
����������	�
��
����
�	�
�	�������	����
��	��������
�	

���������	
����

��������������

����	��	����

����������	�� ��!	���∀#�	���∀∃�%��	&����%����!	��	���	�!∃���∃

&� �∋	
(���))��∃�	∗�∋�	&∀���	&���	����#���	
�#�	+∀���,�	.�%�/�	�(1∀∃�������	��∋	2∀�∃

3����

3%∃����

������������ 	 ����� 	 ������� 	 �
���� 	 � 	 ���� 	 ��
�� 	 �� 	
�� 	 �
� 	 �������
� 	 �
���
��	

����������
�	����	��
	��� ���	��������!	�������������
��	�
�	�������
�	��� ����∀	#����	�	

����
��� 	 �� 	 ��� 	 ��� 	 �������� 	 �� 	 ��� 	 ������� 	 �� 	 ��∃� 	 �� �
���� 	 �� 	 ����� 	
������ 	 ��	

��

�����
�	���
�	�� ����	�����!����	��	�����	��

�����
�	��� ����	�
	�������
���	���	

�� ��������
�	�
	��
���� �	����∀	%	
�����	��	�������	�������	��	��
����	��

�����
	����	

���� 	 ��� ���! 	 ������� 	
�����∃� 	 �
� 	 �
�������
& 	 ���� ��! 	 ��� 	 ���� 	 �∋����
�� 	 �� 	 �	

��

�����
 	 �� 	 ��������
� 	 �� 	 �� ��� 	 �
��������
 	 ����� 	 ���� 	 ���� ���∀ 	 (��
� 	 �
�� 	 ���	

��

�����
	������
�	��������	����
�	�	�
����
��	������	���������
�	�	������	���������
	

��)∗!∗∗∗	+��,����
�	������!	��	�∋����� 	�����
�����	��	�����	���� 	�����	�
������ 	 �
	 ���	

����	��
��
�∀ 	�������	 ���	���� 	 ���� 	��

�����
� 	�
	+��,����
� 	��−���� 	
��	�
��	������	

�
������	�
	��
��
�!	���	����	��
�����
�	������
�!	��	��
�	����	����
�	�����
�����	��	�����	

��������	����	.	���	�
������	�� ����	����	�����	�
����	���	�������	�����
���	���	/	��	�/	

����� 	���� 	 ��∃��� 	 �� 	 ��

��� 	 �� 	 ���� 	 ����� 	 ���
 	���� 	 ����� 	 �������∀ 	 ,���� 	 ����
�	

�����
�����	�
����	�	�������������������
	�����∃!	�����	�
	�
����	�����
���	��	�����	

��
	��	����������	��	��
�����
�	�
�	��	 ��� 	�������∀ 	0��	�����	�����	����	 �������	�	

��
���	����� ����
	���
�!	�
	�����∃��	 ����
�	��	 ���
����	����	�����
�����	��
	�
�� ��	

/∗1	��	���	
�����∃	�����
	�	�����
��	��	���	����∀	

,�	�������	����	�����!	��	�������	�	
��	��� ���������� �
�	�����	���	���	�������	����	

��������	�����
���	���
���������
	��	���������
�	�����2	
�����∃	���� ���∀	#�	����	����	

�	����	��
	����� �	���������	��
��������	��	������	����
�	�	�����	�����
�	�������
	�/	

�
�	/∗1���	�������
��	��
���	��

�����
�	����	���	�������������	�
�����
���������	����	

������ 	�
��∀ 	(
��∃�	��

�����
� 	�
	�
�
���3�
�	
�����∃�!	 �����	��
���	��

�����
�	

�� � 	 ��� 	��
���� 	 �� 	 ����
� 	 � ������� 	 ��
������ 	 �� 	 ��� 	 ������� 	 ������∀ 	+������ 	���	

�������
	��	��������	�������
�	�
�	�
�����
�����	����������!	��	�� �	����	��	� �������	

��	�
	�∋��
���
	��	�	�������	+��,����
�	����
�∀

4�!��∋∃�		��� ���!	���!	+��,����
�!	�������������������
	�����∃!	�����
���	��������

SwarmScreen: Privacy Through Plausible Deniability in P2P
Systems

David R. Choffnes†, Jordi Duch∗, Dean Malmgren∗, Roger Guierm̀a∗, Fabían E. Bustamante†, Luis
Amaral∗

†EECS, Northwestern University
{drchoffnes,fabianb}@cs.northwestern.edu

∗Chemical Engineering, Northwestern University
{jordi.duch,r-malmgren,rguimera,amaral}

@northwestern.edu

Abstract
Peer-to-peer (P2P) systems enable a wide range of new

and important Internet applications that can provide low-
cost, high-performance and resilient services. While a
strength of the P2P paradigm is the ability to take advantage
of large numbers of connections among diverse hosts,
each of these connections provides an opportunity for
eavesdropping on sensitive data. A number of efforts
attempt to conceal connection data with private, trusted
networks and encryption; however, the mere existence of
a connection is sufficient to reveal information about user
activity. Using only the connection patterns gathered during
a one-month period (comprising a stable population of
10,000 BitTorrent users), we extract communities of users
that share interest in the same content. Despite the fact that
connections in BitTorrent require not only shared interest
in content, but also concurrent sessions, we find that strong
communities of users naturally form – our analysis reveals
that users inside the typical community are 5 to 25 times
more likely to connect to each other than with users outside.
These strong communities enable a guilt-by-association
attack, where an entire community of users can be classified
by monitoring one of its members. Our study shows that
through a single observation point, an attacker trying to
identify such communities can uncover 50% of the network
within a distance of two hops.

To address this issue, we propose a new privacy-
preserving layer for P2P systems that disrupts community
identification by obfuscating users’ network behavior.
We show that a user can achieve plausible deniability
by simply adding a small percent (between 25 and 50%)
of additional random connections that are statistically
indistinguishable from natural ones. Unlike connections
in anonymizing networks, these random connections have
the benefit of adding available bandwidth to the related
swarms. Because our solution is protocol compliant and
incrementally deployable, we have made it available as an
extension to a popular BitTorrent client.

1 Introduction

P2P computing has enabled a wide range of new and
important Internet applications ranging from large-scale
data distribution to video streaming and telephony. The
approach provides scalability, reliability and high perfor-
mance by taking advantage of a large number of coopera-
tive, interconnected hosts.

While much of the strength of the P2P model lies in
large numbers of interconnected nodes, their connections
offer multiple opportunities for eavesdropping. With P2P
networks increasingly under surveillance from private and
government organizations [11,25,29] and subject to politi-
cal censorship [13, 22], there is an urgent need for privacy-
enhancing systems that are both effective and practical. A
number of efforts attempt to conceal connection data with
private, trusted networks and variable levels of encryption.
Although effective at restricting access to the content ex-
changed over a given connection, these approaches leave
the existence of the connection itself visible. In this paper,
we show that these connections erode user privacy in a way
that is ignored by most distributed systems and transparent
to end users.

This work focuses on the BitTorrent file-sharing net-
work where peers connect solely on the basis of common
and concurrent interest in the same content, rather than
on friendship [9], common language [30] or geographic
proximity [2]. Using connection patterns gathered during
a one-month period (comprising a stable population of
10,000 BitTorrent end-users), we investigate the existence
of communities – collections of peers significantly more
likely to connect to each other than to a randomly selected
peer. We show that strong communities form naturally in
BitTorrent, with users inside a typical community being 5
to 25 times more likely to connect to each other than with
outside users.

Historically, this ability to classify users has been abused
by third parties in ways that violate individual privacy.
The existence of strong communities enables a guilt-by-
association attack, where an entire community of users
can be classified by monitoring one of its members. Our
study demonstrates that, through a single observation point,
an attacker trying to identify such communities can reveal
50% of the network using only knowledge about a peer’s
neighbors and their neighbors (i.e., peers within two hops
of the attacker). Further, an attacker monitoring only 1% of
the network can correctly assign users to their communities
of interest more than 86% of the time.

To address this threat, we propose a new privacy-
preserving layer for P2P systems that obfuscates user-
generated network behavior. We show that a user can
achieve plausible deniability by simply adding a small
percent (between 25 and 50%) of additional random
connections that are statistically indistinguishable from
natural ones. Based on this result, we design a system that

1

generates such connections by participating in randomly
selected torrents. We describe how our implementation for
a popular BitTorrent client protects against classification
while enabling users to specify how to balance the goals of
privacy and performance.

Our work makes the following four key contributions.
We present the first characterization of communities among
BitTorrent users. Using only connection patterns between
real users in the BitTorrent network, we find surprisingly
strong and distinct communities of peers that regularly con-
nect with each other. While this behavior has been observed
in social networks, we are the first to find it in the context
of BitTorrent. Second, we introduce a new privacy threat
model. We show that an attacker can use information about
communities to efficiently classify and effectively monitor
users that share interest in the same content. Third, we
propose and analyze a defense strategy against this threat
that provides privacy through obfuscation. Our approach
disrupts attempts to classify user behavior by inducing
connections to random torrents that mask those requested
by the user. Fourth, we implement our defense strategy
and make it publicly available. Since our solution is
protocol compliant, we make an implementation available
as a pluggable extension to a popular BitTorrent client.

The remainder of the paper is structured as follows.
Section 2 describes how to identify communities of users
based on BitTorrent connection information. We show that
these communities of shared interest can be exploited in a
guilt-by-association attack in Sec. 3. To mitigate this threat,
Sec. 4 discusses an approach that weakens and disrupts
community analysis by generating random connections. In
Sec. 5 we present the design of a system to implement this
strategy. We describe and evaluate our implementation of
the approach in Sec. 6. Finally, we cover related work in
Sec. 7, discuss open issues in Sec. 8 and conclude in Sec. 9.

2 Communities in BitTorrent

In this section, we describe our dataset, which contains
connection information for 10,288 peers during a one-
month period. We use this information to form a graph
and analyze its properties in terms of modularity – i.e.,
whether there are distinct communities in which users
connect to each other more often than to users outside the
community. Despite the fact that the BitTorrent protocol
relies on establishing connections at random, we find strong
communities of shared interest in content.

2.1 Dataset

The data used in this study is collected from BitTorrent
end-users during the month of March, 2008 (31 days).
Our dataset contains information about P2P connections
from each monitored host, and the time during which those
connections were active. Based on the BitTorrent protocol,
a connection between users indicates that they share interest

1 10 20 30
Day of the month

0

5000

10000

15000
Number of connections
Number of users

Figure 1: Number of users and connections present in each day
of our dataset. With over 10,000 total users the period, we see on
average 3,000 users online and 10,000 connections per day.

in some content; however, we donot record any information
that identifies the particular content.

We restrict our analysis to a stable set of peers during the
measurement period. Specifically, we filter our dataset to
contain data only for hosts that have appeared in our records
before March 1, 2008 and after March 31, 2008 (based on
data recorded from July 15, 2007 until December 11, 2008).
We are left with 10,288 users, and an average of 3,029 users
online and an average of 10,162 connections between these
users per day.

From this dataset, we create graphs of the connections
between peers. Namely, for each day of the month we
generate a graph, where each node is a peer that is online
during that day and each edge indicates that there was at
least one connection established between the corresponding
peers during that day. To avoid issues with users that
connect at regular intervals (e.g., those that connect every
Saturday), we aggregate the information into four weekly
graphs. These graphs consist of weighted edges where the
weightwij between nodesi andj indicates how many days
this pair of users have repeated a connection between them.
Figure 1 plots the number of peers and connections per day
during the observation period.

2.2 Extracting Communities

In social networks, individuals decide with whom they
want to establish connections, so communities naturally
appear. These communities are usually a reflection of
past or present geographical colocation, shared interests, or
co-membership in organizations, and manifest themselves
in the network as groups of nodes that are more densely
connected to each other than we would expect by random
chance [?,?].

In contrast, nodes in many P2P networks, including
BitTorrent, establish connections according to a predefined
protocol that selects peers at random from a pool of eligible
hosts. This observation may lead one to conclude that
community structure will not be significant in P2P net-
works. However, much as in social networks, the existence

2

of a connection between two users in a P2P network is a
reflection of shared interest — in BitTorrent, a connection
between two users indicates concurrent shared interest in
at least some content. In this section, we show this shared
interest is sufficient to form strong communities of users in
the BitTorrent network.

The problem of community detection in graphs is NP-
hard, since the space of possible partitions of nodes into
communities scales faster than any power of the system size
[?]. Part of the difficulty stems from the fact that the number
of communities and their sizes are, a priori, unknown,
which makes the problem of community identification
qualitatively different from, and more challenging than, the
well-studied graph partitioning problem.

A successful approach for solving the community identi-
fication problem is based on the maximization of a quality
function M, usually called modularity [?]. For a given
partition P of a weighted graph into communities, the
modularity is defined as

M(P) =
1

2L

∑

ij

[

wij −
sisj

2L

]

δmimj
(1)

where the sum is over all nodes,wij is the weight of edge
(i, j), si is the sum of the weights of all of nodei’s edges,
L =

∑

i si, mi is the community to which nodei belongs
(in partitionP), andδij is the Kronecker symbol (δab = 1
if a = b andδab = 0 otherwise).

The modularity function is a relative measure of how
much edge weight falls within communities, as opposed
to between communities. If there were no communities in
the network, the total connection strengthsi of each node
would be evenly distributed among all the other nodes, so
that the weightswij would be proportional tosi and sj

(more precisely,sisj/L). Positive modularities thus indi-
cate systematic deviations from the perfectly homogeneous
null model, whereas the modularity is close to zero for a
random partition of the nodes into communities, when all
nodes are in the same community, or when each node is in
a different community.

Maximizing modularity exhaustively is intractable due to
the combinatorial number of possible ways in which one
can partition a graph into communities. Therefore, we
use a heuristic approach to efficiently explore the space
of possible partitions. Specifically, we use the extremal
optimization algorithm proposed by Duch et al. [?], which
provides a compromise between accuracy and speed [?].
We have validated its results by comparing them with more
accurate algorithms such as simulated annealing [?] and
found they were nearly identical.

We use the extremal optimization method to investigate
the community structure of the weekly graph that spans
from March 22-28. Fig. 2 shows the density of peer con-
nections that are inside and outside of their communities.
We find that the density within communities is typically 5
to 25 times higher than between communities. Although
suggestive, these values do not necessarily mean that the

1 2 3 4 5 6 7 8 9
Community

1

2

3

4

5

6

7

8

9

C
om

m
un

ity

0

5

10

15

20

25
R

elative density of connection
1 2 3 4 5 6 7 8 9

Community

1

2

3

4

5

6

7

8

9

C
om

m
un

ity

0

5

10

15

20

25
R

elative density of connection

Figure 2: Density of connections within and between communities
(relative to the average density of connections in the network) in
the weekly network built from March 22nd to March 28th. Each
row (column) corresponds to a community, and the height (width)
indicates the size of the corresponding community. The density of
connections within communities is typically 5 to 25 times higher
than between communities.

communities we identify are significant [?]. To address the
issue of significance, we compare the maximum modularity
we obtain for this network to the same for an ensemble
of randomized networks in which users connect with a
uniform probability to each other (preserving the number of
connections of each user). We find that the real maximum
modularity of the graph isM = 0.439, whereas the average
maximum modularity of the randomized networks isM =
0.168 with a standard deviation of0.0012. With the
real modularity more than250 standard deviations larger
than the random expectation (z > 250), we can safely
conclude that the discovered communities are significant.
For comparison, the modular structure of the world-wide
air transportation network (of commercial flights between
cities) hasz ≈ 430, whereas the modularity of the Internet
at the autonomous system level hasz ≈ 80 [?,?].

3 Community-Based Attacks on Privacy

The BitTorrent network is already under privacy-intrusive
attacks that entail using trackers and participating (rogue)
clients to identify users that share particular content (e.g.,
to detect violation of copyrights). These attacks are limited
by a number of factors, such as the need to monitor a large
number of trackers, the challenge in properly identifying
a large number of torrents for targeted content and the
problems associated with running a large number of rogue
clients. In this section, we describe an attack that eliminates
many of these restrictions by exploiting the BitTorrent
community structure.

As we demonstrated in previous sections, nodes in the
BitTorrent network form well-defined communities of
shared interest. Given this, an attacker who identifies the

3

Figure 3: Diagram indicating how an attacker (or set of attackers)
infiltrate a P2P system for the purpose of identifying user activity.
The attacker makes connections at random, many of which are
not useful, but meanwhile it collects the information about the
structure of the connections of the P2P network. Once the attacker
has classified a group of nodes into a community, the attacking
host on the top right can classify an entire community of users by
observing a single targeted peer.

content that a BitTorrent user is sharing can determine
that all users in the same community are doing the same
without monitoring them directly. We refer to this as aguilt
by association attack – as first proposed by Cortes et al. [5]
for identifying fraudulent callers in a phone network. We
will show how this enables a small number of attackers to
classify large numbers of peers.

To realize this attack, we assume a threat model that
comprises two phases. First, the attacker attempts to
discover as many connection patterns as possible, then uses
this information to identify communities of users that share
interests. There are several methods for discovering the
structure of network connections among P2P clients. The
ideal case would be a global monitoring system that is
capable of tracking all the activity of every peer in the
network, obtaining complete information about the system.
However, in general, monitoring every peer in a popular
P2P system is intractable for reasons of scale. A viable
option is to use a local discovery method to uncover the
structure and the patterns of connections between users.
The attacker can deploy a number of participating clients to
infiltrate the P2P network or sniff packets from a number of
monitored hosts to observe connections. Figure 3 portrays
this aspect of the threat model, where attackers participate
in the P2P system via rogue clients.

In the second phase, the attacker can extract communities
of shared interest for guilt by association. This can be
accomplished using the same heuristic that we employed
in the previous section to find modularity in the network.
Because their analysis may be based on an incomplete
information, we study the effectiveness of classification in
this context.

3.1 Discovering user connections

There are several methods that attackers might use to mon-
itor the content downloading activity of BitTorrent users.

For instance, they can monitor information collected by
trackers, acquire sets of peers connected to their neighbors
via the Peer Exchange (PEX) protocol [6] or crawl the
BitTorrent DHT for lists of peers connected to a particular
torrent. In the case of monitoring trackers, an attacker could
essentially reveal the entire network of connections, making
it trivial to determine the community structure of users.
To determine the limits of the guilt-by-association attack
strategy, we analyze a worst-case scenario for attackers,
where an incomplete view of the connectivity patterns in
BitTorrent is revealed.

To this end, we model an attacker that crawls the BitTor-
rent network to obtain as much connectivity information as
possible. In particular, an attacker implements a breadth-
first search approach to find all users within a distanced of
a rogue client, as acquired through the PEX protocol. By
using multiple rogue clients, the attacker should be able to
increase the coverage of peer connections.

To demonstrate the effectiveness of such an attack strat-
egy, we selectN = 1, 2, 4, 8, 16, 32, 64 nodes uniformly at
random from each of the weekly BitTorrent networks and
determine the fraction of nodes that they could collectively
monitor within a distanced of all attackers. We repeat
this Monte Carlo sampling 100 times to obtain reliable
estimates of how much information a small set of attacking
nodes could gather with such an approach. Figure 4a shows
the fraction of exposed nodes for a different number of
attackers withing a monitoring distanced. In this case, a
single attack node observes, on average, over 70% of all
nodes within a distanced ≤ 3 and a coordinated attack
mounted by a small 1% of nodes observes, on average, over
80% of all nodes within a distanced ≤ 2.

Of course, to optimize their effectiveness, attackers ex-
ploiting a breadth-first search strategy should try to connect
to as many users as possible to be able to monitor, first-
hand, as much of the network as possible. We demonstrate
the effectiveness of highly connected attackers by selecting
the N = 1, 2, 4, 8, 16, 32, 64 most connected nodes from
each of the weekly BitTorrent networks to determine the
fraction of nodes that they could collectively monitor within
a distanced of all of the attackers. Figure 5a shows
the fraction of exposed nodes for a different number of
attackers within a monitoring distanced, in this case for
highly connected attackers. Here, a single attack node can
observe over 80% of the network within a distanced ≤ 2
and almost all of the network within a distanced ≤ 3.
As the figure clearly shows, monitoring coverage becomes
more extensive the larger the fraction of attack nodes.

As these very simple strategies illustrate, an attacker
can reveal a large portion of the BitTorrent network’s
connectivity patterns without centralized information. Now
we examine how this incomplete information can be used
to determine community structures.

4

10
-4

10
-3

10
-2

Fraction attackers

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
ex

po
se

d
no

de
s

d ≤ 1
d ≤ 2
d ≤ 3

(a) Exposed nodes.

10
-4

10
-3

10
-2

Fraction attackers

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
ex

po
se

d
ed

ge
s

d ≤ 1
d ≤ 2
d ≤ 3

(b) Exposed edges.

Figure 4: Fraction of exposed nodes and edges when a small set
of N = 1, 2, 4, 8, 16, 32, 64 attackers can monitor all nodes and
edges within a distanced over the course of a week. Attacking
nodes selected uniformly at random. Symbols denote average
over 100 Monte Carlo realizations and whiskers denote 95%
confidence intervals.

3.2 Detecting community structure

In the next step of the guilt-by-association attack, the at-
tackers attempt to identify communities of shared interests.
If the attacker has access to global information about the
whole network, the community detection algorithm we
described in Sec. 2.2 accurately identifies communities
of interest. We now address the issue of the accuracy
of community detection in the presence of incomplete
information.

To this end, we analyze the reliability of an attacker’s
inference of the community structure based on a partial
reconstruction of the network. Specifically, we measure the
probability p that two nodes are coclassified in the same
community in the real network given that they are coclassi-
fied in the same community in the partial reconstruction.

Since the community identification method is not deter-
ministic, however, two users are not necessarily assigned to
the same community by extremal optimization. Given this
variability, one must determine how to confidently assign
usersi and j to the same community. To address this
issue, we run extremal optimizationR times to obtain high-

10
-4

10
-3

10
-2

Fraction attackers

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
ex

po
se

d
no

de
s

d ≤ 1
d ≤ 2
d ≤ 3

(a) Exposed nodes.

10
-4

10
-3

10
-2

Fraction attackers

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
ex

po
se

d
ed

ge
s

d ≤ 1
d ≤ 2
d ≤ 3

(b) Exposed edges.

Figure 5: Fraction of exposed nodes and edges when a small set
of N = 1, 2, 4, 8, 16, 32, 64 attackers can monitor all nodes and
edges within a distanced over the course of a week. Attacking
nodes are the set ofN nodes with the largest degree.

modularity partitions{P1, P2, . . . , PR}. We then assume
thati andj can be confidently associated with each other if
they are assigned to the same community at leastτ times.
We chooseR = 10 and explore two different thresholds,
τ = 5 andτ = 8.

Based on the analysis in the previous section, Table 1
showsp calculated for different values of the fractionf of
attackers that monitor nodes and edges within a distance
d for the weekly network during March 22–28. Forτ = 8,
we find that if0.01% of the nodes in the graph are attackers,
they are able to correctly coclassify users into communities
more than 85% of the time ford ≤ 3. If 1% of the
nodes are attackers, they can achieve the same accuracy
for community detection by only monitoring users that are
within a distanced ≤ 2. We find similar results for
attackers that use a more relaxed threshold for assigning
users to the same community (τ = 5): p = 0.819 for
f = 0.0001 and d ≤ 3, andp = 0.805 for f = 0.01
andd ≤ 2.

5

d

1 2 3

f
0.0001 0.131 0.485 0.859
0.001 0.214 0.703 0.855
0.01 0.343 0.864 0.902

Table 1: Similarity between the community structure of the real
network and a partial reconstruction of the network discovered
using a fractionf of attackers that observe to distanced. Here,
we define two users as being in the same community if they are
coclassified inτ = 8 of R = 10 runs of extremal optimization.
We measure the similarity by the the probabilityp that two
nodes are coclassified in the same community in the real network
given that they are coclassified in the partial reconstruction of the
network.

4 Hiding in the Crowd

In the previous section, we showed that a very small
fraction of attackers can easily discover the network and
accurately infer the community of each user. This clearly
demonstrates that guilt-by-association attacks are a real
threat to the BitTorrent community and, more generally,
P2P systems. The success of this attack strongly depends
on the assumption that attackers can reliably infer user
interests based on the connections that they have with other
peers. We posit that the best defense against this attack
is simply to introduce noise such that this assumption no
longer holds. Specifically, our approach is to add random
edges to disrupt an attacker’s ability to (i) correctly infer
real connections and thus (ii) infer community membership.

To determine the effectiveness of our defense strategy,
we simulate adding a varying number of random edges
between nodes. Since we expect that exceptionally active
users will have more incentive to hide their connectivity
patterns than infrequent users, we add random edges pro-
portional to the number of edges of each user. Specifically,
we add a varying percentage of random edges to the weekly
graph during March 22–28, and we see how effectively an
attacker can correctly infer the real community structure of
the resulting graph. We quantify the effectiveness of this
method with the following metrics.

First, we measure theundetectability of users, which
we define as the probability that any two users are not
detected in the same community after adding random edges,
given that they are identified in the same community before
adding random edges. That is, if an attacker found two
usersi and j classified in the same community without
adding random edges, undetectability quantifies the like-
lihood that an attacker would correctly identifyi and j
in the same community after adding random edges. In
Figure 6 we demonstrate that random edges increases
undetectability for users. We again present the results for
two different thresholds for community detection, a more
restrictive one withτ = 8, and a less restrictiveτ = 5.
For τ = 8 and only 10% additional random edges, an

0 50 100 150 200
% Added Edges

0

0.2

0.4

0.6

0.8

1

U
nd

et
ec

ta
bi

lit
y

T = 5
T = 8

Figure 6: Undetectability of a user when varying the percentage of
random edges added. This measures the probability that any two
users are detected in the same community after random edges have
been added, given that they were detected in the same community
before doing so.

attacker would incorrectly infer that two users are in the
same community more than50% of the time. Forτ = 5, the
same result is achieved with as few as50% random edges.

Second, we measure thedeniability of users, i.e., the
probability that any two users are not detected in the same
community before adding edges, given that they are in the
same community after adding random edges. That is, if an
attacker found two usersi and j in the same community
after adding random edges, deniability quantifies the likeli-
hood that an attacker would incorrectly determine thati and
j in the same community. Figure 7 shows how deniability
increases for the same two thresholdsτ = 5 andτ = 8 as
more random edges are added. For both thresholds, adding
50% additional random edges increases the deniability to
50%. Because this means that classifications made by
attackers are wrong the majority of the time, this approach
significantly reduces their credibility.

These results demonstrate that by adding only a few
random edges (as few as10 − 20%) we substantially
increase the privacy of the user in two different ways. For
one, we increase the difficulty of correctly associating users
that share the same type of content; further, we reduce the
credibility of guilt-by-association attacks.

5 System Design

In the previous sections, we showed that P2P systems,
and BitTorrent specifically, are susceptible to guilt-by-
association attacks and we developed a simple, yet effective
strategy to defeat this threat. We now describe the design
of SwarmScreen1 – a system that realizes this strategy in
BitTorrent.

At a high level, the goal of SwarmScreen is to disguise
user behavior by connecting to hosts outside of the user’s
community of interest. To achieve this goal, our software
connects to users of torrents selected automatically at ran-

1The software name has been changed for double-blind review.

6

0 50 100 150 200
% Added Edges

0

0.2

0.4

0.6

0.8

1

D
en

ia
bi

lit
y

T = 5
T = 8

Figure 7: Deniability of a user when varying the percentage of
random edges added. This is the probability that any two users
are detected in the same community before adding random edges,
given that they are detected in the same community afterward.

dom. While this approach can hide a user’s community
of interest, a simple implementation that adds a large
number of random torrents will lead to poor performance
for the user-generated torrents – those torrents must all
share a fixed amount of bandwidth. Worse yet, such
an implementation can actuallyreduce privacy by raising
suspicion – a user generating an unusually large number of
connections may appear to be hiding something.

SwarmScreen addresses these issues through two poli-
cies. First, our software allows the user to directly specify
the desired trade-off between performance and privacy.
Based on this setting, SwarmScreen provides attempts
to obfuscate user-generated torrent behavior within the
performance constraint. Second, instead of hiding com-
munities of interest in a large sea of random connections,
our software induces connections that mimic those from a
user’s community of interest. In this way, the user’s cover
traffic can be made statistically indistinguishable from its
real traffic.

We note that SwarmScreen is designed as a new privacy
layer, and is not intended as a replacement for existing
approaches to privacy in P2P systems. As we discuss
later in the paper, connection encryption and anonymous
forwarding of HTTP requests strengthen our system against
attack. In the following sections, we describe Swarm-
Screen’s goals, architecture and design challenges.

5.1 Goals

In this section, we explain the four primary goals of the
SwarmScreen design. To facilitate adoption, our system
should be minimally invasive to existing clients, provide
practical incentives and be easy to use and install. Further,
our system should be incrementally deployable to ensure its
effectiveness across a wide range of adoption rates.

Easy to use and install. To facilitate adoption, a privacy
system should be easy to use and install. One way to
achieve this goal is to piggyback on an existing, popular

BitTorrent client. By operating at the level of managing
torrents, our software can be provided as a non-invasive
extension to existing clients. As we discuss in Sec. 5.3,
it also provides intuitive control over privacy/performance
trade-offs.

Incrementally deployable. Our software should work
well regardless of how many users adopt the system. In
contrast, anonymization systems require a reliable set of
altruistic relay nodes to carry traffic anonymously. Like-
wise, closed file-sharing networks (e.g., OneSwarm [14])
are limited by the content and performance available in the
private network. Our approach relies only on a diverse
set of publicly available torrents and a large number of
worldwide users actively using BitTorrent – both of which
are available today.

Practical incentives. Any extension to an existing, pop-
ular service should provide subscribers with proper in-
centives without undermining the performance of nonsub-
scribers. In our approach, subscribers bear the burden
of reduced end-to-end performance in proportion to the
level of privacy that they gain. Nonsubscribers also benefit
from this service by receiving a certain level of additional
privacy from subscribers participating in their torrents.
Moreover, the software actuallyimproves performance for
nonsubscribers (at a global level), because SwarmScreen
users contribute their bandwidth to the random torrents they
join. This is in contrast with systems that enable privacy
through “cover traffic” that is dropped along paths between
senders and receivers, and thus results in wasted bandwidth.

Protocol compliance. Our approach does not require
modifying the BitTorrent protocol to preserve privacy be-
cause it relies on connecting to a set of real, live torrents and
exchanging data with other peers. The only requirement is
that data for torrents not requested by the user can be placed
in transient storage.

5.2 Architecture

Figure 8 depicts the architecture for our privacy-
enhancing BitTorrent extension. The user specifies
the torrents to download and privacy settings that guide
the privacy/performance trade-off. The privacy manager
then adds to the user-specified torrents a set of randomly
selectedtransient torrents that the client will join but not
store persistently. As the downloads progress, the privacy
manager rotates the active set of torrents and connections in
a way that obfuscates any patterns in connection behavior.
The BitTorrent protocol itself remains unmodified.

5.3 Challenges

While the high-level architecture for SwarmScreen is os-
tensibly simple, we discovered and addressed several im-

7

Figure 8: Architecture for our privacy-enhancing BitTorrent
extension. Key system components are located in the gray box;
note that because our approach operates above the protocol layer,
it avoids invasive client modification.

portant challenges during our design and implementation
of the system.

Privacy/performance trade-off. Privacy systems fail
their users when they perform poorly, are difficult to
use and/or are misconfigured. SwarmScreen addresses
these issues through a simple interface that allows users
to select a privacy/performance trade-off from an integer
space that we call the SwarmScreen Protection Factor
(SPF). Analogous to the Sun Protection Factor, a value of 0
indicates no protection and small values (less than 35 or 50)
indicate that sustained exposure with these settings may
lead to privacy violations. Further extending the analogy,
one can set SPF values of 100 or higher, but the returns in
protection diminish. In the next section, we discuss how
we use SPF to explicitly control privacy and performance.

In addition to providing an intuitive mechanism for
setting privacy levels, our system must give user feedback
to ensure that those levels provide the expected level of
protection (i.e., so the user does not get burnt by privacy
violations). To address this issue, SwarmScreen displays
statistical information about real-time privacy levels tothe
user. A user uncomfortable with current privacy levels
can simply increase the system’s SPF until achieving the
desired protection.

Being inconspicuous. SwarmScreen improves privacy by
inducing connections to peers in random swarms. To ensure
that an attacker cannot detect the torrent to which each
data packet corresponds, a user should enable connection

encryption (a feature supported by most BitTorrent clients).
Simply adding large numbers of random connections,

however, is not sufficient to evade attack; after all, an eaves-
dropper may simply look for an excessively large volume of
connections to identify targets for further surveillance.To
provide even more protection, the connections generated by
SwarmScreen should be statistically indistinguishable from
those generated by user-selected torrents.

To ensure that SwarmScreen-generated connection pat-
terns are similar to those for user-specified torrents, we
must define a notion of similarity. A simple approach is to
ensure that the time spent in connections to random torrents
is similar to those for user-specified torrents. Alternatively,
the software can ensure that the distributions of connection
durations for each category of torrents is identical, or
emulate the distribution of bytes transferred over each
connection.

Downloading random content. An important issue for
any system that automatically transfers random content
is determining the source of that content. In BitTorrent,
locating content in a fully automated way is difficult be-
cause content metadata is separated from the protocol that
transfers its data. Further complicating the issue, it is
well known that a significant portion of content available
through the protocol may be subject to legal restrictions for
distribution. Thus, even if content is located automatically,
transferring the content may subject the user to prosecution.

The case law on this issue varies from one jurisdiction
to another, and the legal environment surrounding online
content distribution is dynamic. As explained by Bauer
et al. [1], the legal disposition of a system that forwards
arbitrary content is far from settled — this issue affects
any open relay system.2 One solution, adopted by users
of PlanetLab, is to download and discard torrent data, thus
never uploading it. Unfortunately, this violates the goal of
inconspicuous behavior – it is trivial to identify users that
never upload content.

Because there is no universal solution for this problem,
we allow users to determine where to find content and
where to store it on their machines. The former option
allows users to specify sites that contain only torrents
that can be legally retransmitted while the former allows
the user to choose where to store partially downloaded
content (e.g., on a persistent or volatile store). Further,
because the transient torrents are explicitly not content that
users wish to keep, SwarmScreen transfers them for finite
durations and immediately deletes content upon completion
and when the user’s session ends. Note that this approach is
not particularly conspicuous; after all, the selfish behavior
of BitTorrent users is well documented [19]. We also
emphasize that deleting a file upon completion does not
prevent the user from uploading content to other users –

2The authors note, however, that US law allows caching and
retransmission of unmodified files.

8

any completed file pieces are made available to the swarm
during the downloading phase.

6 Realization in BitTorrent

In this section, we discuss the implementation of our
approach to improving privacy in P2P systems through an
extension to a popular BitTorrent client. We then evaluate
this implementation in terms of privacy and performance
overhead.

6.1 Implementation Details

SwarmScreen is currently implemented as a plugin (i.e.,
extension) for the popular Vuze BitTorrent client, which
facilitates user adoption by providing an interface for our
software to be installed without any modifications to the
mainline client. At the time of submission, our plugin is
publicly available on our project webpage and it has been
accepted for inclusion on the Vuze official plugin list.3

Our implementation is written in Java, which enables it
to run on nearly every operating system. The core func-
tionality contains approximately 2,100 LOC and has been
released under an open-source (GPL) license. Throughout
this section we mention configurable parameters as part
of our implementation; their current values are listed in
Table 2. In the remainder of this section, we describe
several key implementation details.

Fetching torrents. As discussed in the previous section,
SwarmScreen requires the user to select one or more Web
pages containing links to torrent files. At uniformly random
intervals (currently with a 1-hour mean), SwarmScreen
connects to these pages and downloads a list of links
for torrents. To enhance privacy and to evade detection,
communication between a user and the Web server should
be protected. Our software allows users to specifyhttps
sites so that the connection is encrypted. If needed, the
user can tunnel these HTTP connections through Tor or
other anonymization networks to fetch the Web pages –
the fetching of random content is separated from the data-
transfer protocol.

Once the links to torrent files have been fetched from the
specified Web pages, SwarmScreen selects torrents from
this set at random. In practice, we have found that the
storage space required for any given torrent varies widely
from tens of megabytes to tens of gigabytes. Our current
implementation addresses the associated storage capacity
issue by allowing users to specify a maximum file size
for torrents to use. Any torrents with files larger than the
maximum size are not selected.

There are many alternative ways to address the issue of
limited storage. For instance, some BitTorrent clients (other
than Vuze) assemble files incrementally, requiring storage

3Official plugins are signed to ensure their integrity.

space only for the pieces that have been downloaded. This
approach would significantly reduce storage requirements,
and could allow transient torrent data to be sufficiently
compact to fit entirely in volatile storage (e.g., DRAM). At
the time of submission, we are working with the Vuze team
to add support for this feature in their client.

Connection profiling. A key goal of our approach is that
it obscures a user’s communities of shared interest without
appearing to do so. In particular, the connection behavior
generated by SwarmScreen should be statistically indis-
tinguishable from user-generated behavior. To determine
whether this is the case, SwarmScreen monitors its client’s
connections. At a regular interval, our software polls
peers connected to user-generated and transient torrents
to determine the total time spent in connections for each
category.

This data allows SwarmScreen to determine the ratio
of time spent connected to transient torrents versus the
same for user-generated ones. Based on our goal of
inconspicuous connections, this ratio should be kept near
1.0. The ratio is displayed to the user for monitoring real-
time protection levels.

Torrent scheduling and shaping. When a user is down-
loading content, SwarmScreen induces connections by ac-
tivating torrents. While the transfers progress, our software
adjusts the number of active torrents and their maximum
transfer rates to meet the privacy/performance trade-off
specified by the user.

As we showed in Sec. 4, increasing the number of ran-
dom connections increases undetectability and deniability
for community analysis. To add random connections in
BitTorrent, SwarmScreen joins additional swarms. Because
the BitTorrent protocol is nondeterministic in terms of
the number of connections established, it is difficult to
precisely control the percent of random connections in
SwarmScreen. We observe, however, that the Vuze BitTor-
rent client by default places an upper bound on the number
of connections established per torrent. When this bound is
reached, the fraction of random torrents is the same as the
fraction of random connections. Based on this observation,
we approximate control of random connections through the
number of active torrents. Specifically, SwarmScreen by
default addsSPF percent random torrents to the client.
Based on our analysis from Sec. 4, we set the default SPF
value to 50, which provides at least 50% deniability for
τ = 5.

If torrents do not use all of their allotted connections, this
approach may not provide the desired privacy level. Thus,
SwarmScreen currently monitors the ratio of connection
times,r, and uses it to the drive a feedback loop for ensuring
the appropriate amount of cover traffic. Specifically, we
define an acceptable rangermin > r > rmax and the
software attempts to keep the ratio within the range. If
r < rmin, SwarmScreen adds more transient torrents to

9

Parameter Value

SPF 50
Connection ratio thresholds [rmin, rmax] [0.8, 1.2]
Maximum torrent size 1 GB
Torrent scheduling interval 15 sec
Torrent fetch interval (mean) 1 hour

Table 2: Key settings in our current SwarmScreen implementa-
tion. Parameters in bold are user-configurable parameters.

increase time spent in connections for random torrents. It
also increases the time spent participating in each transient
torrent – in essence, buying time for more connections to
be established and used. Both the number of transient
torrents and the time spent connected to them are directly
proportional tormin − r. Thus, as the ratio falls farther
from the acceptable range, SwarmScreen works harder to
bring the ratio back. Because the random connections can
outnumber the user-specified ones, SwarmScreen similarly
reduces the number of active transient torrents and the
duration that they are connected whenr > rmax.

It is important to note that if user-generated torrents are
always connected, their communities of interest can easily
be extracted from the random noise that SwarmScreen
generates. Our software addresses this issue by randomly
pausing and resuming user-generated torrents, similar to
the way that it adds and removes transient torrents. It also
increases the time that user-generated torrents are active
whenr > rmax and decreases it whenr < rmin.

Finally, SwarmScreen uses the SPF value to control the
overhead imposed by the system. To limit the impact on
transfer rates, the SPF value is interpreted as the maximum
percent overhead that transient torrents can impose on user-
generated ones. At any interval, SwarmScreen sets a cap
on the bandwidth for each transient torrent,Bt, using the
formula:

Bt =
SPF

100

∑

Bu

Nt

(2)

where
∑

Bu is the sum of the bandwidth (Bu) for each
user-generated torrent andNt is the number of transient
torrents currently active.

6.2 Evaluation

To demonstrate the effectiveness of SwarmScreen, we eval-
uate its performance in terms of privacy, performance
and responsiveness to changing conditions. We measure
privacy in terms of the connection ratio as described in the
previous section. By tracking the ratio over time, we can
observe the responsiveness of SwarmScreen to changing
conditions. To measure performance, we use the ratio
of throughput for user torrents to the same for transient
torrents.

All of the tests were performed using Vuze 4.1.0.0
running behind a residential cable Internet connection.
Unless otherwise indicated, we used an SPF value of 100

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50

R
at

io

Time (min)

Disabled at 15’
Enabled

Figure 9: Timeline showing how the ratio changes without using
SwarmScreen to adapt forr. At t = 15 minutes, we disable
SwarmScreen for the experiment with the solid curve. Without
the feedback loop, the ratio of durations for random connections to
user connections increases dramatically, leading to identification
through conspicuous behavior.

and used two popular Linux distributions as the user-
generated downloads.

Fixed downloads and SPF. We begin our analysis by
evaluating how well SwarmScreen provides privacy with
a fixed number of downloads (2) and SPF value (100).
The dashed curve in Fig. 9 shows how the connection ratio
changes during a 60-minute session. Initially SwarmScreen
traffic charges ahead of user traffic, then quickly recovers
to provide relatively even connection rates within a few
minutes. Note that it is normal for ratios to fluctuate during
early portions of a session because the total time spent in
connections is small relative to the amount of time added
for each sample.

To demonstrate that it is not sufficient to simply add
random torrents without controlling for the statistical prop-
erties of their connections, we repeat the same experiment,
but this time we disable SwarmScreen’s control mechanism
at t = 15 min (solid curve in Fig. 9). Soon thereafter, it
appears that the random torrents have achieved a balance
with the user-specified ones. However, within a couple of
minutes, the portion of time spent in connections to random
torrents rises compared to the user-specified ones, and over
time this discrepancy grows quite large. Because this
represents vastly different behavior than the user-specified
torrents, it is likely that an attacker would be able to classify
the user as conspicuous and thus target that user for more
advanced statistical attacks.

Fixed downloads, vary SPF. In this experiment, we use
the same two fixed user-selected torrents but vary the SPF
value across sessions. In Fig. 10, we plot a timeline of the
r values for SPF 10, 50 and 100. The figure shows that
larger SPF values allow SwarmScreen to adapt to changing
conditions more rapidly, while lower SPF levels cause
slower reactions to changes inr. One way to determine the
impact of these different settings on privacy is to calculate

10

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50

R
at

io

Time (min)

SPF 10
SPF 50

SPF 100

Figure 10: Timeline showing how different SPF levels affect the
ratio of connections. Lower SPF values cause SwarmScreen to
react more slowly to changes inr. For SPF 100, the amount of
time outside the acceptable range forr is 10%; for SPF 50 the
value is 27% and more than 50% for SPF 10.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25

R
at

io

Time (min)

Figure 11: Timeline of similarity of total connection durations and
distributions of connection durations while varying then number
of user-selected downloads. Each vertical line indicates the time
at which another user download is added.

the amount of time the system is outside the acceptable
range forr for each SPF value. We find that with SPF
100, 10% of the time is spent outside the range. This time
increases by nearly a factor of three for SPF 50, and for SPF
10 the system spends the majority (51%) of the time outside
the acceptable range.

Vary downloads, fixed SPF. The goal of our next experi-
ment is to determine how SwarmScreen adapts to changing
workloads while providing acceptable privacy levels. To
test this, we vary the number of downloads (from one to
three) while keeping the SPF fixed at 100. Fig. 11 shows
that our system maintains acceptable levels of privacy even
when the user increases the number of torrents that must be
hidden.

Controlling performance overhead. We have shown
that SwarmScreen can provide acceptable privacy in a
variety of scenarios; now we determine how well it bounds
the overhead imposed by cover traffic. Specifically, for
a given SPF value, we determine how well the system
satisfies Equation 2. Our current implementation takes

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

C
D

F
 [X

<
r]

Rb (Bandwidth ratio)

Download-10
Download-50

Download-100
Upload-10
Upload-50

Upload-100

Figure 12: CDF of bandwidth allocation ratio samples for SPF
values of 10, 50 and 100, corresponding to maximum allowed
ratios of 0.1, 0.5 and 1.0. The caps are met most of the time,
though there’s varying degrees to which the allocated bandwidth
is fully utilized.

advantage of Vuze’s built-in support for limiting the transfer
rates on a per-torrent basis. Thus, the effectiveness of our
implementation is primarily limited by the responsiveness
of our system to changes in bandwidth and of Vuze to
changes in bandwidth caps. Figure 12 shows a CDF of
the ratio of bandwidth consumed by transient torrents to
the same for user-selected torrents. We sample transfer
rates every 5 seconds for three 30-minute sessions: one
for each SPF value in the set of{10, 50, 100}. According
to Eq. 2, the ratio of bandwidth allocated to transient and
user-specified torrents,Rb, should be less thanSPF/100:

Rb =

∑

Bt
∑

Bu

≤
SPF

100

We add vertical lines atx = {0.1, 0.5, 1.0} to highlight the
target values for each curve. The figure shows that the vast
majority of samples fall within the target range for all of the
download rates (87.5% to 95% of the values). For uploads,
there are slightly more violations; this occurs because the
upload capacity is about an order or magnitude smaller than
the download capacity, meaning small absolute differences
in upload bandwidth lead to larger relative differences.
Even when the bandwidth ratios exceed the target value,
the violations are not generally large.

Note that the variance in ratio values increases as SPF
increases. This happens because large bandwidth alloca-
tions for random torrents may be underutilized if there is
insufficient bandwidth available in the associated swarms.
In this case, our user-specified torrents were Linux dis-
tributions, which are hosted by many peers located in
well-provisioned university networks with high available
bandwidth. As a result, the bandwidth received from these
torrents was often greater than the same for random (non-
Linux) torrents, leading to many ratio values less than
SPF/100. There are several ways to address this issue. For
one, SwarmScreen can attempt to restrict transient torrents
to those in its random set with similar swarm bandwidth
availability. If this is not feasible, SwarmScreen could
shape the bandwidth allocated to user-specified torrents to

11

match the same for transient torrents. As this policy would
change the interpretation of SPF, we plan to make this
option available to users but disabled by default.

7 Related Work

P2P systems have been the subject of numerous studies.
Our work falls into the category of studies that use live
data to drive their results [3, 12, 19]. Unlike previous
work, this paper focuses on communities formed by hosts
in P2P networks. In particular, we analyze how high-
level communication patterns reveal information that can
be exploited by eavesdroppers and develop techniques to
thwart such attacks.

A common approach to enhance privacy in networked
systems is to use encryption (e.g., with symmetric keys)
to secure the contents of a data stream between two end-
points. While this makes it prohibitively expensive for an
eavesdropper to obtain the plaintext data stream, it does
not necessarily prevent an attacker from determining the
contents of that stream. For example, Saponas et al. [26]
demonstrated several classes of devices and attacks that
allow an attacker to obtain information about users. In
particular, they show that an eavesdropper can identify the
video being watched simply by observing patterns in the en-
crypted Slingbox data stream. In a similar vein, we showed
that an attacker needs access only to connection patterns
(encrypted or not) to classify users. Thus, encryption alone
is not sufficient to address this class of attacks.

Another privacy layer is anonymization, which entails
disassociating user-identifiable information from network
flows. There have been many approaches to providing
this service, for communication channels [10, 27], content
storage [4,7,28] and both [16]. Onion routing [23] attempts
to provide anonymity of senders and receivers by sending
data over multiple overlay hops, with each hop providing
another layer of anonymity. A popular implementation
of this approach is Tor [8], which focuses on providing a
resilient, usable service for low-latency, interactive Internet
tasks such as Web browsing and SSH sessions. However,
attempts to integrate Tor into P2P systems has significantly
reduced global Tor performance to the detriment of non-
P2P users [18]. Recently, BitBlender [1] has been proposed
for anonymizing BitTorrent, but their approach relies on
open routers to forward BitTorrent traffic without incentives
for participation. Unlike these solutions, which focus on
hiding senders and receivers of data, our approach hides a
user’s communities of interest, which does not itself require
hiding senders and receivers.

An alternative to anonymity in open networks is trusted
identities in private (i.e., closed) networks [14, 20]. The
advantage to private networks is that they provide end-to-
end communication over trusted and encrypted channels,
preventing attackers from identifying the senders, receivers
or content being transferred. A disadvantage is that, unlike
open networks, availability of content and bandwidth is

limited by the set of trusted hosts. Further, closed net-
works often suffer significant performance overhead from
the multiple overlay hops required to anonymize senders
and receivers. Finally, these “networks of friends” are
susceptible to community-based classification as described
in this paper (i.e., the network is the community) and the
guilt-by-association attack.

Statistical disclosure attacks are closely related to our
work [17]. Their goal is to determine the set of message
recipients for a particular target node in an anonymity
network. Unlike this work, our approach allows an attacker
to identify arbitrary recipients; however, we provide privacy
by obfuscating which recipients are in the target’s commu-
nity of interest. Obfuscation can provide privacy by ob-
scuring high-level structure in data sources. This technique
is commonly used to hide trade secrets in executable code,
e.g., by modifying an instruction stream to make it more
difficult to reverse engineer automatically [21]. Unlike
obfuscation in instruction streams, our system hides user
behavior using online techniques, and eliminates wasted
resources at a global level by participating in real torrents.

Our work is inspired by several projects that share its
spirit but are applied in different contexts. Cortes et
al. [5] describe an approach for identifying communities
of interest, but this was intended to identify fraudulent
callers in a phone network. Li et al. [15] describe a crowd-
based approach for protecting privacy in data streaming
applications. Finally, Crowds [24] hides a user’s Web
request in a crowd of other requests for the same content;
similarly, our work provides a degree of privacy by hiding
user-generated BitTorrent traffic in a crowd of traffic for
random torrents.

8 Discussion and Future Work

Any distributed system implicitly reveals information about
the participating user; in this paper, we focus on one such
case in the BitTorrent P2P system. Our analysis formed
communities based only on the fact that two P2P users es-
tablished a network connection. While this simple approach
still reveals strong community structure in BitTorrent, rich
connection information can further enhance the statistical
significance of detected communities. For example, one can
construct graphs that weight edges according to the number
of times two users connect, the duration of the connections
and the amount of data transferred. Similarly, one can
account for patterns in connection behavior over time when
forming communities. For example, users that connect
to each other at regular intervals are more susceptible to
classification. We are currently investigating these aspects
of community analysis; defenses against them are part of
our future work.

SwarmScreen enhances privacy by defending against the
guilt-by-association attack enabled by community structure
in BitTorrent networks. It is important to note that an
explicit nongoal of our approach is anonymity. Rather, we

12

focus on the goals of disrupting community detection and
providing users plausible deniability, as defined in Sec. 4,
when assigned to a community. However, we make no
claim about how our approach satisfies the legal definitions
of these goals.

Privacy in the Internet has become a critical issue, with
notable catalysts such as identity theft and government
eavesdropping on network communications. In this pa-
per, we focused on the BitTorrent P2P protocol because
community structure in this network is not expected a
priori. We believe that the related guilt-by-association
attack is relevant in many other P2P systems, especially
where community structure is imposed by the semantics of
the network (e.g., in a friend-to-friend network).

9 Conclusion

As P2P systems grow in size and popularity, privacy be-
comes an increasingly important – and challenging – goal to
achieve. In this paper, we analyzed connection information
from real users in the BitTorrent network and revealed
strong communities of shared interest. We showed that
this information can be exploited by an attacker to classify
large numbers of users with relatively little monitoring.
To address this threat, we designed and implemented a
strategy to disrupt attempts to classify users. As part of our
future work, we are exploring other privacy threats based on
connection behavior in P2P systems and defenses against
them.

References

[1] A RENAS, A., DANON, L., DÍAZ -GUILERA , A., GLEISER, P. M.,
AND GUIMERÀ , R. Community analysis in social networks.Eur.
Phys. J. B 38 (2004), 373–380.

[2] BAUER, K., MCCOY, D., GRUNWALD , D., AND SICKER, D.
BitBlender: Light-weight anonymity for bittorrent. InProc. AIPACa
(Istanbul, Turkey, September 2008).

[3] B IIP. Biip.no. Internet-based community in Norway.

[4] BRANDES, U., DELLING , D., HÖFER, M., GAERTLER, M.,
GÖRKE, R., NIKOLOSKI , Z., AND WAGNER, D. On finding graph
clusterings with maximum modularity. InProceedings of the 33rd
International Workshop on Graph-Theoretic Concepts in C (2007),
Lecture Notes in Computer Science.

[5] CHOFFNES, D. R., AND BUSTAMANTE, F. E. Taming the torrent:
A practical approach to reducing cross-ISP traffic in peer-to-peer
systems. InProc. of ACM SIGCOMM (Aug. 2008).

[6] CLARKE , I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: A distributed anonymous information storage and retrieval
system.Lecture Notes in Computer Science 2009 (2001), 46–66.

[7] CORTES, C., PREGIBON, D., AND VOLINSKY, C. Communities of
interest. InIDA (2001), pp. 105–114.

[8] CROOKS, A. BitTorrent peer exchange
conventions. http://wiki.theory.org/
BitTorrentPeerExchangeConventions.

[9] DANON, L., DÍAZ -GUILERA , A., DUCH, J., AND ARENAS, A.
Comparing community structure identification.J. Stat. Mech.:
Theor. Exp. (2005), art. no. P09008.

[10] DINGLEDINE, R., FREEDMAN, M. J., AND MOLNAR, D. The free
haven project: Distributed anonymous storage service. InProc. of
PETS (July 2000).

[11] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. InProc. of USENIX Security
Symposium (2004), pp. 303–320.

[12] DUCH, J., AND ARENAS, A. Community detection in complex
networks using extremal optimization.Phys. Rev. E 72 (2005), art.
no. 027104.

[13] FACEBOOK, INC. facebook.com.

[14] FREEDMAN, M. J., AND MORRIS, R. Tarzan: A peer-to-peer
anonymizing network layer. InProc. of ACM CCS (Washington,
DC, November 2002).

[15] GRAHAM -ROWE, D. Sniffing out illicit bittorrent files,
February 2009. http://www.technologyreview.com/
computing/22107/page1/.

[16] GUIMERÀ , R., AND AMARAL , L. A. N. Functional cartography of
complex metabolic networks.Nature 433 (2005), 895–900.

[17] GUIMERÀ , R., MOSSA, S., TURTSCHI, A., AND AMARAL , L.
A. N. The worldwide air transportation network: Anomalous
centrality, community structure, and cities’ global roles.Proc. Natl.
Acad. Sci. USA 102, 22 (May 2005), 7794–7799.

[18] GUIMERÀ , R., SALES-PARDO, M., AND AMARAL , L. A. N.
Modularity from fluctuations in random graphs and complex
networks.Phys. Rev. E 70 (2004), art. no. 025101.

[19] GUIMERÀ , R., SALES-PARDO, M., AND AMARAL , L. A. N.
Classes of complex networks defined by role-to-role connectivity
profiles.Nature Phys. 3 (2007), 63–69.

[20] GUMMADI , K. P., DUNN, R. J., SAROIU, S., GRIBBLE, S. D.,
LEVY, H. M., AND ZAHORJAN, J. Measurement, modeling, and
analysis of a peer-to-peer file-sharing workload. InProc. of the ACM
SOSP (2003), pp. 314–329.

[21] IFJ. IFJ condemns censorship pact as Dubai takes Pakistanimedia
off the air, November 2007. http://www.ifj.org/en/articles/ifj-
condemns-censorship-pact-as-dubai-takes-pakistani-media-off-the-
air.

[22] ISDAL, T., PIATEK , M., KRISHNAMURTHY, A., AND ANDERSON,
T. Friend-to-friend data sharing with OneSwarm. Tech. report,
University of Washington, February 2009.

[23] L I , F., SUN, J., PAPADIMITRIOU , S., MIHAILA , G., AND STANOI ,
I. Hiding in the crowd: Privacy preservation on evolving streams
through correlation tracking.Proc. ICDE (April 2007), 686–695.

[24] MARC WALDMAN , A. D. R., AND CRANOR, L. F. Publius: A
robust, tamper-evident, censorship-resistant, web publishing system.
In Proc. of USENIX Security Symposium (August 2000), pp. 59–72.

[25] MATHEWSON, N., AND DINGLEDINE, R. Practical traffic analysis:
Extending and resisting statistical disclosure. InPrivacy Enhancing
Technologies Workshop (2004), pp. 17–34.

[26] MCCOY, D., BAUER, K., GRUNWALD , D., KOHNO, T., AND

SICKER, D. Shining light in dark places: Understanding the Tor
network. InProc. of PETS (Leuven, Belgium, July 2008), pp. 63–
76.

[27] NEWMAN , M. E. J., AND GIRVAN , M. Finding and evaluating
community structure in networks.Phys. Rev. E 69, 2 (2004), 026113.

[28] PIATEK , M., ISDAL, T., ANDERSON, T., KRISHNAMURTHY, A.,
AND VENKATARAMANI , A. Do incentives build robustness in
bittorrent. InProc. of USENIX NSDI (April 2007).

[29] POPESCU, B. C., CRISPO, B., AND TANENBAUM , A. S. Safe
and private data sharing with Turtle: Friends team-up and beat the
system. InProc. Cambridge Intl. Workshop on Security Protocols
(2004).

[30] POPOV, I. V., DEBRAY, S. K., AND ANDREWS, G. R. Binary
obfuscation using signals. InProc. of USENIX Security Symposium
(2007), pp. 275–290.

13

[31] QIANG , X. The development and the state control of
the chinese internet. Before the U.S.-China Economic
and Security Review Commission (April 2005). http:
//www.uscc.gov/hearings/2005hearings/written_
testimonies/05_04_14wrts/qiang_xiao_wrts.htm.

[32] REED, M. G., SYVERSON, P. F., AND GOLDSCHLAG, D. M.
Anonymous connections and onion routing.IEEE Journal on
Selected Areas in Communications 16 (1998), 482–494.

[33] REITER, M. K., AND RUBIN , A. D. Crowds: Anonymity for web
transactions.ACM Transactions on Information and System Security
1 (1998), 66–92.

[34] RISEN, J.,AND L ICHTBLAU , E. Spying program snared U.S. calls.
The New York Times (December 2005).

[35] SAPONAS, T. S., LESTER, J., HARTUNG, C., AGARWAL , S.,AND

KOHNO, T. Devices that tell on you: privacy trends in consumer
ubiquitous computing. InProc. of USENIX Security Symposium
(2007), pp. 55–70.

[36] SHERWOOD, R., BHATTACHARJEE, B., AND SRINIVASAN , A. P5:
A protocol for scalable anonymous communication. InProc. IEEE
Symposium on Security and Privacy (May 2002).

[37] SIRER, E. G., GOEL, S., ROBSON, M., AND ENGIN, D. Eluding
carnivores: file sharing with strong anonymity. InProc. ACM
SIGOPS European Workshop (2004), p. 19.

[38] SMITH , C. Anti-piracy law a reasonable way to protect
artists’ rights. The New Zealand Herald (March 2009).
http://www.nzherald.co.nz/politics/news/
article.cfm?c_id=280&objectid=10560605.

[39] VKONTAKTE. Vkontakte.ru. Primary Russian social network.

[40] WASSERMAN, S., AND FAUST, K. Social Network Analysis.
Cambridge University Press, Cambridge, UK, 1994.

14

	Electrical Engineering and Computer Science Department
	Technical Report
	NWU-EECS-09-04
	March 9, 2009

	SwarmScreen: Privacy Through Plausible Deniability in P2P Systems
	David R. Choffnes, Jordi Duch, Dean Malmgren, Roger Guiermà, Fabián E. Bustamante and Luis
	Abstract

