
����������	�
��
����
�	�
�	
�������	����
��	��������
�	

���������	
���
�

��������������

������
	��	����

��������	�	 �	�����	��������	!���∀
��#	��
∃���

!�∃��	
%	���&&��∋	���	(���)�	�%	+∀∋��,����

 �∋�
���

���	����	����
��������	�
�	���
����	�����
��	���	�������	����	������
	���	�
�	�������	�
	���	�����

����	�
���
��	��
	��	�����������	����	���	���� ����	�	
�����	��	�������	����	�������	��	����� �	

�����������	�
�	��������
��	��	�����
�	� ��	�
�	��	����	����	�
	�
	� ������	!���	��	���	��������	

�������
��	���� ���	����	��	�
	�∀�����	�
	���	�������������
��	����������	#����	����	��� ���	
����

������� 	��������
�� 	����	�
	�
�������� 	���������
�	� ������� 	������ 	� ���	���������
� 	���
	

�������
�	������	����
�	
�����∃	��������	���	��∃�	
�	�������	��	������%�	��������
���

#�	�����
� 	��������� 	 ���	 ����� 	�������� 	�������� 	�������
� 	��� ���	 ���� 	��� ���� 	�������������
��	

������	�����	����	�	������	��
���
�	���������
�	� ������	���	
����	��������&�	�������
��	�����	����	

��� 	��������� 	 ����� 	�� 	���������
�� 	 ����	����� 	 ����������� 	����������� 	������� 	��� 	
�����	��
��
�	

�����������
	
�����∃�	∋
�(�)�		∗��	��������

��	��	���	
�(����������
�	��	��
��	∋����	����
������	�
�∀���	�
��������
	����	��	����� �	�	������&�	

�������
��) 	�
 	
�����∃ 	��
�����
�� 	+�	��������� 	����� �
� 	 ����� 	 ����������
�� 	������ 	��������
��	

�����	��
	�������	��	���
�	����	������	� ������	�
�	
�	���� �	
�����∃	���������
��	

#�	�����
�	�������	����	�
	� �������
	��	����	���
	,�−−−	�����	������
	.//	������������������	�����	

� ��	�	��∀����∃	�������	�
	���	������	��	��
�	����	� ��	����	��	���

�����
��� �	�����	���
������	�������	
�(����������
�	�������	��������
��	����� ���
�� 	� ��	���	

�������	�
��	∗�	������	012	��������	�
	
���������	�
3	����������	����� ���
��	�����	� ��	..2	����	

���
	�������	����������	��	��������	��	���	������	�����	��
�����	��	����
������	���	������������	��	���	

��������	��	�������
��
�	�
	��3	�����	����	����	���	��������	� �������	��������	�������	��	����������	

��∃�	�� �
����	��	�����	����� ��	�
���
��	�������

−�./�
�∋0		�������
��	
�(�	3�������
���	(�����∃�
��	!��������
�	4����

SideStep – An Open, Scalable Detouring Service

David Choffnes and Fabián E. Bustamante
Department of Electrical Engineering & Computer Science, Northwestern University

{drchoffnes,fabianb}@cs.northwestern.edu

Abstract

For both technological and economic reasons, the de-
fault path between two end systems in the wide-area In-
ternet can be suboptimal. This has motivated a number
of systems that attempt to improve reliability and perfor-
mance by routing over one or more hops in an overlay.
Most of the proposed solutions, however, fall at an ex-
treme in the cost-performance trade-off. While some pro-
vide near-optimal performance with an unscalable measure-
ment overhead, others avoid measurement when selecting
routes around network failures but make no attempt to op-
timize performance.

We present SideStep, the first globally scalable detouring
service that provides high-performance detour paths with
a small, constant measurement overhead per node. Side-
Step’s efficiency comes from its strategic reuse of measure-
ments from other large-scale distributed systems — namely
content distribution networks (CDNs). Our approach is to
use CDN redirections as hints (i.e. potentially inexact in-
formation used to improve a system’s efficiency) on net-
work conditions. By carefully observing these redirections,
higher performance paths can readily be found with little
overhead and no active network measurement.

We present results from an evaluation of more than 9,000
paths between 133 widely-distributed hosts over a six-week
period. In our study, we find that over half of the alternative
paths identified through CDN redirections yielded perfor-
mance improvements over the default one. Of those, 75%
resulted in noticeable TCP throughput improvements while
over 11% more than doubled throughput as compared to
the direct path. Finally, we demonstrate the practicality of
our approach by implementing an FTP suite that uses our
publicly available SideStep library to seamlessly take ad-
vantage of these improved Internet routes.

1 Introduction
Building on a large body of previous work measuring the
behavior of Internet routing, the Detour study showed that
Internet path selection is not generally optimal in terms of
end-to-end latency, loss rate and TCP throughput [32].

Since then, there has been a number of proposed over-

lay routing systems that attempt to improve reliability and
performance [5, 13, 31, 37]. Most solutions fall at either
extreme in the cost-performance trade-off: RON provides
near-optimal performance at the cost of measurement over-
head that is quadratic in the number of nodes in the system,
whereas Gummadi et al.’s technique requires no measure-
ment overhead to route around network failures, but does
not attempt to optimize performance.We present SideStep,
the first globally scalable detouring service that provides
high-performance detour paths with a small, constant mea-
surement overhead per node.

SideStep achieves high scalability by reusing the network
views gathered by content distribution networks (CDNs)
as part of their normal operation. CDNs cache copies of
web objects on thousands of servers worldwide and redirect
clients to different servers, over short time scales, basedon
server load and network conditions [2]. In [36], we demon-
strated that these redirections are primarily driven by net-
work conditions and posit they could be used to identify
quality Internet paths without additional monitoring. In this
paper, we present the design and implementation and re-
port on a thorough performance evaluation of a detouring
service based on these ideas.

SideStep is part of a research effort driven by the obser-
vation that a large fraction of wide-area systems can be built
to ensure sustainable scalability by strategically reusing the
view of the network gathered by long-running, pervasive
services such as CDNs. These pervasive services can act as
oracles for other systems [1], ensuring that the latter scala-
bility comes without imposing unduly large loads on under-
lying shared resources. Part of this work focuses on devel-
oping efficient techniques to match available network infor-
mation, gathered at low cost from existing oracles, with the
needs of distributed systems.

We first describe the design and implementation of the
SideStep detouring service. We demonstrate how CDN-
based hints, obtained with low overhead via infrequent
DNS translations, allow us to eliminate the scalability con-
straint imposed by actively measuring all overlay paths
(e.g., as done in the RON approach). Paraphrasing Lamp-
son [18], a hint is the saved result of some measurement

1

or computation used for the purpose of making the system
run more efficiently. Since hints may be wrong, there must
be a way to check their correctness before taking any unre-
coverable action. SideStep employs an effective, low-cost
strategy for finding out the truth about recommended paths.

We then experimentally show the benefit of the SideStep
detouring service in terms of end-to-end performance im-
provements when comparing CDN-based detour paths to
the default ones. Our results are drawn from our evaluation
of more than 9,000 paths between 133 widely-distributed
hosts during a six-week period. Over 53% of the alternative
paths identified through CDN redirections yielded perfor-
mance improvements over the default one. Of those, 75%
resulted in TCP throughput improving by over 10%, while
nearly 11% more than doubled the throughput of the di-
rect path. In addition to evaluating the throughput, we per-
formedtraceroutemeasurements for every path, which
we use to explore the relationship between the observed
throughput improvements and basic path characteristics.

Finally, we demonstrate the practicality of our approach
by implementingDraFTP – an FTP suite that uses our
portable, publicly available SideStep library to seamlessly
take advantage of alternative Internet routes. The imple-
mentation of DraFTP required changing fewer than 40 lines
of code from an existing FTP suite.

The key contributions of this paper are:

• A detailed description of the design and implemen-
tation of the SideStep detouring service, an example
service based on strategic measurement reuse. Side-
Step is the first open-access, scalable solution to find-
ing high-quality overlay paths.

• Results from a wide-area evaluation of the deployed
system, proving that CDN redirection dynamics can be
seen as hints regarding high-quality candidate detour
points, and that these hints can effectively support a
highly scalable detouring service.

• An open-source SideStep API and library implement-
ing our detouring service, along with an FTP suite
that relies on SideStep to seamlessly take advantage
of alternative Internet routes and serves as a model for
other client applications.

After reviewing backgroung and related work in the fol-
lowing section, we describe SideStep design and implemen-
tation in Sec. 3 and Sec. 4, and report our experimental re-
sults in Sec. 5. We discuss the limitations of our approach
and challenges for future work in Sec 6 and conclude in
Sec. 7.

2 Background and Related Work
To the best of our knowledge, SideStep is the first open-
access, performance-oriented detouring service to achieve
high scalability. SideStep builds on prior efforts in the area
of detouring, CDN behavior and CDN-based systems.

Following a large body of previous work measuring the
behavior of Internet routing [8,16,17,25], the Detour study
showed that Internet path selection is not generally optimal
in terms of end-to-end latency, loss rate and TCP through-
put [32]. Since then, there has been a number of proposed
overlay routing systems that attempt to improve reliability
and performance [5,13,31,37].

Early approaches to reliable overlay networks (RONs) re-
quire extensive monitoring that scales with the square of the
number of nodes in the system and thus limits their scope to
small deployments (10s of nodes) [5]. More recently, Gum-
madi et al. [13] demonstrate that a system can recover from
a majority of interior network failures [10] without such
overhead by picking a random relay point. This approach,
however, does not focus on improving performance—in our
own experiments, picking detour points at random improves
end-to-end throughput significantly (by at least 10%) only
11% of the time. Similar to RON and Detour, and un-
like Gummadi et al., SideStep focuses onimprovingend-
to-end throughput between two Internet hosts. SideStep
differs from RON and Detour in that SideStep avoidsad-
ditional probing overhead by reusing measurements per-
formed by other long-running services to locate its detour
points. SureRoute [3] (also known as AkaRouting) is a pri-
vate detouring service sold commercially by Akamai. It is
a closed, proprietary system that, like RON, uses extensive
network measurements to find high quality overlay paths.
SideStep is a public, free service that uses CDN redirection
dynamics as hints for locating detour paths. Our service
doesnot use paths provided by SureRoute.

A number of related efforts have investigated alterna-
tive approaches for path selection to address the problem
of measurement overhead in overlay systems. Proposed ap-
proaches vary from exploiting AS-level path information
[11] or building on a common routing underlay dedicated
to topology probing [22] to relying on passive measure-
ments at end hosts [33] or opportunistically combining pas-
sive measurement of wide-area service traffic with targeted
active probing [39]. More generally, a number of recent
projects have begun to address some of the challenges in
supporting Clark et al.’s [9] grand vision of a knowledge
plane for supporting large-scale, self-managing distributed
systems [12,19,27,38]. SideStep provides an approach that
is complementary to these proposals by reusing information
gathered by CDNs about the network and applying this in-
formation to drive a detouring service. Similar to several of
them, SideStep provides this service without requiring any
new infrastructure.

CDNs attempt to improve web performance by deliver-
ing content to end users from multiple, geographically dis-
persed servers located at the edge of the network [2,20,23].
Content providers contract with CDNs to host and distrib-
ute their content. Since most CDNs have servers in ISP
points of presence, clients’ requests can be dynamically for-
warded, via DNS redirections or URL rewriting, to topolog-
ically proximate replicas [15,34].

2

Beyond static information such as geographic location
and network connectivity, CDNs rely on network measure-
ment subsystems to incorporate dynamic network informa-
tion in replica selection and determine high-speed Internet
paths over which to transfer content within the network [6].
In [36], we reported on a broad measurement study of the
Akamai CDN and demonstrated that their redirections are
performed frequently enough as to be useful for control,
that these updates are primarily driven by network condi-
tions and are, therefore, potentially beneficial to other ap-
plications. Our early ping-based study illustrated the po-
tential benefits of employing CDN redirections for identi-
fying good detouring paths and demonstrated that in ap-
proximately 50% of scenarios, the best measured Akamai
one-hop path outperforms the direct path in term of latency.

SideStep extends our previous work in three signifi-
cant ways. First, the above work measured one-hop paths
through servers from the Akamai CDN, which are not avail-
able to an independent overlay network. In contrast, Side-
Step evaluates detour paths through nodes that participate
in our service and uses redirection information from mul-
tiple CDNs. Second, the previous work evaluates pathla-
tenciesover synthetic paths, while this work evaluates end-
to-endthroughputover real, complete paths. In fact, as we
show Section 5.2, we found that for the evaluated paths, la-
tency and throughput are only weakly correlated. Finally,
we built a real system and deploy an example application
(DraFTP) that uses CDN-based hints to locate and route
traffic through high quality detour points that improve end-
to-end throughput.

SideStep achieves high scalability by employing CDN
redirection dynamics as hints to achieve high performance
with low overhead. Hints are a well established and widely
adopted technique in systems. They are significantly less
expensive to maintain than facts (i.e., observations basedon
direct measurement) and are able to improve system perfor-
mance when accurate. Lampson [18] reports on the use of
hints in operating systems, networking, languages and ap-
plications. Hints have also been successfully employed in
other contexts, from file systems [24,30] and memory man-
agement [7] to web caching [21].

3 Design

The goal of the SideStep service is to locate and detour data
streams across overlay paths that improve performance in
terms of end-to-end throughput. These high-quality detour
paths should exhibit good path characteristics along each
hop and provide access to improved performance by fol-
lowing Internet routes that are significantly different from
the direct one.

SideStep identifies potential quality detour paths by em-
ploying CDN redirection dynamics to locate a set of candi-
date detour points, collectively referred to asdetour groups.
In this section, we show that when different nodes exhibit
similar CDN redirection dynamics, they tend to be along
high-quality paths to one another. Further, in Section 5.2

we demonstrate that they provide sufficient path diversity
to realize performance benefits from detouring.

Because CDNs redirections provide onlyhintsregarding
network conditions, SideStep must validate those hints be-
fore redirecting the entire data flow over the corresponding
detour paths. SideStep does this by splitting the data stream
between candidate detour paths and the current path, then
comparing each path’s throughput as reported by the desti-
nation. As we discuss in Section 3.4, splitting the stream
allows us to evaluate candidate detour paths without incur-
ring any end-to-end throughput penalty.

The following sections describe the architecture of Side-
Step and discuss our main design choices. Before diving
into the details, we provide a concrete example of how our
system works using a real detour path that our service found
when streaming data from UC Berkeley to Dartmouth Col-
lege.

3.1 Example SideStep Transfer

Figure 1 illustrates a transfer between UC Berkely (UCB)
and Dartmouth College (DC) geographically. In this ex-
ample, the source node at UC Berkeley and a node at Intel
Research Berkeley (IRB) were frequently redirected to the
same set of CDN replica servers at California State Uni-
versity. Thus, our system mapped the nodes UCB and IRB
to the same detour group and used this fact as a hint that
IRB would be a good candidate detour node. Subsequently,
SideStep validated this hint by splitting the data stream be-
tween the one-hop overlay path UCB—IRB—DC to deter-
mine whether it would improve performance. In fact, the re-
sulting throughput increased by approximately 33% along
the one-hop path.

Figure 1: Geographic depiction of SideStep detouring. In
this example, SideStep found a path that reduced latency by
a factor of four, leading to throughput increasing by 33%.

To understand the relationship between throughput im-
provements and basic paths characteristics, we conducted
traceroute measurements along both paths during this
experiment. We found that the average latency along
UCB—IRB—DC (0.8 ms + 78 ms) was almost four times
less than that along the direct path UCB—DC (286 ms).
Further, we found that even though the first overlay hop
of the detour path took less than 1 ms, the resulting overlay

3

path was completely different from the direct path, with the
exception of routers inside the UCB and DC networks. In
summary, SideStep avoided active path monitoring by us-
ing CDN redirection dynamics to locate a high-quailty can-
didate detour point that significantly improved end-to-end
performance.

3.2 Architecture

The SideStep service architecture, illustrated in Figure 2, is
fairly straightforward. Client code (e.g., an FTP client or
server) registers itself with the detouring service by speci-
fying the endpoint for the connection before requesting an
input stream and/or output stream for network I/O. While
SideStep is running, it periodically performs DNS trans-
lations on CDN names (i.e., URLs) to update its redirec-
tion dynamics (handled by the Ratio Map Manager), and
makes this information available via a distributed hash ta-
ble (DHT). For all data streams handled by SideStep, the
Detour Group Manager actively searches for detour points
that exhibit similar redirection dynamics. Once a candidate
alternate path is found, the Race Manager splits the stream
between the alternate and the current paths to evaluate their
relative performance. The winner of this “race” is the path
over which data is streamed.

Figure 2: Architectural diagram for SideStep.

3.3 Managing Redirection Dynamics

We use CDN redirections dynamics as hints based on the
hypothesis that if two nodes exhibit similar redirection be-
havior, they are likely to be along high-quality paths to one
another and are thus good candidate detour points for each
other [36]. In this section, we address the issue of how to
encode this redirection behavior for each node, efficiently
distribute these encodings and compare two nodes’ redirec-
tion behavior.

A compact way to represent redirection behavior for each
node is to use a map of ratios, where each ratio represents
the frequency with which a node has been directed toward
the corresponding replica server during the past time win-
dow [35]. Specifically, if nodeNA is redirected toward
replica serverr1 30% of the time and toward replica server
r2 70% of the time, then the corresponding ratio map is:

νA = 〈r1 ⇒ 0.3, r2 ⇒ 0.7〉

More generally, the ratio map for a nodea is a set of
(replica-server, ratio)tuples represented as

νa = 〈(rk, fk), (rl, fl), ..., (rm, fm)〉

For brevity, we useνa,i to represent the ratio of timefi

that nodea is redirected to replica serverri. Note that each
node’s ratio map contains only as many entries as replica
servers seen by that node and that the sum of thefi in any
given ratio map equals one.

In the context of a detouring service, if two nodes have
the same ratio map values, then they should be mapped
to the same detour group. Similarly, if two nodes have
completely different redirection behavior, they should be
mapped to different detour groups. More generally, we
would like a metric that, given two nodes, produces a
continuum of values describing the similarity between the
nodes’ redirection behaviors. Based on our formulation of
ratio maps, each node in our overlay can be represented as
as a vertex in a general graph connected by edges labeled
with the degree of overlap in their redirection frequency
maps. Based on the premise that CDN redirections are pri-
marily driven by network conditions, the structure of this
graph can be used to arrange nodes in detour groups based
on thecosine similarityof their ratio maps. Cosine similar-
ity [29] is a mathematical measure how similar two vectors
are, yielding values on a scale of[0, 1]. Treating a redirec-
tion map as a vector and given two hostsa andb, this can
be formally defined as:

cos sim(a, b) =

∑

i∈Ia
(νa,i × νb,i)

√

∑

i∈Ia
ν2

a,i ×
∑

i∈Ib
ν2

b,i

WhereIa represents the set of replica servers to which
nodea has been redirected over the time window. Intu-
itively, the cosine similarity metric is analogous to taking
the dot product of two vectors and normalizing the result.
When the maps are identical, their resulting cosine simi-
larity value is 1; when they are orthogonal (i.e., have no
replica servers in common), the value is 0. Thus, to deter-
mine whether two nodesa andb are mapped to the same
detour group, we can simply compute the cosine similarity
of their redirection maps. In particular, for a given thresh-
old t, if cos sim(a, b) ≥ t, then hostsa andb are in the
same detour group.

Of course, before comparing two ratio maps, our system
first must be able to locate nodes’ ratio maps in a scalable
and efficient manner. We note that ratio-map information
is naturally organized as key-value pairs: a ratio map is
mapped to a node identifier (e.g., a node’s IP address) and
each ratio-map entry is map between a replica server and
the frequency with which it is witnessed. Given this struc-
ture, a DHT (which stores data as key-values pairs) is a nat-
ural and scalable solution for storing and retrieving such in-

4

formation. We discuss the details of SideStep’s DHT-based
technique for storing mapping data in Section 4.

As previously mentioned, quality detour paths should ex-
hibit good path characteristics along each hop and follow
Internet routes that are significantly different from the di-
rect one. Unfortunately, CDN-based detour groups will not
provide these properties if only a small number of clients
are served by a particular replica server, and if these clients
are in the same ISP.

We address this issue by exploiting the fact that CDNs
offer differentiated levels of service to their customers.For
example, consider Akamai customers CNN (an American
news corporation) and Air Asia (an airline based in Asia
and the South Pacific). Using ratio maps gathered from
lookups to the CNN domain name, two nodes in Illinois
appear in a different detour group than two nodes in Ne-
braska (the groups are≈ 450 miles apart). However, using
Air Asia, these four nodes are in the same detour group.
Thus, by using different CDN customers, we can access a
more diverse set of detour paths.

Figure 3 demonstrates this property by comparing the
RTT latency to a node in one detour group (the first hop of
a detour path) to the end-to-end latency for the direct path
to a node outside the group. The figure plots the cumula-
tive distribution function (CDF) of two curves using all of
the detour paths found by SideStep; the x-value of a point
on each curve represents the ratio of the first-hop latency
to the end-to-end latency. The figure clearly shows that for
CDN customer Fox News, detour group nodes are on aver-
age much closer to each other than for CDN customer Air
Asia. For example, 50% of the detour points found using
the Fox News customer name are at least 8 times closer to
nodes inside the detour group than those that are outside.
For the Air Asia customer name, however, only 33% of
the detour group nodes provide the same level of proximity.
Due to this level of diversity in redirection behavior, Side-
Step maintains separate ratio maps for each CDN customer,
and compares ratio maps only between the same customer.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

C
D

F

Ratio of End-to-End Latency in First Hop to Total Latency

Fox News
Air Asia

Figure 3: Ratio of first-hop latency to end-to-end latency
over all CDN-recommended paths, demonstrating that dif-
ferent CDN customers lead to different detour-group char-
acteristics.

While different CDN customer names form detour

groups with diverse path characteristics, we show in Sec-
tion 5.2 that this comes without significantly affecting de-
touring performance. Thus, to maintain scalability under
heavy load, SideStep can spread detouring traffic over mul-
tiple detour groups by having nodes use different CDN cus-
tomer names.

3.4 Validating Detour Paths

Once we have mapped overlay nodes to CDN-based detour
groups, we must validate the “hint” that group members are
good candidate detour points. This means we must deter-
mine whether one-hop overlay paths through nodes in the
CDN detour group offer higher end-to-end throughput than
the direct path.

We validate candidate detour paths by “racing” them; i.e.,
by streaming data over each path concurrently, and compar-
ing the throughput of each path as perceived by the desti-
nation host. The evaluation period lasts until throughput
along each path has stabilized or until a predefined number
of bytes has been sent along the detour path. The first con-
dition ensures that both TCP flows achieve a steady state
before their performance is compared while the latter one
guarantees that races are of finite duration (if path charac-
teristics lead to high TCP throughput variability).When the
race has completed, the destination reports to the source the
throughput for the two paths, and the source uses the better
one.

Although one can send arbitrary data over the detour path
to measure its throughput, we choose to interleave client
data over the two paths we are comparing. As a result,
there isno end-to-end throughput penaltyfor evaluating
each path. The potential cost of this approach comes from
the additional delay that can be imposed by a poor detour
route and the corresponding software complexity to han-
dle out-of-order packet delivery at the destination when re-
assembling the stream from two different paths. In practice
this overhead is significant only if detouring occurs near the
end of the stream and thus increases time-to-completion.
We note that since evaluations of detour paths are typically
short in duration, the overall impact on performance is neg-
ligible.

Our SideStep prototype improves end-to-end perfor-
mance by selecting detour points that are in the same de-
tour group as the source of data traffic. We expect to obtain
similar results by locating nodes in the detour group for the
destination of data traffic. It is, of course, possible to con-
struct a two-hop overlay path where one hop is in the source
node’s detour group and the other is in that of the destina-
tion. Although it has been pointed that most of performance
gains for detouring can be achieved using only one overlay
hop [5], as part of our future work, we intend to investigate
the potential benefits of two-hop detouring in the context of
SideStep.

4 Implementation
This section describes the implementation of our SideStep
prototype and how we ported an existing FTP client and

5

server code to use it. The current SideStep implementa-
tion is a user-level service written in Java for cross-platform
portability and contains approximately 7,600 LOC. We dis-
cuss the implementation of each major SideStep compo-
nents in turn.

4.1 Managing Redirection Dynamics

SideStep currently uses the Akamai and Limelight CDNs
for hints to help drive a detouring system. Akamai boasts
the largest CDN deployment and thus generally offers
the best opportunities to form CDN-based detour groups.
We use a fixed set of Akamai customer names (e.g.,
a1921.g.akamai.net, which corresponds to CNN) as sources
for CDN mappings, though this set can be dynamically up-
dated. For the Limelight CDN, which enjoys a global de-
ployment of thousands of servers in hundreds of ISPs, we
used the domain name associated with a video-on-demand
site for a popular US television network. In this section, we
detail how we efficiently manage redirections from these
CDNs to determine candidate detour points for SideStep
data transfers.

Computing Ratio Maps. As discussed in Section 3.3, we
employ ratio maps to represent the mappings of nodes to
replica servers, where each entry represents the frequency
with which a node has been (re)directed toward the corre-
sponding replica server. These mappings allow SideStep to
form detour groups for selecting candidate one-hop overlay
paths.

SideStep obtains ratio information by performing DNS
lookups periodically. While we showed that the Akamai
CDN refreshes replica-server mappings frequently enough
as to be useful for network control [36], for this system we
wanted to understand howinfrequently these lookups can
be performed without loss of accuracy in terms of replica-
server mappings.

We analyzed ratio-map information generated by running
SideStep on 133 PlanetLab nodes. Ideally, we would like
ratio maps to be relatively stable over short time scales, to
reduce the frequency with which name translations are per-
formed. On the other hand, we would like ratio maps to be
sufficiently dynamic as to be responsive to changing net-
work conditions. To determine how ratio values change
over time, we use the cosine similarity metric to compare
the same node’s ratio map at two different points in time. A
cosine-similarity of 1 means that CDN redirection dynam-
ics did not change at all during the observed time period,
while a cosine-similarity value of 0 indicates that redirec-
tion dynamics have changed enough to place the node in a
different detour group.

Figure 4 plots the complementary CDF (CCDF) of the
cosine-similarity values, so a point(x, y) means thaty per-
cent of samples have a cosine-similarity value greater than
x for a given curve. Each curve represents a different time
window in the set of 1 hour, 10 hours, 1 day and 5 days.
We use a cosine-similarity threshold of 0.1 for detour-group
membership. The closer the curve to the top of the graph,

the more stable the mapping. For example, during the
course of 1 hour, over 80% of our sample of ratio maps
did not change at all; i.e., their “cosine self-similarity”val-
ues are 1. At the other extreme (on the same time scale),
only 1% of the ratio maps changed detour groups.

The figure also shows that cosine similarity values tend
to decrease as the time interval between DNS lookups in-
creases; i.e., nodes’ ratio maps can change significantly
over the time scale of hours and days. Thus, while ratio
maps could be updated as infrequently as once per hour,
updating them less frequently can lead to significant loss in
accuracy.

Figure 4: Cosine self-similarity over various time scales,in-
dicating that DNS lookups can be performed as infrequently
as once per hour.

In practice, SideStep performs ratio updates slightly
more frequently than once per hour at different phases of
a client’s execution. When a node has no viable mapping
information (i.e., during the bootstrapping phase), we in-
crease the DNS lookup interval to once per minute. After
the ratio value has stabilized, SideStep reduces the lookup
interval to a parameterized default value set to one hour.

After each DNS translation, we recompute the ratio map
and exponentially decay the existing values. The decay
rate is set such that a value seen exactly once in a 24-hour
period will be removed after a day has passed. SideStep
periodically caches ratio mappings to local persistent stor-
age. If SideStep must go offline, it can avoid the bootstrap
period upon restarting by reusing the persistent mappings,
provided that they were recorded recently.

Because CDNs often colocate multiple servers in ISPs’
PoPs, both for load balancing and redundancy, nodes are
often directed toward multiple replica servers in the same
class-C subnet, i.e., having IP addresses that differ only in
the last quartet. In this case1 we cluster all servers in the
same class-C subnet and maintain one entry for the cluster
in our ratio map. This has the additional benefit of signif-
icantly reducing the amount of overhead required to store
mappings (from 6,246 unique replica-server IP addresses
to a set of 879 clusters), without any loss of accuracy in
terms of the quality of hints.

1Noteworthy exceptions are servers with IP addresses owned by the
CDNs.

6

Locating Detour Points. We use the cosine similarity
metric on two nodes’ ratio maps to determine whether they
belong to the same detour group (Sec. 3.3). If cosine simi-
larity is high, then the nodes are tightly bound to the same
detour group.

SideStep currently supports storing and retrieving ratio
maps from a service DHT (OpenDHT [28]) via a generic in-
terface. After each ratio update, SideStep places the node’s
current ratio data in a distributed hash table (DHT) using the
node’s listening socket address as the key.2 To enable nodes
with similar ratio maps to find this content in the DHT, the
node also creates a reverse mapping by adding its socket ad-
dress to the DHT, using eachstrongly mappedreplica server
(cluster) as a key. A node is considered strongly mapped to
a replica server if the percent of time it has been seen is
greater than or equal to the cosine similarity threshold. In
this way, we never store information about mappings that
are not useful for identifying detour group members.

As previously mentioned, a node’s ratio map can change
depending on the CDN customer associated with the DNS
lookup. Thus, SideStep maintains a separate ratio map for
each CDN customer; when searching for nodes in the same
detour group, SideStep compares two nodes’ ratio maps
only from the same customer.

To retrieve ratio-map information for members of a de-
tour group associated with a particular customer, a node fol-
lows the steps in Algorithm 1, which are described below.
Recall that a ratio map entryνa,i corresponds to the per-
cent of time a nodea sees replica serveri when perform-
ing a DNS lookup on a particular CDN customer (line 1).
To search for detour points, a SideStep node first performs
DHT lookups using each strongly mapped replica server
cluster as a key (lines 3–4). From these lookups, it obtains
a list of IP addresses for other nodes strongly mapped to
those servers. Becauseratio mapsare required to deter-
mine group membership, SideStep performs a DHT lookup
using each IP address as the key (lines 5–7), from which
it obtains the ratio map,νp, for the corresponding nodep.
Once SideStep has obtained the ratio map for a node, it can
compute the cosine similarity with its own ratio map (lines
8–9). If the result is greater than the threshold,t, the node
is added to the list of potential detour nodes (line 10).

Scalability. The overhead required to maintain and dis-
tribute mapping information is quite low. To maintain map-
ping information in the DHT, a node publishes its ratio
values each time they significantly change (e.g., once per
hour), then publishes its socket address using eachfre-
quently seenreplica-server cluster as a key. In our study
of mapping behavior, we have found that nodes see a small
set of replica-server clusters (< 10) very frequently and see
others much less so. Thus, as a rule of thumb, nodes publish
mapping information only for replica servers to which they
are redirected more than a fractiont of the time. (Recall that
t is the cosine-similarity threshold, a number less than one.)

2The listening socket address identifies the node’s IP address and port
used for incoming SideStep data connections.

νa ←− local ratio map :〈νa,1, νa,2, · · · , νa,m〉;1
t←− cosine similarity threshold;2

foreach replica server clusterj : νa,j ≥ t do3
peerAddresses←− DHTLookup(j);4

foreach p in peerAddresses do5
/* get ratio map for peer p */6
~νp ←− DHTLookup(p);7
if CosineSimilarity(νp, νp) ≥ t then8

AddToDetourGroup(p);9
end10

end11

end12

Algorithm 1 : Replica-server mapping retrieval op-
eration for a particular CDN customer. Ratio map
entryνa,i corresponds to the percent of time a node
a sees replica serveri when performing a DNS
lookup on the specified CDN customer.

Consequently, publishing mapping information requires at
most1 + c/t writes, wherec is the number of CDN cus-
tomers for which mapping information is maintained. The
first term occurs because the node uses one write operation
to store its significant ratio-map information using its socket
address as a key. Thec/t term occurs because a node can
have at most1/t entries in its ratio map with a value greater
than or equal tot. For each such entry, the node must create
a reverse mapping by adding its socket address to the value
stored at the key for that entry. Thus, in the worst case, if
the ratio map mappings for each CDN customer are orthog-
onal and there are1/t entries for each customer, then there
will be c/t writes.

Retrieving information from the DHT incurs a similarly
small overhead – in fact, at most two lookups are required
before SideStep can begin detouring. We achieve this lower
bound because SideStep performs lookups using an asyn-
chronous, iterative process, allowing a node to begin ex-
ploring detour paths as soon as it retrieves a single de-
tour path from the DHT. The total number of DHT oper-
ations performed to lookup all nodes in the same detour
group scales linearly with the average number of nodes,
n, mapped to each replica-server cluster. In the first step
of a lookup, a node performs DHT reads only for replica-
server clusters that it sees frequently (Algorithm 1, line 9),
resulting inc/t DHT operations. This step returns a list
of socket addresses of nodes in the same cluster. The sys-
tem then performs a lookup for each socket address to re-
trieve the corresponding ratio map information. Thus, the
maximum possible number of lookups performed isn∗c/t,
wheren is the average number of socket addresses mapped
to each replica-server cluster. Clearly, however, the max-
imum number of lookups that SideStep performs in prac-
tice ultimately depends on the duration of the associated
file transfer.

7

4.2 Validating Detour Paths

SideStep uses hints about detour group membership to find
good candidate detour points, but necessarily does not know
the actual performance along the complete detour path.
Consequently, SideStep must evaluate each detour path be-
fore determining whether to use the path preferentially over
the direct one (or another detour path). We useraces to
compare the existing data-transfer path to a new one by
splitting the data stream and sending it over each path con-
currently.

As described in Section 3.4, during a race, SideStep mon-
itors the throughput along each path and terminates the race
when the variation in the time-averaged throughput is suf-
ficiently small or when the maximum allowed amount of
data has been sent along the path—whichever comes first.
Recall that since data flows are sent in parallel, the total
throughput between the endpoints generally stays the same
or increases, but does not decrease during a race. Thus, be-
sides the potential (and small) cost of delay, SideStep does
not negatively affect the data transfer when validating hints.

When the race terminates, the destination reports the
throughput over each path to the sender. If the improve-
ment in throughput over the new path is above a certain
threshold, the system switches to the new path.

Detour paths can outperform the direct path (or one an-
other) for a variety of reasons, including lower latency,
lower packet loss and higher available bandwidth. Due to
the dynamics of such network conditions, the “best” path—
be it a detour path or the direct path—may change during
data transfer. Thus, SideStep performs races both period-
ically and dynamically in response to sudden changes in
throughput along the current path.

SideStep provides a number of controls to ensure that
races are performed efficiently. For instance, SideStep lim-
its the frequency with which races are performed. Further,
to ensure that our system does not iteratively probe paths
that have relatively poor performance, a path that has lost a
race cannot be re-evaluated until a certain amount of time
has passed. Finally, if the system is currently using a de-
tour path, it will re-evaluate the direct path periodicallyto
ensure that detour paths continue to outperform the direct
one.

For our SideStep experiments, we used a set of config-
urable parameters that work well in practice, which are pre-
sented in Table 1. An important part of our future work
is to perform a detailed sensitivity study of how detouring
performance changes in response different parameters.

4.3 Example Application: SideStep FTP Suite

SideStep is packaged as a library that can run as a stand-
alone service to provide detouring capabilities to participat-
ing peers. It also contains an API for use with client appli-
cations. The API (see Fig. 5) has four basic calls: two for
registering an incoming or outgoing data connection and
two for requesting an input or output stream. (To close a
SideStep connection, the client code simply closes the cor-

Parameter Value

DNS lookup frequency 1 hour
Ratio map expiration 24 hours
Cosine similarity threshold,t 0.1
Race frequency 60 s
Maximum race data 3 MB
Minimum throughput gain to switch paths 5%
Throughput-drop to trigger a race 33%
Direct-path probe frequency 300 s

Table 1: SideStep default parameters.

responding stream object.) The unique identifier (i.e., the
UniqueId object returned by the API calls in Fig. 5) can
optionally be used to set per-client preferences for finding
detour group nodes, such as the cosine similarity threshold
(t) and the CDN customer(s) to use for DNS lookup.

UniqueId createDataConnection(SocketAddress endpoint)

UniqueId listenForConnection(SocketAddress endpoint)

OutputStream getOutputStream(UniqueId transferId)

InputStream getInputStream(UniqueId transferId)

Figure 5: SideStep API.

To demonstrate the broad applicability of SideStep, we
modified an existing open-source FTP client and server to
use our detouring service. We found that integrating Side-
Step into the FTP client and server was fairly straightfor-
ward. The server required changes to 27 lines of code,
while the client required changes to only 10 lines of code.
The reason for the small amount of code is that SideStep
provides access to detouring via the commonly used I/O
stream interface. Thus, modifying the FTP code to use
SideStep requires changing only the source of the stream
so that it is provided by SideStep instead of the default net-
work library.

The SideStep FTP suite, DraFTP, is available publicly
online3 under a free, open-source license. We intend for
it to serve as a model for how to modify other data-transfer
software to use our service. In addition, SideStep is running
constantly on various PlanetLab nodes, providing a number
of “seed” nodes for future use and further experimentation
with the service.

5 Evaluation
The goal of our evaluation is to examine SideStep perfor-
mance over time and across variety of geographic regions.
Recall that SideStep relies on CDN redirection dynamics
as hints for making detouring decisions, and these dynam-
ics respond to real-time changes in network conditions [36].
Logically then, the best approach to evaluate SideStep is
through a widely-deployed, experimental testbed such as
PlanetLab [26].

During a six-week period (late January to early March,
2007), we evaluated the effectiveness of our system in terms

3http://www.aqualab.cs.northwestern.edu/projects/SideStep.html

8

of finding high quality detour paths between 6,336 distinct
source–destination pairs over 133 PlanetLab nodes. While
the reported results are, naturally, specific to our experi-
mental testbed and the particular time of our experiments,
we believe they indicate treds that are likely to continue in
other SideStep deployments.

5.1 Experimental Approach

We conducted file-transfer experiments to characterize
what type of source–destination pairs can benefit from
CDN-based detouring. A simple way to explore this prob-
lem is to exploreall distinct paths in our deployment; how-
ever, with 133 nodes, this approach requires far too much
time and bandwidth.

Instead, for each round of experiments, we select source–
destination pairs such that every source is likely to find at
least one detour path during the experiment. This is based
on the observation that if two nodes appear in the same de-
tour group, they would have seen each other as candidate
detour points for data traffic in the recent past and are likely
to do so again in the near future. More importantly, if a
node does not appear in the same detour group with any
other node, it ishighly unlikelyto find any other node as a
detour point in the near future. Thus, we first deploy Side-
Step on PlanetLab nodes without running experiments and
record the ratio maps for each node. We use these ratio
maps to calculate nodes’ detour groups and determine the
set of source–destination pairs to explore.

At the beginning of an experiment, the source node con-
nects to the destination and begins transferring data con-
taining random bytes. After a brief warm-up period, the
source node starts evaluating detour paths (if any detour
group nodes were found) according to our description in the
previous section. We used 30 MB file transfers—a size that
generally provided sufficient time to evaluate at least one
detour path and not so large so as to exceed PlanetLab’s
daily bandwidth limits.

5.2 Cumulative Results

In this section, we present cumulative results from our
experiments in which 9,506 paths were evaluated. Fig-
ure 6 shows a CDF of the observed performance benefits
of CDN-based detouring, in terms of end-to-end through-
put. The x-axis (log scale) represents theratio of through-
put over the direct path to the throughput over a detour path
found by SideStep. The y-axis specifies the percent of val-
ues less than or equal to a given ratio. We separate the per-
formance for each detour path according to its associated
detour group, and label these groups using the CDN cus-
tomer that we used to form them. Additionally, we provid-
ing a curve cumulating results over all detour groups.

The figure shows that, regardless of CDN customer
name, over half (53%) of the alternative paths identified
through CDN-based hints yielded performance improve-
ments over the default one. Of those, 75% resulted in no-
ticeable TCP throughput improvements (performance in-
creasing by at least 10% over the direct path) while over

11% more than doubled the direct-path throughput. These
results, which are comparable to those obtained using
O(n2) measurement overhead, were obtained using a tech-
nique that incurred asmall, constant overheadper node.
Even when a detour path recommended by SideStep per-
forms worse than the direct one, the former is never actu-
ally used as the primary path for data transfer. Besides the
potential temporary delay incurred by racing data over two
paths in parallel, our system incurs no overhead by validat-
ing these hints. We also note that the curves for different
detour groups are very similar in shape. This suggests that
one can use different CDN customer names to provide ac-
cess to different detour groups without significantly affect-
ing the quality of detouring performance.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100 1000

C
D

F
[x

<
r]

Ratio (Detour : Direct)

All Customers
Air Asia

Fox News
Le Monde

CNN

Figure 6: Ratio of detour throughput to direct-path through-
put. Overall, more than half of the observed detour paths in-
crease performance. Using different CDN customer names
provides access to different detour groups without signifi-
cantly affecting the quality of detouring performance.

We further analyzed this data to determine the kinds of
performance gains witnessed on a per-path basis for the
over 2,300 unique detour paths examined in our study. We
found that 60% of the paths found offered up to a 10% per-
formance improvement over the direct path, and 44% of the
paths offered up to a 25% improvement in throughput. This
further demonstrates that a CDN-based detouring service
can achieve significant performance benefits over a large
number of paths.

In parallel with our experiments, we performed and
recordedtraceroute measurements for each path that
streamed data, at the beginning of each experiment and at
the beginning of races. (Note thattraceroute is not part
of the SideStep service and was only used here for the pur-
pose of evaluation.) When conducting measurements over
detour paths, the source node performs atraceroute to
the detour node, the detour node performs atraceroute
measurement to the destination node, and we later compose
the two paths for analysis. We used this information to com-
pare basic path characteristics between the default Internet
path and ones found by SideStep.

First, we use thetraceroute measurements to com-
pare end-to-end latency between the default Internet path
and the one based on CDN hints. Figure 7 visualizes this

9

information using a CDF of theratio of direct-path latency
to the detour-path latency. The figure shows that approx-
imately 65% of the one-hop paths recommended by Side-
Step result in lower latency than the direct path. Further,
nearly half (48%) of the detour paths reduce latency by 10%
or more.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

Latency Ratio

Figure 7: Ratio of direct-path to detour-path latencies,
showing that nearly half of the detour paths significantly7
improve end-to-end latency.

We also analyzed our data to determine what portion of
the direct path was avoided by the detour path, indicating
the diversity in Internet routes. Figure 8 illustrates thismet-
ric using a CDF plot.

The figure shows, for example, that detour paths always
differ from direct ones in at least 8% of the path while 65%
of the paths differ in at least half of the total hops taken
by the direct path. Thus, the majority of hops along paths
found by SideStep are different than those on the direct
path, for most of the samples. In short, it is clear that Side-
Step does finds diverse Internet paths; moreover, as Fig. 3
shows, the majority of these paths are along quality paths
in terms of latency.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Percent of hops that diverge

Figure 8: Divergence between direct and detour paths in
terms of percent of total hops, demonstrating that SideStep
finds detour paths offering significant path diversity.

Next, we use thetraceroute data to compare loss
rates along the alternate Internet paths. Figure 9 presents
a CDF of thedifferencein loss rates between the direct
path and the CDN-based alternate path, over all the exper-
iments. Unlike the previous figures, we plot the difference

instead of the ratio because loss rates exhibit a much smaller
range of values than the other metrics. We compute these
loss rates by determining the percentage oftraceroute
measurements dropped by routers during the entire mea-
surement. They areinstantaneousbecause they reflect the
result of a small sample of values measured in response to
an event and thus they are susceptible to certain biases. For
example, if a race is conducted in response to a drop in
throughput caused by congestion, then the loss rate reported
by our system will likely be significantly higher than theav-
erageloss rate along that path during the entire experiment.
Also, our loss rates are susceptible to bias due to routers
dropping ICMP messages even when they are not dropping
data packets.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

C
D

F

Instantaneous loss

Figure 9: Difference in instantaneous loss rates between
direct and detour path, indicating that a majority of detour
paths exhibit loss rates that are as good or better than the
direct ones.

The figure clearly shows that loss rates along the detour
path are as low or lower than the direct path more than 75%
of the time. More importantly, the detour path reduces loss
over the direct path more than 30% of the time. Thus, in the
majority of cases, SideStep finds high-quality detour paths
in terms of instantaneous path loss.

Now we examine how throughput gains are related to the
basic path characteristics observed viatraceroute. Fig-
ure 10(a) presents a scatter plot using the result of all races
conducted during our experiments. Each point(x, y, z) rep-
resents the following data for a single validation race:x is
the difference in instantaneous loss between the detour path
and the direct path;y is the ratio of the direct-path latency
to the detour one;z is the ratio of detour-path throughput
to the direct one (denotedTr). It is immediately clear that
most of the points are clustered near the zero point of the
x-axis, where the difference in loss between the two paths
is small, which Fig. 9 demonstrates is a common case.

Figure 10(b) projects the data onto the XY plane to more
clearly demonstrate any trends in the plot. The upper right
quadrant represents lower latency and lower path loss along
the detour path, while the bottom left quadrant represents a
detour path with worse characteristics than the direct path.
It is immediately clear that SideStep can see gains across a
wide range of latency and loss values. It is also clear that

10

SideStep is unlikely to find performance gains along the de-
tour path if its latency is greater than that of the direct path,
as indicated by the relatively large fraction ofX’s below the
ratio value of 1.

Finally, we observe that latency and loss path character-
istics are, at best, weakly correlated with throughput im-
provements along a path. For example, even when latency
and loss are low (the upper right quadrant of the graph),
there is still a small number ofX’s indicating relatively low
throughput. This occurs because factors such as available
bandwidth and processing load at detour points can reverse
any performance benefit from a higher quality path.

(a) Three-dimensional view.

(b) Projected onto the XY-plane

Figure 10: Scatter plot of the relationship among latency
ratios, path loss differences and throughput ratios between
the direct path and detour path.

Lastly, we look at how time-of-day effects the quality of
detouring results. Figure 11 presents a CDF of throughput
ratios (log scale) with each curve representing a different
period of the day: early morning, late morning, afternoon
and evening in the time zone of the source of the data trans-
fer. We note that the curves have similar shapes, but there
is clear separation among the curves at values significantly
greater than or less than 1, indicating that time of day can
affect detouring results. The reason that the effect is not
more pronounced is that many detouring paths cross a large
number of time zones, and our current implementation only
optimizes the source half of the path. Thus, time-of-day
effects near the destination can interfere with those at the
source.

In Fig. 12, we plot only the values greater than 1 and

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100 1000

C
D

F
 [x

<
r]

Throughput Ratio

0:00 to 6:00
6:00 to 12:00

12:00 to 18:00
18:00 to 24:00

Figure 11: Time-of-day comparisons between detour and
direct path throughput for all races, showing that through-
put gains are sensitive to busy periods.

place the figure on a linear scale to better show the differ-
ence among the time-of-day curves. In this graph, it be-
comes clear that larger performance gains are seen in the
off-peak evening hours. This indicates that off-peak hours
provide our detouring service more available bandwidth for
improving throughput along alternate paths.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 5 10 15 20 25 30

C
D

F
 [x

<
r]

Throughput Ratio

0:00 to 6:00
6:00 to 12:00

12:00 to 18:00
18:00 to 24:00

Figure 12: Time-of-day comparisons between detour and
direct path throughput for detour paths that outperformed
direct ones. The figure shows more bandwidth available
along detour paths during off-peak hours.

5.3 Detouring Examples

In this section, we detail the operation of our detouring ser-
vice using graphs depicting examples of the throughput ob-
served while transferring 30 MB files using SideStep across
diverse geographic regions. Figure 13 contains four file
transfers between four distinct pairs of nodes in our exper-
imental testbed. In each subfigure, the y-axis represents
end-to-end throughput and the x-axis represents time. Each
curve indicates a different path between source and desti-
nation, and the solid curve always represents the direct path
for a given pair of endpoints. We describe each transfer in
turn.

Figure 13(a) shows throughput for a transfer between a
source node in Australia and a destination node in Poland.
In this specific example, SideStep found that a node in
China was in the same detour group as the source node

11

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

R
at

e
(K

B
/s

ec
)

Time

Transfer from Australia to Poland

Direct path
via China

(a) Cross-continental path,From: Australia, To: Poland, Via:
China

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 20 40 60 80 100 120 140 160

R
at

e
(K

B
/s

ec
)

Time

Transfer from Illinois (US) to Hungary

Direct path
via Washington, DC
via Kansas City, MO

(b) Cross-continental path originating in the US,From: Illinois
(US) To: HungaryVia: Washington, D.C. (US)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 10 20 30 40 50 60 70 80

R
at

e
(K

B
/s

ec
)

Time

Transfer from Berkeley, CA to Palo Alto, CA

Direct path
via Santa Barbara, CA

(c) Intrastate path,From: Berkeley, CA,To: Palo Alto, CA,Via:
Santa Barbara, CA

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 20 40 60 80 100 120 140
R

at
e

(K
B

/s
ec

)

Time

Transfer from Cambridge, MA to College Park, MD

Direct path
via Amherst, MA

via Ithaca, NY

(d) Interstate path,From: Cambridge, MA,To: College Park, MD,
Via: Amherst, MA

Figure 13: Example traces of throughput during transfers using SideStep.

in Australia, so it evaluated the path by racing the al-
ternate path through China with the direct path. In this
case, the alternate path clearly wins the race, and Side-
Step streams data exclusively through China. This figure
demonstrates that SideStep can find significant end-to-end
improvements along public cross-continental paths outside
the United States.

In Fig. 13(b), we demonstrate another cross-continental
path, this one with the source node located in the Midwest
region of the US and the destination node located in Hun-
gary. SideStep first finds a one-hop path through a node lo-
cated in Washington, D.C. on the East Coast of the US. Af-
ter the racing period, it is clear that the detour path through
Washington is better than the direct Internet path, so Side-
Step switches to the former. Unlike the previous figure,
however, this one shows that SideStep finds another candi-
date detour point—this one in Kansas City, MO (located in
the Midwestern US). In this case, the second detour path in-
deed outperforms the direct path measured previously, but
it does not outperform the detour path through Washington,
D.C. Thus, SideStep marks the Kansas City path as visited,
and does not test it again until the refresh interval for the
file transfer has expired.

Up to this point, we have demonstrated only cross-
continental paths. It is important to note, however, that
SideStep can improve performance for shorter range trans-
fers. Figure 13(c) shows the performance of a file transfer

between a source node in Berkeley, CA and a destination
node in Palo Alto, CA—both of which are in northern Cal-
ifornia. Again, SideStep locates a detour node in the same
detour group of the source, specifically in Santa Barbara,
CA. The resulting throughput burst rate more than triples
the direct-path throughput, and it eventually stabilizes at a
rate that is more than double that of the direct path.

Finally, we present another example of performance
gains over relatively short paths (Fig. 13(d)). In this case,
the source node is located in Cambridge, MA and the des-
tination node is located in College Park, Maryland, both
of which are on the East Coast of the US. SideStep first
locates a detour path through Amherst, MA that (despite
high variability in throughput) significantly improves per-
formance over the direct path. Later during the transfer,
SideStep discovers a detour point in Ithaca, NY; however, it
clearly does not outperform the path through Amherst, nor
does it appear to outperform the previously measured direct
path. This path is quickly abandoned.

This section demonstrated SideStep’s successful opera-
tion in a variety of transfer scenarios. Note that in none
of the above examples did overall end-to-end throughput
between the source and destination drop during hint valida-
tion, even when the hints proved to be wrong.

12

6 Discussion and Future Work

This work presents results from a detouring service, Side-
Step, that relies on CDN redirection dynamics as hints to
achieve high scalability. In this section we detail the lim-
its of our approach, discuss issues that must be addressed
should SideStep enjoy large-scale adoption and comment
on the strategic reuse of CDN information.

Limits of the Approach. Our experiments were con-
ducted in PlanetLab. The advantage of this approach is
that we can demonstrate the effectiveness of our system on
a large variety of real Internet paths. The disadvantage is
that PlanetLab nodes may suffer from unusually high loads,
leading to unpredictable (and often large) application-layer
delays and variations in available throughput. The reported
results showed that our approach can work even in this hos-
tile environment. A topic of future work, however, is to de-
termine how information regarding load and available band-
width can be incorporated in detouring decisions.

SideStep is currently designed to improve performance
for bulk TCP data transfers that take longer than one minute
on average (in our experiments, this corresponds to files on
the order of 10s of MBs or more). The minimum file size
that can see improved performance is limited by the latency
for finding and validating detour paths, relative to the total
time required to download the file. If the entire file can be
transferred along the direct path in less time than is required
to find a good alternate path, then SideStep cannot pro-
vide any benefit to the file transfer. While SideStep could
support relatively small files by performing races more fre-
quently than in its current implementation, we do not expect
significant performance improvements for arbitrarily small
flows.

Our study showed that a large majority of alternate paths
located by SideStep offered lower latency than the direct
path. An interesting direction for future work is investi-
gating how well SideStep can use these paths to provide
performance benefits for low-bandwidth, latency-sensitive
applications. We believe that a similar validation tech-
nique will allow SideStep to evaluate the quality of alter-
nate paths; however, there are many open issues regarding
the frequency with which to evaluate these paths and the
extent to which delays at the middle hop can reduce the raw
performance gain along those paths.

Large-scale Deployments. There are many issues that
must be addressed should SideStep be adopted by a large
number of hosts relative to our experimental testbed. We
focus on several key issues below.

For one, it is possible that a detour path has enoughtotal
bandwidth to improve end-to-end throughput for an incom-
ing flow, but does not have enoughavailablebandwidth for
that flow. To address this issue, nodes can exchange in-
formation about their current throughput conditions during
the connection-establishment handshake. Specifically, the
source node should send the candidate detour node an es-
timate of its current throughput along the direct path. The

middle node can likewise passively monitor its maximum
throughput and use that to estimate its available bandwidth.
Based on this information, it can simply decline to accept
the detour connection if there is not enough available band-
width to serve the new flow.

Given a large-scale adoption, one should address the is-
sue of fairness in terms of bandwidth consumption among
peers. In particular, a peer is consuming bandwidth unfairly
if it sends a large amount of data traffic over detour paths but
does not carry any detour traffic for other data flows. Should
this become a significant problem in terms of reducing total
available bandwidth to the SideStep system, we expect that
a credit-based mechanism (e.g., [14]) can provide incentive
for peers to contribute their their fair share of bandwidth to
the system.

Another concern with large-scale deployment is the is-
sue of authentication and access control. This is important,
for example, when peers in the SideStep network form a
private detouring overlay. SideStep should also be resilient
to malicious behavior, such as DoS attacks or corruption of
DHT information used for locating detour nodes. We leave
these important issues as part of our future work.

On the reuse of CDNs’ network views. It is important
to note that our detouring technique doesnot place a large
(or even significant) burden on the CDNs from which the
system gathers network information. Because our system
queries its local DNS server to determine replica-server
mappings, DNS lookups can be answered from the local
DNS cache without contacting the CDNs’ DNS servers.
Further, because our system performs only name transla-
tions and does not actually download CDN content, there is
no additional data-traffic load placed on the CDN servers.
Finally, we demonstrated that mappings between nodes and
replica servers are stable over time scales as short as one
hour. Thus, the load that our system places on the DNS
infrastructure can be as low as 24 name translations per
day—likely a vanishingly small fraction of those generated
by web clients running in the same network.

Finally, while SideStep employs CDN redirections in
previously unanticipated ways, it is important to note that
our system’s interactions with CDNs in no way forces them
to behave in ways that contradict their fundamental policies.
Further, the Akamai CDN provides summary information
about live, global network conditions on their public web-
site for free [4]. Because SideStep places and insignificant
load on CDNs and accesses information already explicitly
provided at no charge to the public, we expect a commen-
salistic relationship between SideStep and CDNs.

7 Conclusions

This paper demonstrated that one can build a high-
performance detouring service by reusing available net-
work information, gathered at low cost from existing ora-
cles, that would otherwise be forced to probe their environ-
ment independently. In particular, we showed how SideStep
uses CDN redirections dynamics, seen as hints regarding

13

good candidate detour points, to locate good paths among
these alternatives without additional monitoring. We built
a service to support CDN-based, fe-hop source routing and
implemented it as a ready-to-use service that is simple to
integrate into existing applications. Our extensive measure-
ments of a wide-area deployment in PlanetLab demonstrate
the feasibility and benefits of this novel approach to detour-
ing.

In summary, we found that in more than half of our ex-
periments, our service can exploit CDN redirection dynam-
ics to discover paths that have end-to-endthroughputlarger
than that of the direct path. For those that do not improve
performance, we developed efficient techniques for eval-
uating the validity of CDN-based hints. We presented a
traceroute-based study showing that the majority of
CDN-based paths exhibited better basic path characteris-
tics than the default Internet paths. Finally, we deployed
SideStep on a large number of PlanetLab nodes and pro-
vide access to the service via a portable, publicly available
library.

References
[1] AGGARWAL, V., FELDMANN , A., AND SCHEIDELER, C. Can ISPs

anda P2P users cooperate for improved performance.ACM SIG-
COMM Computer Communication Review 37, 3 (2007), 29–40.

[2] A KAMAI . Akamai CDN.

[3] A KAMAI . Sureroute, May 2003.

[4] A KAMAI . Akamai introduces first-of-its-kind, real-time view into
health of the Internet, June 2007.

[5] A NDERSEN, D., BALAKRISHNAN , H., KAASHOEK, F., AND

MORRIS, R. Resilient overlay networks. InProc. of the ACM SOSP
(Oct. 2001).

[6] BORNSTEIN, C., CANFIELD , T., AND M ILLER , G. Overlay routing
networks (Akarouting), 2002.

[7] BROWN, A. D., AND MOWRY, T. C. Taming the memory hogs:
using compiler-inserted released to manage physical memory intel-
ligently. In Proc. of USENIX OSDI(October 2000).

[8] CHINOY, B. Dynamics of Internet routing information. InProc. of
ACM SIGCOMM(September 1993).

[9] CLARK , D. D., PARTRIDGE, C., RAMMING , J. C., AND WRO-
CLAWSKI , J. T. A knowledge plane for the Internet. InProc. of
ACM SIGCOMM(August 2003).

[10] DAHLIN , M., CHANDRA , B. B. V., GAO, L., AND NAYATE , A.
End-to-end WAN service availability.IEEE/ACM Transactions on
Networking 11, 2 (April 2003).

[11] FEI, T., TAO, S., GAO, L., AND GUÉRIN, R. How to select a
good alternate pah in large peer-to-peer systems. InProc. of IEEE
INFOCOM (April 2006).

[12] GIBBONS, P., KARP, B., KE, Y., NATH , S.,AND SESHAN, S. Iris-
Net: an architecture for a world-wide sensor web.IEEE Pervasive
Computing 2, 4 (2003).

[13] GUMMADI , K., MADHYASTHA , H. V., GRIBBLE, S. D., LEVY,
H., AND WETHERALL, D. Improving the reliability of Internet
paths with one-hop source routing. InProc. of USENIX OSDI(De-
cember 2004).

[14] GUPTA, M., JUDGE, P.,AND AMMAR , M. A reputation system for
peer-to-peer networks. InProc. of NOSSDAV(2003), ACM Press,
pp. 144–152.

[15] KANGASHARJU, J., ROSS, K., AND ROBERTS, J. Performance
evaluation of redirection schemes in content distribution networks.
Computer Communications 24, 2 (2001), 207–214.

[16] LABOVITZ , C., MALAN , G. R.,AND JAHANIAN , F. Internet rout-
ing instability. InProc. of ACM SIGCOMM(September 1997).

[17] LABOVITZ , C., MALAN , G. R., AND JAHANIAN , F. Origins of
Internet routing instability. InProc. of IEEE INFOCOM(March
1999).

[18] LAMPSON, B. W. Hints for computer system design. InProc. of the
ACM SOSP(October 1983).

[19] MADHYASTHA , H. V., ISDAL, T., MICHAEL PIATEK , DIXON , C.,
ANDERSON, T., KIRSHNAMURTHY, A., AND VENKATARAMANI ,
A. iPlane: an information plane for distributed systems. InProc. of
USENIX OSDI(November 2006).

[20] M IRROR IMAGE. Mirror image CDN.

[21] MOGUL, J. C. Hinted caching in the web. InProc. of the ACM
SIGOPS European Workshop(September 1996).

[22] NAKAO , A., PETERSON, L., AND BAVIER , A. A routing underlay
for overlay networks. InProc. of ACM SIGCOMM(August 2003).

[23] NETWORKS, L. Limelight networks CDN.

[24] PATTERSON, R. H., GIBSON, G. A., GINTING , E., STODOLSKY,
D., AND ZELENKA , J. Informed prefetching and caching. InProc.
of the ACM SOSP(December 1995).

[25] PAXSON, V. End-to-end routing behavior in the Internet. InProc. of
ACM SIGCOMM(August 1996).

[26] PLANETLAB. Planetlab: An open testbed for developing, deploying,
and accessing planetary-scale services.

[27] R, H., HELLERSTEIN, J., BOONA, N., LOO, T., SHENKER, S.,
AND STOICA, I. Querying the Internet with PIER. InProc. of VLDB
(September 2003).

[28] RHEA, S., GODFREY, B., KARP, B., KUBIATOWICZ , J., RAT-
NASAMY, S., SHENKER, S., STOICA, I., AND YU, H. OpenDHT:
a public DHT service and its uses. InProc. of ACM SIGCOMM
(2005).

[29] SALTON , G., AND MCGILL , M. J. Introduction to modern infor-
mation retrieval. McGraw-Hill, New York, NY, 1986.

[30] SARKAR , P., AND HARTMAN , J. Efficient cooperative caching us-
ing hints. InProc. of USENIX OSDI(October 1996).

[31] SAVAGE , S., ANDERSON, T., AGGARWAL, A., BECKER, D.,
CARDWELL , N., COLLINS, A., HOFFMAN, E., SNELL , J., VAH-
DAT, A., VOELKER, G., AND ZAHORJAN, J. Detour: Informed
Internet routing and transport.IEEE Micro 19, 1 (January-February
1999), 50–59.

[32] SAVAGE , S., COLLINS, A., HOFFMAN, E., SNELL , J., AND AN-
DERSON, T. The end-to-end effects of Internet path selection. In
Proc. of ACM SIGCOMM.

[33] SESHAN, S., STEMM , M., AND KATZ , R. H. SPAND: shared pas-
sive network performance discovery. InProc. of USENIX USITS
(December 1997).

[34] SHAIKH , A., TEWARI, R., AND AGRAWAL , M. On the effective-
ness of DNS-based server selection. InProc. of IEEE INFOCOM
(April 2001).

[35] SU, A.-J., CHOFFNES, D., BUSTAMANTE, F. E., AND KUZ-
MANOVIC , A. Relative network positioning via cdn redirections.
Tech. Report NWU-EECS-2007-03, Northwestern University, Janu-
ary 2007.

[36] SU, A.-J., CHOFFNES, D. R., KUZMANOVIC , A., AND BUSTA-
MANTE , F. E. Drafting behind Akamai: Travelocity-based detour-
ing. In Proc. of ACM SIGCOMM(September 2006).

[37] TANG, C., AND MCK INLEY, P. A distributed multipath computa-
tion framework for overlay network applications. Tech. rep., Michi-
gan State University, 2004.

[38] WAWRZONIAK , M., PETERSON, L., AND ROSCOE, T. Sophia: An
information plane for networked systems. InProc. of HotNets(No-
vember 2003).

[39] ZHANG, M., ZHANG, C., PAI , V., PETERSON, L., AND WANG, R.
PlanetSeer: Internet path failure monitoring and characterization in
wide-area services. InProc. of USENIX OSDI(December 2004).

14

	Electrical Engineering and Computer Science Department
	Technical Report
NWU-EECS-07-08
	October 9, 2007

	SideStep – An Open, Scalable Detouring Service
	David R. Choffnes and Fabián E. Bustamante
	Abstract

