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Abstract
Network positioning systems are essential to good per-

formance in distributed systems that scale to millions of
end hosts. Evaluating performance in this environment is
particularly challenging. This paper addresses this issue
through an empirical study of two alternative classes of
network positioning services based on a dataset gathered
from more than 43K IP addresses probing over 8M other
IPs worldwide. We use more than 1.4 billion network
measurements to show that network positioning exhibits
noticeably worse performance than previously reported
studies. To explain this result, we identify several key
properties of this environment that call into question
fundamental assumptions driving network positioning
research. We close by suggesting a new direction for
network positioning that draws from our observations.

1 Introduction

There is a growing number of large-scale distributed
systems (e.g., streaming video, VoIP and file sharing [1,
4, 8, 9]) that run on hosts located at the edges of the
network (e.g., on desktops or appliances behind NAT
boxes on residential links). Because most of these
systems are cooperative and deployed at a scale of
hundreds of thousands or millions of users, brute-force
methods for providing key functionality, such as optimal
peer selection, are prohibitively expensive.

In particular, many of these applications could benefit
from a scalable way to determine the relative location of
hosts in the network. Toward this end, network position-
ing systems attempt to efficiently estimate the network
distance (in terms of latency) between hosts [6, 14, 22].
Because there has been no traces representative of the
environment, nor available platform at thescale where
network positioning is intended to be used, these systems
have been commonly implemented and evaluated in
simulation and on research testbeds.

Taking advantage of a unique deployment of measure-
ment software deployed on end hosts in a large-scale
P2P system,this paper evaluates how two key classes
of network positioning systems fare when deployed at
scale and measured in networks where they are used. To
achieve a large, representative dataset, we base our study
on latency measurements reported by hosts participating
in the Vuze BitTorrent system [20], which provides
an operational deployment of Vivaldi [6] and a rich

interface for accessing its coordinates. With approx-
imately 1M users online worldwide at any moment,
this represents the largest deployment of any network
positioning service. Through an extension to this client,
currently installed by over 380,000 users, we sample
Vivaldi network coordinates and perform network mea-
surements to evaluate its accuracy. We additionally use
the latency measurements between hosts to understand
Meridian [22] performance in such an environment.

As a result of this largest-ever measurement study of
a deployed positioning system, we find that the accu-
racy of the network coordinate systems is significantly
worse from the perspective of end-user clients than when
evaluated from the perspective of a research testbed.
Next, we show that this inaccuracy leads to significant
loss in performance in the case of DHT peer selection.
We find that these errors are in part explained by the
inherent dimensionality of the worldwide latency space,
which is much larger than reported from previous studies
that use limited deployments. Finally, using traceroute
measurements, we demonstrate that accounting for the
Internet’s structural properties is essential to accurate
distance estimation.

2 Background

There is a rich body of work that addresses the design
and implementation of network positioning systems [5–
7, 12, 14, 15, 17, 18]. To be both practical and effective,
a positioning system should be fully decentralized, incur
scalable measurement overhead and provide reasonably
accurate distance estimates. One approach to providing
this scalability is to embed network distances in a low-
dimensional coordinate space [5–7,12,14,15,18].

Among coordinate-based systems, the Vivaldi net-
work positioning system [6] is the most widely deployed.
It embeds network locations into anN -dimensional
Euclidean space and fully decentralizes the computation
of network locations. Each node maintains its own
positions, periodically exchanges positions with other
hosts and measures RTT latencies to them. The node
then recomputes its position by simulating a force from a
spring corresponding to the error between the Euclidean
distance and measured distance. The authors evaluate
the accuracy of the approach using PlanetLab nodes
and King-based network distances between 1740 DNS
servers and found that its error is competitive with
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Figure 1: CDFs of latencies from different measurement
platforms (semilog scale). Our measurement study exclusively
between peers in Vuze (labeled P2P) exhibits double the
median latency “in the wild” (labeled PL-to-P2P).

GNP [14]. In a follow-up study, Ledlie et al. [11] showed
that the accuracy of this system was much lower “in the
wild” as measured from PlanetLab nodes participating
in the Vuze Vivaldi implementation. They proposed
and implemented several features that improve accuracy
in this environment, finding that accuracy improves by
43%. In fact, given the large scope of these systems (po-
tentially thousands of networks), the constant evolution
of the Internet and the time- and space-varying properties
of latencies, it is a testament to the skillful design of
these systems that they have achieved such relatively
high levels of accuracy.

Despite the success of these systems, recent studies
have called into question the usefulness of network
coordinates [23]. For example, Wong et al. [22] note
that embedding errors from network coordinates always
leads to suboptimal peer selection and instead propose
Meridian, a structured approach to direct measurement.
To ensure scalability, Meridian organizes nodes into an
overlay consisting of “rings” of nodes that locate nearby
peers in log(N ) steps, whereN is the number of nodes
participating in the system. Using a simulation-based
evaluation with King-based latencies [10] between 2500
DNS servers and a deployment in PlanetLab with 166
nodes, the authors show that accuracy is significantly
better than approaches that use virtual coordinates.

Using these the Vivaldi and Meridian approaches, this
paper presents the first evaluation of network positioning
performance from the perspective of tens of thousands of
users in a real P2P setting.

3 Methodology

The results presented in this paper are based on measure-
ments collected from more than 40,000 users broadly
distributed worldwide. Because these peers are often
located behind middleboxes at the edges of the network,

they allow us to measure portions of the Internet not vis-
ible when using traditional measurement techniques [3].

For the purpose of finding low-latency peers in a
DHT, Vuze concurrently maintains Vivaldi network co-
ordinates using the original technique [6] and the one
proposed by Ledlie et al. [11]. In addition to collecting
these positions, our software performs ping measure-
ments between connected peers, allowing us to compare
each technique’s distance estimate with ground truth.
Finally, our software issues traceroute probes to collect
topological information.

The advantage of our measurement approach is that
it records measurements from the environment where
network coordinates are used and at scale. As we
demonstrate in Fig. 1, the distribution of latencies from
our measurement platform (P2P) is much larger than
those from MIT King [6] and PlanetLab (PL). In fact, the
median latency in our dataset is twice as large as reported
by Ledlie et al. [11], which used PlanetLab nodes to
probe Vuze P2P users (PL-to-P2P).

The dataset used in this paper consists of over 1.54
billion Vivaldi samples, collected during the period of
June 10 to June 25, 2008. After removing measurements
that do not contain complete information (i.e., due to
lack of ping response or uninitialized Vivaldi positions),
we are left with over 1.41 billion Vivaldi samples from
43,674 IP addresses.

The ping measurements are further used to create
a matrix for evaluating Meridian and to characterize
the latency space as seen by end hosts. To ensure
dense matrices for this analysis, we begin by bucketing
our measurements into source and destination routable
BGP prefixes (according to [19]), using the minimum
observed RTT for each matrix element.1 Because this
approach still yields a sparse 6898x66825 matrix, we
use the square submatrix and iteratively remove rows
and columns that contain the largest number of empty
elements until a sufficiently dense submatrix remains.
Finally, the empty elements are filled with the median
value for a given row to preserve that particular statistical
property. We found that different approaches to filling
empty matrix elements did not significantly affect the
results when the matrix is nearly full. We use this process
to generate a 495x495 matrix that is approximately 95%
full. The rows represent ISPs in North America, Europe,
Asia (including the Middle East), South America and
Oceania.

Finally, we note that latency measurements are per-
formed using the client’s operating system ping com-
mand to prevent application-level latencies from affect-
ing the measurements. We also note that while it

1We use the minimum to reduce the effect of latency variance on
our analysis; however, as we show the results from our study still differ
significantly from previous work.
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Figure 2: Absolute value of relative
errors between estimated and measured
latencies. Vivaldi V1 and V2 exhibit large
median errors (1700% and 80%).
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penalty for using network positioning.
The vast majority of values are greater
than one and the median values indicate
order-of-magnitude loss in performance.
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Figure 4: Plot indicating portion of
variance captured by each principal com-
ponent. The first few components capture
only a small portion of the total variance.

is possible for client P2P traffic to interfere with the
latency measurements (e.g., queuing delays due to large
packages arriving at the user’s router), this is precisely
the kind of data thatany network positioning system
must account for in real deployments.

4 Performance from End Systems

In this section, we evaluate the accuracy of network
positioning systems and their impact on the performance
of an example application that uses them.

4.1 Accuracy

We begin our analysis by evaluating the accuracy the
Vuze Vivaldi implementations in terms of estimated
latency. Meridian is omitted here because it does not
provide quantitative latency estimates. We focus on ac-
curacy in terms of relative errors determined as follows:
we first calculate the absolute value of the relative error
between Vivaldi’s estimated latency and the ping latency
for each sample, then find the average of these errors for
each client running our software. In Fig. 2, we plot a
CDF of these values; each point represents the average
relative error for a particular client. For the original
implementation (labeled V1), the median relative error
for each node is approximately 1700%, whereas the same
for Ledlie et al.’s implementation (labeled V2) is 79.7%
– both significantly higher than the 26% median relative
error reported in studies based on PlanetLab nodes [11].

4.2 Impact on Applications

Relative error in latencies generally matter only if they
negatively affect application performance. In the case
of DHT performance, a positioning system need only
guarantee that nodes that are closer to the target have
smaller estimated distances than those that are farther
away. One way to measure the extent to which this is true
is the relative application-level penalty (RALP) metric

initially proposed by Pietzuch et al. [16]. This metric
measures the latency penalty incurred by applications
using network positioning to select the closestN peers,
compared to optimal selection.

To calculate RALP, we create an ordered set of node
latencies according to ping measurements,P , and a set
of nodes selected by the Vivaldi and Meridian systems,
V . Then we find the average RALP for each measure-
ment node using the following equation, wheren is the
number of nodes being measured andi is the index in the
ordered sets:

1/n ·
n∑

i=1

(vi − pi)/pi

Fig. 3 shows a CDF of the average RALP values for
each measurement node when comparing the Meridian-
selected node and the 10, 25 and 50 Vivaldi-selected
nodes ordered by estimated latency. Note that the vast
majority of RALP values is greater than 1, indicating
that errors in the network positioning system lead to
significant loss in performance for the DHT that uses
it. For example, the median RALP for Vivaldi V2
when assessing the closest 10 nodes is 26.9, meaning
that for half the peers in our study, the average latency
to Vivaldi-driven peers is about 27 times worse than
optimal. The situation worsens when evaluating the
nearest 50 nodes – in this case, the median value for
the average latency to those Vivaldi-recommended nodes
is over 61 times worse than optimal. For Meridian, we
simulate a network using our 495x495 latency matrix,
adopting the same settings as the authors scaled to the
scale of the network. Each value in the CDF is RALP,
but for one selection. The results show that while more
than 15% of the decisions are 100% accurate, the median
error is 800%.

Based on the empirical results from our study, network
coordinates not only exhibit large errors in predictions,
but those errors significantly impact application perfor-
mance in the Internet at large. In the next section, we
explore why this is the case.
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5 Sources of Error

Many authors have pointed out issues that impair accu-
racy in network positioning systems, including churn,
coordinate drift, corruption, latency variance and intrin-
sic errors. While solutions have been proposed to address
the first three problems [11], this section focuses on
variance and intrinsic errors in latency prediction, as they
represent fundamental challenges to every approach to
network positioning.

5.1 Network Embedding

A popular approach to determining the intrinsic dimen-
sionality of a system is to use principal component
analysis (PCA). In the context of network latency, one
constructs a matrix representing all-to-all latencies, then
uses PCA to determine whether a small number of linear
combinations of matrix elements represents most of its
variance [18]. If the vast majority of the variance
is modeled by a few principal components, then the
network may be captured by a space containing a small
number of dimensions. In various work, authors use this
type of analysis to select 2, 4 or 7 dimensions [6,11,18].

To evaluate the intrinsic dimensionality of the Internet
from the perspective of tens of thousands of end-users
worldwide, we perform PCA on our latency matrix
described in Sec. 3. In Fig. 4 we present a scree plot
of the relative variance captured by each of the first
30 components, in descending order of the amount of
variance they capture. The figure contains curves for
i) the percent of thetotal variance captured by each
component (Percent, left y-axis),ii) therelative variance
captured by each component normalized by the value
for the first component (Relative, right y-axis) andiii)
thecumulative variance captured by all components with
rank less than or equal tox (Cumulative Percent, left
y-axis).

Traditionally, one uses the first two curves to identify
the inherent dimensionality of the space by locating the
“knee” in the curve. While the knee appears to be around
the 4th or 5th component, these components capture only
a small amount (18%) of the variance. Although the
values quickly diminish for other components, the curve
exhibits a long tail. For instance, 11 components are
required to capture 25% of the variance and at least 41
components are required to capture 50% of the variance.

Previous work in PlanetLab has shown much higher
variance captured by small numbers of coordinates,
which can be explained by the platform’s relatively
small number of nodes located near the core. To
hint at the effect of evaluating a smaller number of
networks, we further reduced our matrix to 266x266
routable prefixes (99% full). After running PCA on

this matrix, the amount of variance captured by the
first few componentsnearly doubles. This suggests
that there is more complex structure in the latency
space seen from deployed P2P systems than is visible
to limited deployments. We posit that this additional
complexity is one of the primary reasons why network
coordinates yield such large errors at scale, even with
the improvements proposed by Ledlie et al [11].

5.2 Triangle Inequalities

Finally, we address the issue of triangle inequality vio-
lations (TIVs) in the Internet delay space caused by the
network structure and routing policies. Wang et al. [21]
demonstrate that high rates of TIVs (in their study,
12% of the triangles) significantly reduce the accuracy
of network positioning systems. In other datasets, the
occurrence of TIVs was relatively infrequent and thus
many coordinate systems attempt to improve accuracy
by filtering out TIV cases.

We performed a TIV analysis on our dataset and
found that over 29% of the triangles had TIVs (affecting
over 84% of the source/destination pairs) — this ranges
from over 4 times to an order of magnitude more TIVs
than reported in an analysis of datasets from Tang and
Crovella [18] and it is significantly greater than that
reported by Ledlie et al. [11]. While an important first
step toward improving network positioning systems is
to make them TIV-aware [21], it remains to be seen
whether this approach can yield sufficient coverage and
performance for client applications.

5.3 Variance and Last Mile Issues

It is well known that last-mile links often have poorer
quality than the well provisioned links in transit net-
works; however, today’s network positioning systems
either ignore or naively account for this effect. To
demonstrate the danger of ignoring this issue, Fig. 5 plots
the portion of end-to-end latency along quartiles of the
IP-level path between the measured hosts. We determine
these statistics using 32M traceroutes and their per-hop
latencies from nearly 68K IP addresses.

If the latency along a path were evenly distributed,
the curves would center aroundx = 0.25. In fact,
the first quartile (which is very likely to contain the
first mile link) stands out from the rest, containing
proportionately large fractions of the total end-to-end
latency. For instance, when looking at the median values,
the 1st quartile alone captures 80% of the end-to-end
latency. The middle two quartiles, in contrast, each
account for only 8%. Also note that the first quartile
(and a significant fraction of the last quartile) has a
large number of values close to and larger than 1. This

4



Figure 5: Plot indicating the portion of end-to-end latency
contained in each quartile of the IP-level path between
endpoints. The graph shows that the first quartile of the path
contains the largest portion of latency most of the time, and
the significant number of values greater than 1 indicate large
variance in latencies in this portion of the path.

demonstrates the variance in latencies along these first
and last miles, where measurements to individual hops
along the path can yield latencies that are close to or
larger than the total end-to-end latency (as measured by
probes to the last hop). In fact, more than 10% of the 1st
quartile samples have a ratio greater than 1.

While Vivaldi uses “height” to account for last-mile
links [6] this analysis clearly shows that a single param-
eter is insufficient due to the large and variable latencies.
The data instead suggests an approach that identifies
links with high variance and treats them separately from
the rest of the path.

6 Conclusion

In certain environments, e.g., those with low churn,
low variance in latencies and small numbers of nodes,
network positioning has shown to be extremely effective
at accurately predicting network distances. However, we
have shown that this is not the case when the systems
are brought to much larger scale and run in residential
networks worldwide. Large-scale network services (e.g.,
Akamai [2]) have addressed this by using topology in-
formation gathered from their networks. We believe that
accounting for network topologies [13], while remaining
fully decentralized, is an important next step in the
evolution of distance estimation systems – an approach
that we are currently investigating.
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