm

s)

Cycle Time (seconds)

0 ppm
150 ppm

Figure 6: Sensor Resistance. Higher CO concentrations
result in lower sensor resistance values during the mea-
surement phase (Cycle Time > 0).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

-60 -40 -20  0  20  40  60  80  100

C
O

 C
on

ce
nt

ra
tio

n 
(p

ar
ts

 p
er

 m
ill

io
n)

Cycle Time (seconds)

0 ppm
150 ppm

Figure 7: Sensor CO Concentration. Using our
empirically-determined calibration data, we convert resis-
tance values to CO concentration (ppm).

6



 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

-10  0  10  20  30  40  50

R
s/

R
o

Temperature (C)

33% Relative Humidity
85% Relative Humidity

Figure 8: MQ-7 sensor resistance correction factors [7]
for temperature and humidity. RS

RO
is a ratio between mea-
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sensor resistance at 100 ppm CO. As temperature and hu-
midity increase, the sensor underestimates the resistance
and overestimates the resulting CO concentration.

ment phase. There is an inverse relationship between VRL

and RS ; as the voltage drop over RL decreases, RS in-
creases. The sensor’s resistance decreases with greater air
temperature and relative humidity (as shown in Figure 8);
we incorporate this correction factor into our resistance
measurements.

Accounting for the temperature and humidity correc-
tions standardizes the outputs from the sensor, but a more
fundamental property of the sensor varies from sensor to
sensor: reference resistance at 100 ppm CO. We observed
RO values from 1420 to 2760 Ω for the sensors that we
calibrated. This means that a simple initial calibration
procedure must be performed on each sensor. The RO

value (e.g. in the RS

RO
ratio on the y-axis in Figure 8) is

used to standardize the measured sensor resistances for
use in computing CO concentration.

The MQ-7 datasheet specified the relationship be-
tween sensor resistance and CO concentration for 50 to
4000 ppm, but we are most interested in measuring typi-
cal urban CO concentrations that are lower than 50 ppm.
Since we can not assume that the same relationship holds
at concentrations < 50 ppm, we collect sensor resistances
over a broad range of CO concentrations. To obtain accu-
rate measurements of CO concentration, we use an Enmet
RECON CO meter [4], a portable CO monitor that pro-
vides measurements of CO at 1 ppm precision with as re-
sponse time of a few seconds to changes in CO concentra-
tion. Since these devices are calibrated at the factory and
are primarily intended for personal safety applications, we
consider them to be a reasonable ground truth source of
CO concentration.

In our calibration experiment, we measure CO concen-
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Figure 9: Sensor calibration curve, for converting from
RS to CO concentration (ppm). The data points are
recorded sensor resistances under a given CO concentra-
tion reported by our ground truth sensor. We use three
linear regressions to approximate the relationship between
sensor resistance and CO concentration.

trations from 11 to over 300 ppm. We collect our cali-
bration measurements in a subterranean parking structure
(that had minimal air flow). Using the exhaust of a ve-
hicle as a CO source, we place our sensor apparatus next
to the RECON meter, and vary the distance between the
exhaust pipe and the sensors. We added an additional data
point from clean, outdoor air, and plot this value at 1 ppm.
The MQ-7 datasheet specifies that there should be a lin-
ear relationship on a log-log scale of CO concentration
versus RS

RO
; Figure 9 shows the calibration curve that we

recorded. While our data is approximately linear for the
range specified in the datasheet, the relationship changes
significantly at concentrations less than 30 ppm CO. We
observe a similar calibration curve for all sensors that we
used, suggesting that this curve could be generalized to
allow for simple calibration of new sensors with a small
number of calibration measurements. To model the re-
lationship between sensor resistance and CO concentra-
tion, we compute linear regressions over three intervals
of CO concentration (x-axis) and map sensor resistance
measurements to CO concentration using these approxi-
mation lines. Figure 7 shows the CO concentration values
computed by our fitted model in clean air and 150 ppm
CO.

4.3 Sensing from a Vehicle

We observe that changing the environmental conditions–
including variations in temperature and wind speed–has
unexpected impacts on the sensor’s output. Using knowl-
edge of how the sensor operates, we first show how we
identify that the inaccuracy stems from insufficient oper-
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ating temperature during the purge cycle. Then, we ex-
plain how we address this issue by insulating the sensor
and shielding it from the wind. Finally, we present mea-
surements that verify that these steps allow accurate sen-
sor monitoring at greater vehicular speeds.

With the Enmet RECON sensor positioned on the side
of a highway, we first recorded the CO concentration
while the vehicle was stopped, and then took measure-
ments while the vehicle was moving at 55 miles per hour
(MPH). The “Exposed” series in Figure 10 shows that at
highway speeds, the exposed sensor differs by as much
as 27 ppm from the value reported by the Enmet meter:
0 ppm.

Upon further examination of the sensor’s output dur-
ing the inaccurate CO measurement, we identify abnormal
sensor readings in the preceding purge cycle. Figure 11
plots resistance over the course of a purge and measure-
ment cycle while a vehicle is either stopped or moving
at 55 MPH. Normally, resistance increases after an initial
dip at the beginning of the purge cycle; this is because
as CO is being purged from the sensor, the sensor’s read-
ing should indicate lower CO concentration with higher
resistance. However, in the case of the 55 MPH output,
resistance actually decreases over the course of the purge.
Since the purpose of the purge cycle is to eliminate any
CO bound to the sensor, this output suggests that the purge
cycle is not functioning properly, causing CO to build up
on the sensor across multiple measurement cycles, result-
ing in inaccurate measurements.

One possible explanation of the unexpected decrease in
resistance during a purge at 55 MPH is that the sensor
may not reach a sufficiently high temperature. This rea-
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Figure 11: Exposed sensor resistance in clean (0 ppm CO)
air, with 0 MPH or 55 MPH vehicle speed. When resis-
tance does not increase over the course of a purge (cycle
time < 0 seconds), the purge was not successful and the
measurement cannot be used.

soning makes sense with the context in which the problem
occurs; at high speeds, air flow over the sensor would re-
move heat from the sensor more quickly than when the
vehicle were stopped.

When the vehicle is not moving and there is little or
no wind, the sensor’s internal heater maintains the sensor
at some equilibrium temperature above the ambient tem-
perature. Using accepted models and equations for heat
loss [13], we compare heat loss in stationary and moving
air conditions. We calculate heat loss to the surrounding
environment using a normal convection heat loss model
and Newton’s Law of Cooling. Since we know the heat
being dissipated by the sensor’s heater (760 mW), by mea-
suring the sensor housing’s surface temperature we empir-
ically determine a dimensionless heat flux quantity called
a Nusselt Number (Nu) that represents the rate of heat loss
to the environment given the physical heat transfer prop-
erties of the sensor’s housing [13].

When air moves over the surface of the sensor, the rate
of heat loss is determined by a different model: forced-
air convection. The Nusselt Number in this model ac-
counts for the fluid properties of the air and depends on
the rate of air flow. The rate of heat loss from the sensor is
proportional to

√
V –it increases with speed. For the con-

dition when the node is stopped, the Nusselt Number is
Nu = 6.09, but at at highway speeds, the Nusselt Num-
ber is 6 times larger, Nu = 39.71. This higher rate of heat
loss prevents the sensor from reaching its optimal purging
temperature, resulting in inaccurate measurements.

To counteract the chilling effect of high wind over the
sensor when the vehicle is moving, we took two steps
(shown in Figure 12). First, we design an insulated en-
closure for the sensor with a mesh screen on the front to
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Figure 12: Insulated carbon monoxide sensor assembly,
with metal screen to diffuse the wind. Inset shows the
internal structure of the sensor; a temperature sensor is on
top of the MQ-7 carbon monoxide sensor, and the resistor
that serves as a supplementary heater is attached to the
bottom of the MQ-7 sensor.

reduce the rate of air flow over the sensor and increase its
temperature. Second, we install a supplementary heating
element underneath the sensor, which is able to further in-
crease the temperature of the sensor. Placing the sensor in
the insulated enclosure increases the equilibrium tempera-
ture of the sensor during the purge cycle by approximately
4◦ C, and the supplementary heater raises the temperature
by an additional 5◦ C. When the sensor is in the insu-
lated enclosure and the supplementary heater is activated
during purge phases, we observe equivalent CO concen-
tration readings when stopped and at 55 MPH in clean air,
as shown in the “Insulated” series in Figure 10.

Our approach for insulating the sensor and providing
extra heat during the purge phase enables us to collect
consistently accurate CO concentration measurements un-
der a wider range of environmental conditions, compared
to the standard, exposed sensor. For scenarios where the
sensor fails to purge properly despite the increased tem-
perature in the enclosure, we filter out these measure-
ments based on whether the purge was good: empirically
determined to be an increase in sensor resistance by at
least 50% over the course of the purge cycle.

5 C3R Data Aggregation and Distri-
bution

A network of mobile sensors can collectively capture
finer-grained patterns in actual urban pollution levels in
comparison to systems with stationary nodes. The high
mobility of vehicular nodes results in two effects. First,
nodes are able to sample from a dynamic set of locations;

having multiple vantage points reveals spatial patterns in
addition to temporal patterns that can be observed with
stationary nodes. Second, the nodes carry measurements
to other regions of the city as they drive, which results in
all nodes having larger-scoped map of pollution.

We motivate sensing from multiple vantage points us-
ing vehicular nodes by showing how pollution concentra-
tions can vary significantly in a city over short distances
and time intervals. The variations that we observe–as
much as 5 ppm over distances of less than a 100 m block–
would not be captured by a traditional sparse deployment
of stationary monitoring stations that sample as rarely as
once per hour. Then, we evaluate the possibility of a par-
ticipatory, VANET-based approach for building detailed
maps of pollution concentration. We adopt realistic vehic-
ular mobility [14] and signal propagation [28] models for
our simulation of a well-understood gossiping communi-
cation protocol [31]. Our results indicate that even at low
vehicle penetration ratios, nodes are able to build a map at
much higher temporal resolution than a typical stationary
sensor, which may sample only once every hour.

5.1 Advantage of Multiple Vantage Points

Stationary sensor deployments with small numbers of
nodes are unable to capture actual pollution conditions,
which are characterized by significant CO concentration
gradients of as much as 5 ppm over distances of only one
city block (˜100 meters). From the perspective of a mov-
ing vehicle, a high-resolution dynamic map of air pollu-
tion measurements is able to reveal localized peaks of pol-
lution concentration.

Using vehicles instrumented with our sensor appara-
tus, we collect two hours of air pollution measurements
in downtown Chicago during the morning rush hour. The
vehicles drove in a spiral pattern out from the center of
the measurement area in order to obtain an approximately
even spatial distribution of data points.

Figure 13 shows the diversity of CO pollution concen-
trations that occur within a 5-block radius of the center
of downtown Chicago. Our measurements had an average
CO concentration of 8.5 ppm, and standard deviation of
6 ppm. Considering the relationship of distance between
observations to difference in the CO concentration (Fig-
ure 14), measurements differ by about 5 ppm at distances
less than 1 km. As greater distances are considered, the
difference between these measurements increases to over
8 ppm for measurements between 2 and 4 km apart. A sta-
tionary CO monitoring station, such as the one in down-
town Chicago (marked in the lower left quadrant of the
map), cannot see these variations. Since stationary mea-
surement stations are typically many kilometers apart [8],
they would be unable to predict pollution concentrations
with error lower than 8 ppm for any point greater than
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Figure 13: Map of measured CO concentration (ppm) in
downtown Chicago. Each value is centered on the posi-
tion at which the measurement was taken. All data points
were collected within two hours. The icon of a building in
the lower left corner represents the only stationary moni-
toring node in the Illinois air monitoring network in down-
town Chicago; the next closest station is 10 km away.
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Figure 14: Difference in measured CO concentration
over varying distance intervals. Over distances less than
500 meters, concentration varies by as much as 4 ppm;
over longer distances (2000 to 4000 meters), concentra-
tion differs by 8 ppm.

Figure 15: Simulation area of downtown Chicago. If a
node is located at the center of the circle, then the inner
circle indicates the mean distance of pollution measure-
ments that are less than 15 minutes old, and the outer cir-
cle depicts the maximum range of any of those measure-
ments.

2 km away from a station. Because 98% of Chicago is
outside the 2 km radius from the downtown CO monitor-
ing station, the stationary deployment’s CO measurement
error can be as high as 8 ppm for the vast majority of the
city.

5.2 Data Dissemination Simulation

Via simulation of a simple gossiping protocol [31] over re-
alistic mobility and communication models, we will show
that a VANET-based system is able to provide a map of
air pollution. Each node’s map includes timely measure-
ments from the surrounding area, even with a low pen-
etration ratio of instrumented vehicles. After describing
our gossiping implementation and simulator configura-
tion, we use a latency metric to demonstrate the rapid
spread of individual measurements through the network.
Then, we evaluate the completeness and spatial scope of
each node’s pollution map.

Since the data for individual measurements are small,
available bandwidth is not a limiting factor in this sys-
tem. Instead, the frequency of interactions with other
nodes determines measurement dissemination in the sys-
tem. Empirical measurements have shown that two pass-
ing vehicles on a city street can communicate up to 2 MB
of data [28]. Given that each measurement requires only
28 bytes (e.g. 8-byte double/long values for latitude, lon-
gitude, time; 4-byte single precision float for pollution
measurement), two nodes could exchange 71000 pollu-
tion measurements. That many measurements would be
enough for a 100-meter-resolution map of the entire City
of Chicago–588 km2 of land.
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5.2.1 Configuration

We use the JiST/SWANS simulator with the STRAW ve-
hicular mobility model [14] and empirically-determined
urban signal propagation parameters [28] to achieve a re-
alistic VANET environment. On an 8 km2 road map from
downtown Chicago (shown in Figure 15, with total road
length of 266 km), we instrument 100 nodes, yielding a
node density of 13 nodes per km2. Each simulation lasts
for 5 hours.

5.2.2 Gossiping Implementation

Gossiping is a well-understood approach for dissemina-
tion of data throughout a network of vehicles [31]. Since it
is likely that there will be low node densities, vehicles will
be disconnected most of the time. As a result, the spread
of measurements through the network will rely on peri-
odic interactions with other vehicles passing each other
on the street. In our implementation, nodes periodically
send a beacon message to advertise their presence to other
nodes. When a node (A) receives a beacon, it probabilis-
tically determines whether it should respond based on the
number of other nodes’ beacons it has received recently–
this ensures that the system is scalable in terms of the node
density. If it decides to continue with the interaction, it
sends a digest message of the contents of its buffer to the
beaconing node (B). Finally, B returns a message contain-
ing all the measurements in its buffer that A does not yet
have.

Since the goal of the data dissemination system is to
share recent measurements in order to maintain an up-
to-date map of air pollution at every node, we remove
measurements from the gossiping protocol’s buffer that
are older than some threshold. This limit on the temporal
scope of measurements effectively bounds the spatial area
from which measurements will be received, because, even
if a node were to drive at highway speeds, there would be
an upper bound to the distance from that node’s most dis-
tal measurements based on the speed at which it moved.
However, this ensures scalability of the system by implic-
itly limiting the scope to measurements that are relevant to
the driver. Each node is equipped with a reasonably large
buffer, since storage is inexpensive. In a deployment of
this system, the older measurements would be stored in
long-term memory for offline data processing. We adopt
a threshold of 30 minutes because this is approximately
the maximum observed latency for a measurement to be
received at 100% of the nodes in the system. In addition,
this threshold also is the warmup time for the system, af-
ter which the number of measurements in the gossiping
buffer reaches equilibrium.
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Figure 16: CDF of latency for a measurement to reach
X% of the nodes in the system.

5.2.3 Evaluation: Dissemination Latency

We use latency as a metric to evaluate the dissemina-
tion of data through a disconnected network such as a
VANET. In many systems (e.g. end-to-end routing pro-
tocols), there is the concept of a “recipient” node–the in-
tended destination–for each message. In this context of
disseminating air pollution measurements, however, the
objective is to spread each measurement to the maximum
number of nodes in the system so that each node can ag-
gregate a dense map of measurements. We define the la-
tency metric as the time it takes for the measurement to
spread to some percentage of all nodes in the system.

Figure 16 shows that on average, every message is re-
ceived by all nodes in the system in 17.3 minutes; 99.3%
of the messages were received by all nodes, taking at most
30 minutes. This data highlights the explosive spread of
measurements through the network; after the first 4 min-
utes, only 10% of the nodes have received a particular
measurement. However, after 8 minutes, 50% of nodes
have it, and after 12 minutes it has spread to 90% of the
nodes.

5.2.4 Evaluation: Pollution Map Completeness

We evaluate the spread of measurements through the net-
work from the perspective of individual nodes by measur-
ing the completeness of each node’s pollution map. Our
metric is the proportion of recent measurements that have
been received by a node, out of the total number of recent
measurements in the system.

Using the specifications of our CO sensor, each instru-
mented node “measures” air pollution once every 2.5 min-
utes and injects that message into the gossiping protocol.
Given the number of nodes (n) on the map, we can com-
pute the expected number of measurements (M ) that were
collected in the last x minutes: M = n ∗ x/2.5. Fig-
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measurements received by a node out of all measurements
taken by all nodes in the last x minutes.
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Figure 18: Probability density plot of measurement dis-
tance from a node, considering measurements that are <5,
10, 15, or 30 minutes old.

ure 17 shows the percentage of measurements received by
a node, when we define “recent” measurements to be less
than 5, 10, 15, or 30 minutes old.

The rapid spread of measurements means that each
node has a significant proportion of the available data
within as little as 15 minutes. If we only consider re-
cent data that are less than 5 minutes old, nodes have 9%
map completeness (of the available measurements). How-
ever, considering measurements less than 15 minutes old,
a node has almost 50% map completeness. If we include
measurements that are up to 30 minutes old, a node has
nearly three quarters of the available measurements in its
map.

5.2.5 Evaluation: Pollution Map Scope

There is a trade-off between the “freshness” of data and
the coverage area of a map that has a measurement

age threshold. Since the dissemination of measurements
through the network is limited primarily by vehicular
mobility and the resulting communication exchanges be-
tween passing vehicles, more recent measurements re-
ceived by the node tend to come from positions closer to
the node’s location.

Figure 18 shows a probability density plot over mea-
surement distance from the node, for varying measure-
ment age limits. For only measurements taken in the
previous 5 minutes, the average distance from a node’s
current position to a measurement location is 550 meters.
This distance increases to 1100 meters when considering
measurements that are up to 30 minutes old. Similarly,
the distance from a node to its most distant measurement
(“maximum distance”) follows a similar trend. With data
less than 5 minutes old, maximum distance is 1070 m.
Considering measurements up to 10 minutes old, maxi-
mum distance increases to 1935 m, and with 30 minutes
of measurements, the maximum distance is 2572 m.

To illustrate the physical scale of these values, Fig-
ure 15 shows the radii of the average (990 m) and max-
imum (2369 m) distances consider measurements taken
in the last 15 minutes, centered around the black dot that
represents a vehicular node. All the nodes’ measurements
would be within the larger outer circle (about a 20-block
radius), while approximately half of its measurements
would be within the smaller circle (an 8-block radius).

6 Conclusion

This paper presented C3R, a vehicular-based, participa-
tory approach to urban pollution monitoring. The work is
motivated by the need for high-resolution, up-to-date in-
formation to support policy makers and public awareness.
We described the C3R approach and its current realiza-
tion. C3R nodes are based on low-cost Carbon Monoxide
(CO) sensors. We showed how these low-cost sensors can
be adapted for operation in the challenging vehicular con-
text. We have used C3R to survey the distribution of CO
in a region, showing that any practical approach based on
stationary nodes cannot capture the variability observed in
urban environments. Finally, we evaluated the feasibility
of the basic C3R gossiping-based model for data aggrega-
tion and distribution, focusing on the freshness and cover-
age of the data used to generate each node’s map of pollu-
tion concentration. An interesting and unique advantage
of a participatory approach to pollution monitoring is that
it makes possible a form of “soft” control through a direct
feedback channel of every driver’s contribution. Finally,
while our work has so far concentrated on monitoring con-
centration levels of CO, we believe our results are easily
generalizable to most other pollutants (from both natural
and anthropogenic sources). We have started to explore
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several extensions to the basic C3R platform described.
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