NORTHWESTERN
UNIVERSITY

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-08-01
January 9, 2006

Efficient Similarity Join of Large Sets of Spatio-temporal Trajectories

Hui Ding, Goce Trajcevski, Peter Scheuermann

Abstract

We address the problem of performing efficient similarity join for large sets of moving
objects trajectories. Unlike previous approaches which use a dedicated index in a
transformed space, our premise is that in many applications of location-based services,
the trajectories are already indexed in their native space, in order to facilitate the
processing of common spatio-temporal queries, e.g., range, nearest neighbor etc. We
introduce a novel distance measure adapted from the classic Frechet distance, which can
be naturally extended to support lower/upper bounding using the underlying indices of
moving object databases in the native space. This, in turn, enables efficient
implementation of various trajectory similarity joins. We report on extensive experiments
demonstrating that our methodology provides performance speed-up of trajectory
similarity join by more than 50% on average, while maintaining effectiveness comparable
to the well-known approaches for identifying trajectory similarity based on time-series
analysis.

Northrop Grumman Corp., contract: P.0.8200082518
NSF grant 11S-0325144/003

Keywords: Spatio-temporal trajectory, similarity join

Robust and Fast Similarity Join of Large Sets of Moving Objet¢ Trajectories

Hui Ding, Goce Trajcevski and Peter Scheuermann
Dept. of EECS, Northwestern University
2145 Sheridan Road

Evanston, IL 60208, U.S.A.

Abstract

We address the problem of performing efficient similarity for large sets of moving objects trajectories. Unlikepogis approaches
which use a dedicated index in a transformed space, our gemithat in many applications of location-based servithes trajectories
are already indexed in their native space, in order to faatk the processing of common spatio-temporal queries, ®gge, nearest
neighbor etc. We introduce a novel distance measure addpbed the classic Fréchet distance, which can be naturakieeded to
support lower/upper bounding using the underlying indicEsoving object databases in the native space. This, in emables efficient
implementation of various trajectory similarity joins. \lgort on extensive experiments demonstrating that ouhodetiogy provides
performance speed-up of trajectory similarity join by mdnan 50% on average, while maintaining effectiveness comparabléhéo

well-known approaches for identifying trajectory simitgrbased on time-series analysis.

1 Introduction

The advances in Global Positioning Systems, wireless camgation systems and miniaturization of computing devices
have brought an emergence of various applications in Locaiased Services (LBS). As a result, there is an increasing
need for efficient management of vast amounts of locatietirie information for moving objects. An important opeceti
on spatio-temporal trajectories, which is fundamental emyndata mining applications, is the similarity join [17, &iven
a user definedimilarity measurea similarity join identifies all pairs of objects that arenflar based on a join predicate.

Efficient similarity joins are especially desirable for 8paemporal trajectories, because the distance calouldetween

trajectories is generally very expensive due to the inicinbaracteristics of the data.

Previous research efforts on efficient similarity searctinre series data sets mainly follow the GEMINI framework,[14
21, 27, 10]: given a similarity measure on the time serieshegjectory is transformed into a point in a high-dimensio
metric space and an index is constructed in the transforpeokeausing the defined measure (or the lower-bounding measur
if one is proposed). Thesmnsformed space approachieave been proved efficient for a large number of differentlaiity
measures in a variety of time series application domains.

However, when it comes tmoving object trajectorieshich constitute a special category of time series data, hsemwe
that one can perform the similarity join more efficiently ngsia different approach. The transformed space approaches
incur extra overheads building dedicated index structangsapplying trajectory transformations. On the other hamdcan
exploit the fact that trajectories are often already indiereheirnative spacgin order to facilitate processing of the common
spatio-temporal queries such as range, nearest neighbdi24, 8, 22]. The main focus of this work is to provide effict
and scalable similarity joins of spatio-temporal trajeies.

Our main contributions can be summarized as follows:

e We introduce a novel distance measure based on the Frésteiak [2], which is highly effective in identifying spati
temporal similarity of trajectories.

e We propose lower and upper bounding approximations of thectedtistance measure, which are straightforwardly
applicable to the spatio-temporal indices and can prungrafiiant portion of the search space.

e We present an efficient trajectory similarity join in the imatspace, which combines the distance calculations with
incremental accesses to the spatio-temporal indices.

e We conduct extensive experimental evaluations to showfflugeecy and effectiveness of our proposed techniques.

The rest of this paper is organized as follows. Section 2igesthe necessary background. Section 3 formally defines ou
distance metric and the approximation bounds. Sectionkbeddes on our index-based trajectory join framework. i8e&

presents our experimental results. Section 7 reviewsegtlabrk and concludes the paper.

2 Preliminary

In this section, we introduce the concept of spatio-temigoagectories, and discuss the existing similarity measwnd

the indexing of trajectories using R-tree.

2.1 Trajectories and Similarity Measures

We assume that objects move in a two-dimensional space, laaid at trajectoryTr is a sequence of points
p1, P2, ---, Pi, ---» Pn, Where each poinp; represents the location of the moving object at timand is of the form(x;, yi,t;),
forty <ty <... <t <... <ty Foragiven trajectory, its number of points is calledploént length(p-length) of the trajectory.
The time interval betweefl andty is called theduration of the trajectory, denoted b4Tr. The portion of the trajectory
between two pointg; andp; (inclusive) is called aegmenand is denoted & . A segment between two consecutive points
is called dine segment

Several distance measures for trajectories have beenggdpothe literature. Thie,-norms[14] are the most common

similarity measures. For example, given two trajectofigsand Tr; of the samep-length, one can define the similarity

measure based on the Euclidean distances between thepwordésy points as: 4(Tr,Trj) = \/zke[l’n]dist(pik, pﬂ(),
where dist(pl, pl) = (pl.x— pl.X)2 + (pl.y — pl)2. While L can be calculated in time linear to the length of the
trajectories, it is sensitive to noise and is lack of supfortlocal time shifting, i.e., trajectories with similar rion
patterns that are out of phase. Thgnamic Time Warping DTW) distance [21] overcomes the above problem by allowing
trajectories to be stretched along the temporal dimension, is recursively defined adDTW(Tr;, Trj) = dist(pil, p{)
+min(DTW(Res{Tri),ResTr;)), DTW (RestTr;),Trj), DTW(Tri, RestTr)))), whereRestTr;) = p,..., ph. To reduce
the impact of the quadratic complexity of DTW on large date,sa lower-bounding function together with a dedicated
indexing structure was used for efficient pruning [21]. $&mio DTW, other distance measures have also been proposed,
e.g., theEdit Distance on Real Sequen@DR) [10] and the distance basedloongest Common SubsequeflcESS) [27].
The commonality is that they all follow the transformed spapproach, and are not designed to utilize the spatio-teahpo
indices available in the native space. Recently,Pektlas [23] identified several different similarity distance foajectories,

and argued that each of them is more appropriate than thesathdifferent settings.
2.2 R-tree Based Indexing of Trajectories

The R-tree and its variants have been widely used for indearbitrary dimensional data [22]. An R-tree is a B+-tree
like access method, where each R-tree node contains anddr(kgy, pointer)entries whereékeyis a hyper-rectangle that
minimally bounds the data objects in the subtree pointed/gtdinter. In a leaf node, thgointeris an object identifier,
while in a non-leaf node it is a pointer to a child node on thet taver level.

When indexing spatio-temporal trajectories with the tfamaed space approach, each trajectory is first transfoimed

a single point in a high-dimensional (metric) space and a-dighensional indexing structure is used to index thesetpoi
Under this GEMINI framework [14], a high-dimensional R4ris but one optional index structure.

However, spatio-temporal trajectories can also be indéx#ukir native space. Several such implementations haee be
developed in the moving object database literature [24,28,f@ processing various spatio-temporal queries. Diyect
indexing the entire trajectories may introduce large dgmts and decrease the discriminating power of the indexgehen
the general idea is to split a long trajectory into a numbesegfiments, and index the segments [22]. Each leaf node in the
R-tree contains a number of 3-dimensional minimum bounbdymer-rectangles (MBR) that enclose the segments gederate
from splitting, together with unique identifiers that maedch segment to its corresponding trajectory. The segroétite
trajectories do not have to be of the same length, and a pktieaf node may contain segments from different trajgeto
The problem of optimally splitting the trajectories to sopiefficient data mining has recently been investigate@®jrahd

is beyond the scope of this paper.

3 Spatio-Temporal Distance of Trajectories

Existing similarity measures are not directly applicaldespatio-temporal indices in the native space. Hence, & thi
section we introduce our new distance measure based ores@azl Fréchet distance [2], a popular illustration ofclihs
given by theman walking dogexample. The distance between the motion of the man and thésdbe minimal length of
leash needed. Spatio-temporal trajectories in real gsttionsist of series of coordinate points at discrete timgs, and
the location of a moving object between these points is nbthvia interpolation when needed. Hence it suffices to define
discreteversion of the Fréchet distance as follows [12]:

Let Try = (pi,...,p5) andTrp = (p,..., p2) be two trajectories. Acoupling CbetweenTr; and Tr, is a sequence
{(PZ,,P5,): (P3 Ph,): -+ (P&, PG)} Of distinct pairs such that = 1,b; = 1,a = n,bx = nand for alla; andb; we have
a1 =a orair1=a +1,bj1=horb1="b+1,ie., the matching is monotonically non-decreasing. [Ength ||C||
of the couplingC is the maximuniink of all the pairs in the couplin@, where a link is defined as the Euclidean distance
between the two points in the pair. That||§|| = max-1. ., dist(p%i , pgi). Finally, the discrete Fréchet distance between two
trajectoriesTr; andTr; is defined adqr (Tr1,Tr2) := min{||C|| : C is a coupling ofTr; andTrz}. An important observation
is that exploring all the possible couplings is exhaustius jpy considering all pairs oifpé. , pgi) without paying attention to
their temporal distances distorts the real spatio-temgaralarity of moving objects. Motivated by this, we use angoral
matching window to constrain the possible point matching define thewv-constrained discrete Bchet distancéwDF) as

follows:

DEFINITION 3.1. Given two trajectories Trand Tk, their w-constrained discrete Brhet distanc®ypr(Tr1,Tr2) =
min{||Cyl| : Cw is & w-constrained coupling of Trand Th, s.t. V(p3,pj) € Cw = |3t — P5 t]l < w}, where w is a

parameter that determines the limit of the temporal matghimndow.

The importance of the temporal dimension is emphasized éyrthtching window. An idea similar to ours (temporal
matching window constraint) has also been used for otheitagity measures [28], where a window size of 5920% of
the entire trajectory duratiofTr is reported sufficient for most application in terms of firglgimilar trajectories. Further
stretching the temporal matching window not only resulbimger execution time of the distance function, but may dtatete
the accuracy of the distance measure due to over matabjpg.has the following properties:

(1) dwpr(Tr1,Tr1) =0, (2) dwpr(Tr1, Tr2) = Swpr(Tr2, Tr) and(3) Swor (Tr1, Tr2) < dwor (Tr1, Tra) +Swor (Tr3, Tr2).

Hence, we have:
PropPosITION3.1. &ypfF defines a pseudo-metric on the set of spatio-temporal t@jies.

Due to space limit, the proofs of the claims are omitted frbis paper and are presented in [11].

The wDF distance can be computed by Algorithm 1 using dynamic amogning and has a complexity (ﬁ(%nz).
However, unlike DTW and EDRyDF is a pseudo-metric and can utilize the triangular inatyuilr pruning during similarity
search [1]. More importantlywDF has led us to the derivation of two approximation distart@at provide even greater

pruning power, which we discuss next.
3.1 Efficiency and Approximation of wDF

For long trajectories, the brute force computatiomdf- can be costly. We propose two efficient approximationstaa
bound the exaaDF distance and are much faster to compute: one that guasat®wer-bound and one that guarantees
an upper-bound for the exaeDF distance, respectively. The proposed approximatiorkernae of a coarser representation
of the spatio-temporal trajectories, obtained througfitsp a given trajectory into segments and representiegithby the
sequence of MBRs that enclose the corresponding segments.

Consider two trajectorie$r; and Trp, each approximated by a sequence of MBRs, é.— {MBR%,...,MBP}},

M, = {MBR,...,MBRE}, thelower-bound coupling £ betweerM; andMy is defined as a monotonically non-decreasing
matching between the pairs of MBRs from each sequence. ticplar, the link of a pair in the lower-bound couplif is
defined as thlinDist between the two composing MBRs, i.e., the minimum spatithdice between any two points from

the respective MBR (c.f. Figure 1 (a)). The leng®;| of the lower-bound couplinGy; is maxMinDist(MBR},, MBRZ) }

Algorithm 1 Computing the&d,pr Distance

Input: TrajectoryTry = (pi,...,pL), Tra = (p2,..., p2), matching windoww
Output: dwpr(Tr1,Tr)
1: dF(1:n,1:n) < —1.0//initialize n by n arraydF

2: return ComputeW DFn,n)

3: ComputeWDF(i, j)

4: if dF(i,j) > —1.0then

5: return dF(i,j)

6: else f[|pt.t — pf.t|| >wthen

7. dF(i,j) =

8: else ifi==1andj == 1then

9: dF(i,j) :=dist(p},p?)
10: elseifi > 1 andj = 1then
11: dF(i,j) := maxComputeW DFi — 1,1),dist(p}, p3))
12: elseifi=1andj > 1then
13: dF(i,) := maxComputeW DFL, j — 1),dist(pi, p?))
14: elseifi > 1 andj > 1then
15: dF(i,) := maxmin(ComputeW DFi — 1, j), ComputeW DFi — 1, j — 1), ComputeW DFi, j — 1)), dist(p{, p?))

16: return dF(i,j)

A X I_IW
MBR3 ; |
Tr1 ‘ \ ?
\
? / AN \: /
- . : ! "\ :‘\ \:// / :
-t > ! | \
MinDist Lo Py
MBR1 & | / ~ v Vi
(§ Iy // : \\ \\ | \\ : \\
1y |
< y /// : \\ Y\ ‘*
T \ . \./
r2
MBR2
Time

.
| o

(a) MinDist and MaxDist for MBRs (b) Construction of LBDawor using MinDist

Figure 1:Bounding the exact wDF distance with MBRs

whereu; = vi = 1, ux =t andvkx = s. Thew-constraining condition is specified over the time intesval MBRs. Assuming
thatMBR' andMBR’ enclose segmer(p? ,..., p) and(pf,, ..., p%,) respectively, they will be considered as a possible pair

in aw-constrained coupling only &, p?. s.t.||p3.t — pj t|| < w}. Formally:

DEFINITION 3.2. Given two sequences of MBRg lsind M, for trajectories Tg and Tk respectively, the lower-bound

distance of Ty and Tk is: LBDj, o (M1, Mz) := min{||C||: C, is @ w—constrained lower-bound coupling ofiNand M}.

Similarly, we define ampper-bound coupling £ on the two sequences of MBR&, andM,, where the link of a pair is

defined as th#laxDistbetween the two composing MBRs, provided that the tempa@nstraint holds:

DEFINITION 3.3. Given two sequences of MBRg lkind M, for trajectories Tx and Tk, respectively, the upper-bound
distance of Ty and Tk is: UBDs, . (M1,M2) := min{||C}y ||: where G is a w—constrained upper-bound coupling ofiM

and Mp}.

The construction oEBDs, - between two trajectories from their MBRs is illustrated igu¥e 1 (b), and the relationship

of these two distance bounds and the exact distance is gyw#rebollowing:

THEOREM3.1. Given two trajectories Trrand Tr, and the corresponding sequences of MBRsaktl M, that approxi-

mate them, for any matching window w the following holds: EBP(M1,M2) < 8wpr(Tr1,Trz) <UBDg, . (M1,M2).

We note that Theorem 3.1 applies to arbitrary trajectorittsp strategies, and the problem of optimally splittiriget
trajectories is beyond the scope of this paper [3]. For suitp] we assume in the rest of this paper that the trajeesori
are uniformly split into segments of equal lengthFrom their definitions|.BD, .. andUBD;s, . can be computed using
the same dynamic programming algorithm for computiigf, except that the MinDists/MaxDists between MBRs are used
instead of Euclidean distance between points. Howevegriunt of distance computation involved can be greatlyadedu
because of the coarser representation. This can be iledtizy using thevarping matrixconcept [25] to describe the
relevant coupling between two trajectories. The valuefiéincells of the warping matrix denote the distances betwaen t
corresponding matching MBRs/points. Figure 2 (b) showssthging matrix between the MBRs of the two trajectories
andTrp, and Figure 2 (c) shows the warping matrix between the apwials of the two trajectories. Intuitively, calculating
LBD3, . (UBD3,,-) or WDF is the process of finding path [25] from the lower-left corner to the upper-right corneath
minimizes the maximum value over all cells on the path. Thewamof computation foLBDs, . (UBDs,) is significantly

less because of the reduced matrix size. Instead of congptitnexacb,pr distance each time, we compute gD,

2

|3

andUBDs, .. with only O(z7;) time, and exclude unqualified candidates, substantiatiyeig the number of theDF

N

distance calculations. Theorem 3.1 ensures that the MBRRebjaruning will not introduce any false negtives.

MApprox MExact

XXX 1§ 30 at
X 1.2 o
X 1.80.8.5

10

Tr1

XX XX
. x

Tr1

XXX X([X

XXX X[X[X

Tr2

RPNWh o N o

©| X|X|X|x|x
jEaiRsdnanain,

00| X | X[X| X

01 Tr2

(@) (b) (€)

Figure 2:Warping matrices for calculating LB, /UBD;, .- and wDF: X cells are automatically excluded by the temporal

matching window, grey cells are potentially useful and kleells are on final path

Moreover, we can do even better with the approximation desta by further limiting the search space, using an idea
similar to early abandoning30]. Consider the warping matridapprox in Figure 2 (b) for calculating BDs, . between
Try andTrp. Initially, it only consists of “x” cells and white cells arall the white cells are assigned a valuecaf We
access MinDists between the MBRs in ascending order, analteplie values of the corresponding cells, e.g.(t&)=0.7,
cell(8,9) = 0.8, cell(3,4) = 0.9, ...(grey cells). After each update, we invoke the dyngmigramming algorithm to compute
theLBDs, - At first the algorithm will quickly returro. After updating a celli, j), if we obtain the first path connecting
the two corners in the matrix, then this is the optimal paifhog any path formed later will use a cell updated after @ej))
and will have a larger MinDist value than céil j)). Consequently, theBDs, . distance is equal to the MinDist value of
cell (i, j). At this point the distance calculation has been completebitie rest of the cells can be pruned. In the example
of Figure 2 (b), the critical cell after which we could find thath iscell(6,6) and as a result,BD;, . (Tr1,Tr2) equals 3.
Note that cells such g9,4) are never considered at any time since its value is greaar3b. This important observation

is formalized as follows:

THEOREM3.2. When calculating LBR) .. (UBDs,) between two trajectories Trand Tr, if the pairwise distances
between the MBRs are incrementally accessed in ascendileg oftheir MinDists (resp. MaxDists), the number of Minis

(resp. MaxDists) calculated is minimum.

Theorem 3.2 requires that the MinDists/MaxDists are soitedscending order, which may incur an extra overhead.
However, the key observation is that such an ordering canaberally obtained by maintaining a priority queue while
accessing the MBRs in the R-tree [17]. The worst case coritplaxstill bounded byO(n?), wherem is the number of
MBRs in each trajectory. However, we observed in our expenits that in practice significant speed up can be achieved,
since not alin? cells of the warping matrix need to be evaluated. In addjtimough both.BDs, . andUBD;, - can be
calculated using Theorem 3.2, in practice we only invokeadiyic programming once to calculdt&Ds, .. The path for
LBDs, - can then be used to calculate an upper-bountd B, ., which in practice approximates the actuUsBDs,

distance very well.
3.2 Improving wDF Against Noise

While wDF distance can be speeded up by appfiB®;, .. andUBD;, . to existing spatio-temporal indices, one of
its weakness is that it is sensitive to noises/outliers etthjectories. To see this, consider the definitionvbf distance
(c.f. Definition 3.1) where the similarity of trajectofiyr; andTr; is essentially determined by the minimum of theximum
distancebetween the two sets of points from the respective trajg¢id], i.e., the link with the maximum value for a given
coupling. Hence, when there is noise at a single point, tlWwerstise close trajectories may be made arbitrarily disdiamaty.
DTW also suffers from the same problem, however, the impantitigated since DTW uses the sum of distances from all
pairs of points between two trajectories which can in efl@nbothen the data from single noise/outlier. EDR and LCSS
distance measures are generally recognized as being stragainst noises/outliers, because they compute a siy#apre
based on a matching threshold, and can leave noises/sutlienatched to avoid their negative impact on the similarity
computation.

In this section we propose a novel technique, catiete-aware adaptive median filterinAMF), to improve the
robustness of\DF. The purpose of TAMF is to effectively identify outliens ihe data and exclude them from the distance
computation. Furthermore, TAMF is very lightweight andyopbses a slight overhead compared to @{a?) complexity
of computingwDF. Existing adaptive median filtering algorithms usuallgke certain global assumptions about the data in
order to detect noise candidate [16, 9]. However, if we atgrsa moving object trajectory as a stochastic process mwer t
its statistical characteristics is usually time-varyihtgnce, using global assumptions about the data may lead¢ounate
noise detection and removal. TAMF exploits the statistiosud the most recent past of the moving object, in order taavwp
the precision when picking noise candidates.

The basic idea of TAMF is as follows: when calculating twWBF, instead of using only the Euclidean distance

between any pair of points in a coupling, we also take intooant the Euclidean distances among their neighboring
points. Recall thadist(pt, pjz) denote the Euclidean distance betweenithend thejth points of trajectoryl'r, andTry
respectively, Ieﬂ]j be a window of sizén x h centered afi,), i.e.,s'jj ={(k1) :||k=i] <h/|l —j|| <h}. We compute
dist(p&, p|2) for all the pairs of points irﬁ'jj, and sort these distance values and. We use the median cfotitésl list to
determine the “distance” between the two poip}sand pjz. As an example, suppose that we have two one dimensional
trajectories:P = [(t1,1), (t2,2), (t3,100), (t4,2), (t5,1)] and Q = [(t1,1), (t2,2), (t3,3), (t1,2), (t5,1)]. When calculating the
“distance” between the third points & and Q with a median filter window size 1, we obtain a list of distarvadues
(0,0,0,0,1,1,97,97,98). Using the median of this list, we determine that the “dis&lrbetween the second pointsPfnd

Qs 1 instead of 97 and successfully remove the impact of tlkeauWe call thewDF distance defined using TAMF the
median wDFm-wDF).

Noise in the data

A

(a) (b) (c)

Figure 3:Noise and outlier patterns that may exist in the moving dhijagectories
While the outlier in the example above can be easily filtenetvath a simple median filter, the situation is much more
complicated in trajectories from real applications. TAMInsiders three aspects of the noise that may exist in the data
e A series of bursts of impulse noises (c.f. Figure 3.a): ineoitd remove such noises we need to adaptively adjust the
median filter window size: while large filter window size magtl to unnecessary overhead, small window size may result
in treating noisy values as correct output of the filter.
e Noisy patches that span several data samples (c.f. Figb)eiB.order to detect such outliers we need to correctlyaete

the size of the noise as well as its rising and falling edged zaljust the median filter window size accordingly.

e Time-varying amplitude of the impulse noise (c.f. Figure)3this has been overlooked by previous works on adaptive

median filtering and may affect the precise detection andovainof the previous two types of noises. As we have

explained, trajectories are usually time-varying stotihgzrocesses and their characteristics develops over, &ngg,

the amplitude of the impulse noise are not uniformly the séoneéhe entire trajectory. For example, suppose we are

tracking vehicles on road network, a data sample indicaisgeed of 80mph when the object moves in urban area is a

likely candidate for outliers, whereas when the object rsawe an interstate highway, a data sample indicating a speed

of 30mph may suggest a (negative) impulse noise. Thisiilitess that in order to correctly identify noise candidatesi
trajectories, we need to incorporate the dynamic locaiksizg of the trajectory data.

TAMF achieves time-awareness using a sliding window baggdoach. When computing mediaiDF, we maintain a
sliding window over the recent past outputs produced froenntiedian filter. Suppose the size of the sliding windoMjs
these values are simply stored using a FIFO queue in the maimony and are dynamically updated with every new output
from the median filter. We maintain three statistics aboatdheue, the maximum value in the quesgy, the minimum
value in the queusnin and the average of the difference between any two neighlpuaiuesvayg. These statistics are used
to detect the presence of noise in the data.

The algorithm first detects whether there is a impulse in tedian filter output in the while loop. If there is no impulse in
the median filter output, the algorithm then detect whethercenter distance value itself is corrupted by noiseftlising
the minimum and maximum distance values as well as the a@as@eepd values maintained by the sliding window. If there is
impulse in the median filter output, we increase the size @ftiedian filter untihyax. The value oh_MAX is determined
by the noise occurrence probability [16, 9] and is usualtted. If there is impulse output from the median filter aftee t
window size has reached the maximum, the algorithm then ixawhether there is a large noise patch with more than one
data sample. The maximum size of a noise patch that can beveehwspecified biwax, and is usually set to 3. Impulses
that span more than 3 data samples are treated as intritoseof the data and are not removed. The complexity of TAMF
is dependent on the maximum size of the median filter windosvfoh the sliding window Our empirical study shows that a
sliding window size of ?? is most effective. The maintenaofdbe sliding window take®(1) time andO(N) space.

M-wDF can still be bounded using the MBRs in the native spaceghiewit is no longer a pseudo-metric, i.e., it does not
satisfy the triangular inequality which can be used for prgnHence, it is slower to perform similarity search or darity
join using mwDF, compared to usingDF. This actually presents a trade-off between the effentgs and efficiency of the

similarity measure. We provide a more detailed experimentauation in Section 6.

Algorithm 2 Computing mwDF Distance

Input: TrajectoryTry = (pt,..., Ps), Tr2 = (pZ,..., pA), warping matrixd f [n][n] whered fi][j] = dist(p{, p?)
Output: 8m-wpor(Tr1,Tr2)
1: for each pair of point$p?, p?) do
2: let Smin, Smax @ndvayg denote the current sliding window statistics
3: initialize filter windoijj sizehto 1
4: while h < hyax do
5: sort thed f elements within the window, Ietyi, < minimum distance value withillV, xmax < maximum distance value withiW, Xmeq <

median value withitw

6: if Xmed > Xmin @NdXmed < Xmax then
7: no_.impulse— true
8: break
9: else
10: increasén
11: if no.impulseis true then
12: if (df[i][j] > sminandd f[i][j] < sma) and @f[i’][j'] —d f[i][j] <A X Vaygord f[i][j] — Xmed < A X Vayg) then
13: keep the originad f[i][j] value
14: else
15: df[i][j] < Xmed
16: else
17: for k from 1 tokuyax do
18: if dffi —K|[j —kl —df[i][j] <A xVaygordfli][j]— x;]’éd < A X Vayg then
19: there is a noise patch of sikeincrease the filter size
20: else
21: increase k

22: dF(1:n,1:n) <« —1.0//initialize n by n arraydF

23: return ComputeW DFn,n)

4 Index-Based Trajectory Join UnderwDF

In this section, we present our framework for spatio-terapsimilarity join of trajectories under th&DF distance
measure. Assuming that each trajectory is uniformly splib isegments that are indexed by a 3-dimensional R-tree, we

describe the nearest neighbor join algorithm, and pressetal important variants.

4.1 Nearest Neighbor Join

Thenearest neighbor joinetrieves pair of trajectories, where the second trajgdtoa result pair is closer to the first one
than any other trajectory from the second data set, usiDig distance as the similarity measure.

The main inputs to the algorithm are the two trajectory $htsand Sy, indexed by disk-based R-tre® and Ry,
respectively. The algorithm accesses both trees in a maméar to the incremental distance join [17]: descendirog
their roots simultaneously, and concurrently assigniregggments from the second set to the closest trajectorytirem
first set. The algorithm maintains a set of pairs, where tis ifiem in each pair is fronR; and the second one froRp.
Each item can be either a node of the R-tree, or a leaf nodg, éet; the MBR of a particular segment. The set of pairs
is managed by a priority queue, such that the dequeue openatil always remove the pair with the smalléddinDist. In
addition to the priority queue, the algorithm utilizes twata structures. The first is thearping matrix directorf WMD) that
maintains an entry for each trajectory fré@n storing a list of incompleteBDs, .. andUBD;, . warping matrices between
that trajectory and a trajectory frofa. Each entry in WMD also maintains aipper bound distancevhich is the maximum
possible distance allowed to become an answer candidagédition, each entry has a flag that indicates whether theesea
neighbor for this particular trajectory has been found. $&eond structure is thmndidates tabl€CT) that stores for each
trajectory fromS; its candidate answers in a sorted list, in ascending ordiredfBDs, . .

The join process is illustrated in Algorithm 3. After inilizing the relevant data structures, the main body of therdtigm
is a while loop that continuously processes the next paiudegd:

e When both elements in the pair are MBRs of trajectory segsn@imie 4-17), it first checks whether the corresponding
entry from WMD iscompleteand if so, simply discards the pair from further consideratiOtherwise, it performs early
abandoning by checking whether the MinDist between the tvBRMlis less than the upper bound distance (line 7). Then
the relevant warping matrices in the corresponding WMDyeate updated and the algorithm examines whether the update
generates a complete path in tt&D5 . warping matrix. If so, th&BD;, . andUBD;, . distances are calculateldBDs, .

is used to insert a new entry into the candidates tableldid;, . is used to update the upper bound distance of the entry.
Finally, if the pair's MinDist is greater than the entry’spgy bound distance, this WMD entry is flaggesimpleteand the
relevant warping matrices are discarded.

e When only the first element in the pair is the MBR of a segmene(lL8-22), the algorithm checks whether the
corresponding entry in WMD is flaggetbmplete and if so the pair is discarded since it (and any new pair &y

further descending the R-tree) may not produce a betteremthan the existing candidate. Otherwise the second node is

Algorithm 3 Index-Based Trajectory Join

Input: R-treeRy, Ry; Trajectory sefSp, Sp; temporal matching window
[* filtering stage */

1: priority queueQ.ENQUEUKER;.root, Ry.root, 0)

N

while ! QISEMPTY do
3: (el,e2,mindist) <~ Q.DEQUEUE

4: if bothel ande2 are segment MBRthen

5: Tr1 < trajectory ofel, Try < trajectory ofe2

6: if WMDI[Tr4] flaggedincompletethen

7: if MinDist(el,e2) < E.upperbounddist then

8: insert MinDist, MaxDist ofl, e2 intoWMD[Tr]

9: if a path exists for the MinDist warping matrix between andTr, then
10: computd BDg, . andUBD;, . betweeriTry, Tr,
11: if UBDg, o < E.upperbounddist then
12: E.upperbounddist <= UBDj,

13: insertTrp andLBDg, . into CT[Try]
14: else

15: set flag ofW MD[Tr4] ascomplete

16: else ifWMD[Tr4] flaggedcompletethen

17: discard the paifel, e2)

18: else ifel is segment MBRhen

19: if WMDI[Tr4] flaggedcompletethen
20: discard the paitel, €2)

21: else

22: expandElemeifel, e2,Q)

23: else ife2 is segment MBRhen

24: expandElemeiie2,el, Q)

25. else ifbothel ande2 are nodehen

26: expandBalancedEleméetd, €2, Q)
/* refinement stage */

27: for every entryTr; in CT do

28: computedypr (Tri, Trj) for each candidat@r; until the nearest neighbor is found

expanded by calling the functi@xpandElementExpandElemengxpands one of the input nodes by pairing each one of
its children with the other input element if they are temfignaithin w, and inserts the resulting pair into the priority queue
Q.

e When only the second element in the pair is the MBR of a segiflieet 23-24), the first node is expanded by calling

expandElementvith elenl andelen®? exchanged.

e When a pair of nodes is processed (line 25-26), the algoritthmoses to expand one of the nodes by calling
expandBalancedElemewtich tries to keep the balance of the depth when descenldénigvo trees. The node to expand is
the one with a shallower depth or with a larger area if bothesaate at the same depth [17].

After the while loop terminates, the refinement step is pentd on the CT using the triangular inequalityvdDF for
pruning (line 27-28). For every entry of the candidatesdable examine the candidate trajectories in ascending ofder
theirLBD;, - and calculate the exaeDF distance, until either all the candidate trajectoriesetzeen examined, or the next

LBDs, - is greater than the largest computeldF distance value.
4.2 Variants of the Similarity Join

Algorithm 3 for nearest neighbor join requires minor modifions to calculate other similarity joins among trajeigsr
in our framework.
e k-nearest neighbor join (kNN join) [6]: A KNN join finds for each trajectory fror; its k nearest neighbors froSp
in terms of thewDF distance. For each trajectory frafa, after the firstk candidates are added to the candidate table,
the minimum of theilUBD;, . is used as the upper bound. We continue to add new candidatesgas theit BD;, .
distances are smaller than the current upper bound, andeugiataupper bound with the new tightéBD;, . if necessary.
In the refinement stage, we calculate the exdzf distance for every candidate and selectkttrajectories with the smallest

distance values.

e Range Join[6]: A range join finds for each trajectory frofy all the trajectories fron$, that are within a givenvDF
distance of it. For this extension, we simply retrieve focletrajectory inS; all the candidates whoseéBDg, . is less than
the given distance threshold during the filtering stage rafide the answers using the exa®F distance.

We also note that our framework can straightforwardly supibe time interval join [5], where the kNN or range pred&at
is defined using only some portions (segments) of trajeetoniithin a specified time interval of interest. In this case w

retrieve only the index nodes and leaf node entries thatset¢ with the given time interval from the same index strcet

5 Applying Similarity Join for Efficient Clustering of Traje ctories

In this section we demonstrate how our proposed technicarebe used to support efficient clustering of spatio-tempora
trajectories. Various clustering algorithms have beempgpsed in the literature [18, 19, 13]. These algorithms umanisly
require frequent distance computation between objectssaaling to large trajectory sets may be costly. Howevelr the
efficiency can be significantly improved when equipped withtoajectory join framework. In the following, we first disss
the application of our methodology to the partition-badgddthm k-medoidg18], and then we outline the similar benefits

in the context ofChameleorj19] andDBSCAN[13].

5.1 K-medoids Clustering for Trajectories

The k-medoids algorithm is a partition-based method thatids the trajectories inth groups and iteratively exchanges
objects between them until a predefined function, whichuatak the quality of the clusters, reaches a local optimume. T
most expensive operations in k-medoids are the initiabassent of the trajectories to their nearest medoids, anitidfadive
reassignment of the trajectories after randomly replaamgexisting medoid with a new one. However, these operations
actually correspond to a nearest neighbor join betweenehef $rajectories and the set of medoids [6], hence we caremak
use of the nearest neighbor join algorithm presented in tbeiqus section to expedite the process. The modificatidheof
standard k-medoids algorithm [18], which utilizes spagoiporal inexing and th&DF distance, is described as follows:

1. Randomy pick k trajectories as initial medoids and create an R-tree on the nmedoid set;

2. Call Algorithm3 with the R-trees of trajectories & medoids as input;

3. Conpute the quality neasure Qc = Yi<i<kYTrec; Qwor(M, Trj);

4. Random'y pick trajectory myepiace t0 replace a randonly selected medoid my in the medoids Rtree;
5. Call Algorithm3 with the new nedoids R-tree;

6. Update Qc after the replacenment and commit the change if it decreases;

7. Repeat 4-6 until no further inprovement in Qc.

The crucial benefit of our approach is received in step 5 oétiwve algorithm, where many trajectories remain closest to
the same medoid from the previous assignment. Hence, wiec@mentallyupdate the nearest medoid only when necessary,
instead of running Algorithm 3 from the scratch every timbeTrajectories affected by the medoid replacement wehereit
assigned to the cluster whose medoid is replaced, or askigrm¢her clusters but are now closer to the new medoid. Akt
trajectories remain in the same clusters. By identifyinghstnajectories at an early stage during the replacemenepsywe

can prune a large number of distance calculations. Thigiigaed by modifying Algorithm 3 to cater for step 5, as ddsed

in Algorithm .

Algorithm 4 Incremental Reassignment

/* refinement stage */
m; < the medoid to be replaced Iy place
Hash tableH < trajectories that were in the cluster of
for every entryTr; in CT do
if Tri € H or candidates contaiMyep|ace then

computedypr (Tri, Trj) for each candidat@r;

We utilize an additional hash tabt¢to store the trajectories that were in the replaced clubighe refinement stage, we
only calculate the distance for an entryGi if: either the trajectory is itd, or the replaced medoid is one of the candidates.
These changes ensure that the distance calculation forajeetbries that remain in their old cluster will not be rafesl,
and can significantly speed up the reassignment proces$whiominated by the expensive distance calculation in the

refinement stage.
5.2 Hierarchical and Density-Based Clustering

¢ Index-based ChameleonThe Chameleon algorithm [19] explores graph partitiordand dynamic modelling to achieve
high quality hierarchical clustering. The most expensiep swhen applying Chameleon to spatio-temporal trajeztprs

to build the hyper-graph where each vertex of the graph sgjmts a trajectory, and there exists an edge between twoesert
(trajectories) if one trajectory is among the k nearest Inledgs of the other. However, the step of building this k-eetr
neighbor graph can be transformed to that of performing ad&est neighbor self-join, and we can utilize the techréque

presented in Section 4.2 to expedite the process.

¢ Index-based DBSCAN To cluster trajectories using density-based algorithnchisas DBSCAN [13], the critical task is
to identify dense regions using the input parametensdMinPts by performing a range query for each trajectory. However,
instead of executing the individual range queries seplgrate can apply the range join algorithm proposed in Sedti@to
concurrently perform the range queries for all the trajeetin the data set, where the join distance egealkhe result of
this join can be stored in a matrix for look-up during the ex@mn of the classic DBSCAN algorithm.

Note that for trajectories who&éBD;, . distance is smaller thas) we know that these trajectories are in gheeighborhood

for sure and the exact distance computation can be compbateided.

6 Experimental Results

In this section, we empirically evaluate the efficiency affdaiveness of our proposed techniques.

We have implemented our similarity join framework in Javdl.oAir experiments are executed on a PC with a Pentium IV
3.0GHz CPU and 1 GB of memory. To evaluate the efficiency optloposed algorithms, we use the network-based traffic
generator [7] and produce moving object trajectories basetie road networks of Oldenburg (OB) and San Francisca (SF)
To obtain some quantitative observations about the petieige of our framework for data mining applications, we umee t
wDF distance for classification in data sets provided by th&U@ne Series Collection [20]. We index the trajectoriedwit
a 3-dimensional R-tree and uniformly split each trajeciatg segments. The resulting segments are then insertedhiat
R-tree, where each data entry in the leaf node contains @meesd. The page size is set to 4KB, and an LRU buffer with

1000 pages is used. Unless stated otherwisaythedow size is set to 15% of the entire trajectory duration.
6.1 Efficiency of Similarity Join

Although our results are independent of the trajectonyttapdl strategy adopted, before evaluating the performarfice
our similarity join framework, we need to determine the @capry splitting size for our data sets in order to remove its
impact from further experiments. Increasing the numbepbfssimplies tighter bounds but may also increase the dosts
calculating them, whereas decreasing the number of sjglitsidrates filtering effectiveness. We perform a neareigtioor
join for 200 trajectories generated from the road netwofl@® and SF, with 400 and 1000 points respectively. We vary the
number of points contained in each segment from 5 to 200 anckults are shown in Figure 4. Based on the results, we fix
the number of points in each segment to 20 in the followingeepents.

With the uniform split model, we then evaluate the tightrefahe two distance bounds. We use the road networks of OB
and SF to generate varying number of trajectories, and ratydpick one trajectory to perform a nearest neighbor query,
using the two distance bounds for pruning. We record the mtmber of times the exagtDF distance is calculated, and
divide this number by the total number of trajectories indlaga set. The result ratio is shown in Figure 4. It can be oeser
that using our approximate distance bounds, we only needrfonm less than 2% of theDF distance calculation.

Next we evaluate the efficiency and the scalability of ouet®ry join algorithm. Due to the limited space, we focus on
the nearest neighbor join only. The next two sets of experimeompare the efficiency of three different approaches: (1
our framework using theDF distance, (2) the metric-based join [29] (essentiallgguential scan over the entire data set

but uses the triangular inequality for pruning as much asipte withwDF as the distance metric and (3) similarity join on

©
(a) Impact of Segment Size g (b) Tightness of Bounds
120 T T T T é 01 T T T T
X p-length =400 —+— o p-length = 400 ——
S 100 L p-length = 1000 ---x--- | e p-length = 1000 ---x---
) | 5 008]
2 e0; {5
[= = 0.06 | -
=2 1 O
= LL
c
< | S 004 F .
= 3
S u—
= o - -
S 19 0.02
G
0 | | | | % 0
0 50 100 150 200 % 0 500 1000 1500 2000
a

Number of Points per Segment Total Number of Trajectories

Figure 4:Impact of Segment Size and Tightness of Bounds
DTW distance with lower-bound indexing [21], as a repreatiwe of the transformed space approach. For the DTW based
approach, we implement the join as a batch of similarityc®gueries where each query is a trajectory from the firstsiztta
that is used to search for its nearest neighbor in the secatadsdt. \We use the same parameters, e.g., the number of point
in each segment/piece-wise approximation, the R-treenpebexs and splitting strategy, etc. in both our frameword te
DTW implementation. We also take into account the time ietator approach (1) and (3) to build the index structure.

Our first set of experiments reports the total running timehef nearest neighbor join as a function of the number of
trajectories. Figure 5 compares the performance of thethpproaches on trajectories generated from road netwérks o
OB and SF, respectively. Each OB trajectory contains 40atpa@nd each SF trajectory contains 1000 points. We observe
that our join framework clearly outperforms the metric-goin, yielding a speed-up of up to 10 times. Furthermoue, o
approach scales well to large trajectory sets since thamgriime grows linearly with respect to the number of trajeies,
whereas the running time for metric-based join grows quadidy. While the DTW based approach also outperforms the
metric space based approach by a large factor, it is on a¥@nage than 2 times slower than our approach. This discrgpanc
becomes even larger on the SF data set. The main reason ishtbatthe number of points in each trajectory increases,
the dimensionality of the index structure used to index tattories in the transformed space, i.e., the index obXhe/
distance, also grows. This will reduce the selectivity efittdex and admit more false positives that will need to braiakted

with the expensive DTW distance calculation. Increasirggribmber of points per segment/piece-wise approximatian ca

(a) Oldenburg Data Set (b) San Francisco Data Set

4 12

R Metric based Join —+— Metric based Join —+— //*
g 35r1 WDF based Join ---x--—- 7 44| wDF based Join ---»--- /|
g DTW based Join ----*--- DTW based Join ----%--- X
e i
£
|_
o i
c
c
c
S i
@
<
-05 —
|_

0 500 1000 1500 2000 0 500 1000 1500 2000

Number of Trajectories Number of Trajectories

Figure 5:Scaling with Number of Trajectories
not solve the problem, as it will yield a wider bounding emmpelsed by DTW and loosen the lower-bounds [21]. Working
in the native space, our approach does not have this prodieiimensionality. When the number of points per trajectory
increases, it only increases the total number of segmendttharsize of the R-tree structure. However, the extra aesdes

the indices are paid off by the reduction of false positivesause of the lower/upper-bounds.

(a) 400 Trajectories (b) 1000 Trajectories

1 T 1 . T T 35 F T L T T —
- Metric based Join —— ' Metric-based Join ——
3 WDF based Join --->--- 3L wWDF based Join --->---]
2 08r DTW based Join ----*--- . DTW based Join ----%---
P 4
E o6
= -
(o))
£)
S 04
=)
04 4
8 02r
o .
[

0

O 200 400 600 800 1000 0 200 400 600 800 1000

Number of Points per Trajectory Number of Points per Trajectory

Figure 6:Scaling with Trajectory Length

Our next set of experiments investigates the similarity fgérformance with respect to the number of points per trajgc
We fix the number of trajectories in OB and SF to 400 and 100peet#/ely and increase the number of points in each
trajectory. From Figure 6, we can observe that our approeales very well with the number of points per trajectory, and
consistently delivers a speedup of more than 2 with respeébetDTW based approach. The speedup increases as the number

of points per trajectory grows from 200 to 1000.
6.2 Effectiveness of wDF

In order to evaluate the effectiveness of our proposed aiityilmeasure, we use a one-nearest neighbor classification
algorithm as suggested by Keogtal. on 20 different data sets [20]. These data sets cover vaajgpigcation domains, e.g.,
robotics, industry, botany etc. For each group of data,initrg set and a testing set are provided together with theecor
cluster labels. We compare the classification error ratioldF against that of -norm and DTW from [20], as shown in
Table 1.

The classification error ratio ofDF is obtained by finding the optimal warping window size fbe tpurpose of this
comparison (and so does DTW), and the percentages in pasmstlindicate the ratio of matching window swzdo the
trajectory duration. We observe that the classificationrerates yielded byDF are clearly superior to4norm, and is
comparable with DTWWDF wins in 7 data sets, ties in 2 data sets and loses the résg)isTbecause whil@DF can handle
local time shifting, it is more sensitive to noise than DTWe Wbte that using a uniform window size of 15% yields only
slightly different results [11].

SincewDF is sensitive to noise, one can alleviate this problem Ighapome filtering technique similar to EDR and
LCSS [27, 10] when determiningDF. We have considered using a median filter to protect th@iwgmatrix from noise.
Our preliminary experiments indicate that the median fétdvstantially improves the effectivenessdidF for classification
purposes, as illustrated in Table 2. However, there arerwpmitant issues that we need to address: (1) choosing theadpt
filter size, or properly adjusting it (for adaptive algoritk); (2) median filters need not yield metric distance, whitdy

slow down the refinement step of Algorithm 3. We will focus bede issues in the future work.
6.3 Clustering Speed-up

To demonstrate the application and benefits of our framewwek evaluate the performance of the three clustering
algorithms presented in Section 5, equipped with our inolesed trajectory join. We compare our approach only with

the metric-based approach where the triangular inequalitged to prune the distance computation. The trajectosed in

Data set le-norm DTW wDF (w)

Synthetic Ctrl. 0.12 0.017 0.02 (13%)

Gun-Point 0.087 0.087 0.027.71%)
CBF 0.148 0.004 0.027 (18%)

Face(all) 0.286 0.192 0.142.8%)

OSU Leaf 0.483 0.384 0.421 (3%)

Swedish Leaf 0.213 0.157 0.1827%0)
50 Words 0.369 0.242 0.301.496)
Trace 0.24 0.01 0 (4%)
Two Patterns 0.09 0.0015 0.0045 (B%)
Wafer 0.005 0.005 0.0045 (13.2%)
Face(Four) 0.216 0.114 0.307.3%)
Lightning-2 0.246 0.131 0.229 @%)

Lightning-7 0.425 0288 0.329 @%)

ECG 0.12 0.12 0.13 (1%)
Adiac 0.389 0391 0.381 (B5%)
Yoga 0.17 0.155 0.143 (2%)

Fish 0.217 016 0.181 (I%)
Beef 0.467 0.467 0.467 @%)
Coffee 0.25 0.179 0.0714.@%)
OliveOil 0.133 0.167 0.167 (8%)

Table 1:Effectiveness of wDF Distance

the experiments are generated from the SF road networksp@8 points each.

We first compare the effects of incremental reassignmerksniedoids. We fix the number of trajectories to 6400 and
increase the number of clusters from 2 to 64. Figure 7 (a) shibat the incremental reassignment can speed up each
iteration over the naive reassignment by up t6 8mes. The speed-up increases with the number of clusiece the
number of trajectories that need to be reassigned becorraesm

Next, we study the speed-up achieved by implementing theetblustering paradigms using our trajectory similariiy jo
framework. In all the experiments, we fix the number of cluste be 10. For k-medoids, we force the reassignment process

to terminate after 20 iterations in each run. The resultshosvn in Figure 7 (b): the similarity join can dramaticalpegd

Data set DTW wDF wDF with median filter
CBF 0.004 0.027 0.011
OSU Leaf 0.384 0.421 0.393
Swedish Leaf 0.157 0.182 0.166
50 Words 0.242 0.301 0.273
Two Patterns 0.0015 0.0045 0.00075
Lightning-7 0.288 0.329 0.29
Beef 0.467 0.467 0.433

Table 2:Effectiveness of Median Filter on wDF

(a) Speed-up of Incremental Reassignment (b) Speed-up of k-medoids

6 T T T T T T) 12 — | : |

3 Metric-based Approach —+—t

o °f 1 x 10 Join-based Approach ---x—|
e} <

€ 4T 1 E 8r 4
= =

2 3r . o 6 f -
o £

o 2F - S 4l i
& 2

1r] ‘TE 2 r .

0 I I I I I I |9 0 T i AN
0 10 20 30 40 50 60 0 500 1000 1500 2000

Number of Clusters Number of Trajectories

Figure 7:Speed-up of k-medoids
up the k-medoids algorithm compared to the metric-baserbagp by more than an order of magnitude. For Chameleon, we
use a 5-NN join to build the hyper-graph for agglomotive tduisig. For DBSCAN, we setto ten times the maximum speed
of the moving objects anlllinPtsto 3. The results for Chameleon and DBSCAN are shown in Fi§uk&e observe that due
to the expensive cost to compute thiBF distance, the kNN join and the range join dominate the ingntime of Chameleon
and DBSCAN, by 9%% and 99% respectively (not shown in figure). The perforrearfdChameleon can be improved by
more than 5 times, and DBSCAN by more than 8 times. Furtheznibe tendency of improvement keeps growing with the

number of trajectories.

(a) Speed-up of Chameleon (b) Speed-up of DBSCAN

o 6 o 6

é Metric-based Chameleon —— § Metric-based DBSCAN ——

x 57 Join-based Chameleon ---x—- x 57 Join-based DBSCAN ---x---

E 4l 1 £ af i

[= [=

o 3r 1 o 3r

£ =

E 2 1 E 2}

& &

s 1T -

|9 0 s X 1 |9 0 VIV L AN
0 500 1000 1500 2000 0 500 1000 1500 2000

Number of Trajectories Number of Trajectories

Figure 8:Speed-up of Chamele@DBSCAN

7 Related Work & Concluding Remarks

The problem of turbo-charging data mining process by shityigoin has been investigated in [6] for low-dimensional
data. In this work, we focus on joining spatio-temporaldcapries and the main goal is to utilize the index structoggrtine
a large number of expensive distance calculation which dates the join process. A trajectory join using theriorms and
a specialized index structure was presented in [5]. Howélrerapproach can not be straightforwardly extended toatipp
different spatio-temporal similarity join.

In [28] the indexing of LCSS and DTW using MBRs of trajectoggsents is explored. However, the proposed lower-
bound distance are calculated in conjunction with a quegueerce, which makes the efficient extension to similarity jo
guestionable. The issue of what is a semantically apprigptiatance measure for trajectory similarity is addre&s¢2i3].

[15] considers similarity search for trajectories usingtgptemporal indices and proposes a novel distance medsuwvever
the work does not address the similarity join of trajectarid/e note that our idea of lower-boundw®F using mindists of
MBRs is similar to that proposed in [26], and the idea of eafigndoning proposed in [30] is similar to our Theorem 3.2.
The key contribution of our work is the combination of simiilg joins and spatio-temporal indices in the native spafce o
moving object trajectories, which yields an increased iefficy.

In this paper, we introduced a new similarity measuibd- for location-related time series data, based on Fré&tibitince.

In order to compute the distance efficiently, we proposeddporoximations for effective upper/lower-bounding. Werth

combined these approximations with spatio-temporal eslin the native space for pruning, and presented a sirgijafit

framework under our distance measure that supports a nushldéferent similarity join variants. Our experimentakidts
have demonstrated the efficiency and scalability of our @sed technique in the context of moving object trajectoaesl
verified the effectiveness of our distance measure.

One immediate extension of this paper is to improve the roless of our distance measure against outliers in the data.
Another interesting avenue of future work is to extend oypsrapch towards more general types of motion and richer

representations of the trajectory models.

References

[1] Lei Chen 0002 and Raymond T. Ng. On the marriage of Ip-reoamd edit distance. MLDB, pages 792-803, 2004.

[2] Helmut Alt and Michael Godau. Computing the fréchettdicce between two polygonal curvelsit. J. Comput. Geometry Appl.
5:75-91, 1995.

[3] Aris Anagnostopoulos, Michail Vlachos, Marios Hadgéheriou, Eamonn J. Keogh, and Philip S. Yu. Global distabased
segmentation of trajectories. KDD, pages 34-43, 2006.

[4] Axel Mosig. Efficient Algorithms for Shape and Pattern Matchifith.D thesis, 2004.

[5] Petko Bakalov, Marios Hadjieleftheriou, Eamonn J. Keognd Vassilis J. Tsotras. Efficient trajectory joins usgynbolic
representations. INobile Data Managemenpages 86—93, 2005.

[6] Christian Bohm and Florian Krebs. Tlkenearest neighbour join: Turbo charging the kdd procEsmwl. Inf. Syst.2004.
[7] Thomas Brinkhoff. A framework for generating networkded moving objectsseolnformatica6(2):153-180, 2002.
[8] V. Prasad Chakka, Adam Everspaugh, and Jignesh M. Ratkxing large trajectory data sets with SETI.GIDR, 2003.

[9] R. H. Chan, Chung-Wa Ho, and M. Nikolova. Salt-and-peppgise removal by median-type noise detectors and detadlepving
regularization.|EEE Trans. on Image Processint4(10), 2005.

[10] Lei Chen, M. TamerOzsu, and Vincent Oria. Robust and fast similarity searehnfoving object trajectories. ISIGMOD
Conferencepages 491-502, 2005.

[11] Hui Ding, Goce Trajcevski, and Peter Scheuermann. igfficsimilarity join of spatio-temporal trajectories. Technical Report
NWU-EECS-08-01, Northwestern Universi2p07.

[12] Thomas Eiter and Heikki Mannila. Computing discretechiet distance. lfiechnical Report CD-TR 94/64, Technische Universitat
Wien 1994,

[13] Martin Ester, Hans-Peter Kriegel, Jorg Sander, arabiXiei Xu. A density-based algorithm for discovering cluste large spatial
databases with noise. KDD, pages 226—231, 1996.

[14] Christos Faloutsos, M. Ranganathan, and Yannis Mgmilms. Fast subsequence matching in time-series databls®IGMOD
Conferencepages 419-429, 1994.

[15] Elias Frentzos, Kostas Gratsias, and Yannis Theodoriddex-based most similar trajectory searchlGBE, 2007.
[16] H.Hwang and R. A. Haddad. Adaptive median filters: negoathms and resultdEEE Trans. on Image Processing(4), 1995.

[17] Gisli R. Hjaltason and Hanan Samet. Incremental distgoin algorithms for spatial databases. SIGMOD Conferencepages
237-248, 1998.

[18] Jiawei Han and Micheline KambeRata Mining: Concepts and Techniqueddorgan Kaufmann Publishers, CA, 2005.

[19] George Karypis, Eui-Hong Han, and Vipin Kumar. ChameteHierarchical clustering using dynamic modelinBEE Computer
32(8):68-75, 1999.

[20] E. Keogh, X. Xi, L. Wei, and C.A. Ratanamahatana. @The UCe Series dataset. Ihttp://www.cs.ucr.edu/ ea-
monn/timeseriesdata/, 2006.

[21] Eamonn J. Keogh. Exact indexing of dynamic time warpiimVLDB, pages 406—417, 2002.

[22] Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulosi & Theodoridis, editorsR-trees: Theory and ApplicationsSpringer-
Verlag, 2006.

[23] Nikos Pelekis, loannis Kopanakis, Gerasimos Markeltehne Ntoutsi, Gennady L. Andrienko, and Yannis TheodsriGimilarity
search in trajectory databases.TiME, pages 129-140, 2007.

[24] Dieter Pfoser, Christian S. Jensen, and Yannis TheédidoMNovel approaches in query processing for moving dhbjagectories. In
VLDB, pages 395-406, 2000.

[25] Yasushi Sakurai, Masatoshi Yoshikawa, and ChristdelEsos. Ftw: fast similarity search under the time warpiligfance. In
PODS pages 326-337, 2005.

[26] Michail Vlachos, Dimitrios Gunopulos, and Gautam DRsatation invariant distance measures for trajectorieDiD, 2004.

[27] Michail Vlachos, Dimitrios Gunopulos, and George Kodl. Discovering similar multidimensional trajectoriés.ICDE, 2002.

[28] Michail Vlachos, Marios Hadjieleftheriou, DimitrioSunopulos, and Eamonn J. Keogh. Indexing multidimensitina-series.
VLDB J, 15(1):1-20, 2006.

[29] Jason Tsong-Li Wang and Dennis Shasha. Query progemirdistance metrics. IWLDB, pages 602-613. Morgan Kaufmann,
1990.

[30] Li Wei, Eamonn J. Keogh, Helga Van Herle, and Agenor Mdflteto. Atomic wedgie: Efficient query filtering for streamgitimes
series. INCDM, pages 490-497, 2005.

APPENDIX:

Proposition 3.1 proof (sketch, c.f.[4]) Obviously, we havépr(Tr1,Tr1) = 0 anddwpr(Tr1, Tr2) = dwor(Tre, Try), it
remains to prove the triangular inequality.

Let Try = (ph,...,pY), Tra= (p%,...,p2) and Trs = (p3, ..., p3), we show thatwor(Tr1,Trs) < Swor(Tr1, Tr2) +
owpr(Trz, Tr3). By definition of dypr, it suffices to construct a-constrained couplingu,v) such thatdist(pil, pg(i)) <
SwoF (Tr1,Tr2) + dwpr(Trz, Trs) anddist(p\%(j), P?) < 8wpr (Tr1,Tr2) + Swor (Tra, Tra) foralli, j € [1:n].

By definition ofdypr, there exists a-constrained couplinu, v) betweerTr; andTrs such thatdist(pﬁ(s), pg(s)) < dwDF
for anys. Similarly, there exists a-constrained couplingk,\) betweeriTr, andTrz such thatdist(pi(t), pfm) < dypf for
anyt.

Next, we constructi(i) as follows: giveni € [1:n], leta be the first point iny,v) that is matched witp!, and letu(i)
be the first point in(k,A) that is matched withpZ. Similarly, we construct(j) as follows: givenj € [1 : n], let B be the first
point in Kk, A that is matched witip?, and letv(j) be the last point ip,v that is matched Witipgeta. We have now defined
u(i) andv(j) for all i, j € [1:n]. From the construction process, we kn@awu(i)) and(v(j), j) form two monotonically
non-decreasing couplings between andTrz. Furthermore, we know that for ariypt, pﬁ(i) anda forms a triangle and
hence we havedist(pt, pﬁ’(i)) < dist(pt, o)+ dist(a, pﬁ(i)) < dwpr(Tr1, Tr2) +8wpr(Tr2, Trs), from the definition of i, v).

Similarly, we havajist(ps(j), p?) < dist(p\zl(j),B) + dist(B, p?) < Bwpr(Tre, Tra) + 8wpr(Tr2, Tra). O

Theorem 3.1 proof (sketch) Let C be the coupling betweefr; andTr, which has the minimum length. By definition,
there exists a pair of points i8, say (p?, pJZ), whose distance is larger than any other paiCin.e., dwpr(Tr1,Trp) =
dist(p!, pf). Further assume that for a givéhy andMy, p! is contained inVIBR] and p? is contained invIBB7. We have
MinDist(MBB], MBBS) < dist(p, p?). By definition ofdwpr and by transitivity, for any other pair of MBRs we can show
that their MinDist is bounded bylist(p{', p?). Hence dist(p, p?) is greater than the length of any lower-bound coupling
between the two sequences of MBRs. The prod@r (Tr1, Trz2) <UBD;, . (M1,M2) can be carried out similarly. [

	TR_cover_page_06.pdf
	Electrical Engineering and Computer Science Department
	Technical Report NWU-EECS-08-01
	January 9, 2006
	Efficient Similarity Join of Large Sets of Spatio-temporal Trajectories
	Hui Ding, Goce Trajcevski, Peter Scheuermann
	Abstract

	paper-main.pdf

