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Abstract 
 

The optimization problems associated with adaptive and autonomic computing systems 
are often difficult to pose well and solve efficiently. A key challenge is that for many 
applications, particularly interactive applications, the user or developer is unlikely or 
unable to provide either the objective function f, or constraints. It is a key problem 
encountered broadly in adaptive and autonomic computing. 
 
This dissertation argues for using human-driven optimization techniques to solve 
optimization problems. In particular, it consists of two core ideas. In human-driven 
specification, we use direct human input from users to pose specific optimization 
problems, namely to determine the objective function f and expose hidden constraints. 
Once we have a well-specified problem, we are left with the need to search for a solution 
in a very large solution space. In human-driven search, we use direct human input to 
guide the search for a good solution, a valid configuration x that optimizes f(x). 
 
My research happens in three contexts. The main context is the Virtuoso system for 
utility and grid computing based on virtual machines (VMs) interconnected with overlay 
networks. Virtuoso provides instances of optimization problems and a framework for 
evaluating solutions to them. In particular, the virtual execution environment of Virtuoso 
makes possible low-level, application- and developer-independent adaptation 
mechanisms such as CPU reservations, VM migration, overlay topology configuration 
and routing, and network reservations. The high-level optimization problem in Virtuoso 
is how to dynamically optimize, at run-time, the performance of existing, unmodified 
distributed applications running on existing, unmodified operating systems. These 
applications can be batch, batch parallel and interactive applications. The second context 
of my research is power management for laptops. Existing Dynamic voltage and 
Frequency Scaling (DVFS) techniques are commonly used to reduce power consumption 



but they are conservative and pessimistic about both the user and the processor. How to 
further prolong battery life and reduce heat dissipation is the problem that is addressed. 
The last context of my research is IT configuration, a process whereby individual 
components are assembled and adjusted to construct a working solution. Visible 
complexity—of setting configuration knobs, installing and updating software, diagnosing 
and repairing problems, and so on—is a challenge for IT. How to reduce such complexity 
is a challenging problem. As the first step, I explored the decision complexity presented 
to the non-expert system administrator, which represents a significant part of the whole 
IT complexity. 
 
To show the feasibility and effectiveness of my techniques, in this dissertation, I describe 
how I address increasingly difficult optimization problems in the Virtuoso context using 
human-driven specification or search. Those problems cover single machine CPU 
scheduling, multiple machine CPU scheduling, and multiple machine VM mapping for 
interactive (desktop), batch and batch parallel applications. I also present how I apply 
human-driven techniques to solving power management problems on laptop computers. 
In general, solving each of these problems involves the design and development of 
systems mechanisms, adaptive algorithms and user interfaces. I evaluate each element of 
my work through a user study. I also discuss my work on modeling user decision 
complexity in IT configuration systems, as the first step towards applying human-driven 
techniques in that domain. 
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ABSTRACT

Human-driven Optimization

Bin Lin

The optimization problems associated with adaptive and autonomic computing systems

are often difficult to pose well and solve efficiently. A key challenge is that for many ap-

plications, particularly interactive applications, the user or developer is unlikely or unable

to provide either the objective function f , or constraints. It is a key problem encountered

broadly in adaptive and autonomic computing.

This dissertation argues for using human-driven optimization techniques to solve

optimization problems. In particular, it consists of two core ideas. In human-driven spec-

ification, we use direct human input from users to pose specific optimization problems,

namely to determine the objective function f and expose hidden constraints. Once we have

a well-specified problem, we are left with the need to search for a solution in a very large

solution space. In human-driven search, we use direct human input to guide the search

for a good solution, a valid configuration x that optimizes f (x).

My research happens in three contexts. The main context is the Virtuoso system for

utility and grid computing based on virtual machines (VMs) interconnected with overlay

networks. Virtuoso provides instances of optimization problems and a framework for eval-

uating solutions to them. In particular, the virtual execution environment of Virtuoso makes

possible low-level, application- and developer-independent adaptation mechanisms such as

CPU reservations, VM migration, overlay topology configuration and routing, and network
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reservations. The high-level optimization problem in Virtuoso is how to dynamically opti-

mize, at run-time, the performance of existing, unmodified distributed applications running

on existing, unmodified operating systems. These applications can be batch, batch parallel

and interactive applications. The second context of my research is power management for

laptops. Existing Dynamic voltage and Frequency Scaling (DVFS) techniques are com-

monly used to reduce power consumption but they are conservative and pessimistic about

both the user and the processor. How to further prolong battery life and reduce heat dissi-

pation is the problem that is addressed. The last context of my research is IT configuration,

a process whereby individual components are assembled and adjusted to construct a work-

ing solution. Visible complexity—of setting configuration knobs, installing and updating

software, diagnosing and repairing problems, and so on—is a challenge for IT. How to

reduce such complexity is a challenging problem. As the first step, I explored the decision

complexity presented to the non-expert system administrator, which represents a signifi-

cant part of the whole IT complexity.

To show the feasibility and effectiveness of my techniques, in this dissertation, I de-

scribe how I address increasingly difficult optimization problems in the Virtuoso context

using human-driven specification or search. Those problems cover single machine CPU

scheduling, multiple machine CPU scheduling, and multiple machine VM mapping for

interactive (desktop), batch and batch parallel applications. I also present how I apply

human-driven techniques to solving power management problems on laptop computers. In

general, solving each of these problems involves the design and development of systems

mechanisms, adaptive algorithms and user interfaces. I evaluate each element of my work

through a user study. I also discuss my work on modeling user decision complexity in IT

configuration systems, as the first step towards applying human-driven techniques in that

domain.
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Chapter 1

Introduction

The optimization problems associated with adaptive and autonomic computing systems

are often difficult to pose well and solve efficiently. This dissertation explores using direct

human input to solve optimization problems. The core of the dissertation describes the

design, implementation, and evaluation of system mechanisms, adaptive algorithms and

user interfaces to support and use direct human input.

Optimization is an activity that aims at finding, ideally, the best (i.e., optimal) solution

to a problem, and at worst a high quality solution. For optimization to be meaningful there

must exist an objective function f to be optimized and at least one feasible solution x, i.e.,

a solution which does not violate the constraints.

Before we can solve the optimization problem, however, we need a clear statement

of it. A key challenge is that for many applications, particularly interactive applications,

the user or developer is unlikely or unable to provide either the objective function f , or the

constraints. This is a fundemental problem encountered broadly in adaptive and autonomic

computing.

In my thesis, I explored human-driven optimization. It consists of two ideas. In

human-driven specification, I explored how to use direct human input from users to pose

specific problems, namely to determine the objective function f and the constraints. Once
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we have a well specified problem, we are left with the need to search for a solution in a

very large solution space. In human-driven search, I explored how to use direct human

input to guide the search for a good solution, a valid configuration x that optimizes f (x).

My work takes place in three contexts. The main context is Virtuoso, a system for

utility and grid computing that is based on virtual machines (VMs) interconnected with

overlay networks. I will demonstrate the feasibility of my human-driven techniques in

Virtuoso (Chapter 3, 4, 5, 6, 7). In addition, I will show that my approach can be used to

solve optimization problems in the second context, power management for laptops, demon-

strating CPU power reductions of > 20% (Chapter 8). The last context of my work is IT

configuration systems. As the first step towards applying human-driven techniques on IT

domain, I will discuss how we model user decision complexity in IT configuration (Ap-

pendix A).

1.1 Problem space and assumptions

For the objective functions and constraints of an optimization problem, I assume that the

application’s user or system administrator knows about them, at least implicitly. I believe

this must be true for an interesting range of applications, as does the wider community of

researchers in adaptive and autonomic computing.

In terms of the search for an appropriate configuration, there are two possible ap-

proaches: automatic search and manual search. I consider both when using a human input

method. Table 1.1 highlights the specific part of the problem space I explored.

In the remainder of this chapter, I will describe the context of my work in Virtuoso

and adaptation mechanisms. I will also introduce power management problems and the

concept of IT configuration complexity. An outline of this dissertation can be found in the

end of this chapter.
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Known formal objective
function and constraints

Informal objective func-
tion and constraints derived
from direct human input

Automatic search My colleague Ananth
I. Sundararaj’s thesis
explored this.

My thesis (human-driven
specification) (Chap-
ter 2, 3, 5, 8)

Manual search My thesis (human-driven
search) (Chapter 7)

My thesis (human-driven
search) (Chapter 4)

Table 1.1: Problem space

1.2 Contexts

1.2.1 Virtual machines and Virtuoso

In general, systems that simulate multiple copies of a machine on itself and add an indirec-

tion layer between software and physical hardware are called virtual machine systems. The

simulated machines are called the virtual machines (VMs) [70]. The indirection layer is

called the virtual machine monitor (VMM). Virtual machines provide many benefits, such

as the capability of multiplexing several VMs on a single physical resource, isolation, and

security.

Virtuoso is middleware for virtual machine distributed computing that very closely em-

ulates the process of buying, configuring, and using an Intel-based computer or collection

of computers from a web site, a process with which many users and certainly all system

administrators are familiar. Instead of a physical computer, the user receives a reference to

the virtual machine which he can then use to start, stop, reset, and clone the machine. The

system presents the illusion that the virtual machine is right next to the user in terms of

console display, devices, and the network. Virtuoso currently uses VMware GSX Server,

a type-II virtual machine [70], as its virtual machine monitor, though other VMMs can in

principle be substituted, and our model could easily be employed in a type-I VMM.

Each host computer in Virtuoso can support multiple VMs, each of which can run a
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different operating system. VMs communicate using a custom overlay network [180, 182]

that infers CPU and network demands and measures the underlying network using the

VMs naturally occurring traffic. Virtuoso is intended to support a wide range of uses from

interactive desktop users to batch parallel users. It provides many adaptation and resource

reservation mechanisms that can be applied to an existing, unmodified application and

operating system running in a collection of VMs:

• Mapping of VMs to hosts and migration of VMs [180]

• Overlay topology [180]

• Forwarding on the overlay topology [180]

• CPU reservations [109]

• Network reservations [105]

Details about the Virtuoso implementation [164], its virtual networking system [182],

its application topology inference system [74], its integration with the Wren network in-

ference system [77], its dynamic adaptation system [180, 183], and its optical network

reservation system [105] can be found in the references, as can a detailed case for grid

computing on virtual machines [58], a more recent discussion of the role of VMs in this

area [99], and an introduction to the state of the art in virtualization [57].

At a high level, Virtuoso seeks to use inferred information about the application, net-

work, and hosts to engage the adaptation and reservation mechanisms in order to increase

the application’s performance. Generally, this is a challenging, NP-hard optimization prob-

lem [184]. My fellow student Ananth I. Sundararaj has a complete formalization as a part

of his thesis [181]. I use the formalization where necessary, although for most problems

that I address, formalization is not known.
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Here is the Virtuoso optimization problem that I am addressing in this dissertation.

I seek to find a configuration x such that an objective function f (x) is maximized

while x also obeys a set of given constraints. I consider a configuration consists of

• a local periodic real-time schedule of VMs on each host,

• a mapping from VMs to hosts,

The constraints determine what valid configurations are and include

• schedulability (e.g., there must exist a feasible schedule on each host),

• 0/1 constraints (e.g., a VM must be mapped onto exactly one host),

• placement (e.g., some VM may have to be placed on a specific host), and

• hidden constraints (e.g., user specifies that some VM must be specifically sched-

uled).

The 0/1 constraints play a key role in making variants of this problem NP-hard.

Virtuoso is designed to support a wide range of workloads that its simple user-level

abstraction makes possible. My work will focus on three workload types:

• Interactive workloads which occur when using a remote VM to substitute for a desk-

top computer. These workloads include desktop applications, web applications and

games.1

• Batch workloads, such as scientific simulations or analysis codes. These workloads

are commonplace in grid computing [60].

1It is debatable to what extent a remote VM could replace a desktop and what the permissible limits on
the latency from the VM to the client are, but there are certainly a wide range of interactive applications
which can be successfully used remotely using modern display techniques. For example, Lai and Neih
demonstrated successful use of thin clients for several desktop applications, including video, despite > 1000
miles between client and server [104].
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• Batch parallel workloads, such as scientific simulations or analysis codes that can be

scaled by adding more VMs. These are also commonplace in grid computing.

Adaptation mechanisms

In an effort to adapt applications running in distributed computing environment to the dy-

namically changing computational and networking resources to achieve high performance,

there have been numerous attempts in different settings such as load balancing in networks

of shared processors [38, 79, 201], solutions to workflow problems, component placement

problems and support for heavyweight applications in computational grids [12, 100, 122],

adaptation, load balancing and fault tolerance in message passing and parallel processing

systems spread over heterogeneous resources [4, 73, 126, 165], distributed mobile appli-

cations [142], automated runtime tuning systems [23] and extensions to commercial stan-

dards such as QuoIN/CORBA [208]. However most of the approaches are very application-

specific and require considerable user or developer effort.

1.2.2 Power management

Research on power management for laptops and embedded systems to prolong battery life

and reduce heat dissipation has attracted attention from both micro-architecture and sys-

tems communities for years. Dynamic Voltage and Frequency Scaling (DVFS) is one of

the most commonly used power reduction techniques in high-performance processors and

is the most important OS power management tool. DVFS varies the frequency and voltage

of a microprocessor in real-time according to processing needs. Although there are differ-

ent versions of DVFS, at its core DVFS adapts power consumption and performance to the

current workload of the CPU. Specifically, existing DVFS techniques in high-performance

processors select an operating point (CPU frequency and voltage) based on the utilization

of the processor. While this approach can integrate information available to the OS kernel,
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such control is conservative and pessimistic about both the user and processor. A core

question is how low can CPU frequency be without annoying the user? In Chapter 8, we

will present our work on user- and process- driven dynamic voltage and frequency scaling

techniques.

1.2.3 IT configuration complexity

A significant fraction of modern systems management revolves around configuration, a

process whereby individual components are assembled and adjusted to construct a working

solution. Human-driven configuration procedures occur at every stage in the lifecycle of

hardware and software artifacts, from installation and deployment of new system compo-

nents, to ongoing maintenance and tuning of existing components, to upgrading, replacing,

or decommissioning obsolete components. For many systems, these human-driven config-

uration procedures represent a significant operational cost, often dominating total cost of

ownership. The optimization problem here is to optimize the simplicity of managing the

systems, where the objective function is dependent on the system administrator performing

management tasks. To address this, new model and innovative approach must be adopted.

A key complexity challenge lies in improving the experience of the non-expert system

administrator—the person providing IT support in a small-business environment, who is

confronted by decisions during the configuration process. Decision complexity is the

complexity of figuring out for the first time what steps to follow and what decisions to

make while performing a complex configuration process. In Appendix A, I will present

my work on understanding decision complexity in IT configuration.
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1.3 Challenges in user interfaces

Applying my concept of direct human input to the optimization problems in the above

contexts poses the following challenges.

Frequency of input: In each of these contexts, I will show in later chapters that more

frequent user input leads to better performance (lower cost, lower power consumption, high

application throughput, among other metrics). However, it is obvious that there must be

limits to this frequency. Control algorithms that make use of direct user input must be able

to work when the input is infrequent and/or aperiodic. In my view, sensible low-frequency

input will take one of three forms:

1. Evaluations of a current configuration, resulting in user-specific utility functions.

2. Specifications of configurations.

3. Directions for search within a space of configurations.

Interface: Careful user interface design and evaluation are critical to success, espe-

cially when targeting naive users. We have generally found that having a very simple,

tactile interface separate from the “main” user interface of the application or OS, is prefer-

able because it clearly demarcates “system” control from “application” control in the user’s

mind, can be completely ignored when not needed, and is easier to explain. Designing an

adequate process for acquiring exploiting input of form 1 is far easier than for forms 2 and

3. We next describe specific issues related to the latter forms.

Mechanism transition: In Virtuoso, changing a VM’s schedule is virtually instanta-

neous, if the schedule is feasible on the physical host it is currently running on. If the

desired schedule is not feasible, we must indicate this to the user and use a different mech-

anism (e.g., migrate his VM to a different host) to satisfy him. While very fast VM migra-

tion techniques now exist [34], they still take much longer than changing a schedule, and



CHAPTER 1. INTRODUCTION 31

have a much higher resource cost. How can we represent these time and resource costs to

the user?

Categorical dimensions: A configuration can be thought of as a point within a multi-

dimensional space. If a dimension is categorical (for example, a VM can be mapped to one

of several choices), it is difficult to present it using an easily understood external interface.

Dimensionality: It is relatively easy to map two dimensions of a control directly to two

dimensions of an interface, and both dimensions are continuous. As we add resources, the

number of dimensions grows and makes a simple mapping impossible. Of course, there

are many examples of using low dimensional input devices to explore high dimensional

spaces. A large part of the problem is how to visualize the current configuration and its

neighborhood.

Service-level agreements (SLAs) Interactive applications used by ordinary end-users

are migrating to service-oriented systems that span shared server resources. One example

is the move to “software as a service” (SAAS), leveraging Web 2.0 technologies like AJAX.

Services like docs.google.com and salesforce.com are well known. A second example is

virtual machine-based desktop-replacement computing, as in the Collective [26], Internet

Suspend/Resume [160], and our Virtuoso system [164].

Service-oriented systems must schedule resources such as the CPU so that the relevant

service-level agreements (SLAs) are honored. With the push toward the desktop, we are

faced with increasingly naive users and shorter duration tasks. An important challenge

emerges: what is an appropriate SLA in a desktop replacement environment and how do

we get it?

1.4 Outline of dissertation

This section describes the overall organization of the dissertation.
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Chapter 2 presents a controlled user study of the effects of resource contention on the

comfort of the users of typical interactive desktop applications on Microsoft Windows. We

discovered considerable diversity in the tolerance that users have for resource contention.

This diversity argues for per-user tailoring of utility functions, and motivates later on work

on using direct user input. The study further provides evidence for the feasibility of human-

driven specification through a button-press feedback mechanism.

Chapter 3 describes my work on scheduling an interactive VM through simple button-

press feedback from the user. We show that using direct user feedback, it is possible

to balance between providing high average computation rates to the non-interactive VMs

while keeping the users of the interactive VMs happy. This work provides evidence for

the feasibility of using human-driven specification to solve CPU scheduling problem on a

single machine.

Chapter 4 presents the design, implementation and evaluation of VSched - a periodic

real-time scheduler, and shows that we can use it to schedule both batch and interactive

VMs. The tool further enables the design of a joystick input interface which allows the

user to directly control the CPU schedule of his VM. The two dimensions (period, slice)

of CPU schedule is mapped directly to the two dimensions of the joystick. Our user study

showed that even a naive user can use the interface, combined with an on-screen display

of VM cost, to quickly balance between the comfort of the environment and its cost. The

results show the feasibility of using human-driven search to solve CPU scheduling problem

on a single machine.

In Chapter 5, we apply a new approach to time-sharing parallel applications with per-

formance isolation. based on local VScheds combined with a global feedback controller.

It provides a simple way for the user/administrator to control execution rate of applications

while maintaining efficiency. The work demonstrates that it is feasible to apply human-

driven specification to CPU scheduling problem on multiple machines.
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In Chapter 6, we describe the design of an application trace-driven simulator to facili-

tate the research on human-driven control of a collection of VMs.

In Chapter 7, we discuss the design, implementation and evaluation of a game-like

interface for a user to easily control and optimize both the CPU schedules of his VMs and

the mapping of VMs to hosts. We evaluated the interface, which is connected with the

simulator, through extensive user studies. The results show that it is feasible to put the

naive user in direct control of both CPU scheduling and VM mapping of a collection of

VMs. It provides evidence for human-driven search. It further explored the idea of solving

optimization problems through game-play by common people.

Chapter 8 summarizes two new, independently-applicable power reduction techniques

for power management on processors that support dynamic voltage and frequency scaling

(DVFS). In PDVS (process-driven voltage scaling), a CPU-customized profile is derived

offline that encodes the minimum voltage needed to achieve stability at each combina-

tion of CPU frequency and temperature. In UDFS (user-driven frequency scaling), on the

other hand, dynamically adapts CPU frequency to the individual user and the workload

through direct user feedback. Combining PDVS and the best UDFS scheme reduces mea-

sured system power by 49.9% (27.8% PDVS, 22.1% UDFS), averaged across all our users

and applications, compared to Windows XP DVFS. UDFS provides evidence for applying

human-driven specification to solving power management problems.

Chapter 9 discusses related work to this dissertation.

Finally, in Chapter 10, we summarize the conclusions of this dissertation and highlight

opportunities for additional research.

Appendix A presents our work on modeling decision complexity in IT configuration

systems. Decision complexity is the complexity faced by a non-expert system administrator—

the person providing IT support in a small-business environment, who is confronted by

decisions during the configuration process, and is a measure of how easy or hard it is to
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identify the appropriate sequence of configuration actions to perform in order to achieve a

specified configuration goal. As the first step towards a complete model of decision com-

plexity, we conducted an extensive user study of decision making in a carefully-mapped

analogous domain (route planning), and showed how the results of that study suggest an

initial model of decision complexity applicable to IT configuration. The model identi-

fies the key factors affecting decision complexity and highlights several interesting results,

including the fact that decision complexity has significantly different impacts on user-

perceived difficulty than on objective measures like time and error rate.

Appendix B, C, D and E provide written protocols and forms used in our user studies

discussed in Chapter 2, 4, 7 and 8, respectively.
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Chapter 2

Measuring and Understanding User
Comfort With Resource Borrowing

This dissertation argues for using direct human input to solve optimization problems. In

this chapter, we describe the design and development of a sophisticated distributed applica-

tion for directly measuring user comfort with the borrowing of CPU time, memory space,

and disk bandwidth. Using this tool, we conducted a controlled user study with qualitative

and quantitative results that are of direct interest to the designers of grid and thin-client

systems. We found that resource borrowing can be quite aggressive without creating user

discomfort, particularly in the case of memory and disk. The results of the study further

revealed an important fact that resources needed to keep the user happy are highly depen-

dent on the user as well as the application. In other words, the traditional assumption that

systems can optimize for a canonical user is invalid. The successful use of direct user

feedback in this work provides evidence for the feasibility of human-driven specification.

Many widely used distributed computing platforms and applications exploit available

resources on existing host computers, exploiting the fact that most of these systems are

dramatically under-utilized [3, 42, 138], a technique we refer to as resource borrowing.

Examples in scientific computing include Condor [61, 117], Sprite [44], Entropia [30],

SETI@Home [179], Protein Folding at Home [106], DESChall [37], and the Google
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Toolbar [72]. The majority of such systems and applications run on Microsoft Windows

platforms, and they are deployed on hundreds of thousands (SETI@Home) to millions

(Google) of hosts. Examples in peer-to-peer content distribution systems include commer-

cial tools such as Kazaa [163] and Gnutella [153], as well as academic projects [84, 93,

155, 174]. Some of these systems are deployed on millions of Windows hosts.

There have also been numerous proposals to consolidate desktop computers and servers

onto clusters [58, 158] to simplify their administration and exploiting their dramatic under-

utilization to make computing more economical. Interactive users would then use thin

clients [161] to access their processes. In effect, each user will see a slowed machine due

to resources borrowed for other users.

In both cases, several fundamental questions arise about user’s interaction with re-

source borrowing:

1. What level of resource borrowing leads to user discomfort for a significant fraction of users?

2. How does the level depend on which resource or combination of resources is borrowed?

3. How does the level depend on the user’s context (the foreground task)?

4. How does the level depend on the user, factoring out context?

5. How does the level depend on the time dynamics of resource borrowing?

6. How does the level depend on the raw power of the host?

Current systems assume very conservative answers to these questions because if they cause

the user to feel the machine is slower than is desirable, the user is likely to disable them.

For example, the default behavior in Condor, Sprite(Process Migration) and SETI@Home

is to execute only when they are quite sure the user is away, when the screen saver has been

activated. Other systems run at a very low priority, or they simply ask the user to specify

constraints on resource borrowing, something that few ordinary users understand. If less

conservative resource borrowing does not lead to significantly increased user discomfort,
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the performance of systems like Condor and SETI@Home could be increased through

techniques such as linger-longer scheduling [156].

There is indirect evidence that resource borrowing need not be especially conservative

in that many users are willing to install peer-to-peer tools, run services such as Microsoft’s

IIS and Kazaa, Gnutella, etc, on their desktop computers. Certainly, the extremely low

utilization of CPU cycles, which has held true for over 10 years, suggests that if the “right”

cycles were used, those “in between” the cycles the user is using, there would be little for

the user to perceive. The priority-based schedulers of modern operating systems approxi-

mate this.

Despite indirect evidence, there exist no quantitative, empirical measurements that

could be used to answer the above questions. This may seem surprising to some read-

ers, as this would appear to be an excellent problem in human-computer interaction or

psychology. However, the work in those areas has concentrated on the impact of latency

on user-perceived utility of the system [49, 103], and on user frustration to different user

interfaces [101, 151]. Within the systems community, related work has examined the per-

formance of end-user operating systems using latency as opposed to throughput [51], and

suggested models for interactive user workload [11].

In response to this lack of information, we have developed a system, the Understand-

ing User Comfort System (UUCS). UUCS is a distributed Windows application similar to

SETI@Home in design. A UUCS client emulates resource borrowing of CPU, memory

and disk on the user’s machine in a throttled manner [157] encoded in a testcase provided

by a server. The user operates the machine as normal, but may express discomfort by click-

ing on an icon or pressing a hot-key. Resource borrowing stops immediately if discomfort

is expressed or when the testcase is finished. The point of discomfort, if any, is returned to

the server along with contextual information. By analyzing the results of applying a par-

ticular set of testcases to a particular set of users, we can qualitatively and quantitatively
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characterize user comfort.

Using UUCS, which we describe in detail in Section 2.1, we have conducted a care-

fully controlled user study done at Northwestern University to address the questions raised

earlier. We describe this study and its results in detail in Section 2.2. In Section 2.3, we

provides advice to implementors based on our study results.

More information about the UUCS system can be found in a separate technical re-

port [75]. The written protocol and the form the user filled out can be found in Appendix B.

2.1 System design

UUCS consists of a server and a client, as shown in Figure 2.1. Both are Windows applica-

tions that store testcases and results on permanent storage in text files. A testcase contains

functions that describe how to “exercise” a collection of resources.

Using its local testcase and result stores, the client can operate disconnected from the
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server. There are two interactions between the two, both initiated by the client. When

the client is initially run, it registers with the server, providing it with a detailed snapshot

of the hardware and software of the client machine, and allowing the server to associate a

globally unique identifier with the client. Subsequently, at particularly selected times when

the client is connected to the network, the client initiates a “hot sync” with the server. New

testcases, which can be added to the server at any time, are downloaded by the clients,

while new results are uploaded back to the server.

Hot syncing operates at user-defined intervals and acquires a growing random sample

of testcases from the server. This, combined with local random choice of testcases and

Poisson arrivals of testcase execution, is designed to make a collection of clients execute a

random sample with respect to testcases, users, and times. This is the mode of operation

that we plan to use in our future Internet-wide study. A UUCS client can also be configured

to behave deterministically, executing a predefined set of commands from a local file. We

use this feature in our controlled study.

In addition to the client and server, we have developed a set of tools for creating,

viewing, and manipulating testcases, and for importing testcase results into a database. An

additional set of tools is then used to analyze the results and guide us to other interesting

testcases (Figure 2.2).

2.1.1 Testcases and exercise functions

Testcases encode the details of resource borrowing for various resources. A testcase con-

sists of a unique identifier, a sample rate, and a collection of exercise functions, one for

each resource that will be used during the execution of the testcase (the run). An exer-

cise function is a vector of values representing a time series sampled at the specified rate.

Each value indicates the level of contention (the extent of resource borrowing, described

in Section 2.1.2) for a resource at the corresponding time into the testcase. For example,
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Name Description

step(x, t,b) contention of zero to time b, then x to time t
ramp(x, t) ramp from zero to x over times 0 to t

sin sine wave
saw sawtooth wave

expexp Poisson arrivals of exponential-sized jobs (M/M/1)
exppar Poisson arrivals of Pareto-sized jobs (M/G/1)

Figure 2.3: Testcases.

consider a sample rate of 1 Hz, and the vector [0,0.5,1.0,1.5,2.0] for the CPU resource.

This exercise function persists from 0 to 5 seconds from the start of the testcase. From

3 to 4 seconds into the testcase, it indicates that contention of 1.5 should be created and

subsequently 2.0 in the next second.

Our testcase tools let us generate testcases of many different kinds, as summarized

in Figure 2.3. In our controlled study, we use a small set of step and ramp testcases with

different parameters. Figure 2.4 shows examples for step(2.0,120,40) and ramp(2.0,120)

respectively.

2.1.2 Resource exercisers

Resource exercisers are important components of the client that apply the contention de-

scribed by an exercise function. There are three exercisers: CPU, memory, and disk.They

run on the same priority as other applications.

The CPU exerciser implements time-based playback of the exercise function, as we

describe and evaluate in detail in earlier work [43]. Consider the previous example, where

we are asked to create a contention of 1.5 from 3 to 4 seconds. Two threads with carefully

calibrated busy-wait loops will execute for one second. These loops split the one second

interval into a number of subintervals, whose duration is computed by calibration, each

larger than the scheduling resolution of the machine. The first loop will only execute busy
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Figure 2.4: Step and ramp testcases.
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Figure 2.5: Client design.
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subintervals,with no sleeps. The second executes busy subintervals with probability 0.5,

calling ::Sleep in other subintervals. The effect is that if there is another busy thread in

the system (the display loop of a first person shooter game, for example), that thread will

execute at a rate 1/(1.5 + 1) = 40 % that of the maximum possible rate on the system,

the CPU exerciser having borrowed 60% of the CPU. This is experimentally verified to a

contention level of 10 for equal priority threads.

The disk exerciser operates nearly identically to the CPU exerciser, except its goal is to

create contention for disk bandwidth. The busy operation here is a random seek in a large

file (2x the memory of the machine) followed by a write of a random amount of data. The

write is forced to be write-through with respect to the windows buffer cache and synced

with respect to the disk controller. Contention here has the effect of slowing down the I/O

of another I/O-busy thread similarly to the CPU exerciser. This is experimentally verified

to a contention level of 7 for equal priority threads.

The memory exerciser is considerably different. It interprets contention as the fraction

of physical memory it should attempt to allocate. It keeps a pool of allocated pages equal

to the size of physical memory in the machine and then touches the fraction correspond-

ing to the contention level with a high frequency, making its working set size inflate to

that fraction of the physical memory. This ensures borrowing of physical memory by the

desired amount. We avoid contention levels greater than one because this immediately

results in thrashing which is not only very irritating to all users (as it affects interactivity

drastically), but also very difficult to stop punctually.

2.1.3 Testcase execution and system monitoring

When a testcase is executed, the appropriate exercisers are started up, passed their exercise

functions, synchronized, and then let run. A high priority GUI thread watches for a click

or hot-key stroke. If this occurs, the exercisers are immediately stopped and their resources
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released. The testcase run is over when user expresses discomfort feedback or the exercise

functions are exhausted with any feedback.

A considerable amount of information is stored as the result of the testcase run, includ-

ing the CPU, memory and disk resource measurements for entire duration of the testcase,

system processes information, foreground process information, feedback time etc. A num-

ber of technical articles were very useful in the development of the resource exercisers

and monitors [13, 16, 32, 40, 63, 65, 97, 140, 145]. Figure 2.5 illustrates the structure of the

UUCS client.

Combined with the detailed registration information for the client, the data we collect

is stored in text-based form for later communication back to the server. For the remainder

of this paper, we use the following data:

1. The client guid,

2. The testcase guid,

3. Whether the testcase run was terminated due to user feedback or testcase exhaustion,

4. The time offset into the testcase at which irritation or exhaustion was reported, and

5. The last five values used in each exercise function at and immediately before the

point of user feedback.

2.1.4 Client interface

Figure 2.6 shows the graphical interface of the UUCS client. The most basic interface

is the tray interface (Figure 2.6(a)), in which a user can only express discomfort, either

by clicking on the tray icon or by pressing a hot-key (F11 here). The remainder of the

interface can be disabled, and is disabled in our controlled study. If it is enabled, the user
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(a) Tray interface

(b) Application

Figure 2.6: Client interface. The menu and full application interface can be disabled.
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Machine Configuration

Hardware Configuration 2.4 GHz P4, 512 MB
80 GB , Dell Optiplex GX270
17 in monitor

Operating System Windows XP
Applications Installed Word 2002, Powerpoint 2002,

IE 6, Quake 2
Network Configuration 100 Mbps Ethernet

Figure 2.7: Machine configuration.

can pop up a detailed view (Figure 2.6(b)) of the operation of the application which permits

various other controls like pausing.

2.2 Controlled study

Using the UUCS, we ran a controlled study at Northwestern to help us answer the questions

posed in the introduction. This study had a limited number of participants, but because of

the careful control of factors, we can directly address many of the questions.

2.2.1 Perspective of the user

The 35 users in our study consisted primarily of graduate and undergraduate students from

the Northwestern engineering departments. Anecdotal evidence suggests that this group is

more sensitive to resource borrowing than others. We advertised for participants via flyers

and email. Each user was given remuneration for participating. The machine configura-

tion used in the control study is shown in Figure 2.7. Two such machines were set up in

separate, private environments.

The duration of the study for each user was 84 minutes. The user:

1. Filled out a questionnaire. The key questions were user self-evaluations as “Power

User”, “Typical User”, or “Beginner” for use of PCs, Windows, Word, Powerpoint,
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Internet Explorer, and Quake. (5 minutes).

2. Read a one page handout. (5 minutes).

3. Acclimatized themselves to the performance of our machine by using the above

applications. (10 minutes).

4. Performed the following tasks:

(a) Word processing using Microsoft Word (16 minutes): Each user had to type in

a non-technical document with limited formatting.

(b) Presentation making using Microsoft Powerpoint (16 minutes): Each user was

required to duplicate a presentation consisting of complex diagrams involving

drawing and labeling, from a hard copy of a sample presentation.

(c) Browsing and research with Internet Explorer (16 minutes): Each user was

assigned a news web site and asked to read the first paragraphs of the main

news stories. Based on this, they conducted searches for related material on the

web and saved it. This task involved multiple application windows.

(d) Playing Quake III (16 minutes): Quake III is a well known first person shooter

game. There were no constraints on user’s gameplay.

As the user performed the tasks, the UUCS client executed in the background and ran

specific testcases. It recorded all the system and contextual information as well as the user

feedbacks, which were later used to generate the results.

2.2.2 Testcase details

Our testcases were designed to help us address the questions in the introduction. They

were either of the type ramp or step (Section 2.1.1), or blank. Blank testcases allow us to
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No. Resource Type Word Parameters Powerpoint Internet Explorer Quake

1 CPU Ramp 7.0,0 2.0,0 2.0,0 1.3,0
2 Blank
3 Disk Ramp 7.0,0 8.0,0 5.0,0 5.0,0
4 Memory Ramp 1.0,0 1.0,0 1.0,0 1.0,0
5 CPU Step 40,5.5 40,0.98 40,1 40,0.5
6 Disk Step 40,5 40,6 40,4 40,5.0
7 Blank
8 Memory Step 40,1 40,1.0 40,1 40,1

Figure 2.8: Testcase descriptions for the 4 tasks (given in random order).

test for the background level of discomfort, while ramps allow us to test user tolerance to

borrowing. Steps combined with ramps are used to test for sensitivity to one element of

time dynamics. Each task had 8 associated testcases, each 2 minutes long. They are run

in a random order for each 16-minute task. We call the execution of a testcase during a

specific task by a specific user a run.

The regions of resource usage where interactivity is affected are different for each

task. For example, in Word very high values of CPU contention (around 3) are needed

to affect interactivity at all, while in Quake, CPU contention values in the region of 0.2

to 1.2 cause drastic effects. To observe the onset of discomfort, the parameters for the

testcases for each task had to be chosen carefully. This calibration was done by having one

of the authors use the applications while running a large number of testcases with different

parameters, selecting those testcases which affected interactivity. Figure 2.8 shows the

specific testcases used for each task.

It is important to point out that our calibration procedure was subjective. It could have

been the case that our testcases were too aggressive or too lax, discomforting too many

or too few users. However, our results suggest that we have captured a wide range of

behavior. Figure 2.9 counts the runs, grouped by the task, whether the testcase was blank

or not, and whether the user expressed discomfort or did not react (testcase exhausted). As
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Total

Non-Blank testcases Blank
Discomforted 295 33
Exhausted 47 212

MS Word

Discomforted 48 0
Exhausted 20 59
Prob of discomfort from blank testcase 0.00

MS Powerpoint

Discomforted 71 0
Exhausted 4 60
Prob of discomfort from blank testcase 0.00

Internet Explorer

Discomforted 50 14
Exhausted 17 50
Prob of discomfort from blank testcase 0.22

Quake

Discomforted 126 19
Exhausted 6 43
Prob of discomfort from blank testcase 0.30

Figure 2.9: Breakdown of runs.
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Figure 2.10: CDF of discomfort for CPU.

we can see, there were few reactions to blank testcases, and most, but not all, non-blank

testcases caused discomfort at some level.

2.2.3 Results

We now address the questions posed in the introduction using empirical cumulative distri-

bution functions and informal factor analysis. We describe the results below, along with

additional observations.

What level of resource borrowing leads to user discomfort for a significant fraction of
users?

From the perspective of an implementor this is a key question. We can answer this question

using cumulative probability distributions (CDF) derived from running our ramp testcases,

aggregated across contexts to convey a general view of each resource.

Figures 2.10-2.12 show CDFs for CPU, Memory and Disk aggregated over all the

tasks. The horizontal axis is the level of contention for each resource. The vertical axis is

the cumulative fraction of users discomforted. As the level of borrowing increases, users
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are increasingly likely to be irritated. This is the discomfort region. Finally, some users do

not become discomforted in the range of levels explored. We refer to this as the exhausted

region. The graph labeled with the number of runs that ended in discomfort (D fCount)

and exhaustion (ExCount). There is some probability that a user will feel discomforted

even when no resource borrowing (blank testcase) is occurring. We refer to this as the

noise floor and it is reflected in Figure 2.9.

To make our discussion easier, we derive three metrics from the CDFs. The first is fd ,

the fraction of testcases which provoke discomfort,

fd =
D fCount

D fCount +ExCount

A low value of fd indicates that the range of contention applied in that context for resource

borrowing doesn’t affect interactivity significantly.

The second metric is c0.05, the contention level that discomforts 5% of the users. This

is the 5th-percentile of the CDFs. This value is of particular interest to implementors as it

provides them with a level that discomforts only a tiny fraction of users.

The third metric is ca, the average contention level at which discomfort occurs. This is

useful in comparing classes of users. Figures 2.14, 2.15, and 2.16 show the three metrics.

Figure 2.10 shows the CDF for CPU borrowing. Notice that even at CPU contention

levels of 10, more than 10% of users do not become irritated. More importantly, we can

reach contention levels of 0.4 while irritating fewer than 5% of the users (c0.05,cpu � 0.4).

This corresponds to consuming 40% of the processor when there are no competing threads.

Figure 2.11 shows the CDF for memory. Notice that almost 80% of users are unfazed

even when nearly all their memory is consumed ( fd = 0.21). Furthermore, aggregating

over the four contexts, it appears we can easily borrow 33% of memory while irritating

fewer than 5% of users (c0.05,memory � 0.33) in general.

Figure 2.12 shows the CDF for disk bandwidth. Almost 70% of users are comfortable
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Figure 2.11: CDF of discomfort for Memory.
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Figure 2.12: CDF of discomfort for Disk.
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CPU Memory Disk Total

Word L L L L
Powerpoint M L L M
IE M M H M
Quake H M M H
Total M L L

Figure 2.13: User sensitivity by task and resource.

CPU Memory Disk

Word 0.71 0.00 0.10
Powerpoint 0.95 0.07 0.17
IE 0.75 0.30 0.61
Quake 0.95 0.45 0.29
Total 0.86 0.21 0.33

Figure 2.14: fd by task and resource.

even with seven competing tasks ( fd = 0.33). Furthermore, we can easily execute a single

disk writing task, capable of consuming the whole disk bandwidth if run alone, while

irritating fewer than 5% of the users (c0.05,disk � 1.11). We found this result remarkably

counterintuitive as we ourselves tend to become uncomfortable when large amounts of

unexplained disk I/O occurs on our desktops. The Dell machines we used for the study are

remarkably quiet and have very dim disk lights. We suspect that it is the limited feedback

about disk activity that leads to users accepting far higher amounts of disk contention than

they otherwise might.

How does the level depend on which resource or combination of resources is bor-
rowed?

Consulting the columns of Figure 2.18 (located at the end of paper) as well as the aggre-

gated CDFs shown earlier clearly shows the strong dependence on the type of resource.

Within the contention levels explored by the ramp testcases for each resource, users are

much more tolerant with borrowing of memory and disk. This observation is qualitative as
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CPU Memory Disk

Word 3.06 * 3.28
Powerpoint 1.00 0.64 3.84
IE 0.61 0.31 2.02
Quake 0.18 0.08 0.69
Total 0.35 0.33 1.11

Figure 2.15: c0.05 by task and resource. (* indicates insufficient information)

CPU Memory Disk

Word 4.35 * 4.20
(3.97,4.72) (1.89,6.51)

Powerpoint 1.17 0.64 4.65
(1.11,1.24) (0.21,1.06) (3.67,5.63)

IE 1.20 0.55 3.11
(1.07,1.33) (0.39,0.71) (2.69,3.52)

Quake 0.64 0.55 1.19
(0.58,0.69) (0.37,0.74) (0.86,1.52)

Total 1.47 0.58 2.97
(1.31,1.64) (0.46,0.71) (2.54,3.41)

Figure 2.16: ca by task and resource, including 95% confidence intervals. (* indicates
insufficient information)
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the testcases for each resource are different, but within the levels explored this holds true.

The varying tolerance by resource also shows up in our aggregated fd , c5 and ca met-

rics, the totals rows of Figures 2.14, 2.15, and 2.16. An important point to note is that the

high fd value of CPU (0.87), does not mean that the probability of discomforting users

by borrowing CPU is 0.87. This probability depends on the contention. To determine this

probability, a level must be chosen and the CDFs consulted as described in the previous

section.

How does the level depend on the user’s context?

Figure 2.18 shows the CDF for each context and resource pair. We see dramatic differ-

ences in the reactions to resource borrowing between different contexts. Consulting the

rows illustrates this. It is clearly the case that the user’s tolerance for resource borrowing

depends not only on the resource, but also on what the user is doing.

The totals row of Figure 2.16 shows the average level at which discomfort occurs for

the CPU contention for the four tasks. For an undemanding application like Word, the CPU

contention can be very high (> 4) without significant affecting interactivity. However, with

finer-grain interactivity, as in Powerpoint and Quake, the average level is much lower. This

is likely due to the more aggressive CPU demands of these applications. Still, for the most

aggressive application, Quake, results show that a thread with fractional contention of 0.3

can still be run with a low probability of discomfort.

We used the same testcase for memory in all four tasks, growing the working set from

zero to nearly the full memory size. The effect of memory borrowing is minimal in the

case of Word (no discomfort recorded) and Powerpoint. IE and Quake are much more

sensitive to memory borrowing, with more instances of discomfort ( fd = 0.3 and fd =

0.45, respectively). For IE and Quake, value of c0.05,mem is 0.31 and 0.08 respectively,

meaning that Quake users become irritated at much lower levels. It appears that once
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Application Resource Background Rating Pair P-value Avg. Difference

Quake CPU PC Power, Typical 0.006 0.176
Quake CPU Windows Power, Typical 0.031 0.137
Quake CPU Quake Power, Typical 0.001 0.224
Quake CPU Quake Typical, Beginner 0.031 0.139
IE Disk Windows Power, Typical 0.004 1.114
IE Mem Windows Power, Typical 0.011 0.354

Figure 2.17: Significant differences based on user-perceived skill level.

office applications like Word and Powerpoint form their working set, significant portions

of the remaining physical memory can be borrowed with marginal impact. This seems to

be less true for IE and Quake, where there memory demands are more dynamic.

Disk bandwidth can be borrowed with little discomfort in typical office applications.

In Word and Powerpoint, the fraction of testcases ending in discomfort was small ( fd =

0.096 and fd = 0.166 respectively), in wide range covered by the testcases. IE and Quake

are more sensitive. Here we run the identical testcase and find that IE is more sensitive

( fd = 0.61). This may be expected as IE caches files and users were asked to save all the

pages, resulting in more disk activity.

Figure 2.9 shows that users express feedback even when there is no testcase running.

We note that users exhibit this behavior only in IE and Quake. Quake is a very demanding

application in which jitter quickly discomforts users. There are sources of jitter on even

an otherwise quiescent machine. Discomfort in IE depends to some extent on network

behavior.

Figure 2.13 summarizes our judgement of user sensitivity to resource borrowing by

resource and task. Note that the totals are not derived from the columns but represent

overall judgements from the study of the CDFs (Figure 2.18).
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How does the level depend on the user, factoring out context?

Users’ comfort with resource borrowing depends to a small extent on their perceived skill

level. We asked our users to rate themselves as {Power User, Typical User, or Beginner}
in each of {PC Usage, Windows, Word, Powerpoint, IE, and Quake}.

We compared the average discomfort contention levels for the different groups of users

defined by their self-ratings for each context/resource combination using unpaired t-tests.

In some cases, we found significant differences, summarized in Figure 2.17. The largest

differences were for the combination Quake/CPU. For example, a Quake Power User will

tolerate 0.224 less CPU contention than a Quake Typical User at a significance level (p-

value) of 0.001. Even the users’ self-rating for general Windows and PC use can lead to

interesting differences in their tolerance. For example, for CPU, the differences between

discomfort levels for Power and Typical users are quite drastic with p = 0.002 (PC Back-

ground) and p = 0.010 (Windows Background). Applications which have higher resource

requirements show greater differences between user classes.

These results expose the psychological component to comfort with resource borrowing.

Experienced or power users have higher expectations from the interactive application than

beginners. When we borrow resources it may be helpful to ask the user to rate himself.

How does the level depend on the time dynamics of resource borrowing?

For this question, we have only preliminary results. We tested the “frog in the pot” hy-

pothesis. A perhaps apocryphal rule in French cooking is that when boiling a frog, it is

best to place the frog in the water before starting to heat it. The frog will not react to

the slowly rising temperature, while a frog dumped unceremoniously into boiling water

will immediately jump out. We paired ramp and step testcases in our study to explore if a

similar phenomenon might be true of user comfort with resource borrowing—that a user
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would be more tolerant of a slow ramp that a quick step to the same level. We did observe

the phenomenon in Powerpoint/CPU—the majority of users tolerated higher levels in the

ramp testcase. However, we were surprised at how few frog in the pot instances we could

find.

2.3 Advice to implementors

Based on our study, we can offer the following guidance to implementors of distributed

computing and thin-client frameworks.

• Borrow disk and memory aggressively, CPU less so.

• Build a throttle. Your system can benefit from being able to control its borrowing at

a fine granularity similar to the UUCS client.

• Exploit our CDFs (Figures 2.10-2.12) to set the throttle according to the percentage

of users you are willing to irritate. As we collect more data, the CDF estimates will

improve.

• Know what the user is doing. Their context greatly affects the right throttle setting.

• Consider using irritation feedback directly in your application.

2.4 Conclusions

We have described the design and implementation of a system for measuring user com-

fort with resource borrowing, as well as a carefully controlled study undertaken with the

system.

The end result has three components. First, we provided a set of empirical cumulative

distribution functions that show how to trade off between the level of borrowing of CPU,
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memory, and disk resources and the probability of discomforting an end-user. Second, we

describe how resource type, user context (task), and user-perceived expertise affect these

CDFs. Finally, we have made initial observations on how the time dynamics of resource

borrowing, and the overall environment affect the level.

Surprisingly, disk and memory can be borrowed quite aggressively with little user re-

action, while CPU can also be borrowed liberally. Our observations formed the basis of

advice for the implementors of distributed computing and thin-client frameworks.

This work provides evidence for the feasibility of human-driven specification part of

my thesis. That is, it is possible to use direct human input from users to determine at

least some objective function and constraints, how resource borrowing and user comfort

are related in this case. Our study shows that user comfort with resource borrowing is

highly dependent on the applications being used and on the user. There is considerable

diversity in the tolerance that users have for resource contention. This diversity argues

for per-user tailoring of utility functions. It reveals opportunities for new approaches to

systems problems that draw on feedback or other input from the end-user.

In the next chapter, we will discuss how we explore using user feedback directly in the

scheduling of interactive VMs.
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Chapter 3

User-driven Scheduling of Interactive
Virtual Machines

This dissertation argues for using direct human input to solve optimization problems. In

the last chapter, we described using a button feedback mechanism to study user comfort

with resource borrowing systems. In this chapter, we are going to look at a CPU scheduling

problem in Virtuoso systems, which we want to solve using human-driven specification.

In Virtuoso, while a VM can support a very wide range of applications, we particu-

larly want to be able to gracefully handle long-running non-interactive applications, such

as scientific simulations, parallel programs, and grid computing applications, as well as in-

teractive applications, such as desktop productivity applications and games. VMs running

noninteractive applications and VMs running interactive applications may have to coexist

on the same host machine. How can we schedule or control the interactive VMs so that

their users remain happy while not over-penalizing the noninteractive VMs?

In the previous chapter, we studied the the tolerance of the interactive user for con-

tention for CPU, memory, and disk resources. One of the purposes for characterizing

user tolerance to resource borrowing is to inform the scheduling of interactive and non-

interactive VMs.

We have shown that user comfort with resource borrowing is highly dependent on
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the applications being used. Because of this complexity, determining the exact single

scheduling goal for an interactive VM in a particular context is challenging. In response,

we explored using direct user feedback in the scheduling process. This chapter presents

our initial results in applying direct user feedback, specifically the use of a “discomfort

button” similar to that used in our user comfort work, to control the CPU use of interactive

VMs.

Virtuoso uses VMware GSX Server as its virtual machine monitor (VMM). GSX is

a “type II” VMM [71], meaning that it executes as a process on an underlying operating

system, Linux in our case. As such, we can control, to some extent, the priority of all the

processes and the OS (Windows XP here) running in the VM by manipulating the nice

level of the VMM process. The basic idea here is to modulate the Linux “nice” level of

an interactive VM’s VMM in response to the passing of time and the user pressing the

“discomfort button.”

There is a tension between user participation and the average compute rate of non-

interactive VMs; the more frequently we expect the user to press the button, the faster the

non-interactive VMs can operate. We propose to let the administrator resolve this tension

by setting a target mean interarrival time between button presses. One example of how an

administrator might set the target interarrival time is in response to the cost of running the

VM with more costly VMs having a longer interarrival time target, and the interactive VM

user paying according to the interarrival time he is assigned. The more the user pays, the

better interactivity he can get. The control system’s goal is to manipulate the interactive

VM’s nice level to maintain this set interarrival time with as little variance as possible.

We explore three control algorithms, all of which are in their infancy. The first two

are straightforward translations of the TCP Reno congestion control algorithm. For us a

congestion event is the user button press and the equivalent to the congestion window is the

linearized nice level of the interactive VM. Acknowledgments are replaced with the simple
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passage of time. After a button press, the priority of the interactive VM is maximized. It

then declines exponentially in a slow start-like phase and eventually linearly increases

at a rate r. Other VMs have the potential to run increasingly faster during this process.

At some point, through the combination of the low priority of the interactive VM, the

workload inside it, and the workload on the other VMs, the user becomes discomforted

and the process repeats.

The third algorithm is also similar to TCP Reno, but here we also control the rate of

linear increase from button press to button press, making r a function of time, with the goal

of achieving the target interarrival time between button presses.

There has been some related work on controlling CPU allocation by adjusting priorities

and scheduler parameters [53, 80] or by the nice mechanism [137], but none has used direct

user feedback to facilitate the scheduling of both interactive and non-interactive programs.

In the following, we begin by explaining the details of our framework, which we refer

to as the User-driven Virtual Machine Scheduling or UVMS. We describe the extent of

control we have using the nice mechanism, how we linearize this mechanism to simplify

the remainder of the system, and how our three control algorithms work. Next, we describe

very early performance results using the system. Although these results are largely anecdo-

tal at this point, they are quite interesting. Using user feedback to schedule the interactive

VMs, the batch machines can make much faster progress compared with simply running

the batch machines at a low priority. However, it is unclear whether the user feedback rate

is sufficient to control the interarrival time. In the absence of such control, the system may

be too frustrating for the end user.



CHAPTER 3. USER-DRIVEN SCHEDULING OF INTERACTIVE VIRTUAL
MACHINES 63

User Machine

Remote Host Machine

Server
Module

Computing
Module

Scheduler
Module

User Feedback
Client

User Feedback
Client

User Feedback
Client

VM

VM

VM

User Machine

User Machine

Remote 
Desktop

Remote 
Desktop

Remote 
Desktop

UVMS

Figure 3.1: Structure of UVMS.

3.1 Mechanism

We have prototyped a mechanism to explore the user-driven scheduling of interactive VMs.

This section describes our experimental framework, the control mechanism we use, and

three algorithms that react to user feedback using the control mechanism.

3.1.1 Overall framework

User-driven Virtual Machine Scheduling, as shown in Figure 3.1, involves a remote host

machine and local client machines. The remote host machine, one of the machines in our

cluster, runs VMs. We install Windows XP Professional in a VM created using VMWare

GSX Server 2.5. VMWare is configured to use bridged networking, which makes the

Windows VM appear as a new and independent machine in the cluster. To access the VM

from local machines, we enable the Remote Desktop service of Windows XP professional

(also known as Terminal Services.)

The local client machine can be any machine away from the cluster. We use a remote

desktop client to connect to the remote Windows VM. Note that there are various methods

to connect to a remote VM’s display, such as X11 and VNC. The reason why we use
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Figure 3.2: Client interface.

remote desktop is that it can achieve better interactivity compared with other methods.

Note that multiple VMs can be hosted simultaneously in the same remote host machine.

In the current state of this research, we only study the case of a single VM. Underneath

VMWare, the host machine runs Red Hat Linux 9.0 with a uniprocessor kernel to simplify

the analysis. The host machine is an IBM x335 (2 GHz Xeon, 1.5 GB RAM).

Our UVMS control system consists of a client that runs in the VM and a scheduler

that runs on top of Linux in the host machine. We modified the UUCS client, developed

in the Understanding User Comfort Project [75, 76], to be our UVMS client. The UVMS

client can monitor user’s activities and capture user discomfort feedback. Figure 3.2 shows

the most basic graphical interface of the UVMS client as it appears in the toolbar of the

Windows VM. A user can express discomfort, either by clicking on the tray icon or by

simply pressing a hot-key (e.g. F11).

UVMS runs under Linux on the host machine, side by side with the VMs. It consists

of three modules:

• Server Module

• Priority Scheduler Module

• Computing Module

The client synchronizes with the server module whenever it starts running, ends, or cap-

tures user discomfort feedback.

The priority scheduler module is responsible for applying control algorithms to set

the priority of the VMs. It also records realtime information about the VM process and
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the scheduler itself, including process id, priority, running time, and so on. The data we

collect is stored in text-based form.

To simulate the non-interactive VMs competing for CPU in the system, the computing

module launches and monitors a computing process which keeps running a unit busy loop

(a loop which finishes computing in a certain unit of time, e.g. 0.01 seconds). We measure

the amount of computation as the number of unit busy loops finished.

3.1.2 Control mechanism

By default, processes in Linux are scheduled using the SCHED OTHER policy. In this

policy, each process has a dynamic priority level. Linux ranks the processes based on

their priorities and executes the highest priority process. Processes have an initial static

priority that is called the nice value. This value ranges from -20 to 19 with a default of

zero. The smaller the nice value, the higher the priority. The dynamic priority is calculated

as a function of the nice value and the task’s interactivity (e.g. sleeping time of a process

versus time it spends in runnable state) [125]. The user influences the system’s scheduling

decisions by changing the process’s nice value [115].

We control the process of the VM running in the remote host machine (the core process

used by the VMware virtual machine monitor (VMM) for the execution path within the

VM). The UVMS scheduler monitors the execution of the VM process and adjusts its

priority at run time through the nice mechanism, based on user feedback. As a first step,

we did two experiments to validate the control capability of our scheduler.

Experiment 1: In this experiment, we measure the running time of a busy loop pro-

gram in the VM that is similar to the computing module, with different nice values of the

VM process. Note that we run the competing computing module process with a nice value

of 0 to compete with the VM process for CPU. We sweep the nice value of the VM process

from -20 to 19. For each value, we run the program 15 times and calculate the average. As
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Figure 3.3: Nice control experiment 1.
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Figure 3.4: Nice control experiment 2.

shown in Figure 3.3, with nice value -20, the average running time is 24.32 seconds. As

we increase the nice value from -20 to 19, the running time gradually increases to about 50

seconds and then abruptly steps to 185.99 seconds.

We repeat the experiment three times with different unit running time of the computing

module. We find the same trend in all graphs. This experiment shows that by controlling

the nice value of the VM process, we can influence the performance of the programs inside

the VM by a factor of around 8.

Note that, surprisingly, the nice control mechanism does not behave linearly.

Experiment 2: In this experiment, we study the sensitivity of programs inside the VM

to the nice value of VM process. We increase the nice value of the VM process from -
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20 to 19 at set intervals. We increase the nice value by 1 every 5 seconds. At the same

time, we record, at a fine granularity, the running time of a unit computation inside the

VM. From Figure 3.4, we can see that with nice value -20, the running time of the unit

computation is 5 microseconds. The running time increases smoothly as the nice value of

the VM increases. As before, we are running a competing compute module process with

nice value equal to 0 in the host machine to compete with the VM process for CPU.

We repeat the experiment three times, with different unit computations in the comput-

ing program and with different intervals of increasing priority. We find the same trend in

all graphs.

3.1.3 Control model

How does a CPU intensive process’s performance change with its nice value and nice

values of other competing processes? In this section, we set up a simple yet effective

model to describe a CPU intensive process’s performance as a function of its nice value

and other competing processes’ nice values.

We assume that the process’s nice value ranges between −20 and 19, as is reported

in the man page that comes with current Linux kernel 2.4.20-8. Note that the possible

difference of the nice value range between platforms won’t effect our model as long as we

know the range on a specific platform. For modeling convenience, we map the nice value

from [-20, 19] to [1, 40]. This mapping can be converted back easily. In the paper, we call

the mapped nice value normalized nice value.

Let Px be the percentage of CPU dedicated to process x, and Tf x be the execution time

of process x given Px = 1. Then we have

Tx =
Tf x

Px
(3.1)

where Tx is the execution time of process x. Equation 3.1 holds for any CPU intensive
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applications with deterministic compute cycle requirements.

Assume there are m CPU intensive processes running in the system, each with nice

value n1, n2, n3 ... nm. Then Px can be modeled using

Px =
40−nx

∑m
i=1 (40−ni)

(3.2)

where x is between 1 and m. We call 40−nx the complementary nice value of process x.

Equation 3.2 means that the percentage of CPU cycles that process x can achieve equals

the ratio of its complementary nice value over the sum of all CPU intensive process’s

complementary nice values.

Combining Equation 3.1 and Equation 3.2, we derive

Tx =
Tf x ×∑m

i=1 (40−ni)
40−nx

(3.3)

We did experiments to validate our model. Figures 3.5 and 3.6 show two examples

of the experimental data versus predicted data given by the model. The experiment data

is from experiment 1 as we discussed in Section 3.1.2. Clearly, we can see the model

produces satisfactory prediction results until the normalized nice value exceeds 38, where

the experimental data flattens out while our model shoots much higher.

3.1.4 Control algorithm

We seek a scheduling algorithm that balances the comfort of interactive VM users and the

progress of non-interactive VMs. In other words, we want to maximize the CPU usage of

the non-interactive VMs, modeled in our framework with the compute module, subject to

a constraint on the discomfort of the the interactive VM users. Our innovation is to have

an interactive VM user directly report his discomfort.

We borrow a simple but well-known algorithm as our starting point. The TCP con-

gestion control algorithm [17, 55, 173, 195] is designed to adapt the size of the congestion
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Figure 3.5: Model evaluation experiment I.

window (and hence the send rate) dynamically to the available bandwidth in the path. For

us a congestion event is the user button press and the equivalent to the congestion window

is the nice value of the VM. Acknowledgments are replaced with the simple passage of

time. In effect, the priority of the interactive VM starts out at maximum, and then declines

with the passage of time until the user presses the button, at which point the priority is

restored to the maximum and the cycle repeats.

Each of our algorithms has two state variables

• Current control value, r (this is the nice level of the VM)

• Threshold, rt

and three major components:

• Slow Start

• Additive-Increase, Multiplicative-Decrease

• Reaction to the user feedback
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Figure 3.6: Model evaluation experiment II.

We begin with an algorithm with two control parameters:

• Slow Start speed, α

• Additive-Increase speed, β.

Slow Start: If r < rt , we increase r exponentially fast with time (e.g. 2α), assuming

that the performance of the VM is less likely to be affected under low nice values (i.e. high

priorities).

Additive-Increase, Multiplicative-Decrease: If no user feedback is received and r ≥
rt , we increase r linearly with time, r ∝ βt.

Reaction to the user feedback: When the user expresses his discomfort at level r we

immediately set rt = r/2, and set r to the initial (lowest) priority.

Figure 3.7 illustrates the execution of the algorithm. On top of this general TCP Reno

lookalike, we implemented three extended control algorithms based on nonlinear and linear

control schemes. Experimental results of our algorithms will be discussed in Section 3.2.
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Figure 3.7: TCP Reno-like control algorithm for VM priority.

Nonlinear control scheme

By nonlinear, we mean that changing a function input does not proportionally change

the output. As discussed in Section 3.1.2, by directly manipulating the nice value (40

levels from -20 to 19) of the VM process, we can nonlinearly influence the performance

of the programs inside the VM by factor of around 8. Based on this scheme, we apply the

general TCP control algorithm directly, using r as the nice level, and as a result, we get our

nonlinear control algorithm.

Linear control scheme

As discussed in Section 3.1.3, Equation 3.3 models the impact of the nice value on the

compute rate of a process. Using this model, we can linearize our control mechanism, as

shown in Figure 3.8, by these means:

• From Figure 3.3, we can see that the initial 2/3 of the curve is almost linear. We

divide this part as evenly as possible into 7, assigning control values 1 to 7. These
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Control Nice Experimental Normalized
value value data model value
1 -20 24.36 1.00
2 -7 29.14 1.25
3 -1 32.98 1.48
4 3 37.08 1.72
5 5 40.00 1.89
6 7 43.94 2.13
7 9 49.51 2.45
9 11 57.71 2.94
11 13 71.75 3.75
16 15 99.56 5.38
28 17 183.61 10.25

Figure 3.8: Linearization.

values ensure distinguishable differences in the running time.

• For the tail of the curve, we can see that the running time increases very quickly

with even small changes in the nice values. To preserve the smallest granularity

of the nice value changes, we divide this part into 4 and assign to it discontinuous

control values 9, 11, 16 and 28.

• The time intervals between control values being changed reflect the differences be-

tween the corresponding control values.

We use discontinuous control values here to show that we adapt the time intervals of ap-

plying control values to the growing Y axis difference between two consecutive control

values.

Figure 3.9 shows that with the above linearization to 11 control values and the adap-

tation of intervals, we can achieve very good linear control. And we did experiments to

evaluate the TCP control algorithm based on this linear control scheme.

The linear control scheme has the same control parameters as the nonlinear scheme.

The r value of the nonlinear scheme is transformed via the mapping derived above before
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it is applied.

Adaptive control scheme

Through experiments, we observe that the Additive-Increase and Multiplicative-Decrease

phase in our TCP control algorithm is most often dominated by the linear increase, while

the interarrival time between button presses is quite varied. Recall that we would ideally

want the user to only have to press the discomfort button at relatively periodic and deter-

ministic points. We extended our TCP control algorithm to better adapt to user feedback, to

control not only the impact of background processes, but also the degree of user attention

necessary.

In the adaptive algorithm, certain control parameters become state variables:

• Rate of increase, ρ

• Slow Start speed, α = f (ρ)

• Additive-Increase speed, β = g(ρ)

Adaptive reaction to the user feedback: The rate of increase ρ controls the rate of

exponential and linear increase from user feedback to user feedback. In addition to our
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original TCP control algorithm, we introduce an adaptive function to control the rate of

increase:

ρi+1 = ρi

(
1+ γ× Ti −TAVI

TAVI

)
(3.4)

Here ρi is the rate of increase. Ti is the latest interarrival time between user feedbacks.

TAVI is the target mean interarrival time between user feedbacks, expected by the user or

set by the administrator. γ controls the sensitivity to the feedback. We applied this adaptive

algorithm to the linearized control scheme.

3.2 Experiments

Using the UVMS, we addressed the questions posed in the introduction, and we compared

the various control algorithms described in the previous section. At present, we have stud-

ied only a single user (Lin), so our results are preliminary, but interesting and promising.

3.2.1 Experimental setup

The user used his own desktop in his office to connect to the remote Windows VM using

the Windows Remote Desktop client in full screen mode. The user used this VM as his

desktop during the day. The only difference from his physical desktop was the existence

of the user feedback button. The UVMS client spoke to the UVMS scheduler as described

earlier. UVMS recorded the system information as well as the user feedback, which was

later used to generate the results.

We did three experiments corresponding to the three control algorithms we discussed

in Section 3.1.4. The duration of each experiment was approximately 1 hour.

The user’s activities included typical tasks he performs daily, for example:

• Browsing with Internet Explorer
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• Word processing using Microsoft Word

• Presentation preparation using Microsoft Powerpoint

• Listening to MP3 music using Microsoft Media Player

• Playing games like DemonStar [39] (a 2D shooting game)

3.2.2 Metrics

Recall that our goal is to simultaneously provide high average computation rates to the

non-interactive VMs while keeping the users of the interactive VMs happy. And both

workloads are run on tightly-coupled computing resources such as clusters. We use two

metrics to evaluate the algorithms.

The interarrival time between user feedbacks is the interval between two consecutive

user feedbacks. This measurement helps us understand how the user feels (e.g. comfort,

happiness) when interacting with the VM. Ideally, the user would prefer that such feed-

backs are far between on average with very low jitter. We will consider both the average

interarrival time and its standard deviation.

The compute rate is the rate of computation of the competing process launched by the

computing module of UVMS. This metric represents the computation done by other VMs

and non-VM processes running in the same host machine. As we mentioned before, we

measure the amount of computation as the number of unit busy loops finished. We would

like this rate to be as high as possible.

3.2.3 Experimental results and analysis

We show results for our three control algorithms.
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Figure 3.10: Experiment I: nonlinear control scheme.
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Figure 3.11: Experiment II: linear control scheme.

Adaptive TCP Control Algorithm
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Figure 3.12: Experiment III: adaptive control scheme.
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Experiment I: nonlinear control scheme.

Figure 3.10 shows the relationship between the compute rate of the noninteractive process

and the interarrival times of the user feedbacks. Each data point in the figure represents the

interarrival time between two consecutive user feedbacks and the amount of computation

accomplished in the interval.

The average interarrival time between user feedbacks is 213.17 seconds, with a stan-

dard deviation of 97.37 seconds. The average nice value at which user feels discomfort is

12.12, with a standard deviation of 6.89. The average compute rate is 21223.61 units, with

a standard deviation of 9804.84 units.

Experiment II: linear control scheme.

Figure 3.11 shows the relationship between compute rate and interarrival time. The average

interarrival time between user feedbacks is 213.89 seconds, with a standard deviation of

89.28 seconds. The average nice value at which user feels discomfort is 14.67, with a

standard deviation of 2.06. The average compute rate is 42824.62 units per interarrival,

with a standard deviation of 21981.35 units.

Does the linear control scheme really work better than the nonlinear control scheme?

Although both experiments have almost the same average interarrival time between user

feedbacks with similar standard deviations, the user felt more comfortable in Experiment

I. More specifically, in Experiment I, the user felt that the machine always slowed down

gradually, while in Experiment II, he often felt discomforted by the abrupt slowdown of

the machine. One possible reason for this may be that in the additive-increase phase of

Experiment I, we increase the nice value by 1 in certain interval (e.g. 10 seconds) using

nonlinear control of 40 levels of nice values, while we use discontinuous control values

with limited levels in the other two experiments.
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Observe that in both Experiment I and II, the standard deviation of the interarrival time

is very large. While it is clear that the system was able to react quickly to provide better

performance to the user, the points in time at which the user had to express discomfort

showed a lot of jitter, depending mostly on what applications he was using. In other words,

it was difficult for the button pressing to become a habit.

Based on this observation, we did experiment III, testing the adaptive TCP control

algorithm, which explicitly tries to reduce the variance of the discomfort interarrival error

(i.e., the selected interarrival time minus the actual discomfort interarrival time of the user).

Experiment III: adaptive control scheme

Figure 3.12 shows the relationship with compute rate and time interval. The target interar-

rival time (TAVI) is set to 240 seconds (based on the user experience in Experiment I and

II). The control parameter γ is set to 0.5, which makes the algorithm very sensitive to user

feedback.

The average interarrival time between user feedbacks is now 189.44 seconds, with a

standard deviation of 56.60 seconds. The average nice value at which user feels discomfort

is 10.28, with a standard deviation of 2.78. The average compute rate is 17610.56, with a

standard deviation of 6980.43.

As we can see, Experiment III achieved a much lower deviation of interarrival time,

compared with Experiment I and II. The user felt discomforted at more predictable points

in time, as we hoped for.

What compute rate we can deliver to other VMs and non-VM processes? In all

three experiments, we can see that the larger the interarrival time is, the higher the compute

rate is. The reason is the larger the interarrival time of user feedbacks is, the higher the

average nice value (lower priority) the interactive VM process has, and the more CPU

time other processes will get. However, a large interarrival time also means that user can
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Control Accumulated Average Std. Dev. Average Std. Dev.
algorithm compute time compute time compute time interarrival interarrival

(loop iters) (loops/button (loops/button (seconds) (seconds)
press) press)

Exp I nonlinear 382025 21223.61 9804.84 213.17 97.37
Exp II linear 556720 42824.62 21981.35 213.89 89.28
Exp III adaptive 316990 17610.56 6980.43 189.44 56.60
nice -20 116987 N/A N/A N/A N/A
nice -1 133650 N/A N/A N/A N/A

Figure 3.13: Comparison of compute time extracted by a batch VM and button press inter-
arrival times for different algorithms.

tolerate the slowdown of the machine for a long time without being discomforted.

To further study how high a compute rates we can achieve by using UVMS, we calcu-

lated the accumulated compute cycles in Experiment I through III. We also ran two more

experiments to calculate the accumulated compute rate of the computing process when

competing with VM process without UVMS scheduler running. The nice value of the VM

process was -20 in one experiment and -1 in another one. Note that in all the experiments

we did, the nice value of the computing process was always -20 (highest priority).

Figure 3.13 summarizes our experimental results. For each of the control algorithms,

we show the total amount of compute time that was accumulated during the fixed experi-

mental period by the batch VM, the average compute time per button press and its standard

deviation, and the average interarrival time between button presses and its standard devi-

ation. For comparison, we also show the accumulated compute time for another possible

configuration, leaving the batch VM at the default priority level and increasing the priority

level (decreasing the nice level) of the interactive VM.

With the linear and nonlinear control approaches, the user has to tolerate being discom-

forted at any time—the variation in interarrival time for button presses is high. However,

the batch VM can extract the most time. For the linear scheme, the batch VM can extract

almost five times as much time as when no user-driven priority manipulation is done. With



CHAPTER 3. USER-DRIVEN SCHEDULING OF INTERACTIVE VIRTUAL
MACHINES 80

the adaptive control approach, the user is more comfortable as the variation in interarrival

time is considerably lower. Here the batch VM still extracts three times as much time as

compared to doing without user-driven priority manipulation.

3.3 Observations

Figure 3.13 clearly illustrates that it is possible for batch VMs running under our system,

competing with interactive VMs that are scheduled using direct user input, to get much

more computation time than the Linux dynamic scheduler, with or without static priority

manipulations (nice levels), permits. That is, we have demonstrated the utility of direct

user input into the scheduling process. However, there is a fundamental dissonance in the

scheme that forced us to discard it.

In the system, the interactive user indicates he is willing to press the button periodically.

The more he pays, the longer the expected interval between button presses. Unfortunately,

with a long expected interval, the adaptive algorithm gets very little measurement input,

making it harder for any control algorithm to do well. Conversely, the algorithm is likely

to do better with short intervals, but these are lower paying customers.

Our conclusion is that while it is critical for a user to be able to asynchronously indicate

to the system that he is displeased, he needs to be able to convey more than a single bit of

information. This led us to a far superior and practical approach, which we describe in the

next chapter.

3.4 Conclusions

We have described the initial design of a scheduling system UVMS, that uses direct user

feedback to balance between providing high average computation rates to the non-interactive

VMs while keeping the users of the interactive VMs happy. We showed the extent of con-
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trol we have using the nice mechanism, how we linearize this mechanism to simplify the

remainder of the system, the design of control algorithms and how our three control algo-

rithms work. We also described very early experimental results using the system.

Although our results are largely anecdotal at this point, they are promising. Using feed-

back it is possible to provide interactive performance while noninteractive VMs progress

much faster than would otherwise be possible. However, it appears that more information

is needed from the user, perhaps in the form of a real-time schedule.

This work provides evidence for the feasibility of human-driven specification part of

my thesis. That is, it is possible to use direct human input from users to determine at least

some objective function and constraints, what is the correct priority of user’s interactive

VM relative to the other VMs in the system in this case.
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Chapter 4

Putting the User in Direct Control of
Scheduling His Interactive Virtual
Machine

This dissertation argues for using direct human input to solve optimization problems. In

the last chapter, we showed an initial work on incorporating direct button feedback into

the CPU scheduling. The conclusion is that while it is critical for a user to be able to asyn-

chronously indicate to the system that he is displeased, he needs to be able to convey more

than a single bit of information. In this chapter, we discuss the design and development of

a periodic real-time scheduler. A user’s VM is scheduled as a periodic real-time task. The

user can instantaneously manipulate his VM’s schedule using a joystick. An on-screen

display illustrates the current schedule’s cost and indicates when the user’s desired sched-

ule is impossible due to the schedules of other VMs or resource constraints. An extensive

user study of the system indicates that even a naive user is capable of using the interface to

our system to find a schedule that balances cost and the comfort of his VM. Good sched-

ules are user- and application-dependent to a large extent, illustrating the benefits of user

involvement and the necessity of a novel user interface.
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4.1 VSched

As discussed in 1, Virtuoso is designed to support a wide range of workloads including

interactive workloads, batch workloads and batch parallel workloads.

Today, both sequential and parallel batch jobs are often scheduled using advance reser-

vations [91, 168] such that they will finish by some deadline. Resource providers in Vir-

tuoso price VM execution according to interactivity and compute rate constraints; thus, its

scheduling model must be able to validate and enforce these constraints.

An important challenge in Virtuoso is how to schedule a workload-diverse set of VMs

on a single physical machine so that interactivity does not suffer and batch machines meet

both their advance reservation deadlines and gang scheduling constraints. It is that chal-

lenge that VSched addresses.

VSched schedules a collection of VMs on a host according to the model of independent

periodic real-time tasks. Tasks can be introduced or removed from control at any point in

time through a client/server interface. Virtuoso uses this interface to enforce compute rate

and interactivity commitments a provider has made to a VM.

4.1.1 Abstraction

The periodic real-time model is a unifying abstraction that can provide for the needs of the

various classes of applications described above. In the periodic real-time model, a task is

run for slice seconds every period seconds. Typically, the periods start at time zero. Using

earliest deadline first (EDF) schedulability analysis [118], the scheduler can determine

whether some set of (period,slice) constraints can be met. The scheduler then simply

uses dynamic priority preemptive scheduling with the deadlines of the admitted tasks as

priorities.

VSched offers soft real-time guarantees. Because the Linux kernel does not have pri-
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ority inheritance mechanisms, nor known bounded interrupt service times, it is impossible

for a tool like VSched to provide hard real-time guarantees to ordinary processes. Nonethe-

less, as we show in our evaluation, for a wide range of periods and slices, and under even

fairly high utilization, VSched almost always meets the deadlines of its tasks.

In typical soft and hard embedded real-time systems, the (period,slice) constraint of a

task is usually measured in microseconds to low milliseconds. VSched is unusual in that it

supports periods and slices ranging into days. While fine, millisecond and sub-millisecond

ranges are needed for highly interactive VMs, much coarser resolutions are appropriate for

batch VMs.

It is important to realize that the ratio slice/period defines the compute rate of the task.

Batch VMs Executing a VM under the constraint (period,slice) for T seconds gives us

at least slice×�T/period� seconds of CPU time within T seconds. In this way, the periodic

real-time model can be used to express a deadline for the entire execution of the batch VM.

Batch parallel VMs A parallel application may be run in a collection of VMs, each of

which is scheduled with the same (period,slice) constraint. If each VM is given the same

schedule and starting point, then they can run in lock step, avoiding the synchronization

costs of typical gang scheduling.1 If the constraint accurately reflects the application’s

compute/communicate balance, then there should be minimal undesired performance im-

pact as we control the execution rate. As the schedule is a reservation, the application is

impervious to external load.

Interactive VMs Based on an in-depth study of users operating interactive applications

such as word processors, presentation graphics, web browsers, and first-person shooter

1Note, however, that this does introduce the need for synchronized clocks, with the bounds on synchro-
nization decreasing with the granularity of the application.
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games (Chapter 2), we have reached a number of conclusions about how to keep users

of such applications happy [76]. The points salient to this chapter are that the CPU rates

and jitter needed to keep the user happy is highly dependent on the application and on

the user. We believe we need to incorporate direct user feedback in scheduling interactive

applications running in VMs.

In Chapter 3, we explored using a single “irritation button” feedback mechanism to

control VM priority. This approach proved to be too coarse-grained. The two-dimensional

control possible with the (period,slice) mechanism is much finer-grained. An important

design criterium for VSched is that a VM’s constraints can be changed very quickly (in

milliseconds) so that an interactive user can improve his VM’s performance immediately

or have the system migrate it to another physical machine if his desired (period,slice) is

impossible on the original machine. We discuss this further in Section 4.6.

4.1.2 Type-II versus type-I VMMs

VSched is a user-level program that runs on Linux and schedules other Linux processes.

We use it here to schedule the VMs created by VMware GSX Server. GSX is a type-II

virtual machine monitor, meaning that it does not run directly on the hardware, but rather

on top of a host operating system, in this case Linux. A GSX VM, including all of the

processes of the guest operating system running inside, appears as a process in Linux,

which is then scheduled by VSched.

While type-II VMMs are by far the most common on today’s hardware and VSched’s

design lets it work with processes that are not VMs, it is important to point out that periodic

real-time scheduling of VMs could also be straightforwardly applied in type-I VMMs. A

type-I VMM runs directly on the underlying hardware with no intervening host OS. In this

case, the VMM schedules the VMs it has created just as an OS would schedule processes.

Just as many OSes support the periodic real-time model, so could type-I VMMs. Our
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argument for scheduling VMs using the periodic real-time model still applies.

4.2 System design

VSched uses the schedulability test of the earliest-deadline-first (EDF) algorithm [118,

120] to do admission control and EDF scheduling to meet deadlines. It is a user-level pro-

gram that uses fixed priorities within Linux’s SCHED FIFO scheduling class and SIGSTOP

/ SIGCONT to control other processes, leaving aside some percentage of CPU time for pro-

cesses that it does not control. By default, VSched is configured to be work-conserving for

the real-time processes it manages, allowing them to also share these resources and allow-

ing non-real-time processes to consume time when the real-time processes are blocked.

The resolution at which it can schedule depends on timer resolution in the system, and

thus its resolution depends on the Linux kernel version and the existence of add-on high-

resolution timers. VSched consists of a parent and a child process that communicate via

a shared memory segment and a pipe. The following describes the design of VSched in

detail.

4.2.1 Algorithms

A well-known dynamic-priority algorithm is EDF (Earliest Deadline First). It is a preemp-

tive policy in which tasks are prioritized in reverse order of the impending deadlines. The

task with the highest priority is the one that is run. We assume that the deadlines of our

tasks occur at the ends of their periods, although this is not required by EDF.

Given a system of n independent periodic tasks, there is a fast algorithm to determine

if the tasks, if scheduled using EDF, will all meet their deadlines:

U(n) =
n

∑
k=1

slicek

periodk
≤ 1 (4.1)
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Here, U(n) is the total utilization of the task set being tested. Equation 4.1 is both a

necessary and sufficient condition for any system of n independent, preemptable tasks that

have relative deadlines equal to their respective periods to be schedulable by EDF [120].

4.2.2 Mechanisms

SCHED FIFO Three scheduling policies are supported in the current Linux kernel:

SCHED FIFO, SCHED RR and SCHED OTHER. SCHED OTHER is the default uni-

versal time-sharing scheduler policy used by most processes. It is a preemptive, dynamic-

priority policy. SCHED FIFO and SCHED RR are intended for special time-critical ap-

plications that need more precise control over the way in which runnable processes are se-

lected for execution. Within each policy, different priorities can be assigned, with SCHED FIFO

priorities being strictly higher than SCHED RR priorities which are in turn strictly higher

than SCHED OTHER priorities. SCHED FIFO priority 99 is the highest priority in the

system and it is the priority at which the scheduling core of VSched runs. The server

front-end of VSched runs at priority 98. No other processes at these priority levels are

allowed.

SCHED FIFO is a simple preemptive scheduling policy without time slicing. For each

priority level in SCHED FIFO, the kernel maintains a FIFO queue of processes. The first

runnable process in the highest priority queue with any runnable processes runs until it

blocks, at which point it is placed at the back of its queue. When VSched schedules a VM

to run, it sets it to SCHED FIFO and assigns it a priority of 97, just below that the VSched

server front-end. No other processes at this priority level are allowed.

The following rules are applied by the kernel: A SCHED FIFO process that has been

preempted by another process of higher priority will stay at the head of the list for its

priority and will resume execution as soon as all processes of higher priority are blocked

again. When a SCHED FIFO process becomes runnable, it will be inserted at the end
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of the list for its priority. A system call to sched_setscheduler or sched_setparam

will put the SCHED FIFO process at the end of the list if it is runnable. No other events

will move a process scheduled under the SCHED FIFO policy in the queue of runnable

processes with equal static priority. A SCHED FIFO process runs until either it is blocked

by an I/O request, it is preempted by a higher priority process, or it calls sched_yield.

The upshot is that the process that VSched has selected to run is the one with the earliest

deadline. It will run whenever it is ready until VSched becomes runnable.

Timers After configuring a process to run at SCHED FIFO priority 97, the VSched core

waits (blocked) for one of two events using the select system call. It continues when it

is time to change the currently running process (or to run no process) or when the set of

tasks has been changed via the front-end.

The resolution that VSched can achieve is critically dependent on the available timer.

Under the standard 2.4.x Linux kernel, the timer offers 10 ms resolution. For many ap-

plications this is sufficient. However, especially interactive applications, such as games or

low-latency audio playback require finer resolution. When running on a 2.6.x Linux kernel,

VSched achieves 1 ms resolution because the timer interrupt rate has been raised to 1000

Hz. The UTIME component of KURT-Linux [83] uses the motherboard timers to deliver

asynchronous timer interrupts with resolution in the tens of µs. In VSched, we call select

with a non-null timeout as a portable way to sleep with whatever precision is offered in the

underlying kernel. Since UTIME extends select’s precision when it’s installed, VSched

can offer sub-millisecond resolution in these environments. Note, however, that the over-

head of VSched is considerably higher than that of UTIME, so the resolution is in the 100s

of µs.
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Figure 4.1: Structure of VSched.

SIGSTOP/SIGCONT By using EDF scheduling to determine which process to raise to

highest priority, we can assure that all admitted processes meet their deadlines. However,

it is possible for a process to consume more than its slice of CPU time. By default, when

a process’s slice is over, it is demoted to SCHED OTHER. VSched can optionally limit

a VM to exactly the slice that it requested by using the SIGSTOP and SIGCONT sig-

nals to suspend and resume the VM, similar to how control was asserted in GLUnix [68].

Although this adds overhead, we envision this as critical in a commercial environment.

4.2.3 Structure

VSched consists of a server and a client, as shown in Figure 4.1. The VSched server is a

daemon running on Linux that spawns the scheduling core, which executes the scheduling

scheme described above. The VSched client communicates with the server over a TCP

connection that is encrypted using SSL. Authentication is accomplished by a password

exchange. The server communicates with the scheduling core through two mechanisms.

First, they share a memory segment which contains an array that describes the current



CHAPTER 4. PUTTING THE USER IN DIRECT CONTROL OF SCHEDULING HIS
INTERACTIVE VIRTUAL MACHINE 90

tasks to be scheduled as well as their constraints. Access to the array is guarded via a

semaphore. The second mechanism is a pipe from server to core. The server writes on the

pipe to notify the core that the schedule has been changed.

Client interface Using the VSched client, a user can connect to VSched server and re-

quest that any process be executed according to a period and slice. Virtuoso keeps track of

the pids used by its VMs. For example, the specification (3333, 1000 ms, 200 ms) would

mean that process 3333 should be run for 200 ms every 1000 ms. In response to such a

request, the VSched server determines whether the request is feasible. If it is, it will add

the process to the array and inform the scheduling core. In either case, it replies to the

client.

VSched allows a remote client to find processes, pause or resume them, specify or

modify their real-time schedules, and return them to ordinary scheduling. Any process,

not just VMs, can be controlled in this way.

Admission control VSched’s admission control algorithm is based on Equation 4.1, the

admissibility test of the EDF algorithm. As we mentioned above, it is both a necessary and

sufficient condition. Instead of trying to maximize the total utilization, we allow the system

administrator to reserve a certain percentage of CPU time for SCHED OTHER processes.

The percentage can be set by the system administrator when starting VSched.

Scheduling core The scheduling core is a modified EDF scheduler that dispatches pro-

cesses in EDF order but interrupts them when they have exhausted their allocated CPU

for the current period. If configured by the system administrator, VSched will stop the

processes at this point, resuming them when their next period begins.

Since a task can miss its deadline only at a period boundary, the scheduling core makes
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Figure 4.2: A detailed VSched schedule for three VMs.

Machine 1: Pentium 4, 2.00GHz, 512MB Mem, Linux version 2.4.20-31.9 (Red Hat
Linux 9.0)
Machine 2: Dual CPUs (Pentium III Coppermine, 1.0 GHZ), 1G Mem, non-SMP Linux
kernel 2.4.18 patched with KURT 2.4.18-2
Machine 3: Pentium 4, 2.00GHz, 512MB Mem, Linux version 2.6.8.1 (Red Hat Linux
9.0)

Figure 4.3: Testbed Machines

scheduling decisions only at period boundaries, i.e., at the points when a task exhausts its

slice for the current period, or when the server indicates that the task set and its constraints

have changed. In this way, unlike a kernel-level scheduler [2, 7, 8, 25, 81, 136], VSched is

typically invoked only at the rate of the task with the smallest period.

When the scheduling core receives scheduling requests from the server module, it will

interrupt the current task and make an immediate scheduling decision based on the new

task set. The scheduling request can be a request for scheduling a newly arrived task or for

changing a task that has been previously admitted.

Figure 4.2 illustrates the scheduling of three virtual machines with different arrival

times.
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Kernel version Machine Utilization Period Slice Deadlines per
(from Fig. Range Range Range combination
4.3)

Linux kernel 1 10% - 99% 1016 ms - 16 ms 105.8 ms 1000
2.4.20-31.9 (increasing (decreasing by - 1.6 ms

by 10%) 40 ms)
KURT 2.4.18-2 2 1% - 99% 10.1 ms - 1.1 ms 9.999 ms 2000

(increasing (decreasing by - 0.011 ms
by 1%) 1 ms)

Linux kernel 3 1% - 99% 101 ms - 1 ms 99.99 ms 2000
2.6.8.1 (increasing (decreasing by - 0.01 ms

by 1%) 10 ms)

Figure 4.4: Evaluation scenarios.

4.3 Evaluation

Our evaluation focuses on the resolution and utilization limits of VSched running on sev-

eral different platforms. We answer the following questions: what combinations of period

and slice lead to low deadline miss rates and what happens when the limits are exceeded?

We ran our evaluation in three different environments, as shown in Figure 4.3. The

key differences between these environments are the processor speed (1 GHz P3 versus 2

GHz P4) and the available timers (2.4 kernel, 2.4 with KURT, and 2.6 kernel). For space

reasons, we present results for machine 1 only, a stock Red Hat installation that is the most

conservative of the three. Additional results are available at virtuoso.cs.northwestern.edu.

We also consider the effects of VSched on time-sensitive local I/O devices in this sec-

tion. The next section looks at user-perceived quality of audio and video I/O. In all cases

except for local I/O, we are running the application in the VM and scheduling the VM.

4.3.1 Methodology

Our primary metric is the miss rate, the number of times we miss the deadlines of a task

divided by the total number of deadlines. For tasks that miss their deadlines, we also
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collect the miss time, the time by which the deadline was overrun. We want to understand

how the miss rate varies with period and slice (or, equivalently, period and utilization), the

number of VMs, and by how much we typically miss a deadline when this happens.

We evaluate first using randomly generated testcases, a testcase being a random number

of VMs, each with a different (period,slice) constraint. Next, we do a careful deterministic

sweep over period and slice for a single VM. Figure 4.4 shows the range of parameters

used.

4.3.2 Randomized study

Figure 4.5 shows the miss rates as a function of the total utilization of the VMs for one

through four VMs. Each point corresponds to a single randomly generated testcase, while

the line represents the average miss rate over all the testcases. The miss rates are low,

independent of total utilization, and largely independent of the number of VMs after two

VMs. Going from one to two VMs introduces the need for more frequent context switches.

Figure 4.6 shows the distribution of the ratio of miss time to slice size, with the line

showing the maximum. All misses that do occur miss by less than 9%.

4.3.3 Deterministic study

In this study, we scheduled a single VM, sweeping its period and slice over the values

described in Figure 4.4. Our goal was to determine the maximum possible utilization and

resolution, and thus the safe region of operation for VSched on the different platforms.

Figure 4.7 shows the miss rate as a function of the period and slice for Machine 1.

The top graph is a 3D representation of this function, while the bottom graph is a contour

map of the function. This is evidence that utilizations to within a few percent of 100% are

possible with nearly 0% miss rate.

Deadline misses tend to occur in one of two situations:
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Figure 4.5: Miss rate as a function of utilization, Random study on Machine 1 (2 GHz P4,
2.4 kernel).
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Figure 4.6: Distribution of missed percentage of slice; Random study on Machine 1 (2
GHz P4, 2.4 kernel).
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Figure 4.8: Distribution of miss times when utilization is exceeded for Machine 1 (2 GHz
P4, 2.4 kernel).

Configuration Maximum Utilization Minimum Resolution
Machine 1 0.90 10 ms
Machine 2 0.75 0.2 ms
Machine 3 0.98 1 ms

Figure 4.9: Summary of performance limits on three platforms.

• Utilization misses: The utilization needed is too high (but less than 1).

• Resolution misses: The period or slice is too small for the available timer and

VSched overhead to support.

Figure 4.8 illustrates utilization misses on Machine 1. Here, we are requesting a period

of 16 ms (feasible) and a slice of 15.8 ms (feasible). However, this utilization of 98.75%

is too high for to be able to schedule it. VSched would require slightly more than 1.25%

of the CPU. The figure shows a histogram of the miss times. Notice that the vast majority

of misses miss by less than 405 µs, less than 3% of the period.

Figure 4.9 summarizes the utilization and resolution limits of VSched running on our

different configurations. Beyond these limits, miss rates are close to 100%, while within

these limits, miss rates are close to 0%.
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Figure 4.10: Performance of time-sensitive I/O (ripping an Audio CD) (2 GHz P4, 512MB
RAM, 2.6 kernel, Mandrake Linux).

4.3.4 I/O

As VSched schedules only the CPU and, unlike SCHED OTHER, provides no priority

boost for a process that has just completed I/O, a natural question is how much I/O, partic-

ularly time-sensitive I/O, suffers. Figure 4.10 illustrates the performance of ripping a track

from an audio CD using cdparanoia, where cdparanoia is scheduled according to differ-

ent periods and utilizations. Note that here we are scheduling the cdparanoia application

directly (no VM is involved). Reading from CD is extremely time sensitive as a buffer

overrun results in a very expensive seek. The time to rip the track without any VSched

scheduling is 37 seconds with 5% CPU utilization, which is nearly identical to not using

a VM at all. It is clearly possible for VSched to schedule cdparanoia so that it achieves

similar performance to SCHED OTHER at a similar utilization.
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(period, slice)(ms) Quake(with sound) MP3 MPEG(with sound) Web Browsing
(ms) playback playback
5, 1 good good tiny audio jitter good
6, 1 good good tiny audio jitter good
7, 1 tiny jitter good tiny audio jitter good
8, 1 small jitter tiny jitter tiny jitter jitter
9, 1 jitter noisy tiny jitter jitter
10, 1 jitter noisy jitter jitter
15, 1 jitter noisy jitter jitter
20, 1 jitter noisy jitter jitter
30, 1 jitter noisy jitter jitter
20, 10 small jitter small jitter jitter small jitter
30, 10 jitter noisy jitter jitter
50, 10 jitter noisy jitter jitter
100, 80 jitter noisy jitter good
200, 100 jitter noisy jitter jitter
300, 100 jitter noisy jitter jitter

Figure 4.11: Summary of qualitative observations from running various interactive appli-
cations in an Windows VM with varying period and slice. The machine is also running a
batch VM simultaneously with a (10 min, 1 min) constraint.

4.4 Mixing batch and interactive VMs

To see the effect of VSched on an interactive VM used by real users, we ran a small study.

The users in our study consisted of four graduate students from the Northwestern Com-

puter Science Department. Each user ran an interactive VM with fine-grained interactive

programs together with a batch VM and reported his observations. The test machine had

the following configuration:

• Pentium 4, 2.20GHz, 512MB Mem, Linux version 2.6.8.1-12mdk (Mandrake Linux

10.1)

• VMware GSX Server 3.1

• VSched server running as a daemon
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• Interactive VM running Windows XP

• Batch VM running Red Hat Linux 7.3. A process was started in the batch VM that

consumed CPU cycles as fast as possible and periodically sent a UDP packet to an

external machine to report on progress.

Each user tried the following activities in his VM:

• Listening to MP3 music using MS Media Player

• Watching an MPEG video clip using MS Media Player

• Playing QUAKE II [87] (3D first person shooter)

• Browsing the web using Internet Explorer, including using multiple windows, Flash

Player content, saving pages, and fine-grained view scrolling.

We set the batch VM to run 1 minute every 10 minutes (10% utilization). The user was

given control of the period and slice of his interactive VM. For each activity, the user

tried different combinations of period and slice to determine qualitatively which were the

minimum acceptable combinations. Figure 4.11 summarizes our observations. For each

activity, we present the worst case, i.e., the observations of the most sensitive user.

These qualitative results are very promising. They suggest that by using VSched we can

run a mix of interactive and batch VMs together on the same machine without having them

interfere. The results also indicate that there is considerable headroom for the interactive

VMs. For example, we could multiplex nearly 8 Windows VMs with users comfortably

playing QUAKE II in each of them on one low-end P4 computer. Given the fast reaction

time of VSched to a schedule change (typically within a few milliseconds), we have high

hopes that the end-users of interactive machines will be able to dynamically adjust their

VM’s constraints for changing needs. The same holds true for the users of batch VMs.
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Indeed, the VSched abstraction provides for a continuum from fine-grained interactivity to

very coarse-grained batch operation, all on the same hardware.

4.5 Summary

We have motivated the use of the periodic real-time model for virtual-machine-based dis-

tributed computing; the model allows us to straightforwardly mix batch and interactive

VMs and allows users to succinctly describe their performance demands. We have de-

signed and implemented a user-level scheduler for Linux that provides this model. We

evaluated its performance on several different platforms and found that we can achieve

very low deadline miss rates up to quite high utilizations and quite fine resolutions. Our

scheduler has allowed us to mix long-running batch computations with fine-grained inter-

active applications such as first-person-shooter games with no reduction in usability of the

interactive applications. It also lets us schedule parallel applications, effectively control-

ling their utilization without adverse performance effects, and allowing us to shield them

from external load.

VSched is publicly released and can be downloaded from http://virtuoso.cs.northwestern.edu.

A natural next step after we developed VSched is to decide how to choose schedules

straightforwardly for all kinds of VMs, and how to incorporate direct human input into the

scheduling process.

For batch VMs with I/O and batch parallel VMs we envision the user manipulating

the schedule to achieve a needed application-specific execution rate or efficiency. Alter-

natively, for an application that is run often, a user can readily map out the relationship

between (period,slice) and execution rate, which we will discuss in the next chapter, and

then make that relationship available to others.

It is challenging to decide (period,slice) constraints for interactive VMs in which users
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(a) GUI (b) Force Feedback Joystick

(c) Non-centering (d) Precision Non-centering
Joystick Joystick

Figure 4.12: Control interface. The combination of (a) and (c) is used in our study.

may have varying demands.

4.6 User interface

We have developed a graphical interface to allow even a naive user to easily use VSched to

set an appropriate (period,slice) constraint for his Windows VM. The tool indicates to the

user the cost of his current schedule and allows him to directly manipulate (period,slice).

VSched can change the schedule of a VM in about a millisecond, allowing for very smooth

control.

The holy grail for such an interface is that it be invisible or non-intrusive until the user

is unhappy with performance, and then can be nearly instantly manipulated to change the

schedule. We have explored several possible interfaces, including an on-screen interface
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(sliders), a centering joystick, a centering joystick with force feedback2, a non-centering

joystick, and a precision non-centering joystick. These interfaces are illustrated in Fig-

ure 4.12. We are also looking at trackballs, throttle controllers, and knob controllers.

Although we considered many different interfaces, non-centering joysticks appear to

be the best option as a starting point. In such a joystick, the control stalk maintains its

current deflection even after the user removes his hand. The horizontal and vertical deflec-

tion are naturally mapped into increasing period (left to right) and increasing utilization

(slice/period) (bottom to top). Note that all positions of the joystick correspond to valid

schedules.

In the following, we use a low precision non-centering joystick. In particular, we mod-

ified a cheap centering joystick (a variant of Figure 4.12(b)) to produce a non-centering

joystick (Figure 4.12(c)) by removing a spring. This joystick is not as precise as a pre-

cision non-centering joystick (Figure 4.12(d)), but using it serves two purposes. First, it

demonstrates that the interface can be quite inexpensive (<$10 versus >$200 for the preci-

sion joystick). Second, the joystick need not offer high precision to be useful (the precision

joystick has an order of magnitude more levels both vertically and horizontally).

The interface shows the cost of the current schedule (which can be changed in millisec-

onds). The specific cost function that is used is

cost = 100×
(

slice
period

+β× overhead
slice

)

Where overhead is the time to execute the scheduling core of VSched once. The purpose

here is to capture the fact that as slice declines, more time is spent in VSched and the

kernel on behalf of the process. For typical user-selected schedules for interactive VMs,

2The idea here is to physically convey to the user when he is asking for (period,slice) constraints that
are impossible due to the lack of hardware resources on the machine or to conflicting constraints from other
VMs.
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the influence of the overhead is minimal, and the cost is effectively the utilization of the

user’s VM.

4.7 User study

We conducted a user study to determine whether end-users could use our interface to find

schedules for their interactive VMs that were comfortable, and to determine whether users

could trade off between cost and comfort using the interface.

4.7.1 Particulars

The 18 users in our study consisted primarily of graduate students and undergraduates

from the engineering departments at Northwestern University, and included two partici-

pants who had no CS or ECE background. None of the users were familiar with real-time

scheduling concepts. We advertised for participants via flyers and email, and vetted re-

spondents to be sure they were at least slightly familiar with the common applications we

would have them use. Each user was given $15 for participating.

The test machine was a Dell Optiplex GX270 (2GHz P4, 512MB mem, 17” monitor,

100mbit Ethernet). The machine ran:

• VMware GSX Server 3.1

• VSched server running as a daemon,

• VM running Windows XP Professional, the applications (Microsoft Word 2002,

Powerpoint 2002, Internet Explorer 6.0, Quake II), and our interface, and

• Logitech WingMan Attack 2 Joystick modified to be non-centering, as described

earlier.
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The VM was run in full-screen mode and the users were not told that they were using

virtualization. The smallest slice and period possible were 1 ms, while the largest were 1

s.

4.7.2 Process

During the study, the user used the Windows VM for four tasks: word processing, presen-

tation creation, web browsing, and game playing. Each task was 15 minutes long with 5

minutes for each of three sub-tasks. We asked users to answer some questions (described

later) after each sub-task. We also video-taped users during the study, and the users were

told that the video tape and other mechanisms would allow us to determine their degree

of comfort during the study independently of the questions we were asking them. This

mild use of deception, a widely used technique in psychological research [176], was em-

ployed to decrease the likelihood that study participants would lie or operate the system

less aggressively than they might outside of the study.

From the user’s perspective, the study looked like the following. At the beginning of

each task and subtask, the joystick was recentered, corresponding to a 500 ms period with

a 50% utilization. The intent was to force the user to manipulate the joystick at least once,

since for all of the applications, this schedule was intolerable to us.

1. Adaptation Phase I (8 minutes): The user acclimatized himself to the performance

of the Windows VM by using the applications. Questions:

• Do you feel you are familiar with the performance of this computer? (Y/N)

• Are you comfortable with these applications? (Y/N)

2. Adaptation Phase II (5 minutes): The user acclimatized himself to the VSched con-

trol mechanism, Figures 4.12(a) and (c). The user listened to MP3-encoded music

using Windows Media Player and noticed how the playback behavior changed when
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he moved the joystick. At the beginning of this stage, the proctor told the user that

moving the joystick would change the responsiveness of the computer and that, in

general, moving the joystick to the upper-right would make the machine faster, while

moving the joystick to the lower left would slow the machine down. However, the

proctor also told them that the control was not a simple linear control, that all joy-

stick positions are valid, and that the user should do his best to explore using the

joystick control by himself. Questions:

• Do you feel that you understand the control mechanism? (Y/N)

• Do you feel that you can use the control mechanism? (Y/N)

3. Word processing using Microsoft Word (15 minutes): Each user typed in a non-

technical document with limited formatting.

• Sub-task I: Comfort (5 minutes) The user was told to try to find a joystick

setting that he felt was comfortable for him. Questions:

– Did you find that the joystick control was understandable in this applica-

tion? (Y/N)

– Were you able to find a setting that was comfortable? (Y/N)

• Sub-task II: Comfort and Cost (5 minutes) The user was given a cost bar

(Figure 4.12(a)) that showed the current cost of using the Windows VM. When

the user moved the joystick, both the responsiveness of the computer and cur-

rent cost change. The proctor asked the user to do their best to find a comfort-

able joystick setting that was of the lowest cost. Questions:

– Did you find that the joystick control was understandable in this applica-

tion? (Y/N)

– Were you able to find a setting that was comfortable? (Y/N)
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– If yes, what’s the cost?

• Sub-task III: Comfort and Cost With Perceived External Observation (5

minutes) This sub-task was identical to the previous one, except that the proc-

tor told the user that the system had mechanisms by which it could indepen-

dently determine whether the user was comfortable or not and whether a com-

fortable setting was of the lowest possible cost. It was claimed that this analysis

was achieved through measurement of the efficiency of the VM (the percentage

of cycles that the user has allocated that he is actually using), analysis of their

mouse, keyboard, and joystick input, and psychological analysis of the video

tape. Questions:

– Did you find that the joystick control was understandable in this applica-

tion? (Y/N)

– Were you able to find a setting that was comfortable? (Y/N)

– If yes, what’s the cost?

4. Presentation creation using Microsoft Powerpoint (15 minutes): Each user dupli-

cated a presentation consisting of complex diagrams involving drawing and labeling

from a hard copy of a sample presentation.

• The same three sub-tasks as for word processing with the same questions fol-

lowing each sub-task.

5. Browsing and research with Internet Explorer (15 minutes): Each user was assigned

a news web site and asked to read the first paragraphs of the main news stories.

Based on this, they searched for related material and saved it. This task involved

multiple application windows.
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• The same three sub-tasks as for word processing with the same questions fol-

lowing each sub-task.

6. Playing Quake II (15 minutes)

• The same three sub-tasks as for word processing with the same questions fol-

lowing each sub-task.

The written protocol and the form the user filled out can be found in Appendix C.

As the user performed the tasks, we recorded the following information:

• Periodic measurements of system and user time,

• Periodic measurements of utilization (portion of the allotted time that was spent

unblocked), and

• For each joystick event, the time stamp and the new (period,

slice) and cost.

The user was unaware of the recording process. He saw only the cost of the current sched-

ule.

4.7.3 Qualitative Results

Our users interacted with the system in many different ways. No classification scheme

seems obvious other than the extent to which they manipulated the joystick (both the num-

ber of times and the range covered.) Recall that after moving the joystick, the user needs

to return to the application to test the new schedule’s effects on its performance. However,

to explore the effect on cost, the user has immediate feedback in the form of the on-screen

meter (Figure 4.12(a)). We present the traces of three users as examples of different ways
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Figure 4.13: User A: Tracks, cost versus time.
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of interacting with the system, ranging from focusing first on the cost to focusing primarily

on the comfort of the application.

Figure 4.13 shows the behavior of a user primarily searching for low cost. Recall that at

the beginning of each task and subtask, the joystick was recentered, corresponding to a 500

ms period with a 50% utilization. Each row of graphs in the figure represents the behavior

for a single application (specifically, sub-task III in the task). Within a row, the left hand

graph shows the track of the user’s joystick over time, the horizontal axis being the period,

while the vertical axis is the utilization ( slice
period ). The top right corner of the graph has

highest performance (smallest period, highest utilization), while the bottom left has the

lowest performance (largest period, smallest utilization). The right hand graph shows the

cost of the schedule over time. Note that because the cost is dominated by utilization, there

are flat regions. These are typically due to a user changing the period while keeping the

utilization constant.

Note that the user of Figure 4.13 is hunting through the space, smoothly changing the

joystick to look for better prices. This is particularly evident in Figure 4.13(g), where the

user eventually discovers he can tolerate a much lower utilization (and thus cost) in the

game if he uses a very small period.

The user of Figure 4.14 spends less time hunting for a low cost and more time finding

comfortable settings. Also, we notice that unlike the previous user, this one needs high

utilization for the game, even though he tried a small period as well. In general this user

has optimized for a more costly machine than the previous user.

Figure 4.15 is a user who is optimizing for comfort. He is carefully moving the joystick,

and then testing the new schedule’s impact on the application for a while before moving

it again. Because this takes time, only a few movements are recorded. Probably the most

significant movement from the initial position (500 ms period, 50% utilization) is in the

case of the game, where the user slowly shrinks the period and increases utilization until it
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Figure 4.14: User B: Tracks, cost versus time.
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Figure 4.15: User C: Tracks, cost versus time.
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plays comfortably for him. Notice that because the game action continues even if the user

is not playing, the effects can be seen almost immediately.
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Figure 4.16: User C: Cost, efficiency versus time.

For this last user, Figure 4.16 shows the cost and efficiency as a function of time,

where the efficiency is the ratio of the actual time used by the VM (system and user time)

to the amount of time it was allotted. Ideally, at the lowest cost at which the user feels

comfortable, the efficiency should be very high. However, this is clearly not possible since

the user cannot modify his schedule continuously and still use the application. Hence,

the user will generally choose to have a certain amount of “buffering” in his schedule

to accommodate bursts of computation. From the figures we can see that the less CPU

intensive an application is, the lower the efficiency. Applications like Word, Powerpoint

and IE don’t need a continuous allocation of the CPU, but nonetheless need to be quickly
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Task Sub-task Question Yes No NA Yes/Total 95% CT 

Do you feel you are familiar with the performance of this computer? 18 0 0 1 (1,1) Adaptation I 

Are you comfortable with these applications? 17 1 0 0.94 (0.84, 1.05) 

Do you feel that you understand the control mechanism? 18 0 0 1.00 (1,1) 

Acclim. 

Adaptation II 

Do you feel that you can use the control mechanism? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task?  17 1 0 0.94 (0.84, 1.05) I Comfort 

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task? 18 0 0 1.00 (1,1) 

Word 

III Comfort+Cost+Ext 

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task? 16 2 0 0.89 (0.74, 1.03) I Comfort 

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  

Were you able to find a setting that was comfortable? 17 1 0 0.94 (0.84, 1.05) 

III Comfort+Cost+Ext Did you find that the joystick control was understandable in this task? 16 1 0 0.89 (0.74, 1.03) 

Powerpoint 

 Were you able to find a setting that was comfortable? 17 1 0 0.94 (0.70, 1.08) 

Did you find that the joystick control was understandable in this task? 16 2 0 0.89 (0.74, 1.03) I Comfort 

Were you able to find a setting that was comfortable? 13 4 1 0.72 (0.52, 0.93) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  

Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) 

Web 

III Comfort+Cost+Ext 

Were you able to find a setting that was comfortable? 16 1 1 0.89 (0.74, 1.03) 

Did you find that the joystick control was understandable in this task? 18 0 0 1.00 (1, 1) I Comfort 

Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  

Were you able to find a setting that was comfortable? 14 3 1 0.78 (0.59, 0.97) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) 

Game 

III Comfort+Cost+Ext 

Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03) 

 

Figure 4.17: Summary of user responses in study.

scheduled when a user event occurs. A certain percentage of the unused slice serves as the

“buffer” to make user feel comfortable. The user can shrink this buffer as close to the limit

as he can tolerate.

The exception is the game. Quake, like many first person shooter games, simply tries

to run with as high a frame rate as possible. Whatever schedule is chosen, the efficiency

is very high since all of the slice is consumed. Here, the user is indirectly controlling the

frame rate and jitter of the application.
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4.7.4 Quantitative Results

Figure 4.17 summarizes the responses of users to the questions in our study, providing 95%

confidence intervals for the proportion of users who responded in the affirmative. Notice

that in all cases, the responses allow us to discount the null hypothesis, that the users are

responding randomly, with > 95% confidence.

The overwhelming majority of users found that they

• understood our control mechanism,

• could use it to find a comfortable position, and

• could use to find a comfortable position that they believed was of lowest cost.

Despite the disparity among the applications and the users, there was little disparity in the

users’ reactions. There were only two situations where a significant fraction of the users

had difficulty finding a comfortable or comfortable and low-cost setting. 28% of users had

difficulty finding a comfortable setting for the web browsing task (sub-task I), while 22%

had difficulty finding a comfortable, low cost setting for the first person shooter task (sub-

task II). In both cases, the numbers result from one of the users answering the question

unintelligibly. Furthermore, that user answered “yes” to the more restrictive correspond-

ing question (where we are attempting to deceive him into believing we can answer the

question independently).

For sub-tasks II and III of each task, we had the user try to find a setting that he was

comfortable with and that he believed was of minimal cost. If he felt he had found a

comfortable setting, we recorded its cost. Figure 4.18 provides the statistics for these

costs. We can see that:

• As we might expect, costs, on average increase as we look at applications with in-

creasingly finer grain interactivity.
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Task Sub-task Question Avg Std Min Max Med Mod 

Did you find that the joystick control was understandable in this task? 

  Were you able to find a setting that was comfortable? 

 II Comfort+Cost 

     If yes, what’s the cost? 46.0 20.4 19 86 40.5 40 

Did you find that the joystick control was understandable in this task? 

  Were you able to find a setting that was comfortable? 

 

Word 

III Comfort+Cost+Ext 

     If yes, what’s the cost? 48.4 20.7 19 84 48 19 

Did you find that the joystick control was understandable in this task? 

  Were you able to find a setting that was comfortable? 

 II Comfort+Cost 

     If yes, what’s the cost? 52.4 19.5 20 91 45 62 

Did you find that the joystick control was understandable in this task? 

  Were you able to find a setting that was comfortable? 

 

Powerpoint 

III Comfort+Cost+Ext 

    If yes, what’s the cost? 52.3 19.2 18 87 50 38 

Did you find that the joystick control was understandable in this task? 

  Were you able to find a setting that was comfortable? 

 II Comfort+Cost 

    If yes, what’s the cost? 49.6 22.7 15 90 47 41 

Did you find that the joystick control was understandable in this task? 

  Were you able to find a setting that was comfortable? 

 

Web 

III Comfort+Cost+Ext 

    If yes, what’s the cost? 50.2 23.3 16 87 50 28 

Did you find that the joystick control was understandable in this task? 

  Were you able to find a setting that was comfortable? 

 II Comfort+Cost 

    If yes, what’s the cost? 78.8 14.1 50 93 84.5 90 

Did you find that the joystick control was understandable in this task? 

  Were you able to find a setting that was comfortable? 

 

Game 

III Comfort+Cost+Ext 

    If yes, what’s the cost? 76.5 14.9 49 91 81 81 

 

Figure 4.18: Statistics of the lowest costs reported by users in study.
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(a) Duration to first encounter of lowest cost (b) Duration to last encounter of lowest cost

Figure 4.19: Duration to lowest cost.

• There is tremendous variation in acceptable cost among the users. The standard

deviation is nearly half of the average cost. The maximum cost is as much as five

times the minimum cost. This should not be surprising given the wide variation

among users found in a previous study of resource borrowing (Chapter 2).

• Nonetheless, almost all users were able to find a setting that gave them comfortable

performance.

Figure 4.19(a) shows the statistics, aggregated across the users, on the duration from

the beginning of sub-tasks II and III of each task to the time that the lowest cost was

first encountered. For example, to compute the “Average” statistic for “Word III”, we

examined each user’s trace to find the time from the beginning of sub-task III of the Word

task to the time when the user’s reported lowest comfortable cost was first found. We then

averaged these times. The other statistics are computed similarly. Figure 4.19(b) shows

identical statistics for the duration to the last time the lowest cost occurred. Note that one

of durations slightly exceeds 300 s due to no movement of the joystick at the end of a

sub-task that was terminated in slightly more than 5 minutes.
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We can see that the median time for the user to find the setting of lowest cost that is

comfortable for him is in the range from 25-60 seconds. Notice that this time includes use

of the application. The user does a quick manipulation of the joystick and then tries to

use the application for a short while with the new setting. Recall that these times are for

the first 10 minutes that the user has been introduced to the combination of the application

and scheduling interface. One would expect that the times would decline as familiarity

increases.

The upshot of the study described in this section is that we have identified a practical

mechanism by which user input can be incorporated into the CPU scheduling process for

Virtuoso. Using that input, the system can adapt the schedule of the user’s VM to fit the

user and the application he is currently running, the side effect of which is that the system

can run more interactive users simultaneously, or allocate more time for long-running batch

VMs. The user can quickly guide the system to a schedule that simultaneously optimizes

both for his comfort in using an application and for low cost.

4.8 Conclusions

We have described and evaluated a technique for putting even naive users in direct, explicit

control of the scheduling of their interactive computing environments through the combi-

nation of a joystick and an on-screen display of cost. In so doing, we have demonstrated

that with such input it is possible and practical to adapt the schedule dynamically to the

user, letting him trade off between the comfort of the environment and its cost. Because

the tolerance for cost and the comfort with a given schedule is highly dependent on both

the applications being used and on the user himself, this technique seems very fruitful both

for tailoring computing environments to users and making them cheaper for everyone.

This work provides evidence for the feasibility and effectiveness of human-driven
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search part of my thesis. That is, it shows that it is possible to use direct human input

to guide the search for a good configuration. Using VSched’s joystick control, the user can

quickly guide the system to a schedule that simultaneously optimizes both for his comfort

in using an application and for low cost.
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Chapter 5

Time-sharing Parallel Applications With
Performance Isolation and Control

This dissertation argues for using direct human input to solve optimization problems. In

previous chapters, we showed how we used human-driven specification and search to solve

the CPU scheduling problem on a single machine. In this chapter, we apply human-driven

specification to an optimization problem on multiple machines.

5.1 Motivation

Tightly-coupled computing resources such as clusters are typically used to run batch par-

allel workloads. An application in such a workload is typically communication intensive,

executing synchronizing collective communication. The Bulk Synchronous Parallel (BSP)

model [186] is commonly used to understand many of these applications. In the BSP

model, application execution alternates between phases of local computation and phases

of global collective communication. Because the communication is global, the threads of

execution on different nodes must be carefully scheduled if the machine is time-shared. If a

thread on one node is slow or blocked due to some other thread unrelated to the application,

all of the application’s threads stall.
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To avoid stalls and provide predictable performance for users, almost all tightly-coupled

computing resources today are space-shared. In space-sharing [178], each application is

given a partition of the available nodes, and on its partition, it is the only application run-

ning, thus avoiding the problem altogether by providing complete performance isolation

between running applications. Space-sharing introduces several problems, however. Most

obviously, it limits the utilization of the machine because the CPUs of the nodes are idle

when communication or I/O is occurring. Space-sharing also makes it likely that applica-

tions that require many nodes will be stuck in the queue for a long time and, when running,

block many applications that require small numbers of nodes. Finally, space-sharing per-

mits a provider to control the response time or execution rate of a parallel job at only a very

coarse granularity. Though it can be argued theoretically that applications can be always

built such that computation and I/O overlap all the time, thus preventing stalls, practically

speaking, this is rarely the case. We propose a new self-adaptive approach to time-sharing

parallel applications on tightly-coupled computing resources like clusters, performance-

targetted feedback-controlled real-time scheduling. The goals of our technique are to pro-

vide

• performance isolation within a time-sharing framework that permits multiple appli-

cations to share a node, and

• performance control that allows the administrator to finely control the execution rate

of each application while keeping its resource utilization automatically proportional

to execution rate.

Conversely, the administrator can set a target resource utilization for each application and

have commensurate application execution rates follow.

In performance-targetted feedback-controlled real-time scheduling, each node has a

periodic real-time scheduler, VSched (Chapter 4).
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Once an administrator has set a target execution rate for an application, a global con-

troller determines the appropriate constraint for each of the application’s threads of execu-

tion and then contacts each corresponding local scheduler to set it. The controller’s input

is the desired application execution rate, given as a percentage of its maximum rate on the

system (i.e., as if it were on a space-shared system). The application or its agent period-

ically feeds back to the controller its current execution rate. The controller automatically

adjusts the local schedulers’ constraints based on the error between the desired and actual

execution rate, with the added constraint that utilization must be proportional to the target

execution rate. In the common case, the only communication in the system is the feedback

of the current execution rate of the application to the global controller, and synchronization

of the local schedulers through the controller is very infrequent. Section 5.2 describes the

global controller in detail.

It is important to point out that our system schedules the CPU of a node, not its physi-

cal memory, communication hardware, or local disk I/O. Nonetheless, in practice, we can

achieve quite good performance isolation and control even for applications making sig-

nificant use of these other resources, as we show in our detailed evaluation (Section 5.3).

Mechanisms for physical memory isolation in current OSes and VMMs are well under-

stood and can be applied in concert with our techniques. As long as the combined working

set size of the applications executing on the node does not exceed the physical memory of

the machine, the existing mechanisms suffice. Communication has significant computa-

tional costs, thus, by throttling the CPU, we also throttle it. The interaction of our system

and local disk I/O is more complex. Even so, we can control applications with considerable

disk I/O.

The primary contributions of this work to the state of the art are the following:

• We have described, implemented, and evaluated a new approach to time-sharing
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Figure 5.1: Structure of global control.

parallel applications with performance isolation. The approach is based on peri-

odic real-time scheduling of the nodes combined with global control of the real-time

constraints.

• We have demonstrated that this approach also provides a simple way to control the

execution rate of applications while maintaining efficiency.

5.2 Global controller

The control system consists of a centralized feedback controller and multiple host nodes,

each running a local copy of VSched, as shown in Figure 5.1. A VSched daemon is re-

sponsible for scheduling the local thread(s) of the application(s) under the yoke of the

controller. The controller sets (period,slice) constraints using the mechanisms described

in Chapter 4. Currently, the same constraint is used for each VSched. One thread of

the application, or some other agent, periodically communicates with the controller using

non-blocking communication.
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5.2.1 Inputs

The maximum application execution rate on the system in application-defined units is

Rmax. The set point of the controller is supplied by the user or the system administra-

tor through a command-line interface that sends a message to the controller. The set point

is rtarget and is a percentage of Rmax. The system is also defined by its threshold for error,

ε, which is given as percentage points. The inputs Δslice and Δperiod specify the smallest

amounts by which the slice and period can be changed. The inputs minslice and minperiod

define the smallest slice and period that VSched can achieve on the hardware.

The current utilization of the application is defined in terms of its scheduled period and

slice, U = slice/period. The user requires that the utilization be proportional to the target

rate, that is, that rtarget − ε ≤U ≤ rtarget + ε.

The feedback input rcurrent comes from the parallel application we are scheduling and

represents its current execution rate as a percentage of Rmax. To minimize the modification

of the application and the communication overhead, our approach only requires high-level

knowledge about the application’s control flow and only a few extra lines of code.

5.2.2 Control algorithm

The control algorithm (or simply the algorithm) is responsible for choosing a (period,slice)

constraint to achieve the following goals

1. The error is within threshold: rcurrent = rtarget ± ε, and

2. That the schedule is efficient: U = rtarget ± ε.

The algorithm is based on the intuition and observation that application performance will

vary depending on which of the many possible (period,slice) schedules corresponding to a

given utilization U we choose, and the best choice will be application dependent and vary
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with time. For example, a finer grain schedule (e.g. (20ms, 10ms)) may result in better

application performance than coarser grain schedules (e.g. (200ms, 100ms)). At any point

in time, there may be multiple “best” schedules.

The control algorithm attempts to automatically and dynamically achieve goals 1 and

2 in the above, maintaining a particular execution rate rtarget specified by the user while

keeping utilization proportional to the target rate.

We define the error as

e = rcurrent − rtarget .

At startup, the algorithm is given an initial rate rtarget . It chooses a (period,slice)

constraint such that U = rtarget and period is set to a relatively large value such as 200 ms.

The algorithm is a simple linear search for the largest period that satisfies our requirements.

When the application reports a new current rate measurement rcurrent and/or the user

specifies a change in the target rate rtarget , e is recomputed, followed by:

• If |e|> ε decrease period by Δperiod and decrease slice by Δslice such that slice/period =

U = rtarget . If period ≤ minperiod then we reset period to the same value as used at

the beginning and again set slice such that U = rtarget .

• If |e| ≤ ε do nothing.

It should be noticed that the algorithm always maintains the target utilization and searches

the (period,slice) space from larger to smaller granularity, subject to the utilization con-

straint. The linear search is, in part, done because multiple appropriate schedules may

exist. We do not preclude the use of algorithms that walk the space faster, but we have

found our current algorithm to be effective.
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5.3 Evaluation

In presenting our evaluation, we begin by explaining the experimental framework. Then

we show the range of control that the scheduling system has made available. This is fol-

lowed by an examination of using the algorithm described above to prevent the inevitable

drift associated with simply using a local real-time scheduler. Next, we examine the per-

formance of the algorithm in a dynamic environment, showing their reaction to changing

requirements. We then illustrate how the system remains impervious to external load de-

spite the feedback. Next, we show how the system scales as it controls increasing numbers

of parallel applications. Finally, we examine the effects of local disk I/O and memory

contention.

5.3.1 Experimental framework

As mentioned previously, Bulk Synchronous Parallel (BSP [67]) model is used to charac-

terize many of the batch parallel workloads that run in tightly coupled computing resources

such as clusters. In most of our evaluations we used a synthetic BSP benchmark, called

Patterns, written for PVM [66]. Patterns is described in more detail in a previous pa-

per [74], but the salient points are that it can execute any BSP communication pattern and

run with different compute/communicate (comp/comm) ratios and granularities. In gen-

eral, we configure Patterns to run with an all-to-all communication pattern on four nodes

of our IBM e1350 cluster (Intel R© Xeon R© 2.0 GHz, 1.5 GB RAM, Gigabit Ethernet in-

terconnect, Linux 2.4.20). Each node runs VSched, and a separate node is used to run the

controller. Note that all of our results involve CPU and network I/O.

We also evaluated the system using an NAS (NASA Advanced Supercomputing) bench-

mark. In particular, we use the PVM implementation of the IS (Integer Sort) benchmark

developed by White et al. [198]. It performs a large integer sort, sorting keys in parallel



CHAPTER 5. TIME-SHARING PARALLEL APPLICATIONS WITH
PERFORMANCE ISOLATION AND CONTROL 127

Figure 5.2: Compute rate as a function of utilization for different (period,slice) choices.

as seen in large scale computational fluid dynamic (CFD) applications. IS combines in-

teger computation speed and communication with, unlike Patterns, different nodes doing

different amounts of computation and communication.

5.3.2 Range of control

To illustrate the range of control possible using periodic real-time scheduling on the indi-

vidual nodes, we ran Patterns with a compute/communicate ratio of 1:2, making it quite

communication intensive. Note that this configuration is conservative: it is far easier to

control a more loosely coupled parallel application with VSched. We ran Patterns repeat-

edly, with different (period,slice) combinations. Figure 5.2 shows these test cases. Each

point is an execution of Patterns with a different (period,slice), plotting the execution rate

of Patterns as a function of Patterns utilization on the individual nodes. Notice the line

on the graph, which is the ideal control curve that the control algorithm is attempting to

achieve, control over the execution rate of the application with proportional utilization

(rcurrent = rtarget = U ). Clearly, there are choices of (period,slice) that allow us to meet
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all of the requirements.

5.3.3 Schedule selection and drift

Although there clearly exist (period,slice) schedules that can achieve an execution rate

with (or without) proportional utilization, we cannot simply use only the local schedulers

for several reasons:

• The appropriate (period,slice) is application dependent because of differing com-

pute/communicate ratios, granularities, and communication patterns. Making the

right choice should be automatic.

• The user or system administrator may want to dynamically change the application

execution rate rtarget . The system should react automatically.

• Our implementation is based on a soft local real-time scheduler. This means that

deadline misses will inevitably occur and this can cause timing offsets between dif-

ferent application threads to accumulate. We must monitor and correct for these slow

errors. Notice that this is likely to be the case for a hard local real-time scheduler as

well if the admitted tasks vary across the nodes.

Figure 5.3 illustrates what we desire to occur. The target application execution rate is

given in iterations per second, here being 0.006 iterations/second. The current execution

rate rcurrent is calculated after each iteration and reported to the controller. This is Patterns

running with a 1:1 compute/communicate ratio on two nodes. The lower curve is that of

simply using VSched locally to schedule the application. Although we can see that the

rate is correct for the first few iterations, it then drifts downward, upward, and once again

downward over the course of the experiment. The roughly straight curve is using VSched,

the global controller, and the control algorithm. We can see that the tendency to drift has

been eliminated using global feedback control.
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Figure 5.3: Elimination of drift using global feedback control; 1:1 comp/comm ratio.

(a) high (5:1) (b) medium (1:1) (c) low (1:5)
comp/comm ratio comp/comm ratio comp/comm ratio

Figure 5.4: System in stable configuration for varying comp/comm ratio.
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5.3.4 Evaluating the control algorithm

We studied the performance of the control algorithm using three different compute / com-

municate ratios (high (5:1) ratio, medium (1:1) ratio, and low (1:5) ratio), different target

execution rates rtarget , and different thresholds ε. In all cases Δperiod = 2 ms, where Δperiod

is the change in period effected by VSched when the application execution rate goes out-

side of the threshold range, the slice is then adjusted such that U = rtarget .

Figure 5.4 shows the results for high, medium, and low test cases with a 3% threshold.

We can see that the target rate is easily and quickly achieved, and remains stable for all

three test cases. Note that the execution rate of these test cases running at full speed without

any scheduling are slightly different. rcurrent is calculated in the end of every iteration.

Next, we focus on two performance metrics:

• Minimum threshold: What is the smallest ε below which control becomes unstable?

• Response time: for stable configurations, what is the typical time between when the

target execution rate rtarget changes and when the rcurrent = rtarget ± ε ?

Being true for all feedback control systems, the error threshold will affect the performance

of the system. When the threshold ε is too small, the controller becomes unstable and fails

because the change applied by the control system to correct the error is even greater than

the error. For our control algorithm, when the error threshold is < 1%, the controller will

become unstable. Figure 5.5 illustrates this behavior. Note that while the system is now

oscillating, it appears to degrade gracefully.

Figure 5.6 illustrates our experiment for measuring the response time. The target rate

is changed by the user in the middle of the experiment. Our control system quickly adjusts

the execution rate and stabilizes it. It shows that the response time is about 32 seconds,

or two iterations, for the case of 1:1 compute/communicate ratio. The average response
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Figure 5.5: System in oscillation when error threshold is made too small; 1:1 comp/comm
ratio.

time over four test cases (1 high, 2 medium, and 1 low compute/communicate ratios) is

30.68 seconds. In all cases, the control algorithm maintains U = rtarget as an invariant by

construction.

5.3.5 Summary of limits of control algorithm

Figure 5.7 summarizes the response time, communication cost to support the feedback

control, and threshold limits of our control system. Overall we can control with a quite

small threshold ε. The system responds quickly, on the order of a couple of iterations of

our benchmark. The communication cost is minuscule, on the order of just a few bytes per

iteration. Finally, these results are largely independent of the compute/communicate ratio.

The exceptionally low communication involved in performance-targetted feedback-

controlled real-time scheduling is a natural consequence of the deterministic and pre-

dictable periodic real-time scheduler being used on each node.
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Figure 5.6: Response time of control algorithm; 1:1 comp/comm ratio.

High (5:1) compute Medium (1:1) compute Low (1:5) compute
/communicate ratio /communicate ratio /communicate ratio

Response Threshold Feedback Response Threshold Feedback Response Threshold Feedback
time limit comm. time limit comm. time limit comm.

cost cost cost
29.16 s 2 % 32 bytes 31.33 s 2 % 32 bytes 32.01 s 2 % 32 bytes

/iter /iter /iter

Figure 5.7: Response time and threshold limits for the control algorithm.

5.3.6 Dynamic target execution rates

As we mentioned earlier, using the feedback control mechanism, we can dynamically

change the target execution rates and our control system will continuously adjust the real-

time schedule to adapt to the changes. To see how our system reacts to user inputs over

time, we conducted an experiment in which the user adjusted his desired target rate four

times during the execution of the Patterns application. As shown in Figure 5.8, the control

algorithm works well. After the user changes the target rate, the algorithm quickly adjusts

the schedule to reach the target.
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Figure 5.8: Dynamically varying execution rates; 1:1comp/comm ratio.

5.3.7 Ignoring external load

Any coupled parallel program can suffer drastically from external load on any node; the

program runs at the speed of the slowest node. We have previously shown that the periodic

real-time model of VSched can shield the program from such external load, preventing

the slowdown [109]. Here we want to see whether our control system as a whole can still

protect a BSP application from external load.

We executed Patterns on four nodes with the target execution rate set to half of its

maximum rate. On one of the nodes, we applied external load, a program that contends for

the CPU using load trace playback techniques [43]. Contention is defined as the average

number of contention processes that are runnable. Figure 5.9 illustrates the results. At

roughly the 15th iteration, an external load is placed on one of the nodes in which Patterns

is running, producing a contention of 1.0. We note that the combination of VSched and the

feedback controller are able to keep the performance of Patterns independent of this load.

We conclude that our control system can help a BSP application maintain a fixed stable

performance under a specified execution rate constraint despite external load.
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Figure 5.9: Performance of control system under external load; 3:1 comp/comm ratio; 3%
threshold.

5.3.8 NAS IS Benchmark

When we ran the NAS IS (Integer Sort) benchmark without leveraging our control system,

we observed that different nodes have different CPU utilizations. This is very different

from the Patterns benchmark, which does roughly the same amount of computation and

communication on each node. In our experiment, for a specific configuration of NAS IS

executing on four nodes, we observed an average utilization of ∼28% for two nodes and

∼14% average utilization for the other two nodes.

This variation has the potential to challenge our control system, since in our model

we assume the same target utilization U on each node, and we apply the same schedule

on each node. We ran an experiment where we set the target utilization to be half of the

maximum utilization among all nodes, i.e. 14%. Figure 5.10 illustrates the performance in

this case. We can see that the actual execution rate is successfully brought to within ε of

the target rate.

We are currently designing a system in which the global controller is given the freedom
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Figure 5.10: Running NAS benchmark under control system; 3% threshold.

to set a different schedule on each node thus making our control system more flexible.

5.3.9 Time-sharing multiple applications

To see how well we can provide time-sharing for multiple parallel applications, we simul-

taneously executed multiple Patterns benchmarks on the same four nodes of our cluster.

Figure 5.11 shows the results of running two Patterns applications, each configured

with a 1:1 compute/communicate ratio. One was configured with a target rate of 30%,

with the other set to 40%. We can clearly see that the actual execution rates are quickly

brought to within ε of the target rates and remain there for the duration of the experiment.

Next, we consider what happens as we increase the number of Patterns benchmarks

running simultaneously. In the following, each Patterns benchmark is set to execute with

identical 10% utilization. We ran Patterns with a 3:1 compute/communicate ratio. Fig-

ure 5.12 shows our results. Each graph shows the execution rate (iterations/second) as a

function of the iteration, as well as the two 3% threshold lines. Figure 5.12(a) contains two

such graphs, corresponding to two simultaneously executing Patterns benchmarks, (b) has

three, and so on.
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Figure 5.11: Running of two Patterns benchmarks under the control system, 1:1
comp/comm ratio.

Overall, we maintain reasonable control as we scale the number of simultaneously

executing benchmarks. Further, over the thirty iterations shown, in all cases, the average

execution rate meets the target, within threshold.

We do notice a certain degree of oscillation when we run many benchmarks simulta-

neously. Our explanation is as follows. When VSched receives and admits a new schedule

sent by the global controller, it will interrupt the current task and re-select a new task

(perhaps the previous one) to run based on its deadline queue. As the number of parallel

applications increases, each process of an application on an individual node will have a

smaller chance of running uninterrupted throughout its slice. In addition, there will be a

smaller chance of each process starting its slice at the same time.

The upshot is that even though the process will continue to meet its deadlines locally,

it will be less synchronized with processes running on other nodes. This results in the

application’s overall performance changing, causing the global controller to be invoked

more often. Because the control loop frequency is less than the frequency of these small

performance changes, the system begins to oscillate. However, the degradation is graceful,
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Figure 5.12: Running multiple Patterns benchmarks; 3:1 comp/comm ratio; 3% threshold.
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(a) 10 MB/node/iter I/O (b) 20 MB/node/iter I/O (c ) 40 MB/node/iter I/O

Figure 5.13: Performance of control system with a high (145:1) comp/comm ratio and
varying local disk I/O.

and, again, the long term averages are well behaved.

5.3.10 Effects of local disk I/O

Although we are only scheduling the CPU resource, it is clear from the above that this is

sufficient to isolate and control a BSP application with complex collective communications

of significant volume. Is it sufficient to control such an application when it also extensively

performs local disk I/O?

To study the effects of local disk I/O on our scheduling system, we modified the Pat-

terns benchmark to perform varying amounts of local disk I/O. In the modified Patterns,

each node writes some number of bytes sequentially to the local IDE hard disk during each

iteration. It is ensured that the data is written to the physical disk by using fsync() call.

In our first set of experiments, we configured Patterns with a very high (145:1) com-

pute/communicate ratio, and 0, 1, 5, 10, 20, 40, and 50 MB per node per iteration of local

disk I/O. Our target execution rate was 50% with a threshold of 3%. Figure 5.13 shows the

results for 10, 20, and 40 MB/node/iter. 0, 1, 5 are similar to 10, while 50 is similar to 40.

For up to 10 MB/node/iter, our system effectively maintains control of the application’s

execution rate. As we exceed this limit, we develop a slight positive bias; the application

runs faster than desired despite the restricted CPU utilization. The dominant part of the



CHAPTER 5. TIME-SHARING PARALLEL APPLICATIONS WITH
PERFORMANCE ISOLATION AND CONTROL 139

(a) high (4900:1) (b) medium (2:1) (c) low (1:3.5)
comp/comm ratio comp/comm ratio comp/comm ratio

Figure 5.14: Performance of control system with 10 MB/node/iter of disk I/O and varying
comp/comm ratios.

time spent on local disk I/O is spent waiting for the disk. As more I/O is done, a larger

proportion of application execution time is outside of the control of our system. Since the

control algorithm requires that the CPU utilization be equal to the target execution rate,

the actual execution rate grows. In the second set of experiments, we fixed the local disk

I/O to 10 MB/node/iter (the maximum controllable situation in the previous experiment)

and varied the compute/communicate ratio, introducing different amounts of network I/O.

We used a target rate of 50%. We used seven compute/communicate ratios ranging from

4900:1 to 1:3.5. Figure 5.14 shows the results for 4900:1, 2:1, and 1:3.5. For high to

near 1:1 compute/communicate ratios, our system can effectively control the application’s

execution rate even with up to 10 MB/node/iteration of local I/O, and degrades gracefully

after that.

Our system can effectively control the execution rates of applications performing sig-

nificant amounts of network and local disk I/O. The points at which control effectiveness

begins to decline depends on the compute/communicate ratio and the amount of local disk

I/O. With higher ratios, more local disk I/O is acceptable. We have demonstrated control

of an application with a 1:1 ratio and 10 MB/node/iter of local disk I/O.
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Figure 5.15: Running two Patterns benchmarks under the control system; high (130:1)
comp/comm ratio. The combined working set size is slightly less than the physical mem-
ory.

5.3.11 Effects of physical memory use

Our technique makes no attempt to isolate memory, but the underlying node OS certainly

does so. Is it sufficient?

To evaluate the effects of physical memory contention on our scheduling system, we

modified the Patterns benchmark so that we could control its working set size. We then ran

two instances of the modified benchmark simultaneously on the four nodes of our cluster.

We configured the first instance with a working set of 600 MB and a target execution rate of

30%, while the second was configured with a working set size of 700 MB and a target rate

of 40%. Both instances had a compute/communicate ratio of around 130:1. The combined

working set of 1.3 GB is slightly less than the 1.5 GB of memory of our cluster nodes.

We used the control algorithm to schedule the two instances, and Figure 5.15 shows

the results of this experiment. We see that despite the significant use of memory by both

instances, our system maintains control of both applications’ execution rates.

Our results suggest that unless the total working set on the machine is exceeded, phys-
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ical memory use has little effect on the performance of our scheduling system. It is impor-

tant to point out that most OS kernels, including Linux, have mechanisms to restrict the

physical memory use of a process. These mechanisms can be used to guarantee that the

physical memory pressure on the machine does not exceed the supply. A virtual machine

monitor such as Xen or VMware provides additional control, enforcing a physical memory

limit on a guest OS kernel and all of its processes.

5.4 Conclusions

We have proposed, implemented, and evaluated a new self-adaptive approach to time-

sharing parallel applications on tightly coupled compute resources such as clusters. Our

technique, performance-targetted feedback-controlled real-time scheduling, is based on the

combination of local scheduling using the periodic real-time model and a global feedback

control system that sets the local schedules. The approach performance-isolates paral-

lel applications and allows administrators to dynamically change the desired application

execution rate while keeping actual CPU utilization automatically proportional to the ap-

plication execution rate. Our implementation takes the form of a user-level scheduler for

Linux and a centralized controller. Our evaluation shows the system to be stable with low

response times. The thresholds needed to prevent control instability are quite reasonable.

Despite only isolating and controlling the CPU, we find that memory, communication I/O,

and local disk I/O follow.

This work shows the effectiveness of human-driven specification on an otherwise diffi-

cult multi-machine optimization problem. In this case, the administrator directly specifies

the objective function — desired target execution rate for each of his parallel applications,

our system then automatically adjusts the applications’ real-time schedules to achieve those

rates with proportional CPU utilization.
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Chapter 6

Application Trace-driven Simulator for
Virtuoso

With the increasing complexity of the optimization problems that I address in the next

chapter, the design and evaluation of my human-driven techniques would become more

difficult and more time-consuming. In this chapter, I discuss the design and development

of an application-trace-driven simulator. I decided to develop and use the simulator for the

following reasons.

• My proposed human-driven approach focuses on how to allow direct user input in the

specification of a adaptation problem and in the search for an optimal or good solu-

tion to the problem. In previous chapters, I solved various problems with increasing

difficulty involving different real applications. For those interactive applications, it

was essential for the user to be able to directly interact with the application. How-

ever, for non-interactive applications, such as batch applications, the interactivity

between the user and the application itself becomes much less direct and frequent,

compared with the interactivity between the user and our human-driven interface.

Using an application simulator will let us concentrate on the latter interaction and

the design of the interface.
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• A non-interactive application typically runs for a long time. Given any user interface,

it is unlikely that a system administrator or application user wants to keep monitoring

the interface all the time. In reality, he may change some parameters using the

interface, leave for a while, come back and adjust the application again based on

the current progress of the application. During the design and development of my

human-driven techniques, I want to test my interface with real users, for example,

in a user study. It would be very time consuming if we use a real non-interactive

application which may run for days and receive only sporadic user inputs. With

a simulator, we can fast forward the application to those interesting points so that

status of the application is updated more frequently to the user, thus triggering more

frequent user input.

• The setup and teardown of a batch application running on multiple machines can

be tedious and non-trivial. In human-driven search, we want different users to try

different configurations and search for the optimal one. This requires that we can

quickly re-run the application many times with constant initial state. A simulator

makes this straightforwarded.

• Migrating a VM is not instant in a real system. If we allow a user to change the

mapping from VMs to hosts through the interface, during the design and test stage,

we must allow him to see the effect of migration quickly enough so that he can try

a new mapping, considering the huge space of all possible mappings. A simulator

will help. We will discuss the VM migration issues in more details later.

After we find a good interface for human-driven search using the combination of the

simulator and the interface, we can modify the interface and connect it to the real system

and application.
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Figure 6.1: Structure of the simulator

In this chapter, I present the design, implementation, verification and validation of our

trace-driven simulator.

The first generation of the simulator was developed by my colleague Ananth I. Sun-

dararaj [181]. I implemented an event graph generator to generate traces for the simulator.

I also participated in the validation and verification of the original simulator. As part of

my dissertation, I designed and implemented the second generation of the simulator. In the

remainder of this chapter, for completeness, I will first describe the first generation simu-

lator. More details can be found in [181]. Then I will discuss the design and development

of the second generation simulator and its validation.

6.1 First generation simulator

The purpose of the trace-driven simulator is to reasonably simulate the running of appli-

cations involving both computation and communication within the Virtuoso environment.

Figure 6.1 shows the structure and working of the simulator. The high-level idea is to col-

lect traces of real applications under a tightly controlled setup (our IBM e1350 cluster) and

then to replay the traces under real world scenarios to study effects of adaptation.
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The simulator described here is modeled on the Virtuoso system. The high-level de-

sign is generic and we hope that such a design with minor modifications would also be

applicable to other environments, e.g. [15].

Being true for any simulator, our simulator has limitations. It does not model computer

system memory or disks. It models computation, communication and the computation

costs of communication. The simulator uses real world network measurements as input

data, however, it does not uses a real model for time of day effects. Although the simulator

takes into account cross traffic, it does not account for sudden instantaneous spikes in CPU

or network traffic (unless fed in at the begining of the simulation).

6.1.1 Input

Application trace An application trace is an event graph represented as a directed acyclic

graph (DAG). Figure 6.2 shows a sample plot of a small trace generated for a short run of

the Patterns benchmark executing on three hosts. An event graph consists of nodes and

edges. It starts at a node called start and ends at a node called end. The progression of

each application component executing inside a VM is represented by a series of nodes

connected by plain or annotated edges. In Figure 6.2, each such application component is

enclosed in a rectangular box.

There are four possible types of edges in the event graph:

• Compute edge: Such an edge is labeled with the amount of compute operations

that are to be performed on that node starting at that point in time. The origination

node of the edge represents the VM state before the start of the computation and the

destination node of the edge represents the VM state at the end of the computation.

• Communicate edge: This edge is labeled with the amount of bytes that are to be

sent from one VM to another. Again, the origination node represents the state of the
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Figure 6.2: Sample input application trace, 3 nodes, Patterns benchmark, bus topology, 3
iterations.
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Figure 6.3: XPVM output for Patterns benchmark executing on 3 hosts.

sending VM before it starts sending the data and the destination node represents the

state of the receiving VM after it has received all the data.

• Communication overhead edge: This edge captures the computation overhead of

communication. The amount of time between starting of “send” operation on a VM

until its completion.

• Precedence edge: Some of the edges are not annotated (are instead plain). These

edges simply make the graph visually understandable. They are ignored by the sim-

ulator.

Trace generation Since we use PVM versions of high performance computing applica-

tions, we were able to obtain application trace data using the XPVM [102] tracing facility.

XPVM supports a buffering mechanism to reduce the perturbation of user applications



CHAPTER 6. APPLICATION TRACE-DRIVEN SIMULATOR FOR VIRTUOSO 148

caused by tracing, and a more flexible trace event definition scheme which is based on

a self-defining data format. The tracing instrumentation is built into the PVM library.

Figure 6.3 shows a snapshot of the XPVM tracing interface for the Patterns benchmark

executing on three nodes of our cluster. XPVM will output formatted trace data. I devel-

oped an event graph generator which can convert the raw XPVM traces into the DAG input

format accepted by the simulator.

Note that for all traces, we gather them by running Patterns on isolated and unloaded

nodes interconnected via a Gigabit switch.

Physical system measurement data In our physical system, tools such as Wren [77] and

Ganglia [133] can provide system resource measurements. One of the inputs to the sim-

ulator is a file containing such data. The file is populated with previously measured data.

On the network end, it contains bandwidth and latency measurements. It also contains the

CPU frequency of hosts.

Initial VM to host mapping and routing information Since the simulator models the

Virtuoso system, it is fed with an initial VM to host mapping and a start topology routing

configuration.

6.1.2 Output

At the end of a simulator run, we print out the user time, system time, and idle time for

each application component executing in a VM. In addition, we also print out application

specific metrics, such as iterations per second (throughput) for the Patterns benchmark,

messages per second for a mail application, etc. Additionally, we also maintain a detailed

log that records everything that happens in the lifetime of the simulator.
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6.1.3 Data structures

During the course of its operation, the simulator maintains two main data structures.

Incoming edges priority queue At startup the simulator reads in the input event graph.

It creates a priority queue containing all the nodes in the graph. The priorities are

the number of incoming edges in the input application event graph. The lower the

number of incoming edges, the higher the priority of that node. Nodes with the

highest priority are serviced first.

Event priority queue The simulator also maintains a priority queue containing events to

be executed. These events correspond to one of the three annotated edges in the

event graph. An event can either be a computation event, a communication event or

a computation overhead of communication event. The events in this priority queue

are indexed by their estimated completion times. The earlier the completion time of

an event, the higher its priority. Events with the highest priority are serviced first.

6.1.4 Basic operations

At startup the simulator loads in the application event graph. It performs a topological sort

on the nodes and creates the incoming edges priority queue. The pseudocode shown in

Figure 6.4 is at the core of the simulator.

The simulator walks the event graph looking for nodes that have zero incoming edges.

This means that the node has no existing dependencies and that we can process all its

outgoing edges. For each out going edge, based on whether it is compute, communicate

or compute overhead of communicate, we calculate its estimated completion time. This

calculation is based on the current VM to host mapping and overlay routing, and the phys-

ical system measurement data. We add an event to the event priority queue indexed by

this estimated completion time. If the outgoing edge is a plain edge, we then reduce that
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// 1. Initially all nodes are marked ‘‘unserviced’’
// 2. A Node becomes ‘‘enabled’’ when number of incoming edges
// to it is zero
// 3. A Node is ‘‘serviced’’ after we have finished
// processing all its going edges

while(there exists an unserviced node){
remove the enabled nodes from incoming edges queue;
foreach (enabled node) {

foreach (outgoing edge) {
process the event associated with it;
add the appropriate event to event priority
queue to finish at appropriate time;
if (outgoing edge is plain) {

reduce the number of incoming edges to the node by 1;
}

}
mark the node as serviced;

}

if (there exists an enabled node) {
next;
// takes us to begining of top-level while loop

}
remove the next event from the event priority queue;
execute the event;
modify wallclock and application data structures;
reduce the number of incoming edges to the node by 1;

}

while (there exists an event in event priority queue) {
remove the next event from the event priority queue;
execute the event;
modify wallclock and application data structures;

}

Figure 6.4: The simulator core.
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particular nodes incoming edge count by one. Adding an event to the event queue implies

that it has started execution (or communication), but has not yet completed. If the event is

a communication event, then we modify the physical system measured data to account for

the applications own communication.

When we have no nodes with zero incoming edges to process, we execute the next

event in the event priority queue. We increment the wallclock to represent the progression

in time and we also modify the application data structures (user time, system time, etc.)

based on the specifics of the event executed. The incoming edge count of the concerned

node is decreased by one. Further, for a communication event we modify the physical

system measured data to reflect the completion of this communication event. We then go

back to see if we have “enabled” any nodes, i.e. if any nodes have zero incoming edges

and then repeat the above mentioned steps.

Once we finished walking the entire graph, we execute the remaining events in the

event priority queue and perform the associated actions as above.

6.1.5 Verification and validation

Verification refers to the process of ensuring that the simulator is implemented correctly

and validation refers to the process of ensuring that it is representative of the real system.

Verification The simulator was verified using the following techniques [200]:

• Structured walk-through: by explaining the code of the simulator in detail to multiple

people, several bugs were identified and addressed through this process.

• Running simplified cases: A synthetic small trace constructed by hand was used as

input. we compared the output of the simulator with the manually calculated output.

They were very similar in terms of the wall-clock time, total computation time and
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communication time. In addition, the log file of the simulator was carefully checked

line by line to catch and fix errors.

• Antibugging: Additional checks and outputs were included in the simulator and the

log file respectively to point out bugs.

• Degeneracy tests: We checked the response of the simulator for extreme values (mul-

tiple VMs mapped on same hosts, applications with only computation or only com-

munication, etc.).

Validation The simulator was validated using the following techniques [200]:

• Expert intuition: This is the most practical and common way to validate a model [200].

Multiple brainstorming meetings of people knowledgeable about virtualized execu-

tion systems were called. We validated the assumptions, inputs and outputs.

• Real system measurements: This is the most reliable and preferred way to validate

a simulation model [200]. Using XPVM and our task-graph generator (to convert

XPVM trace to a form compatible with our simulator), we gathered a Patterns trace

on 4 nodes of our cluster. According to patterns output, the ratio of computation over

communication was high. The trace contained 5 iterations and the communication

pattern was set to be all-to-all. The data in the measurement file was collected via

physical measurement tools such as ttcp, ping and top to reflect the current state of

the cluster nodes and the isolated network between them. The comparison between

patterns output and the simulator output showed that the simulator correctly and

closely simulates the running of the trace. We then modified the measurement file

by reducing the utilization limits on 2 of those 4 nodes from 100% to 50%. Then, as

expected, the total computation time in the output of the simulator nearly doubles,
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which is what we expect since the entire Patterns benchmark is slowed down to the

speed of the slowest node. This result also agreed with the output of Patterns, with

the utilization being throttled using VSched. For example, the difference between

the simulated user time on each of simulated hosts and the actual user time on each

of actual hosts is less than 5%. A validation was also carried out for a slightly larger

application executing among 6 VMs with a low computation to communication ratio.

6.2 Second generation simulator

The first generation of the simulator consists of approximately 5000 lines of Perl code. In

the second generation of the simulator, I added the following features

• Simulation of periodic real-time scheduling of VMs running on multiple machines

• Simulation of fine-grained migration cost, and

• Connection of the simulator with a user interface to allow user input during simula-

tion

The latest simulator consists of around 9600 lines of code.

6.2.1 Periodic real-time scheduling model

We want to simulate VSched real-time scheduling (Chapter 4) of VMs on multiple ma-

chines. In such a model, a task will run for slice seconds every period seconds. Because

the first generation of the simulator was designed without considering real-time model,

extending it becomes difficult.

A new data structure called VSched queue is introduced. It is a priority queue indexed

by the deadlines of VSched tasks. A VSched task consists of a VM name, period, slice,

deadline and remaining slice in current period. In general, the deadline of a task is the
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//1. Each host has an associated VSched queue.
//2. Each task in the Vsched queue contains a VM name, period, slice,
// remaining slice in current period.
//3. A global runnable queue is a priority queue, indexed by task
// completion time, containing runnable VSched tasks on all hosts.

sub check_vsched {
check all VSched queues for earliest deadline;
check event priority queue for earliest communication completion time;
if(comm_deadline < vsched_deadline){

enable earliest communicate event in event priority queue & return;
}

foreach (VSched queue){
find runnable VSched task with non-zero remaining slice;
put VSched task into global runnable queue;
calculate completion time based on remaining slice & corresponding
event’s compute amount;
adjust task’s remaining slice;

}

while (global runnable queue not empty){
find task with earliest completion time & check event priority queue;
if(a corresponding compute event for this VM){
if(compute amount > total computation achievable in remaining slice){

split event into two, one enabled with compute amount
proportional to remaining slice, another disabled with
remaining compute amount;

} else{
enable event in event priority queue;

}
} else{
//although there’s no corresponding event, the slice is still
//resevered for its VM
create a place-holder event, enabled and inserted into event
priority queue;

}
}

}

Figure 6.5: The check vsched function
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end of its period. Each simulated host has an associated VSched queue. An enable flag

is added to the event structure. All events put into the event priority queue from the event

graph are disabled by default. Instead of executing events according to their completion

time in the event priority queue, we now select VSched tasks according to their deadlines

across all VSched queues. Those selected VSched tasks will then determine which events

to enable and run in the event priority queue. Figure 6.5 is the core of a function called

check vsched(). The function is called before we transfer the control to the event priority

queue for executing an event in the simulation loop (Figure 6.1)

In this function, we do the following:

• We check the event priority queue for all communication events with completion

time equal to the current wallclock. We enable those events.

• We check each VSched queue looking for a VM with the earliest deadline across all

hosts. We then look into the event priority queue to find the corresponding event for

that VM. If the compute amount of the event is bigger than the total computation

achievable within the remaining slice, we split the event into two new events. The

first event is enabled and will be executed for slice virtual seconds according to the

VM’s (period,slice) schedule. The second event will contain the remaining com-

pute/communicate overhead amount and is re-inserted into the event priority queue

without being enabled.

• A global runnable queue is used to buffer all runnable VSched tasks. We use this

queue to sort runnable VSched tasks according to their completion time, because we

try to simulate multiple VScheds and we need to synchronize the global wallclock.

Since we “time-slice” events, in the simulator after the event priority queue executes

a compute/communicate overhead event, we cannot decrease the incoming edge count of

the concerned node unless all sliced events are executed.
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Since the application traces are generated by running the application without VSched.

The simulator is now fed with a separate file containing initial (period, slice) schedule for

each VM.

Note that the current simulator does not simulate the overhead of VSched and deadline

misses of soft real-time scheduling.

6.2.2 VM migration

Migrating a VM across distinct physical hosts will incur various cost. The downtime refers

to the time during which services or applications are entirely unavailable. Our simulator

simply simulates a fixed downtime. During the downtime, the VSched schedule of the

VM on the source host remains unchanged. On the destination host, the same schedule for

this VM is admitted by VSched. However until the migration finishes, the VM does not

compute or communicate on either host.

6.2.3 User input to the simulator

An important function of the extended simulator is to allow interrupts from the interface,

i.e. the user. The current design is to have the simulator and interface communicate through

share files protected by read and write locks. There are two shared files: a shared sched-

ule file for changing VSched schedules and a shared mapping file for changing the VM

mappings. For example, whenever the user changes the schedule of a VM, the interface

will record the change into the shared schedule file. The simulator, which checks the file

periodically, will detect the change and adjust the simulation accordingly. Note that the

admission control component of VSched is implemented in the interface instead of the

simulator in order to reduce the number of interrupts.

Through the user interface the user can change the mapping from VMs to hosts, for

example by migrating a VM from one host to another. Details about the user interface and
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human-driven VM migration will be discussed in the next chapter.

Depending on the input trace, in general, the simulation executes faster than that of the

real application. However if the simulation is too fast, we will not be able to get enough

user feedback during execution. To address this, an adjustable parameter is used to slow

down the simulation so that for each compute event, the simulator will sleep for a certain

amount of time depending on the difference between virtual time and real elapsed time.

6.2.4 Verification and validation

The verification and validation of the second generation simulator is similar to that of the

first generation simulator in term of techniques and steps, except that we now focus on

those newly added simulation features. Thus in the following, I will omit those similar

steps in verification and validation.

Verification

• Running simplified cases: We took a synthetic small trace and fed the simulator

with different (period, slice) schedules. The simulator was instrumented to print out

information about current real-time task, VSched queues in each host and the event

queue. We compared the output of the simulator with the manually plotted real-

time scheduling task graphs (similar to Figure 4.2). They were the same in terms of

the wall-clock time, order of tasks, running time of each VSched task and etc. In

addition, the log file of the simulator was carefully checked line by line to catch and

fix errors.

• Degeneracy tests: We checked the working of the simulator for extreme (period,slice)

values (large period with tiny slice, same period and slice for all VMs, etc.).
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• Consistency tests: To verify the user input to the simulator, we ran the simulator in

step-by-step mode, in which the simulator pauses after executing an event. In dif-

ferent stages of the simulation, we manually change the VSched schedules of some

VMs by modifying the shared schedule file between the interface and the simulator.

We then verified the status of simulation with manually plotted real-time schedul-

ing task graphs. Similarly for migration, we manually re-map a VM from one host

to another by changing shared mapping file and then compared the simulation with

manual results.

Validation

• Real system measurements: We gathered a patterns trace on 4 nodes of our cluster.

Patterns is configured to do all-to-all communication with high compute/communicate

ratio. The trace contained 10 iterations. The data in the measurement file was col-

lected via physical measurement tools such as ttcp, ping and top to reflect the current

state of the cluster nodes and the isolated network between them. We fed the sim-

ulator with initial VSched schedules for the 4 VMs. We compared the simulator

output with output from Patterns run on actual hosts, scheduled by actual VSched on

each host with the same initial schedules. The comparision showed that the simula-

tor closely simulates the running of the trace combined with VSched scheduling on

multiple machines, for example the difference between the simulated user time on

each of simulated hosts and the actual user time on each of actual hosts is less than

5%.
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6.3 Summary

In this chapter, we discussed the design and development of an application trace-driven

simulator. In the next chapter, we will show how we use this simulator to help the design

and development of human-driven technique.
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Chapter 7

Direct User Control of Scheduling and
Mapping of Virtual Machines

This dissertation argues for using direct human input to solve optimization problems. In

Chapter 5, we showed that we can use human-driven specification to set and control the

performance of BSP applications. In that work, a global controller applies the same (pe-

riod, slice) schedule to each application thread running on a collection of hosts.

In VM-based computing systems, such as Virtuoso, distributed applications includ-

ing BSP applications can be run inside a collection of VMs. Those VMs are mapped to

different hosts. The mapping can be dynamically changed through VM migrations. The

following is the specific optimization problem that I am addressing in this chapter.

7.1 Specific problem

I consider a configuration x that consists of

• a local periodic real-time schedule of VMs on each host, and

• a mapping from VMs to hosts,

The constraints determine what configurations are valid and include
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• schedulability (there must exist a feasible schedule on each host),

• 0/1 constraints (a VM must be mapped onto exactly one host)

For a VM k, I define

slicei = slice(compute,i) + slice(idle,i) (7.1)

slice(compute,i) is the portion of the ith real-time slice that is used for computing while

slice(idle,i) is the portion that is wasted for waiting.

e f f iciency(x,i) =
slice(compute,i)

slicei
(7.2)

i = 1, ...,n, n is the total number of CPU slices reserved for VM k during its execution.

Average efficiency for VM k is

avg e f f iciencyk =
∑n

i=1 e f f iciency(k,i)

n
(7.3)

Then the objective function is

f (x) =
m

∑
k=1

avg e f f iciencyk (7.4)

where m is the total number of VMs.

Thus the optimization problem here is how to find a configuration x such that the f (x)

is maximized while x also obeys the given constraints.

In this chapter, we present how we use human-driven search to solve this problem. We

use the Patterns benchmark as our test application.

In the following, I first consider the optimization problem with a simplified configu-

ration which includes only a local periodic real-time schedule of VMs on each host (the

mapping from VMs to hosts is fixed). I describe my first-round interface design, a game-
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style problem presentation, and a user study. Then I extend the configuration to include

mappings from VMs to hosts. I discuss how I improved the interface and the game, fol-

lowed by another user study. I then summarize.

7.2 Interface design

Figure 7.1 illustrates the first control interface.

VM list The names of all VMs are listed here.

Control area Each VM is represented as a ball. For a selected ball, the X axis of the

Control Area is mapped to the CPU utilization (increasing from left to right) while the Y

axis is the period (increasing from bottom to top) in terms of the real-time schedule. By

moving a ball, the user can change the CPU schedule of the corresponding VM. In this

design, we do not allow the user to control the VM-to-host mapping.

History area The dynamic efficiency history of a selected VM is plotted here. The user

can further select how many past history points up to the current time that he wants to

watch at one time. The selection will apply to all VMs.

Target areas In Target Area 1, the average efficiency (0 - 1) of each VM is dynamically

displayed. The height of each smiley face is proportional to the average efficiency value

of its corresponding VM. The value is averaged over the selected number of past history

points specified in the History Area. For example, if the user selects “100” in the History

Area, the height of a ball in Target Area 1 is then the average efficiency over last 100

efficiency values of that VM. The mouth of each smiley face will change according to its

efficiency level.
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Target Area 1

History Area

Target Area 2 Control Area

Constraint 
line, 1 per ball

Figure 7.1: Initial interface for VM scheduling game



CHAPTER 7. DIRECT USER CONTROL OF SCHEDULING AND MAPPING OF
VIRTUAL MACHINES 164

In Target Area 2, the cumulative amount of computation of all VMs is plotted as a

line (in blue) for comparison with a target line (in red). We chose the target line to be the

amount of computation in the best case when each VM is mapped to a dedicated node and

has 100% utilization. The higher the efficiency of a VM, the more computation that the VM

achieves in a period. Thus the efficiency of all VMs will determine the total computational

amount. We show the computation line to the user as extra global information, together

with the individual information about each VM in the History Area and the Target Area 1.

Constraints We focus on two types of constraints in our problem: the maximum ca-

pacity of a host, and the maximum total resource utilization on all hosts for a distributed

application. The former is a local constraint while the latter is a global constraint. For

example, we can define 100% utilization as the capacity for each host but only allow a

application to use up to 90%×N total utilization, where N is the number of hosts.

In the interface, every ball has a associated constraint line in the Control Area. A ball

and its constraint line will be displayed in the same color. The constraint line represents

the maximum possible utilization for the VM considering both local and global constraints.

The user will not be able to move a ball rightward across its constraint line. Changing a

VM’s schedule will affect the constraint lines for all other VMs.

7.3 Game design

Based on the problem we described in Section 7.1, I consider two possible presentations

of the problem to the user:

• Present a specific optimization problem according to the target application and un-

derlying system. This requires user’s knowledge about the application and some

understanding of the problem. Thus, the ideal audience will be system administra-
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tors and expert application users.

• Present an analogous problem which is understandable to common users without re-

quiring specific background. This approach will allow us to talk to almost unlimited

users. Essentially, this will be a game style presentation. However, this approach

poses a new challenge to the design in that the analogy must be as simple and as di-

rect as possible. Otherwise, the results of the user playing the game cannot be used

as solutions to the original optimization problem.

I started with the first type of presentation. However, I soon realized that it will be

very expensive to verify the interface and the presentation through a controlled user study,

because it requires a certain population of practicing system administrators and expert ap-

plication users. I then switched to the second type of design by translating the optimization

problem into a generic game. We present the concept of VM efficiency as the happiness

of a ball. The cumulative computation is presented as cumulative global progress of all

balls, assuming all balls are working together to make progress towards a general goal.

The “period” label for the Y axis of the Control Area is replaced with just “Y”. And we

leave the utilization label there and present it as the utilization of general resources used

by balls. The final interface is shown in 7.1. The interface is developed in Perl/TK with

approximately 2600 lines of code.

The goals of the game are as follows. By moving balls in the Control Area, the user

should

• maximize the happiness levels for all balls, and

• minimize the gap between his global progress line and the target progress line.

In the end of each game, the user will be shown the average happiness level of each

ball.
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7.4 Configuration

I connected our interface to the simulator, as described in Chapter 6. The simulator is

driven by traces from Patterns. We use traces from Patterns configured to do all-to-all

communication with roughly 1:1 compute/communicate ratio.

We need to configure a migration downtime for the simulator. Earlier work [34] demon-

strates the migration of entire OS instances on a commodity cluster, recording service

downtimes as low as 60ms, which is the fastest migration time that I am aware of. Other

work [159] shows that a VM can be migrated in 20 minutes or less across 384 kbps DSL.

I treat 20 minutes as the upper bound of the downtime. In the simulation setup, we simu-

late a local cluster with 800 Mbps interconnect and no latency. So a reasonable migration

downtime is a time between 60ms and 20 minutes. Also considering the limited time of

each of our later user studies, I chose a migration downtime of 20 seconds and enforce that

in the simulator.

In this simplified optimization game, we know the solutions. Recall that our current

simulator does not simulate the overhead of VSched scheduling and tasks always meet their

deadlines. Based on our previous experience with scheduling BSP applications (Chap-

ter 5), we know that the optimal configuration is to apply the same smallest (i.e. the finest)

period and maximum utilization to all VMs. For example, if there are only two VMs and

both are mapped to the same host, both need to be scheduled to run 50 ms every 100

ms in order to maximize the performance, assuming 100% CPU utilization on the host is

allowed.

7.5 User study

We conducted a controlled user study to determine whether end-users could play the game

to find optimal configuration for their VMs, or at least a good one.
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The 12 users in our study consisted primarily of graduate students and undergraduates

from the engineering departments at Northwestern University, and included two partici-

pants who had no CS or ECE background. We advertised for participants via email. Each

user was given $10 for participating.

7.5.1 Testcases and process

For all tasks, we set the global utilization constraint to be 90%×N, where N is the number

of hosts. For individual hosts, the capacity is 100% while the minimum is 10%. In the

background, the maximum period of a VM is 1000 ms and the minimum is 100 ms.

We have 2 types of tasks.

Type I - 1 VM per host We first want to test the simplest case where there is little con-

tention between VMs in terms of resources. We statically map each VM to a dedi-

cated host. The user needs to find out the optimal CPU schedules for all VMs. Con-

sidering the global constraint, an optimal configuration is to apply the same 90%

utilization and 100ms period to each VM.

Type II - 2 VMs per host We increase the complexity by mapping two VMs to the same

host so if there are N hosts, we will have 2N VMs. An optimal configuration is to

apply the same 50% utilization and 100ms period to each VM.

Note that the user is not aware of the mapping of VMs to hosts. The difference between

two types of tasks is manifested through constraint lines and the behaviors of the balls.

The study consists of 2 warm-up tasks and 6 formal tasks. The 2 warm-up tasks are

5 minutes each and include a 2 ball version of the Type II task and a 3 ball version of the

Type I task. The user can acclimatize himself to the interface through the warm-up period.

The 6 formal tasks are 8 minutes each and cover 4, 8, and 16 balls with both types of tasks.
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We increase the number of balls in order to test the interface as the optimization problem

scales.

We had the user fill out a questionnaire in the beginning of the study which asks about

his background. The user was then asked to read instructions explaining the game inter-

face, controls as well as the following information:

• The goal of the game is to maximize the happiness levels for all balls (Target Area 1)

and minimize the gap between your progress line and the target progress line (Target

Area 2).

• If there is only one ball in the game, moving it to the lower-right corner will optimize

it and achieve the goal of the game.

• Moving a ball will not only change its own happiness and progress but also influence

other balls.

• The global progress of all balls depends on their happiness levels.

The user was asked the following questions after each task:

• Were you able to use the interface to achieve the goal of the game? (Y / N)

• If no, why?

The written protocol and the form the user filled out can be found in the Appendix D.

As the user performed the tasks, we recorded the following information:

• Efficiency and computation history of every ball (VM), and

• For each move of a ball, the time stamp and the new (period,utilization) for that

VM.

The user was unaware of the recording process.
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7.5.2 Results

Our game is designed for a general audience. We want to verify if it works for them. We

are also interested in finding out whether a user who has a systems background can play

our optimization game better than other users.

Figure 7.2 is a histogram where the horizontal axis is the average efficiency and the

vertical axis is the number of users. Users are differentiated by whether they claimed

familiarity with distributed and/or parallel systems. The maximum possible efficiency is

also shown. It is not 100% due to communication. The effects of random scheduling

decisions are also shown. Note that the resolution of the histogram is 10% and ordering

within a bin is not significant.

Because of the limited number of users in this study, it is difficult to draw conclusions

statistically from this figure. However we observe the following trends:

• The upshot is that by playing the game, most users can schedule this collection of

VMs with at least some efficiency beyond random, for a small enough problem.

• As we expect, the difficulty of the game increases as the number of VMs increases.

• Although we introduce a hidden constraint in Type II tasks (2 VMs per host), the

performance of the users is only very slightly worse than that in Type I tasks (1 VM

per host).

• In 4 VM tasks, more than 75% of users do better than random moves. In 8 VM tasks,

more than 67% of users perform better than random. Even in the difficult 16 VMs

Type I task, around 42% of users achieve average global efficiency higher than that

from random decisions.

• Although the figure may suggest that those users who have distributed and/or parallel
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Figure 7.2: User background versus average global efficiency
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Figure 7.3: User self-evaluation versus average global efficiency
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systems background tend to play better than other users, 9 out of 12 users in this

study have such background.

• For up to 8 VMs, the best average efficiency achieved by users is very close to the

maximum possible efficiency.

Note that in Figure 7.2(a), one of the user’s data is missing due to a system bug. That

is why we only show two users with background in that figure.

In the end of each task, we asked the user whether he was able to use the interface to

achieve the goal of the game (“Yes” or “No”). Figure 7.3 is a histogram that shows how the

user’s self-evaluation correlates to his performance. We can see that in general, those users

who believed that they performed well in the game were in fact doing well if we compare

their results with both random decisions and maximum possible efficiency. In addition,

they generally performed better than those users who believed that they did not perform

well.

7.6 Summary of the VM scheduling game

Overall, the results show that a common user can understand our control interface and can

further play the game to optimize the global efficiency of a collection of VMs to a certain

extent. The game also gives appropriate feedback to the user on his performance.

To my knowledge, this is the first work that uses direct human control of distributed

resource scheduling with game style presentation. The results of the study shows that it is

promising to apply human-driven search to solving the optimal problem we discuss here.
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7.7 Issues in interface

We notice that users did not perform well in 16 VM tasks compared with smaller tasks.

Our explanation to this is follows:

• Our simulator runs slower as the number of VMs increases. As a result, for a fixed

period of time, there is less information about efficiency and computation. The user

will feel that the display and feedback is slower after each move.

• When there are many balls in both the Control Area and Target Area 1, many of

them are easily overlapped which makes it difficult for the user to distinguish balls

and further control them, especially when balls have similar schedules.

• Our target compute line is plotted assuming each ball is using 100% of the CPU and

is mapped to a dedicated host. As the number of VMs increases, the gap between

the target line and the user line becomes bigger even if the user set the optimal

schedules for all balls at the very beginning of the game. In other words, the target

line is unreachable by the user. The situation is aggravated in those tasks where two

VMs are mapped to the same host. As a result, the user tends to move balls around

to try new positions even though he has already found the best position. Thus some

users reported that they did not achieve the goal of the game even though they did a

good job in keeping all balls happy most of the time.

We also obtain useful feedback about the interface and game from users through both

our observations and conversations with the user after each study. This led to the following

conclusions:

• Our intention to have two goals in the game is forcing the users to consider both

short-term efficiency of VMs and long-term trend of total computation (also deter-



CHAPTER 7. DIRECT USER CONTROL OF SCHEDULING AND MAPPING OF
VIRTUAL MACHINES 174

mined by efficiency). However, users have difficulty in handling two goals simul-

taneously. It is also difficult for the user to understand the relationship between the

happiness of a ball and the global progress line without knowing the background

information about the underlying problem.

• Some users believe that if they were given more configuration-related information,

they might be able to perform better.

• Due to communication, the efficiency of a VM is not 100% all the time. Thus, even

if the user gives balls the best schedules, he will still notice some fluctuation of the

happiness of balls. Many users thus chose to keep moving the balls looking for

“better” schedules. Some other users chose to only focus on his global progress line

(i.e., Target Area II).

Based on this feedback and the user study results, we decide to improve the interface

and game. We also want to solve a more complex problem using the same human-driven

approach.

7.8 Interface design revisit

I designed a new control interface based on the observations of the previous study and the

need for letting the user directly control the mapping from VMs to hosts. Figure 7.4 shows

the new control interface. It consists of the following components.

Short-term Happiness Monitor This is similar to the Target Area 1 in the previous

interface except for its name.

History Area This is the same as the previous interface.
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Figure 7.4: Interface for CPU scheduling & VM mapping game; the user is trying to
migrate the ball in the left-most resource box to the second resource box to the left.
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Target Area In this area, we plot the global cumulative happiness (i.e. efficiency) line

(blue) over time. The line shows the sum of the happiness levels across all balls. We also

show the current cumulated happiness number. We further show a target number (in red)

on the top of the Target Area. The number is selected in a way such that it is a little bit

larger than the maximum happiness number achieved by the optimal configuration.

Control Area In this area, each physical host is represented as a white rectangle, called

a resource box. Similar to the control in previous game, moving a ball within its resource

box will change its CPU schedule. Now whenever the user selects a ball, a dragged ball

will show up indicating the current position of the ball. The dragged ball will disappear

after the user moves the ball to a new position. The main function of the dragged ball is to

facilitate migration, which I will explain next.

Migration The user can now migrate a ball to a different resource box. We provide two

ways for the user to do that.

• Default drag & drop mode When the user moves a ball close to the borders of its

resource box or its constraint line, some highlighted areas (Figure 7.4) may appear

to indicate potential new resource boxes for this ball. The width of each highlighted

area is proportional to the available utilization left on that resource box. The user

can simply drag and drop the ball to any of the highlighted areas to migrate the ball.

During the drag & drop, the source ball will not move. After the user drops the

dragged ball, the source ball will show up in the new resource box. For example, in

Figure 7.4, the user is trying to migrate the ball in the left most resource box to the

second resource box to the left.

• Advanced mode In the default migration mode, when the user moves a ball close

to the borders of its constraint line, the CPU schedule of the corresponding VM
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will also change accordingly. The advanced mode allows the user to migrate a ball

without changing its schedule. The user can do that by pressing and holding the

SHIFT key, and then doing the drag & drop. After the user drags the ball to the

destination box and releases the SHIFT key, the ball will be automatically placed in

the same relative position in the new resource box. Note that if the user holds the

SHIFT key but does not migrate the ball, the schedule will not be changed for that

ball. The ball will automatically move back to the starting position before the move,

after the user releases the SHIFT key.

As we described in Chapter 6, we simulate a fixed migration cost. We want to manifest

that in the interface. In the interface, during the migration, the ball will be frozen for

a certain amount of time until the simulator notifies the interface that the migration is

complete. During the frozen period, a red circle will appear surrounding the ball indicating

that the ball is migrating. The user will not be able to move that ball until the red circle

disappears. In addition, we tell the user that during the migration, the ball being migrated

will not contribute to the global happiness line, and its own happiness level will not be

updated. The happiness level of other balls may be affected due to the temporary absence

of the frozen ball.

7.8.1 Game design revisit

Goal In this game, we set only one goal for the user. By controlling his balls, the user

wants to push the global cumulative happiness line to as high as possible, towards the

target number. The user also wants the slope of the line to be as steep as possible. The

slope determines the growth speed of the line. We tell the user that the ceiling of the Target

Area may or may not be reachable.
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Figure 7.5: Final screen

Number of users Occupation Major
17 Student Biology, Chemistry, Material Science

Computer Science, Economics ...
2 Housewife
1 Professor
1 Waiter

Table 7.1: User background

Final screen In the end of each game, the user will see a final screen as shown in Fig-

ure 7.5. The user’s final score is calculated based on the global cumulative happiness value

averaged across all balls and all history points. The highest possible score is the score

achieved by applying the optimal strategy. The user was told that the closer his score to

the highest possible score, the better he performed.

7.9 User study

We conducted a user study to determine whether end-users could use our new interface

and play our new game to find both optimal CPU schedules and mapping for their VMs.
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The 21 users in our study consisted of people with various backgrounds, which is

different from last study. Table 7.1 shows their background. We advertised for participants

via email. Each user was given $12 for participating. Note that, among those users, only

two participated in the previous study.

7.9.1 Testcases and process

For all tasks, we set the global total utilization constraint to be 90%×N, where N is the

number of hosts. For individual hosts, the maximum local utilization is 100% and the

minimum is 10%. The maximum period is 1000 ms and the minimum is 100 ms.

We have 3 types of tasks.

Type I - schedule only In this type of task, VMs are initially mapped to optimal hosts

(one VM per host) so the user only need to find the optimal CPU schedules for them.

Of course, the user is allowed to migrate VMs if he wants. The optimal schedules

are to apply the same maximum finest schedule (90% utilization, 100ms period) to

each VM.

Type II - schedule + mapping I In this type of task, all VMs are initially mapped to the

same host. The user not only needs to decide the CPU schedules for his VMs but

also need to migrate the VMs in order to achieve the highest score. Since the number

of VMs is the same as the number of hosts, the optimal mapping is to map one VM

to one dedicated host. The optimal CPU schedule setting is the same as in Type I.

Type III - schedule + mapping II Similar to type II, all VMs are initially mapped to one

host. The user still wants to optimize both CPU schedules and mapping. However,

there are more VMs than hosts. If there are N VMs, we only provide (3/4)N hosts.

An optimal strategy is to have two VMs sharing each of the (1/4)N hosts and have

each of the left (2/4)N hosts runs only one VM. Besides the mapping, the user needs
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to apply the same schedule (50% utilization, 100ms period) to each VM in order to

achieve the highest average efficiency.

The study consists of 2 warm-up tasks and 9 formal tasks. The 2 warm-up tasks are 4

minutes each and include a 2 ball version of the Type I task and a 3 ball version of the Type

II task. The purpose is to allow the user to get familiar with the controls. The 9 formal

tasks are 7 minutes each and cover 4, 8, and 10 balls with all three types of tasks.

Similar to what we did in previous study, we present the optimization problem as a

game to the user by hiding all background information. Each VM is represented as a

ball. The efficiency of the VM is described as happiness. Each host is now described as a

individual resource box. Different from the previous interface, we now hide the utilization

label in both the Control Area and the Happiness Monitor. And we simply tell the user that

the X axes of these two areas are the same.

We had the user fill out a questionnaire in the beginning of the study which asks about

his background. The user was then asked to read instructions that explain the game inter-

face and controls, and state the following:

• In general, moving a ball downward and/or rightward within its resource box will

consume more resources. However all positions in the Control Area are valid.

• The more resources you assign to a ball, the more likely that your ball will become

happier, but if a ball consumes more resources than it can use, it will become un-

happy. In addition, all balls share a global resource pool, so if one ball gets more

resources, the other balls will get less. Try to discover the relationship among balls

will help you select the correct resource usage level.

• If all balls are happy most of the time in the Short-term Happiness Monitor, your

cumulative global line will certainly grow fast and high, but keep in mind that your
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only goal is to get the global happiness line as high as possible and its slope as steep

as possible. You may observe a certain degree of fluctuation of the happiness of

balls. If the fluctuation is temporary and short-term, it does not necessarily mean

that you need to adjust the balls. However, if the fluctuation is persistent and/or

displays a certain pattern, it is then necessary for you to make some adjustment.

• Your final score is calculated based on the global cumulative happiness averaged

across all balls and all history points. The closer your score to the highest possible

score, the better you perform. Although we show the highest score in theory in the

end of each task, we do not know the highest achievable score in practice.

The user was asked the following questions after each task:

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10 (out-

standing))

• If bad, why?

The written protocol and the form the user filled out can be found in Appendix D.

As the user performed the tasks, we recorded the following information:

• Efficiency and computation history of every ball

• For each move of a ball, the time stamp and the new (period,utilization) for the

corresponding VM.

• For each migration of a ball, the time stamp, the source host, the destination host and

the current schedule fo the corresponding VM.

The user was again unaware of the recording process.
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7.9.2 Results

Figure 7.6 shows the histogram of users’ efficiency score. The horizontal axis is the av-

erage efficiency and the vertical axis is the number of users. It also shows the maximum

possible efficiency and effects of random mapping and random scheduling decisions. Note

that the resolution of the histogram is 5% and ordering within a bin is not significant.

For the same number of VMs, as we expect, the performance of the users decreases as

the difficulty of the task increases. The intuition is that the difficulty of the game is related

to the dimensions of controls and also the number of constraints.

If we look into each type of task, in Type I tasks, more than 90% of users do better than

random moves. In Type II tasks, where we introduce the mapping, 86% of users perform

better than random except in the 8 VM task (57%). Type III tasks appear to be difficult for

the users. However, in the Type III 10 VM task, more than 76% of users are better than

a user who did pure random moves. An interesting observation is that, for the same type

of tasks, as we increase the number of VMs from 4 to 8, users’ scores decreases a little

bit. However as we further increase the number of VMs to 10, users do better than 8 VM

tasks. This is showing to some extent that, up to 10 VMs, the effectiveness of our interface

and game is largely independent of the number of VMs, although we can not exclude the

possible bias caused by some learning effect since we did not randomize the order of tasks.

If we look at the best scores achieve by users, we find that except in Type III 4 and 8

VM tasks, their best scores, in all other tasks, are as good as those achieved by an oracle

who knows everything about the background and the underlying optimizaion problem.

In Figure 7.7, users are differentiated by whether they claimed familiarity with dis-

tributed and/or parallel systems or not. Overall, users with related background do not

noticeably perform better than other users. This supports our claim that the game style

presentation is targeted at common users.
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Figure 7.8: Percentage of users who find the optimal mapping; 95% confidence interval.

Mapping In Figure 7.8, we show the percentage of users who successfully found the

optimal VM mapping and kept the mapping unchanged until the end of a task. We only

count those users whose final mapping of VMs to hosts is optimal. We can see that more

than 65% of users were able to find the optimal VM mapping for all tasks. From 4 VMs

to 8 VMs, fewer users were able to find the optimal mapping. Interestingly, more users

had found the optimal mapping for 10 VMs than for 8 VMs. We also notice that in Type

I tasks, the percentage in 10 VM tasks is even higher than that in 4 VM tasks, which we

believe is because of the users’ unfamiliarity with the game in the beginning of the study.

We further show the statistics for those users who found the optimal mapping in Fig-

ure 7.9. The Y axis is the time for the user to find the optimal mapping. Clearly, as the

difficulty (both task type and number of VMs) of tasks increases, on average users spent

more time in finding the optimal mapping. In general, users were able to find it in around

2-3 minutes in a 7 minute task.

User’s self-rating as mentioned earlier, we had the user evaluate his performance in the

end of each task after he was shown his score and maximum score in theory. Table 7.2

shows that there is certainly correlation between the score and user’s self evaluation. For

Type III 8 VM task, the coefficient is low. The number results from two users evaluating
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Task Correlation coefficient
4 VMs, Type I (schedule) 0.75
4 VMs, Type II (schedule+mapping I) 0.61
4 VMs, Type III (schedule+mapping II) 0.69
8 VMs, Type I (schedule) 0.77
8 VMs, Type II (schedule+mapping I) 0.78
8 VMs, Type III (schedule+mapping II) 0.46
10 VMs, Type I (schedule) 0.77
10 VMs, Type II (schedule+mapping I) 0.75
10 VMs, Type III (schedule+mapping II) 0.73

Table 7.2: Relationship between user self-rating and his score

themselves much better than what their score showed. They probably believed that they

had done their best.

7.10 Conclusions

The contributions of this work include the following:

• We show that it is possible for a common user to solve the discussed optimization

problem by giving him direct control of the system.

• Our interface enables two dimensional controls for the user for his VMs: CPU sched-
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ule and VM mapping. Our game design transforms the complex multiple machine

optimization problem into a generic game playable by a common user.

• Given the limited scale of the problem studied here, our results show that most users

are able to optimize a collection of VMs to different extents without knowing related

background.

• For those users who were successful, they achieved the goal quickly even though

they were faced with a large solution space (CPU schedule, mapping of VMs to

hosts, hidden constraints).

• We improved our interface and game based on results from previous study. We show

that the scalability is effective.

• We provide the following advice for designing such a interface and game in the

context that we are discussing.

– The simpler the control is, the more easily the user will understand. For exam-

ple, we use drag & drop operation in our control which can be easily understood

by anyone who has experience in Windows OS.

– The analogy between the game and the underlying problem should be as direct

as possible and as simple as possible.

– Give the user only one goal to pursue.

– Give the user constant feedback on his performance.

Overall, we introduced a new approach to solving a complex optimization problem by

human beings. We demonstrated the feasibility of our approach through extensive user

studies. Although the optimization problems discussed in this chapter have known objec-

tive functions and can be arguably solved approximately by heuristic or greedy algorithms,



CHAPTER 7. DIRECT USER CONTROL OF SCHEDULING AND MAPPING OF
VIRTUAL MACHINES 188

we are the first to apply human-driven search approach to solving these problems. We envi-

sion that our approach can be extended and applied to solving more complex optimization

problems including the complete NP-complete problem in Virtuoso.

In the future, we consider comparing human-driven search solutions with heuristic or

greedy algorithms for the same optimization problem(s). It will also be interesting to see

whether we can re-design the interface for expert users who understand the systems and

problem, and whether they can use the interface to find better solutions compared with

naive users.
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Chapter 8

User- and Process-Driven Dynamic
Voltage and Frequency Scaling

This dissertation argues for using direct human input to solve optimization problems in sys-

tems. In previous chapters, we showed that we can use human-driven techniques to solve

increasing difficult optimization problems in a VM-based computing environment. To fur-

ther show the feasibility and effectiveness of human-driven optimization, in this chapter

we present an innovative solution to the power management problem. For completeness, a

process-driven technique will also be discussed. This is joint work with Arindam Mallik,

Gokhan Memik and Robert P. Dick.

Dynamic Voltage and Frequency Scaling (DVFS) is one of the most commonly used

power reduction techniques in high-performance processors and is the most important OS

power management tool. DVFS is generally implemented in the kernel and it varies the

frequency and voltage of a microprocessor in real-time according to processing needs.

Although there are different versions of DVFS, at its core DVFS adapts power consump-

tion and performance to the current workload of the CPU. Specifically, existing DVFS

techniques in high-performance processors select an operating point (CPU frequency and

voltage) based on the utilization of the processor. While this approach can integrate infor-

mation available to the OS kernel, such control is pessimistic.
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Existing DVFS techniques are pessimistic about the user. Indeed, they ignore the user,

assuming that CPU utilization or the OS events prompting it are sufficient proxies. A high

CPU utilization simply leads to a high frequency and high voltage, regardless of the user’s

satisfaction or expectation of performance.

Existing DVFS techniques are pessimistic about the CPU. They assume worst-case

manufacturing process variation and operating temperature by basing their policies on

loose worst-case bounds given by the processor manufacturer. A voltage level for each

frequency is set such that even the slowest shipped processor of a given generation will be

stable at the highest specified temperature.

In response to these observations, on which we elaborate in Sections 8.1.1 and 8.2.1,

we have developed two new power management techniques that can be readily employed

independently or together. In particular, we introduce the following techniques.

User-Driven Frequency Scaling (UDFS) uses direct user feedback to drive an online

control algorithm that determines the processor frequency (Section 8.1.2). Processor fre-

quency has strong effects on power consumption and temperature, both directly and also

indirectly through the need for higher voltages at higher frequencies. The choice of fre-

quency is directly visible to the end-user as it determines the performance he sees. There is

considerable variation among users with respect to the satisfactory performance level for

a given workload mix. UDFS exploits this variation to customize frequency control poli-

cies dynamically to the individual user. Unlike previous work (Chapter 9), our approach

employs direct feedback from the user during ordinary use of the machine.

Process-Driven Voltage Scaling (PDVS) creates a custom mapping from frequency and

temperature to the minimum voltage needed for CPU stability (Section 8.2.2), taking ad-

vantage of process variation. This mapping is then used online to choose the operating volt-

age by taking into account the current operating temperature and frequency. Researchers

have shown that process variation causes IC speed to vary up to 30% [14]. Hence, using
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a single supply voltage setting does not exploit the variation in timing present among pro-

cessors. We take advantage of this variation via a customization process that determines

the slack of the individual processor, as well as its dependence on operating temperature.

This offline measurement is used online to dynamically set voltage based on frequency and

temperature.

We evaluate our techniques independently and together through user studies conducted

on a Pentium M laptop running Windows applications. Our studies, described in detail in

Section 8.3, include both single task and multitasking scenarios. We measure the over-

all system power and temperature reduction achieved by our methods. Combining PDVS

and the best UDFS scheme reduces measured system power by 49.9% (27.8% PDVS,

22.1% UDFS), averaged across all our users and applications, compared to the Windows

XP DVFS scheme. The average temperature of the CPU is decreased by 13.2◦C on aver-

age. Using user trace-driven simulation to evaluate the CPU in isolation, we find average

CPU dynamic power savings of 57.3% (32.4% PDVS, 24.9% UDFS), with a maximum

reduction of 83.4%. In a multitasking environment, the same UDFS+PDVS technique

reduces the CPU dynamic power by 75.7% on average.

Experimental setup

Our experiments were done using an IBM Thinkpad T43p with a 2.13 GHz Pentium M-

770 CPU and 1 GB memory running Microsoft Windows XP Professional SP2. Although

eight different frequency levels can be set on the Pentium M-770 processor, only six can

be used due to limitations in the SpeedStep technology.

In all of our studies, we make use of three application tasks, some of which are CPU

intensive and some of which frequently block while waiting for user input:

• Creating a presentation using Microsoft PowerPoint 2003 while listening to back-

ground music using Windows Media Player 10. The user duplicates a presentation
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consisting of complex diagrams involving drawing and labeling, starting from a hard

copy of a sample presentation.

• Watching a 3D Shockwave animation using the Microsoft Internet Explorer web

browser. The user watches the animation and is encouraged to press the number keys

to change the camera’s viewpoint. The animation was stored locally. Shockwave

options were configured so that rendering was done entirely in software on the CPU.

• Playing the FIFA 2005 Soccer game. FIFA 2005 is a popular and widely-used First

Person Shooter game. There were no constraints on user gameplay.

In the following sections, we describe the exact durations of these tasks for each user

study and additional tasks the user was asked to undertake. In general, our user studies are

double-blind, randomized, and intervention-based. The default Windows DVFS scheme is

used as the control. We developed a user pool by advertising our studies within a private

university that has many non-engineering departments. We selected a random group of

users from among those who responded to our advertisement. While many of the selected

users were CS, CE, or EE graduate students, our users included staff members and un-

dergraduates from the humanities. Each user was paid $15 for participating. Our studies

ranged from number of users n = 8 to n = 20, as described in the material below.

8.1 User-driven frequency scaling

Current DVFS techniques are pessimistic about the user, which leads them to often use

higher frequencies than necessary for satisfactory performance. In this section, we elabo-

rate on this pessimism and then explain our response to it: user-driven frequency scaling

(UDFS). Evaluations of UDFS algorithms are given in Section 8.3.
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8.1.1 Pessimism about the user

Current software that drives DVFS is pessimistic about the individual user’s reaction to

the slowdown that may occur when CPU frequency is reduced. Typically, the frequency is

tightly tied to CPU usage. A burst of computation due to, for example, a mouse or keyboard

event brings utilization quickly up to 100% and drives frequency, voltage, temperature,

and power consumption up along with it. CPU-intensive applications also cause an almost

instant increase in operating frequency and voltage.

In both cases, the CPU utilization (or OS events that drive it) is functioning as a proxy

for user comfort. Is it a good proxy? To find out, we conducted a small (n = 8) random-

ized user study, comparing four processor frequency strategies including dynamic, static

low frequency (1.06 GHz), static medium frequency (1.33 GHz), as well as static high fre-

quency (1.86 GHz). The dynamic strategy is the default DVFS policy used in Windows XP

Professional. Note that the processor maximum frequency is 2.13 GHz. We allowed the

users to acclimate to the full speed performance of the machine and its applications for 4

minutes and then carry out the tasks described in Section 8, with the following durations:

• PowerPoint (4 minutes in total, 1 minute per strategy)

• Shockwave (80 seconds in total, 20 seconds per strategy)

• FIFA (4 minutes in total, 1 minute per strategy)

Users verbally ranked their experiences after each task / strategy pair on a scale of 1 (dis-

comfort) to 10 (very comfortable). Note that for each application and user, strategies were

tested in random order.

Figure 8.1 illustrates the results of the study in the form of overlapped histograms of

the participants’ reported comfort level for each of four strategies. Consider Figure 8.1(a),

which shows results for the PowerPoint task. The horizontal axis displays the range of
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comfort levels allowed in the study and the vertical axis displays the count of the number

of times that level was reported. The other graphs are similar.

User comfort with any given strategy is highly dependent on the application. For Pow-

erPoint, the strategies are indistinguishable in their effectiveness. For this task, we could

simply set the frequency statically to a very low value and never change it, presumably

saving power. For animation, a higher static level is preferred but the medium and high

frequencies are statistically indistinguishable from the dynamic strategy despite not using

as high a frequency. For the game, the high static setting is needed to match the satisfac-

tion level of the dynamic strategy. However, that setting does not use the highest possible

frequency, which was used by the dynamic strategy throughout the experiment.

Comfort with a given strategy is strongly user-dependent, i.e., it is important to note

that for any particular strategy, there is considerable spread in the reported comfort levels.

In addition to the power-specific results just described, in Chapter 2 and 4 we have also

demonstrated a high variation in user tolerance for performance in other contexts. Our

dynamic policy automatically adapts to different users and applications. Hence, it can

reduce power consumption while still achieving high user satisfaction.

8.1.2 Technique

To implement user-driven frequency scaling, we have built a system that consists of client

software that runs as a Windows toolbar task as well as software that implements CPU

frequency and temperature monitoring. In the client, the user can express discomfort at

any time by pressing the F11 key (the use of other keys or controls can be configured).

These events drive the UDFS algorithm. The algorithm in turn uses the Windows API

to control CPU frequency. We monitor the CPU frequency using Windows Performance

Counter and Log [135] and temperature using CPUCool [202].

It is important to note that a simple strategy that selects a static frequency for an appli-
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cation (and/or for a user) is inadequate for three reasons. First, each user will be satisfied

with a different level of performance for each application. Finding these levels statically

would be extremely time consuming. Second, typical users multitask. Capturing the ef-

fects of multiple applications would necessitate examining the power set of the application

set for each individual user, resulting in a combinatoric explosion in the offline work to

be done. Finally, even when a user is working with a single application, the behavior of

the application and the expected performance varies over time. Applications go through

phases, each with potentially different computational requirements. In addition, the user’s

expected performance is also likely to change over time as the user’s priorities shift. For

these reasons, a frequency scaling algorithm should dynamically adjust to the individual

user’s needs.

Responding to these observations, we designed algorithms that employ user experience

feedback indicated via button presses.

UDFS1 algorithm

UDFS1 is an adaptive algorithm that can be viewed as an extension/variant of the TCP

congestion control algorithm. The TCP congestion control algorithm [17, 55, 173, 195] is

designed to adapt the send rate dynamically to the available bandwidth in the path. A

congestion event corresponds to a user button press, send rate corresponds (inversely) to

CPU frequency, and TCP acknowledgments correspond to the passage of time.

UDFS1 has two state variables: r, the current control value (CPU frequency, the smaller

the value, the higher the frequency.) and rt (the current threshold, integervalue). Adapta-

tion is controlled by three constant parameters: ρ, the rate of increase, α = f (ρ), the slow

start speed, and β = g(ρ), the additive increase speed. Like TCP, UDFS1 operates in three

modes, as described below.

• Slow Start (Exponential Increase): If r < rt , we increase r exponentially fast with
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time (e.g., r ∝ 2αt). Note that frequency settings for most processors are quantized

and thus the actual frequency changes abruptly upon crossing quantization levels.

• User event avoidance (Additive Increase): If no user feedback is received and r ≥ rt ,

r increases linearly with time, r ∝ βt.

• User event (Multiplicative Decrease): When the user expresses discomfort at level r

we immediately set rt = r−1 and set r to the initial (highest) frequency.

This behavior is virtually identical to that of TCP Reno, except for the more aggressive

setting of the threshold.

Unlike TCP Reno, we also control ρ, the key parameter that controls the rate of expo-

nential and linear increase from button press to button press. In particular, for every user

event, we update ρ as follows:

ρi+1 = ρi

(
1− γ× Ti −TAVI

TAVI

)

where Ti is the latest inter-arrival time between user events. TAVI is the target mean inter-

arrival time between user events, as currently preset by us. γ controls the sensitivity to the

feedback.

We set our constant parameters (TAVI = 120,α = 1,β = 1,γ = 0.8) based on the expe-

rience of two of the authors using the system. These parameters were subsequently used

when conducting a user study to evaluate the system (Section 8.3). Ideally, we would em-

pirically evaluate the sensitivity of UDFS1 performance to these parameters. However, it is

important to note that any such study would require having real users in the loop, and thus

would be quite slow. Testing five values of each parameter on 20 users would require 312

days (based on 8 users/ day and 45 minutes/user). For this reason, we decided to choose

the parameters based on qualitative evaluation by the authors and then “close the loop” by

evaluating the whole system with the choices.
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Figure 8.2: The frequency for UDFS schemes during FIFA game for a representative user.
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Figure 8.2(a) illustrates the execution of the UDFS1 and Windows DVFS algorithms

for a typical user during the FIFA game task. Note that Windows DVFS causes the system

to run at the highest frequency during the whole execution period except the first few

seconds. On the other hand, the UDFS1 scheme causes the processor frequency to increase

only when the user expresses discomfort (by pressing F11). Otherwise, it slowly decreases.

UDFS2 algorithm

UDFS2 tries to find the lowest frequency at which the user feels comfortable and then

stabilize there. For each frequency level possible in the processor, we assign an interval ti,

the time for the algorithm to stay at that level. If no user feedback is received during the

interval, the algorithm reduces the frequency from ri to ri+1, i.e., it reduces the frequency

by one level. The default interval is 10 seconds for all levels. If the user is irritated at

control level ri, we update all of our intervals and the current frequency level as follows:

ti−1 = αti−1

tk = βtk,∀k : k �= i−1

i = min(i−1,0)

Here α > 1 is the rate of interval increase and β < 1 is rate of interval decrease. In our

study, α = 2.5 and β = 0.8. This strategy is motivated by the conjecture that the user

was comfortable with the previous level and the algorithm should spend more time at that

level. Again, because users would have to be in the inner loop of any sensitivity study,

we have chosen the parameters qualitatively and evaluated the whole system using that

choice, as described in Section 8.3. Figure 8.2(b) illustrates the execution of the algorithm

for a representative user in the FIFA game task. Note that UDFS2 settles to a frequency of



CHAPTER 8. USER- AND PROCESS-DRIVEN DYNAMIC VOLTAGE AND
FREQUENCY SCALING 200

approximately 1.86 GHz, after which little interaction is needed.

8.2 Process-driven voltage scaling

Current DVFS techniques are pessimistic about the processor, which leads them to often

use higher voltages than necessary for stable operation, especially when they have low

temperatures. We elaborate on this pessimism and then explain our response to it, process-

driven voltage scaling (PDVS). PDVS is evaluated in Section 8.3.

8.2.1 Pessimism about the CPU

The minimum stable voltage of a CPU is the supply voltage that guarantees correct exe-

cution for given process variation and environmental conditions. It is mainly determined

by the critical path delay of a circuit. This delay consists of two components: transistor

gate delay and wire delay. Gate delay is inversely related to the operating voltages used

in the critical paths of the circuit. Furthermore, temperature affects the delay. In current

technologies, carrier mobility in MOS transistors decreases with increasing temperature.

This causes the circuits to slow down with increasing temperature. Wire delay is also

temperature-dependent and increases under higher current/temperature conditions. The

maximum operating frequency (Fmax) varies in direct proportion to the sustained voltage

level in the critical timing paths, and inversely with temperature-dependent RC delay [193].

In addition to the operating conditions, which dynamically change, process variation

has an important impact on the minimum voltage sufficient for stable operation. Even

in identical environments, a variation in timing slack is observed among the manufactured

processors of the same family. As a result, each processor reacts differently to changes. For

example, although two processors can run safely at 2.8 GHz at the default supply voltage,

it is conceivable that these minimum supply voltages will differ. Customizing voltage
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choices for individual processors adapts to, and exploits, these variations. Despite these

known effects of process variation and temperature on minimum stable voltage, DVFS

ignores them: for a given frequency, traditional DVFS schemes use a single voltage level

for all the processors within a family at all times.

The dynamic power consumption of a processor is directly related to frequency and

supply voltage and can be expressed using the formula P = V 2CF , which states that power

is equal to the product of voltage squared, capacitance, and frequency. In addition to its di-

rect impact on the power consumption, reliable operation at increased frequency demands

increased supply voltage, thereby having an indirect impact on power consumption. Gen-

erally, if the frequency is reduced, a lower voltage is safe.

As processors, memories, and application-specific integrated circuits (ASICs) are pushed

to higher performance levels and higher transistor densities, processor thermal manage-

ment is quickly becoming a first-order design concern. The maximum operating tempera-

ture of an Intel Pentium Mobile processor has been specified as 100◦C [89, 90]. As a gen-

eral rule of thumb, the operating temperature of a processor can vary from 50◦C to 90◦C

during normal operation. Thus, there is a large difference between normal and worst-case

temperatures.

We performed an experiment that reveals the relationship between operating frequency

and minimum stable voltage of the processor at different temperature ranges. We used

Notebook Hardware Control (NHC) [92] to set a particular Vdd value for each operating

frequency supported by the processor. When a new voltage value is set, NHC runs an

extensive CPU stability check. Upon failure, the system stops responding and computer

needs to be rebooted. We execute a program that causes high CPU utilization and raises the

temperature of the processor. When the temperature reaches a desired range, we perform

the CPU stability check for a particular frequency at a user-defined voltage value.

Figure 8.3 shows the results of this study for the machine described in Section 8. For
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Operating Nominal Stable Vdd (V) at temp ranges (◦C)
Freq. (MHz) Voltage (v) 52–57 62–67 72–77 82–87

800 0.988 0.736 0.736 0.736 0.736
1,060 1.068 0.780 0.780 0.780 0.780
1,200 1.100 0.796 0.796 0.796 0.796
1,330 1.132 0.844 0.844 0.860 0.876
1,460 1.180 0.876 0.892 0.908 0.924
1,600 1.260 0.908 0.924 0.924 0.924
1,860 1.324 1.004 1.004 1.020 1.020
2,130 1.404 1.084 1.100 1.116 1.116

Figure 8.3: Minimum stable Vdd for different operating frequencies and temperatures.

reference, we also show the nominal core voltage given in the datasheet [90]. Note that the

nominal voltage is the voltage used by all the DVFS schemes by default. The results reveal

that, even at the highest operating temperature, the minimum stable voltage is far smaller

than the nominal voltage. The results also show that at lower operating frequencies, the

effect of temperature on minimum stable voltage is not pronounced. However, tempera-

ture change has a significant impact on minimum stable voltage at higher frequencies. In

particular, at 1.46 GHz, the core voltage value can vary by 5.6% for a temperature change

of 30◦C. This would reduce dynamic power consumption by 11.4%.

As the results shown in Figure 8.3 illustrate, there is an opportunity for power reduc-

tion if we exploit the relationship between frequency, temperature, and the minimum stable

voltage. The nominal supply voltage specified in the processor datasheet has a large safety

margin over the minimum stable voltages. This is not surprising: worst-case assumptions

were unnecessarily made at a number of design stages, e.g., about temperature. Conven-

tional DVFS schemes are therefore pessimistic about particular individual CPUs, often

choosing higher voltages than are needed to operate safely. They also neglect the effect of

temperature, losing the opportunity to save further power.
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8.2.2 Technique

We have developed a methodology for exploiting the process variation described in Sec-

tion 8.2.1 that can be used to make any voltage and frequency scaling algorithm adapt to

individual CPUs and their temperature, thereby permitting a reduction in power consump-

tion.

Our technique uses offline profiling of the processor to find the minimum stable volt-

ages for different combinations of temperature and frequency. Online temperature and

frequency monitoring is then used to set the voltage according to the profile. The offline

profiling is virtually identical to that of Section 8.2.1 and needs to be done only once. Cur-

rently, it is implemented as a watchdog timer-driven script on a modified Knoppix Live CD

that writes the profile to a USB flash drive. To apply our scheme, the temperature is read

from the online sensors that exist in the processor. The frequency, on the other hand, is de-

termined by the dynamic frequency scaling algorithm in use. By setting the voltage based

on the processor temperature, frequency, and profile, we adapt to the operating environ-

ment. While the frequency can be readily determined (or controlled), temperature changes

dynamically. Hence, the algorithm has built-in filtering and headroom to account for this

fact. Our algorithm behaves conservatively and sets the voltage such that even if there is a

change of 5◦C in temperature before the next reading (one Hertz rate), the processor will

continue working correctly.

A reader may at this point be concerned that our reduction of the timing safety mar-

gin from datasheet norms might increase the frequency of timing errors. However, PDVS

carefully determines the voltage required for reliable operation for each processor; that

is, it finds the individual processor’s safety margin. Moreover, it decreases the operating

temperature of the processor, which reduces the rates of lifetime failure processes. If char-

acteristics of processors change as a result of wear, PDVS can adapt by infrequently, e.g.,
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every six months, repeating the offline characterization process. To determine processor

reliability when using reduced operating voltage, we ran demanding programs test the sta-

bility of different processor components, e.g., the ALU, at lower voltages. We have set

the processor to work at modified supply voltages as indicated in Figure 8.3. The system

remained stable for approximately two months, at which point we terminated testing. Al-

though observing the stable operation of one machine does not prove reliability, it is strong

evidence.

8.3 Evaluation

We now evaluate UDFS and PDVS in isolation and together. We compare against the

native Windows XP DVFS scheme, displaying reductions in power and temperature.

Our evaluations are based on user studies, as described in Section 8 and elaborated upon

here. For studies not involving UDFS, we trace the user’s activity on the system as he uses

the applications and monitor the selections DVFS makes in response. For studies involving

UDFS, the UDFS algorithm is used online to control the clock frequency in response to

user button presses. We begin by describing a user study of UDFS that provides both

independent results and traces for later use. Next, we consider PDVS as applied to the

Windows DVFS algorithm. We then consider UDFS with and without PDVS, comparing

to Windows DVFS. Here, we examine both dynamic CPU power (using simulation driven

from the user traces) and system power measurement (again for a system driven from the

user traces). In measurement, we consider not only power consumption, but also CPU

temperature. Finally, we discuss a range of other aspects of the evaluation of the system.

The following claims are supported by our results:

• UDFS effectively employs user feedback to customize processor frequency to the

individual user. This typically leads to significant power savings compared to exist-
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ing dynamic frequency schemes that rely only on CPU utilization as feedback. The

amount of feedback from the user is infrequent, and declines quickly over time as an

application or set of applications is used.

• PDVS can be easily incorporated into any existing DVFS scheme, such as the default

Windows scheme, and leads to dramatic reductions in power use by lowering voltage

levels while maintaining processor stability.

• In most of the cases, the effects of PDVS and UDFS are synergistic: the power

reduction of UDFS+PDVS is more than the sum of its parts.

• Multitasking increases the effectiveness of UDFS+PDVS.

• Together and separately, PDVS and UDFS typically decrease CPU temperature, of-

ten by large amounts, increasing both reliability and longevity. In addition, the ef-

fects of PDVS and UDFS on temperature are synergistic.

8.3.1 UDFS

To evaluate the UDFS schemes, we ran a study with 20 users. Experiments were conducted

as described in Section 8. Each user spent 45 minutes to

1. Fill out a questionnaire stating level of experience in the use of PCs, Windows,

Microsoft PowerPoint, music, 3D animation video, and FIFA 2005 (2 minutes) from

among the following set: “Power User”, “Typical User”, or “Beginner”;

2. Read a one page handout (2 minutes);

3. Acclimate to the performance of our machine by using the above applications (5

minutes);
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4. Perform the following tasks for UDFS1: Microsoft PowerPoint plus music (4 min-

utes); 3D Shockwave animation (4 minutes); FIFA game (8 minutes); and

5. Perform the same set of tasks for UDFS2.

Each user was instructed to press the F11 key upon discomfort with application perfor-

mance. We recorded each such event as well as the CPU frequency over time.

The written protocol and the form the user filled out can be found in Appendix E.

Figure 8.4 illustrates the performance of the two algorithms in our study. The two

columns represent UDFS1 and UDFS2 and the three rows represent the three applications.

Each graph shows, as a function of time, the minimum, average, maximum, and standard

deviation of CPU frequency, aggregated over our 20 users. Notice that almost all users felt

comfortable using PowerPoint while the processor was running at the lowest frequency. As

one might expect, the average frequency at which users are comfortable is higher for the

Shockwave animation and the FIFA game. There is large variation in acceptable frequency

among the users for the animation and game. Generally, UDFS2 achieves a lower average

frequency than UDFS1. For both algorithms it is very rare to see the processor run at

the maximum CPU frequency for these applications. Even the most sophisticated users

were comfortable with running the tasks with lower frequencies than those selected by the

dynamic Windows DVFS scheme. Sections 8.3.3 and 8.3.4 give detailed, per-user results

for UDFS (and UDFS+PDVS).

8.3.2 PDVS

Using the experimental setup described in Section 8, we evaluate the effects of PDVS on

the default Windows XP DVFS scheme. In particular, we run the DVFS scheme, record-

ing frequency, then determine the power saving possible by setting voltages according to

PDVS instead of using the nominal voltages of DVFS.
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Figure 8.4: Frequency over time for UDFS1 and UDFS2, aggregated over 20 users.
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Power Reduction (%)
Application over Max Frequency

DVFS DVFS+PDVS
PowerPoint + Music 83.08 90.67

3D Shockwave Animation 3.19 40.67
FIFA Game 1.69 39.69

Figure 8.5: Power reduction for Windows DVFS and DVFS+PDVS

Figure 8.5 illustrates the average results, comparing stock Windows DVFS and our

DVFS+PDVS scheme. The baseline case in this experiment is running the system with the

highest possible CPU frequency and its corresponding nominal voltage. The maximum

power savings due to dynamic frequency scaling with nominal voltages are observed for

PowerPoint. For this application, the system ran at the lowest clock frequency most of the

time, resulting in a reduction of 83.1% for the native DVFS scheme. DVFS+PDVS reduces

the power consumption by 90.7%. For PowerPoint, adding PDVS to DVFS only reduces

power slightly.

For the Shockwave animation and the FIFA game, the power reductions due to dynamic

frequency scaling are negligible because the Windows DVFS scheme runs the processor

at the highest frequency most of the time. DVFS+PDVS, however, improves the energy

consumption of the system by approximately 40%, compared to the baseline. These results

clearly demonstrate the benefits of process-driven voltage scaling.

8.3.3 UDFS+PDVS (CPU dynamic power, trace-driven simulation)

To integrate UDFS and PDVS, we used the system described in Section 8.1.2, recording

frequency over time. We then combine this frequency information with the offline profile

and techniques described in Sections 8.2.1 and 8.2.2 to derive CPU power savings for

UDFS with nominal voltages, UDFS+PDVS, and the default Windows XP DVFS strategy.

We calculate the power consumption of the processor. We have also measured online the
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power consumption of the overall system, as described in Section 8.3.4.

We conducted a user study (n = 20) with exactly the same structure presented in

Section 8.1.2, except that Windows XP DVFS was also considered. Figure 8.6 presents

both individual user results and average results for UDFS1, UDFS1+PDVS, UDFS2, and

UDFS2+PDVS. In each case, power savings over the default Windows DVFS approach are

reported. To interpret the figure, first choose an application. Next, note the last two bars on

the corresponding graph. These indicate the average performance of UDFS1 and UDFS2,

meaning the percentage reduction in power use compared to Windows DVFS. Each bar is

broken into two components: the performance of the UDFS algorithm without PDVS is

the lower component and the improvement in performance of the algorithm combined with

PDVS is the upper component. The remaining bars on the graph have identical semantics,

but represent user-specific information.

For PowerPoint, UDFS1+PDVS and UDFS2+PDVS reduce power consumption by an

average of 56%. The standalone UDFS algorithms reduce it by an average of 17–19%.

User 3 with UDFS2 is anomalous. This user pressed the feedback button several times and

as a result spent most of the time at high frequencies.

For the Shockwave animation, we see much more mixed responses from the users, al-

though on average we reduce power by 55.1%. On average, UDFS1 and UDFS2 indepen-

dently reduce the power consumption by 15.6% and 32.2%, respectively. UDFS2 performs

better for this application because the users can be satisfied by ramping up to a higher fre-

quency rather than the maximum frequency supported by the processor. Note that UDFS1

immediately moves to the maximum frequency on a button press. User 17 with UDFS1

is anomalous. This user wanted the system to perform better than the hardware permitted

and thus pressed the button virtually continuously even when it was running at the highest

frequency. Adding PDVS lowers average power consumption even more significantly. On

average, the power is reduced by 49.2% (UDFS1+PDVS) and 61.0% (UDFS2+PDVS) in
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Figure 8.6: Comparison of UDFS algorithms, UDFS+PDVS, and Windows XP DVFS
(CPU Dynamic Power). Chebyshev bound-based (1− p) values for difference of means
from zero are also shown.
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the combined scheme.

There is also considerable variation among users for the FIFA game. Using conven-

tional DVFS, the system always runs at the highest frequency. The UDFS schemes try

to throttle down the frequency over the time. They therefore reduce the power consump-

tion even in the worst case (0.9% and 2.1% for UDFS1 and UDFS2, respectively) while

achieving better improvement, on average (16.1% and 25.5%, respectively). Adding PDVS

improves the average power savings to 49.5% and 56.7% for UDFS1 and UDFS2, respec-

tively.

For the Shockwave animation and the FIFA game, we see a large variation among users,

but in all cases the combination of PDVS and UDFS leads to power savings over Windows

DVFS. On average, in the best case, the power consumption can be reduced by 57.3%

over existing DVFS schemes for all three applications. This improvement is achieved by

combining the UDFS2 (24.9%) and PDVS (32.4%) schemes.

UDFS and PDVS are synergistic. The UDFS algorithms let us dramatically decrease

the average frequency, and PDVS’s benefits increase as the frequency is lowered. At higher

frequencies, the relative change from the nominal voltage to the minimum stable voltage

is lower than that at lower frequencies. In other words, the power gain from shifting to the

minimum stable voltage is higher at the lower frequencies. However, at higher frequen-

cies, PDVS also gains from the variation in minimum stable voltage based on temperature

as shown in Figure 8.3. These two different advantages of the PDVS result in power im-

provements at at a wide range of frequencies.

UDFS+PDVS mean results have statistical significance even with weak bounds. Fig-

ure 8.6 shows mean improvements across our 20 users. Normality assumptions hold nei-

ther for the distribution of individual user improvements nor for the error distribution

of the mean. Instead, to discard the null hypothesis, that our mean improvements for

UDFS+PDVS are not different from zero, we have computed the p value for discarding
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the null hypothesis using Chebyshev bounds, which are looser but rely on no such assump-

tions. As can be seen from the figure, 1− p is quite high, indicating that it is extremely

unlikely that our mean improvements are due to chance. We use Chebyshev bounds simi-

larly for other results.

User self-reported level of experience correlates with power improvement. For exam-

ple, for FIFA, experienced users expect faster response from the system causing the system

to run at higher frequencies, resulting in smaller power improvements. Our interpretation

is that familiarity increases both expectations and the rate of user feedback to the control

agent, making annoyance with reduced performance more probable and thus leading to

higher frequencies when using the UDFS algorithms.

8.3.4 UDFS+PDVS (System power and temperature measurement)

To further measure the impact of our techniques, we replay the traces from the user study

of the previous section on our laptop. The laptop is connected to a National Instruments

6034E data acquisition board attached to the PCI bus of a host workstation running Linux,

which permits us to measure the power consumption of the entire laptop. The sampling

rate is 10 Hz. During the measurements, we have turned off the display of the laptop to

make our readings more comparable to the CPU power consumption results of the previous

section. Ideally, we would have preferred to measure CPU power directly for one-to-one

comparison with results of the previous section, but we do not have the surface mount

rework equipment needed to do so.

Power: Figure 8.7 presents results for UDFS1, UDFS1+PDVS, UDFS2, and UDFS2+PDVS,

showing the power savings over the default Windows DVFS approach. The Chebyshev

bounds indicate that the mean improvements are extremely unlikely to have occured by

chance.
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Figure 8.7: Comparison of UDFS algorithms, UDFS+PDVS, and Windows XP DVFS
(measured system power with display off). Chebyshev bound-based (1− p) values for
difference of means from zero are also shown.
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For PowerPoint, UDFS1+PDVS and UDFS2+PDVS reduce power consumption by av-

erages of 22.6% and 22.7%, respectively. For the Shockwave animation, although we see

much more variation, UDFS1 and UDFS2 reduce the power consumption by 17.2% and

33.6%, respectively. Using UDFS together with PDVS lowers average power consump-

tion by 38.8% and 30.4% with UDFS1 and UDFS2, respectively. The FIFA game also

shows considerable variation among users. On average, we save 15.5% and 29.5% of the

power consumption for UDFS1 and UDFS2, respectively. Adding PDVS improves the av-

erage power savings to 56.8% and 62.9% over Windows DVFS with UDFS1 and UDFS2,

respectively.

On average, the power consumption of the overall system can be reduced by 49.9%

for all three applications. This improvement is achieved by combining the UDFS2 scheme

(22.1%) and PDVS scheme (27.8%).

The results presented in the previous section, and in this section, cannot be directly

compared because the previous section reports the simulated power consumption of the

CPU and this section reports the measured power consumption of the laptop. However,

some conclusions can be drawn from the data in both sections. For applications like Pow-

erPoint, where the CPU consumes only a small fraction of the system power, the benefit on

system power is low. On the other hand, for the applications that originally result in high

CPU power consumption, the system power savings can be substantial due to the reduction

in dynamic power as well as the operating temperatures and consequently leakage power.

Temperature: We used CPUCool [202] to measure CPU temperature in the system. Fig-

ure 8.8 shows the mean and peak temperatures of the system when using the different

combinations of DVFS, PDVS, and UDFS schemes. The values reported for UDFS and

UDFS+PDVS are the averages over 20 users.

In all cases, the UDFS1 and UDFS2 schemes lower the temperature compared to the
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Windows native DVFS scheme due to the power reductions we have reported in the previ-

ous sections. The maximum UDFS temperature reduction is seen in the case of the UDFS2

scheme used for the Shockwave application (7.0◦C). On average, for all 3 applications, the

UDFS1 and UDFS2 schemes reduce the mean temperature of the system by 1.8◦C and

3.8◦C, respectively. Similarly, PDVS reduces the mean system temperature by 8.7◦C on

average for the three applications. The best improvement is observed for the FIFA game,

where temperature decreases by 12.6◦C.

The combination of PDVS and UDFS is again synergistic, leading to even greater tem-

perature reductions than PDVS or UDFS, alone. For the Shockwave application, UDFS2+PDVS

reduces the mean temperature by 19.3◦C. The average temperature reductions in all three

applications by the UDFS1+PDVS and UDFS2+PDVS schemes are 12.7◦C and 13.7◦C,

respectively. Our 13.2◦C claim averages these two.

8.3.5 Discussion

We now discuss the degree of user interaction needed to make UDFS work, the CPU

reliability and longevity benefits of our techniques, and the effects of multitasking.

User interaction: While PDVS can be employed without user interaction, UDFS re-

quires occasional feedback from the user. Minimizing the required rate of feedback button

presses while maintaining effective control is a central challenge. Our current UDFS algo-

rithms perform reasonably well in this respect, but could be improved. Figure 8.9 presents

the average number of annoyance button presses over a 4 minute period for both versions

of UDFS algorithms in our 20 user study. Generally, UDFS2 requires more frequent button

presses than UDFS1, because a single press only increments the frequency. The trade-off

is that UDFS1 generally spends more time at the maximum frequency and thus is more

power hungry. On average, a user pressed a button every 8 minutes for PowerPoint, ev-
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Figure 8.8: Mean and peak temperature measurement.

Algorithms
PowerPoint 3D animation FIFA Game

4 min 4 min 4 min 4 min
UDFS1 0.35 11.85 5.10 3.42
UDFS2 0.60 14.25 6.50 3.82

Figure 8.9: Average number of user events.
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ery 18 seconds for the Shockwave animation, and every 50 seconds for the FIFA game.

During the course of the study, for the 3D animation, there were some extreme cases in

which the user kept pressing the button even when the processor was running at the highest

frequency. This can be explained by the user’s dissatisfaction with the original quality of

the video or the maximum performance available from the CPU, over which we had no

control. If we omit the three most extreme cases from both maximum and minimum num-

ber of annoyances, on average a user presses the annoyance button once every 30 seconds

for the Shockwave application.

We also note that the system adapts to users quickly, leading to a reduced rate of button

presses. In the Figure 8.9, we show both the first and second 4 minute interval for the FIFA

game. The number of presses in the second interval is much smaller than the first. Our

interpretation is that once a stable frequency has been determined by the UDFS scheme, it

can remain at that frequency for a long time, without requiring further user interaction.

Figure 8.10 records the average number of voltage transitions for the six different

schemes used in our study. A voltage transition is caused either due to a button press

or a significant change in operating temperature. For the PowerPoint application, we ob-

serve a reduction in the number of transitions because the spikes observed for DVFS do

not occur for UDFS1 and UDFS2. On the other hand, the 3D animation and FIFA Game

applications have more voltage transitions than observed with Windows native DVFS, be-

cause they aim to reduce power by adjusting throttle and, in effect, voltage. In contrast,

conventional DVFS keeps the system at the highest frequency during the entire interval.

The increase in the number of transitions for the PDVS schemes implemented on top of

UDFS are caused by the extra voltage transitions due to changing temperature at a given

frequency level.
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Applications DVFS DVFS+PDVS UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS
PowerPoint+Music 11.00 11.00 4.40 4.65 6.55 6.50

3D Animation 3.00 4.00 10.30 11.50 16.3 17.55
FIFA Game 6.00 6.00 18.06 18.05 28.85 29.30

Figure 8.10: Number of voltage transitions
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Figure 8.11: Power improvement in the multitasking environment. Chebyshev bound-
based (1− p) values for difference of means from zero are also shown.

Reliability and longevity: In addition to its direct impact on power consumption, our

techniques may ultimately improve the lifetime reliability of a system. Earlier research [169]

showed that the effect of operating temperature on integrated circuit’s mean time to failure

(MTTF) is exponential. As we show in Section 8.3.4, our schemes can reduce the operat-

ing temperature by 13.2◦C on average, thereby potentially reducing the rate of failure due

to temperature-dependant processes such as electromigration.

Traditionally, the required supply voltage of a processor is reported at the maximum

operating temperature of the system. Therefore, at temperatures below the maximum rated

temperature, timing slack exists. As long as the current temperature is below the highest

rated operating temperature, the operating voltage can be reduced below the rated operating

voltage without reducing reliability below that of the same processor operating at the rated

voltage and at the maximum temperature.
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Multitasking: A natural question to ask is whether the extremely simple “press the but-

ton” user feedback mechanism we use in UDFS is sufficient for describing user preferences

in a multitasking environment. To see the effect of UDFS in a multitasking environment,

we conducted a small study (n = 8) similar to that of Section 8.3.1. Instead of several

consecutive tasks, the user was asked to watch a 3D animation using Microsoft Internet

Explorer while listening to MP3 music using Windows Media Player in compact mode

with visualization.

Figure 8.11 shows the measured system power improvements compared to Windows

DVFS. On average, the power consumption of the overall system is reduced by 29.5% and

55.1% for UDFS1 and UDFS2, respectively. Adding PDVS improves the average power

savings to 58.6% and 75.7% for UDFS1 and UDFS2, respectively. Although these results

are preliminary, combined with the results from the combined PowerPoint+MP3 task de-

scribed in Section 8.3.1, they suggest that the simple feedback mechanism is sufficient in

a multitasking environment. It is clearly a better proxy of the user’s satisfaction than the

CPU utilization of the combined task pool.

8.4 Conclusions

We have identified processor and user pessimism as key factors holding back effective

power management for processors with support for DVFS. In response, we have developed

and evaluated the following new, process- and user-adaptive DVFS techniques: process-

driven voltage scaling (PDVS) and user-driven frequency scaling (UDFS). These tech-

niques dramatically reduce CPU power consumption in comparison with existing DVFS

techniques. Extensive user studies show that we can reduce power on average by over

50% for single task and over 75% for multitasking workloads compared to the Microsoft

Windows XP DVFS scheme. Furthermore, CPU temperatures can be markedly decreased
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through the use of our techniques. PDVS can be readily used along with any existing fre-

quency scaling approach. UDFS requires that user feedback be used to direct processor

voltage and frequency control. PDVS and UDFS are synergistic. UDFS leads to lower av-

erage frequencies and PDVS allows great decreases in voltage at low frequencies. We are

currently exploring machine learning techniques to develop UDFS algorithms that require

even less input from the user.

UDFS provides evidence for the feasibility of human-driven specification part of my

thesis beyond Virtuoso domain. That is, it is possible to use direct human input from

users to determine at least some objective function and constraints, what is the lowest CPU

frequency that can satisfy the user in this case.

So far, we have applied the technique of letting the user convey a single bit of in-

formation to the systems in three different problems: understanding and measuring user

comfort with resource borrowing (Chapter 2), user-driven scheduling of interactive vir-

tual machines (Chapter 3), and power management for laptops. The technique works in

the user-driven scheduling context, but the button feedback is less desirable than the two-

dimensional joystick control of Chapter 4. The technique works very well in both the user

comfort and power management problems. Here I would like to point out some differences

between these two works. In the user comfort problem, by using irritation feedback, we

only seek the relationship between user comfort and resource borrowing. Our results can

then be used online without future feedback by implementors of distributed computing

and thin-client frameworks to intelligently borrow resources or decide necessary resource

share of desktop replacement VMs without irritating the user. In the power management

problem, button-press feedback directly drives adaptive algorithms that drive processor

frequency setting. As a reward for being sporadically interrupted, the user prolongs his

battery life for his laptop.

Despite these differences, we have showed that given considerable variation in user
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satisfaction with any given interactive setting, the user can and should directly inform the

systems software of his satisfaction with the current delivered performance, which results

from the current interactive setting.
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Chapter 9

Related work

The work described in this dissertation is related to work in a number of other areas.

9.1 Users and direct user input

Direct user input is represented in HCI and other fields. For example, early work [45, 131]

used buttons as on-screen objects that encapsulated code to enable tailoring of applications.

Weighted fair queuing allows users to explicitly weight each of their processes, controlling

the CPU share given to each. PSDoom [27] represented processes as monsters in a first

person shooter game. “Wounding” a “monster process” decreases its priority. With enough

“damage”, the process is killed. Microsoft Windows allows a user to specify the scheduling

class of a process. By raising the scheduling class of a process from “Normal” to “Above

Normal’, the user assures that Windows’ fixed priority scheduler will always run his pro-

cess in preference to “Normal” processes that are also ready to run. As another example,

Unix systems provide the “nice” mechanism to bias Unix’s dynamic priority scheduler.

All of the direct user input mechanisms we are aware of, however, require that the user

understand the scheduler to get good results. Without such knowledge, the user can easily

live-lock or even crash the system. Ours is the first scheduling system to incorporate direct

user input from even naive users.
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Other related work in HCI research and psychology has concentrated on the impact

of latency on user-perceived utility of the system [49, 103], and on user frustration with

different user interfaces [101, 151]. Earlier work [24] also studied the effect of computer

response time on user response time.

Within the systems community, related work has examined the performance of end-

user operating systems using latency as opposed to throughput [51], and suggested models

for interactive user workload [11]. The TIPME [50] tool monitors information about high-

level GUI events and transitions on operating system state. When the user experiences un-

acceptable performance, he presses a hot-key sequence and describes the problem. TIPME

concentrates on diagnosing the sources of user-perceived delays, but it cannot diagnose re-

source contention problems.

9.2 Human decision making

Understanding decision complexity would appear to be in the purview of human-computer

interaction research and psychology. However, the work in those areas [9, 36, 62, 94, 98,

147, 166, 172, 199] has concentrated on understanding how human beings make decisions

in general. And the cognitive or perceptual models in those field are very complex and

not practical to be directly borrowed to benchmark complexity. In addition, none of those

models were developed under the specific goal of understanding how non-expert system

administrators make decisions in performing a complex configuration process.

For example, the traditional normative models of decision making prescribe that people

assign either an objective or subjective value to an option and then factor in the opinion’s

probability [9, 172]. It is almost impossible to measure such perceptual value and proba-

bility in the real world including IT configuration, not to mention that research has shown a

variety of ways in which people deviate from the normative models. For another example,
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the Prospect Theory [98], which provides a general theory of decision making that explains

how people’s reasoning deviates from normative models, models people’s decisions by a

descriptive π(p) function, which represents the subjective perception of probabilities [172].

Obviously, it is not very practical to calculate such functions in the real world.

9.3 Service-level agreements (SLAs)

The importance and challenge of determining appropriate SLAs or quality of service (QoS)

constraints has been recognized within the adaptive applications and autonomic computing

communities. Adaptive application frameworks such as Odyssey [143], QuOin [208], and

Amaranth [82] assume that SLAs or QoS constraints are supplied to them. Many forms

for this information have been proposed, including composable utility functions [149],

decision procedures [15], and aspects [127]. Our work (Chapter 4) not only presents a

way of discovering appropriate SLAs from end-user input, but also shows that it is possi-

ble to avoid such intermediate representations, tying the end-user directly to the schedul-

ing/optimization process.

Autonomic computing seeks to either automate the management of computer systems

or simplify administrator-based management of them. Some work in this area has focused

on direct interaction with the administrator, including capturing the effects of operator

error [139], exposing debugging of configurations as a search process [197], adjusting

cycle stealing so as to control impact on users [177], and using performance feedback to

the administrator to help adjust policy [124]. As far as we are aware, however, no work in

autonomic computing directly incorporates the end-user.
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9.4 Process and VM scheduling

Systems researchers have proposed a wide range of scheduling approaches to attempt

to automatically optimize both for responsiveness and utilization. Examples include the

BSD Unix scheduler [134], lottery scheduling [194], weighted fair queuing and its deriva-

tives [10], BVT [48], SRPT scheduling [6], and periodic [96, 118] and sporadic [120] hard

real-time models. In some models, user interaction is included implicitly and indirectly

in scheduling decisions. For example, the Unix scheduler provides a temporary priority

boost to processes that have become unblocked. Since a typical interactive process blocks

mostly waiting for user input, the boost gives it the effect of responding quickly, even in a

system that is experiencing high load.

Existing approaches to scheduling VMs running under a type-II VMM on Linux (and

other Unixes) are insufficient to meet the needs of different workloads such as batch VMs,

batch parallel and interactive VMs. By default, these VMs are scheduled as ordinary

dynamic-priority processes with no timing or compute rate constraints at all. VMware

ESX server [187] and virtual server systems such as Ensim [52] improve this situation by

providing compute rate constraints using weighted fair queuing [10] and lottery schedul-

ing [194]. However, these are insufficient to schedule a workload-diverse set of VMs on a

single physical machine because they either provide no timing constraints or do not allow

for the timing constraints to be smoothly varied. Fundamentally, they are rate-based. For

example, an interactive VM in which a word processing application is being used may

only need 5% of the CPU, but it will need to be run at least every 50 ms or so. Similarly,

a VM that is running a parallel application may need 50% of the CPU, and be scheduled

together with its companion VMs. The closest VM-specific scheduling approach to ours is

the VServer [116] slice scheduling in the PlanetLab testbed [152]. However, these slices

are created a priori and fixed. Our VSched tool, discussed in Chapter 4, provides dynamic
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scheduling.

9.5 Real-time scheduling

The theory of periodic real-time scheduling dates to the 70s [118].

Periodic real-time scheduling systems for general-purpose operating systems have been

developed before. Most relevant to our work is Polze’s scheduler [148], which created soft

periodic schedules for multimedia applications by manipulating priorities under Windows

NT. DSRT [33], SMART [141], and Rialto [96] had similar objectives. In contrast, VSched

is a Linux tool, provides remote control for systems like Virtuoso, and focuses on schedul-

ing VMs. Linux SRT, defunct since the 2.2 kernel, was a set of kernel extensions to support

soft real-time scheduling for multimedia applications under Linux [88]. The RBED sys-

tem [162] also provides real-time scheduling for general Linux processes through kernel

modifications. The Xen [47] virtual machine monitor uses BVT [48] scheduling with a

non-trivial modification of Linux kernel and requires that the hosted operating system be

ported to Xen. In contrast to these systems, VSched can operate entirely at user-level.

There have been several hard real-time extensions to Linux. The best known of these

are Real-time Linux [207], RTAI [46], and KURT [83]. We examined these tools (and

Linux SRT as well) before deciding to develop VSched. For our purposes, the hard real-

time extensions are inappropriate because real-time tasks must be written specifically for

them. In the case of Real-time Linux, the tasks are even required to be kernel modules.

VSched can optionally use KURT’s UTIME high resolution timers to achieve very fine-

grained scheduling of VMs.
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9.6 Scheduling parallel applications

Our work in Chapter 5 ties to gang scheduling, implicit co-scheduling, real-time sched-

ulers, and feedback control real-time scheduling. As far as we aware, we are the first to

develop real-time techniques for scheduling parallel applications that provide performance

isolation and control. We also differ from these areas in that we show how external control

of resource use (by a cluster administrator, for example) can be achieved while maintain-

ing commensurate application execution rates. That is, we can reconcile administrator and

user concerns.

The goal of gang scheduling [95, 146] is to “fix” the blocking problems produced by

blindly using time-sharing local node schedulers. The core idea is to make fine-grain

scheduling decisions collectively over the whole cluster. For example, one might have

all of an application’s threads be scheduled at identical times on the different nodes, thus

giving many of the benefits of space-sharing, while still permitting multiple applications

to execute together to drive up utilization, and thus allowing jobs into the system faster.

In essence, this provides the performance isolation we seek, while performance control

depends on scheduler model. However, gang scheduling has significant costs in terms of

the communication necessary to keep the node schedulers synchronized, a problem that is

exacerbated by finer grain parallelism and higher latency communication [86]. In addition,

the code to simultaneously schedule all tasks of each gang can be quite complex, requiring

elaborate bookkeeping and global system knowledge [175].

Implicit co-scheduling [5] attempts to achieve many of the benefits of gang schedul-

ing without scheduler-specific communication. The basic idea is to use communication

irregularities, such as blocked sends or receives, to infer the likely state of the remote,

uncoupled scheduler, and then adjust the local scheduler’s policies to compensate. This is

quite a powerful idea, but it does have weaknesses. In addition to the complexity inherent
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in inference and adapting the local communication schedule, the approach also doesn’t re-

ally provide a straightforward way to control effective application execution rate, response

time, or resource usage.

9.7 Feedback-based control

The feedback control real-time scheduling project at the University of Virginia [128–

130, 170] had a direct influence on our thinking for Chapter 5. In that work, concepts

from feedback control theory were used to develop resource scheduling algorithms to give

quality of service guarantees in unpredictable environments to applications such as online

trading, agile manufacturing, and web servers. In contrast, we are using concepts from

feedback control theory to manage a tightly controlled environment, targeting parallel ap-

plications with collective communication.

Feedback-based control was also used to provide CPU reservations to application threads

running on a single machine based on measurements of their progress [171], for controlling

coarse-grained CPU utilization in a simulated virtual server [205], for dynamic database

provisioning for web servers [28], and to enforce web server CPU entitlements to control

response time [121].

9.8 Dynamic voltage and frequency scaling

Dynamic voltage and frequency scaling (DVFS) is an effective technique for microproces-

sor energy and power control for most modern processors [18, 69]. Energy efficiency has

been a major concern for mobile computers. Fei et al. [56] proposed an energy aware dy-

namic software management framework that improves battery utilization for mobile com-

puters. However, this technique is only applicable to highly adaptive mobile applications.

Researchers have proposed algorithms based on workload decomposition [31], but these
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tend to provide power improvements only for memory-bound applications. Wu et al. [203]

presented a design framework of a run-time DVFS optimizer in a general dynamic compi-

lation system. The Razor [54] architecture dynamically finds the minimal reliable voltage

level. Dhar et al. [41] proposed adaptive voltage scaling that uses a closed-loop controller

targeted towards standard-cell ASICs. These schemes are similar to the PDVS scheme.

However, our approach is completely operating system controlled and does not require

any architectural modifications and therefore incurs no hardware overhead. Intel Foxton

technology [196] provides a mechanism for select Intel Itanium 2 processors to adjust core

frequency during operation to boost application performance. However, unlike PDVS it

does not perform any dynamic voltage setting.

Other DVFS algorithms use task information, such as measuring response times in in-

teractive applications [123, 206] as a proxy for the user. Unlike Vertigo [59], we monitor

the user instead of the application. Xu et al. proposed novel schemes [204] minimiz-

ing energy consumption in real-time embedded systems that execute variable workloads.

However, they try to adapt to the variability of the workload rather than to the users. Au-

toDVS [78] is a dynamic voltage scaling (DVS) system for hand-held devices. They used

user activity as an indicator to detect computationally intensive CPU intervals and use that

to drive DVS. In contrast, UDFS uses user activity to directly control the frequency of the

system. Ranga et al. proposed energy-aware user interfaces [150] based on usage scenar-

ios, but they concentrated on the display rather than the CPU. Gupta et al. [76] and Lin et

al. [110] demonstrated a high variation in user tolerance for performance in the scheduling

context, variation that we believe holds for power management as well. Anand et al. [1]

discussed the concept of a control parameter that could be used by the user. However, they

focus on the wireless networking domain, not the CPU. Second, they do not propose or

evaluate a user interface or direct user feedback. To the best of our knowledge, the UDFS

component of our work is the first to employ direct user feedback instead of a proxy for
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the user.

9.9 Dynamic thermal management

Dynamic thermal management is an important issue for modern microprocessors due to

the high cost of cooling solutions. Previous work has discussed microarchitectural mod-

eling and optimization based on temperature [35, 154, 167]. Liu and Svensson made a

trade-off between speed and supply voltage [119]. Brooks and Martonosi [19] proposed

dynamic thermal management for high-performance processors. For portable computers,

Transmeta’s Crusoe [185] and Intel’s Pentium-M [69] are notable commercial products that

uses innovative dynamic thermal management. To the best of our knowledge, the PDVS

component of our work is the first to consider exploiting process variation via per-CPU

customization using profiling. In addition, it is the first scheme to consider temperature in

voltage level decisions.

9.10 Games with a purpose

“Games with a purpose” [188] refers to the idea that through online games, people can

collectively solve large-scale computational problems. In [189], people play a game to

help determine the contents of images by providing meaningful labels for them. [192]

tailored a game to collect image metadata. The same approach was adopted in [190, 191].

Our game for a collection of VMs, as presented in Chapter 7, shares a similar idea,

although our focus is on using human input approach to solve optimization problems. In

general, the human input can be directed to a game, an interface, a simulator and many

other things. In term of game design, although we conducted a controlled study on the

game and interface, we can imagine extending the framework to become online and access

broader audience.
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Chapter 10

Conclusions

This dissertation explores human-driven optimization — using direct human input to solve

optimization problems in adaptive and autonomic computing systems. Optimization prob-

lems associated with these systems are often difficult to pose well and solve efficiently.

To address this, we proposed two ideas here. In human-driven specification, we explore

how to use direct human input to pose specific problems, namely to determine the objec-

tive function and/or the hidden constraints. In human-driven search, we explore how to

use direct human input to guide the search for a good solution, a valid configuration that

optimizes the objective function.

We motivated the necessity of direct human input by presenting a user study on under-

standing user comfort with resource borrowing systems. The study revealed an important

fact that resources needed to keep the user happy are highly dependent on the user as well

as the application. In other words, the traditional assumption that systems can optimize

for a canonical user is invalid. The study further provided evidence for the feasibility of

human-driven specification through a button-press feedback mechanism. We then applied

the same button-press feedback on scheduling interactive VM by manipulating the priority

of the VM process under Linux.

We also argued for using periodic real-time scheduling model for VM-based computing



CHAPTER 10. CONCLUSIONS 232

environment. We designed, implemented and evaluated a user-level scheduler (VSched)

for Linux that provide this model. The scheduler allows us to mix long-running batch

computations with fine-grained interactive applications such as first-person-shooter games

with no reduction in usability of the interactive applications. In addition, the scheduler

enables the design of a joystick interface for controlling the CPU schedule of a VM. By

using a joystick and a on-screen display of real-time cost, a naive user can instantaneously

change the performance of his interactive VM and quickly find a trade-off between the

cost of his VM and his own comfort. This makes the case for using human-driven search

in single machine CPU scheduling problem.

We further combined local VScheds on each node of a cluster with a global feed-

back control system that can time-share multiple parallel applications with high efficiency

while providing performance isolation. The user/administrator can dynamically change the

target execution rate of his application. The work shows the effect of using human-driven

specification on CPU scheduling across multiple machines.

To show that we can apply human-driven search on optimizing CPU schedules of mul-

tiple VMs as well as the VM-to-host mapping, we designed and evaluated a game-like

interface, through which the user can control his VMs by simply moving and drag-and-

dropping balls. The interface will dynamically display both short-term and long-term

efficiency of all VMs. We designed the interface to be generic instead of specific to an

application. We used a game style presentation to access broader audience. We conducted

two controlled user studies to let naive users play the optimization game using the interface.

The results showed the effectiveness of our interface and the feasibility of human-driven

search.

We further extended our human-driven approach to address power management prob-

lem. We proposed two techniques: user-driven frequency scaling (UDFS) and process-

driven voltage scaling (PDVS). UDFS dynamically adapts CPU frequency to the individual
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user and the workload through direct user feedback of button-press, unlike currently-used

DVFS methods that do not use user feedback. In PDVS, a CPU-customized profile is

derived offline that encodes the minimum voltage needed to achieve stability at each com-

bination of CPU frequency and temperature. UDFS makes another case for human-driven

specification in a non-Virtuoso domain.

Overall this dissertation advocated human-driven optimization and showed its feasi-

bility by solving increasing difficult optimization problems in Virtuoso and also in power

management. This work has the potential to dramatically increase the range of applications

for which adaptation is possible and increases the scope of autonomic computing.

In the remainder of this chapter, we summarize the detailed contributions of this dis-

sertation, and show how we intend to extend the framework in the future.

10.1 Summary of contributions

• I co-developed a sophisticated distributed application for directly measuring user

comfort with the borrowing of CPU time, memory space, and disk bandwidth. Using

this tool, we have conducted a controlled user study with qualitative and quantitative

results that are of direct interest to the designers of grid and thin-client systems. We

have found that resource borrowing can be quite aggressive without creating user

discomfort, particularly in the case of memory and disk. The resources needed to

keep a user happy are highly dependent on the application being used. Our observa-

tions formed the basis of advice for the implementors of distributed computing and

thin-client frameworks. (Chapter 2, [75, 76])

• I proposed human-driven optimization - using direct human input in solving op-

timization problems in adaptive and autonomic computing. I propose two ideas:

human-driven specification and human-driven search. The former uses direct human
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input to pose specific problems. The latter uses direct human input to search for a

solution to the problem. (Chapter 1)

• I proved the feasibility of my thesis in four different optimization problems: sin-

gle machine CPU scheduling, multiple machine CPU scheduling, multiple machine

CPU scheduling with VM mapping, and power management.

• I designed a scheduling system that uses direct user feedback through button-press

to balance between providing high average computation rates to the non-interactive

VMs while keeping the users of the interactive VMs happy. I used an adaptive

algorithm that exploits the nice mechanism of Linux. Results show that it is possible

to provide interactive performance while noninteractive VMs progress much faster

than would otherwise be possible. (Chapter 3, [111])

• I proposed real-time scheduling model as the right one for VM-based distributed

computing. The model allows us to straightforwardly mix batch and interactive

VMs and allows users to succinctly describe their performance demands. (Chap-

ter 4, [109])

• I designed and developed VSched, a user-level scheduler for Linux, and released

it online. I evaluated its performance on several different platforms and found that

we can achieve very low deadline miss rates up to quite high utilizations and quite

fine resolutions. I evaluated the scheduler and showed that we can schedule long-

running batch computations with fine-grained interactive applications such as first-

person-shooter games with no reduction in usability of the interactive applications.

I also applied VSched to scheduling parallel workloads, showing that it can help a

BSP application maintain a fixed stable performance despite externally caused load

imbalance. (Chapter 4, [109])
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• I designed and evaluated a technique for putting even naive users in direct, explicit

control of the scheduling of their interactive computing environments through the

combination of a joystick and an on-screen display of cost. In doing so, I have

demonstrated that with such input it is possible and practical to adapt the schedule

dynamically to the user, letting him trade off between the comfort of the environment

and its cost. Because the tolerance for cost and the comfort with a given schedule is

highly dependent on both the applications being used and on the user himself, this

technique seems very fruitful both for tailoring computing environments to users and

making them cheaper for everyone. (Chapter 4, [110, 112])

• Together with my colleague Ananth I. Sundararaj, we proposed, implemented, and

evaluated a new self-adaptive approach to time-sharing parallel applications on tightly

coupled compute resources such as clusters. Our technique, performance-targeted

feedback-controlled realtime scheduling, is based on the combination of local schedul-

ing using the periodic real-time model and a global feedback control system that sets

the local schedules. The approach performance-isolates parallel applications and al-

lows administrators to dynamically change the desired application execution rate

while keeping actual CPU utilization automatically proportional to the application

execution rate. We evaluated the system and showed it to be stable with low response

times. The thresholds needed to prevent control instability are quite reasonable. De-

spite only isolating and controlling the CPU, we find that memory, communication

I/O, and local disk I/O follow. (Chapter 5, [114])

• I developed a event graph generator which can take the raw data from XPVM on

monitoring a PVM application, parse it and convert it into a plottable DAG format.

The generator further generates a trace file which can be used as the input to a trace-

driven simulator. I manually gathered many PVM traces by running Patterns bench-
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mark with different configurations in Virtuoso, using XPVM and my event graph

generator. Those trace files are not only used by my colleague in his dissertation but

also used later on in my user studies. (Chapter 6)

• Virtuoso system simulator: I participated in the verification and validation of the

first-generation of an application trace-driven simulator. I designed and developed

the second-generation of the simulator, which can simulate the periodic real-time

scheduling on multiple hosts, and can handle inputs from the user. The latest simu-

lator allows the user to dynamically change the configuration (CPU schedule, map-

ping) of a simulated VM in the middle of the simulation. I then combined the simu-

lator with a novel user interface which can dynamically update simulation status to

the user while taking his input to change the configuration. (Chapter 6)

• I designed and developed an interface for the user to easily control the CPU schedul-

ing and VM mapping for a collection of VMs. The interface is generic. Using this

interface, I designed an optimization game so that even a naive user can play with-

out knowing the background information. I conducted two user studies. The results

showed that the interface and game are effective. Most users can quickly optimize

the system to a certain extent. The game explores the idea of “games with a purpose”

by solving a complex system problem through game-play, although our main focus

is to apply human-driven search. The results also shed light into future design of

similar interface and game. (Chapter 7)

• Together with my colleagues Arindam Mallik, Gokhan Memik, and Robert P. Dick,

we identified processor and user pessimism as key factors holding back effective

power management for processors with support for DVFS. In response, we devel-

oped and evaluated two new, process- and user-adaptive DVFS techniques: user-

driven frequency scaling (UDFS) and process-driven voltage scaling (PDVS). These
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techniques dramatically reduce CPU power consumption in comparison with exist-

ing DVFS techniques. We conducted extensive user studies showing we can reduce

power on average by over 50% for single task- and over 75% for multitasking work-

loads compared to the Microsoft Windows XP DVFS scheme. Furthermore, CPU

temperatures can be markedly decreased through the use of our techniques. UDFS

requires that user feedback be used to direct processor voltage and frequency con-

trol. PDVS can be readily used along with any existing frequency scaling approach.

PDVS and UDFS are synergistic. UDFS leads to lower average frequencies and

PDVS allows great decreases in voltage at low frequencies. (Chapter 8, [113, 132])

• I developed a model of decision complexity in the context of understanding the com-

plexity of IT configuration. The model includes three factors: constraints, levels of

guidance and consequences. Based on the model, I conduct a carefully controlled

online user study in an analogous route-planning domain. The results revealed the

important fact that decision complexity has significantly different impacts on user-

perceived difficulty than on objective measures like time and error rate. And I iden-

tified the key factors affecting decision complexity, which we used to extract some

basic guidance for reducing complexity. I also proposed our next step on validating

the model in real IT contexts. (Appendix A, [107, 108])

I want to emphasize two fundamental contributions of this dissertation

• I demonstrated that it can be extremely effective to involve human beings in solving

optimization problems arising from systems, especially those with unknown objec-

tive functions and hidden constraints.

• I developed and evaluated techniques for taking advantage of the considerable vari-

ation in user satisfaction in many interactive settings, and using that “harvested vari-

ation” to optimize system performance and user comfort.
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10.2 Future work

My future research plans is to extend both my scheduling and direct user input work to

solve system problems in broader fields, including the following:

10.2.1 Power-aware multi-core scheduling

One natural extension to my current user-driven power management work is to apply the

same approach on multi-core platforms. It is an increasing trend for processor manufac-

turers to combine multi/many CPU cores into single integrated circuit (IC). Such a change

in the hardware is not only changing the software programming model but also opening

up a new research space for power management. One challenge for current multi-core

mobile environment is load-balancing among cores to maximize throughput and resource

utilization, while minimizing the power consumption. It will be beneficial for the future

OS scheduler to be able to predict and finely control the power consumption of individual

core.

One scenario where this approach may be especially successful is runtime monitoring

for detecting program bugs. It is increasingly popular to run monitoring tools on differ-

ent cores than the monitored programs, and hence not to compete for cycles, registers or

L1 cache. However typical monitor tools run slower than the monitored program due to

extra code that they need to execute for checking. As the result, the program needs to

be frequently paused or stopped whenever a certain checking is in progress. Swapping in

another program to keep the CPU busy may be a solution but may incur extra OS context

switch overhead. An alternative decision is to slow down the program core through fre-

quency and voltage scaling. However the scheduler needs to be intelligent enough in order

to save power in the long term. The scheduler need to consider both the variation among

applications and its monitoring tools, as well as the history of power saving decisions.
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My future plan includes in-depth problem study and literature survey, new scheduling

model proposal and development of a real scheduler. I did my initial work [29] on this

topic at Intel Research working with Dr. Michael A. Kozuch and I plan to continue/extend

it after graduation.

10.2.2 Optimization problems in wide-area distributed systems

I plan to look into adaptation problems in wide-area distributed computing systems and

explore human-driven optimization. Problem assumptions and constraints will surely be

changed when we are facing even the similar problems while in a wide-area distributed

environment. Besides the difference in both the applications and problems, we can expect

application users to have different requirement and behaviors than those cluster users. Ac-

cordingly, new user input/feedback new techniques need to be proposed, developed and

evaluated.

An example of such an adaptation problem is in P2P (peer-to-peer) systems, where

people share their own resources (e.g. disk space, network bandwidth and etc) in order to

utilize resources from other people. However resource sharing will lead to user irritation

if the level of resource sharing is not adapted to individual user, as discovered in our user

comfort study. As the result, people tend to be conservative in sharing their own resources.

Systems like BitTorrent will punish those users by limiting their access to resources con-

tributed by other people. The whole system will therefore run less efficiently and go into

a vicious circle. How to optimize both for the user’s comfort and for his desired utiliza-

tion of the resource, while maximizing the efficiency of the overall P2P system, will be

an interesting research problem. Research in the P2P field has been done on general user

incentives with the goal to motivate more users to contribute more resources. Recent P2P

clients also allow users to specify their acceptable maximum resource share, for example

upload rate. However, to my knowledge, none of them can dynamically and simultane-



CHAPTER 10. CONCLUSIONS 240

ously optimize for individual user’s comfort, utilization request, and the overall system.

In the future I plan to study existing P2P systems, formalize the problem and propose a

practical solution to it. Evaluation of the solution will be either through simulation or user

study.

10.2.3 Online games for solving optimization problems

A natural extension to the optimization game, presented in Chapter 7, is to target more

complex optimization problems, especially those with unknown objective functions and/or

constraints. A good example of those problems is the complete NP-complete problem in

Virtuoso introduced in the beginning of this dissertation. More specifically, in Virtuoso,

how to use inferred information about the application, network, and hosts to engage the

adaptation and reservation mechanisms in order to increase the application’s performance

while satisfying the user. Due to the complexity of the problem, the interface needs to be

extended to expose sufficient information to the user. In addition, multi-dimensional (>

3, e.g. CPU schedule, VM mapping and network) control is necessary although it is very

challenging. To access more users, we can take the similar approach as in [189] to make a

online game. Combining direct human input and a way to exploit mass human intelligence,

we see great potential in this future work.
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Appendix A

Towards an Understanding of Decision
Complexity in IT Configuration

This dissertation argues for using direct human input to solve optimization problems. We

believe that human-driven optimization has very broad application. In this appendix, we

will describe our work on modeling user decision making in IT configuration in order to

reduce configuration complexity. Our ultimate goal is to apply human-driven technique to

eventually solving this problem.

A.1 Introduction

As briefly introduced in Chapter 1, complexity is the most significant challenge con-

fronting IT systems today. Complexity hinders penetration of new technology, drastically

increases the cost of IT system operation and administration (which today dwarfs the cost

of the IT systems themselves [85]), and makes the systems that we build hard to compre-

hend, diagnose, and repair.

In previous work [20], we argued that complexity can be tackled quantitatively, with a

framework that allows system designers to assess the sources of complexity and directly

measure the effectiveness of potential complexity improvements. We also introduced an
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initial approach to quantifying the complexity of IT configuration and management tasks,

based on a model of the sources of configuration complexity and a set of metrics derived

from that model [22]. This approach, which we summarize in Section A.2, focuses on

complexity as perceived by expert users—for example, experienced system administrators

who have long-term experience with the systems they are managing—and is based on a

structural analysis of the configuration or administration task itself, assuming all decisions

are known and made correctly.

While this expert-focused approach is proving its value in practical application within

IBM, the fact remains that its expert-only perspective limits the complexity insights that it

can provide. In particular, a key complexity challenge lies in improving the experience of

the non-expert system administrator—the person providing IT support in a small-business

environment; the administrator who has expertise in one platform but is working for the

first time with a new one; the experienced operator trying to deploy a new piece of tech-

nology for the first time; the outsourcer trying to apply ITIL best practices [144] but facing

decision points within the prescribed processes. In these cases, a different dimension of

complexity becomes paramount: the complexity of figuring out for the first time what steps

to follow and what decisions to make while performing a complex configuration process.

We call this complexity decision complexity.

However, quantifying decision complexity is not straightforward. Unlike the expert-

only case, we cannot simply analyze a “gold standard” procedure for complexity. Instead,

we must understand how configuration decisions are made, what factors influence those de-

cisions, and how those factors contribute to both perceived difficulty as well as objectively-

measured quantities like time and error rate. And, since our goal is ultimately to be able

to easily quantify points of high complexity, we must build and use this understanding

pragmatically, without having to resort to complex cognitive or perceptual modeling.

We quickly realized that the only way to make progress towards these goals was to
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formulate an initial model of decision complexity and move rapidly to collect real data

to test that model and provide insight into factors that affect decision complexity. We

designed and conducted an extensive user study to produce data relating hypothesized

decision complexity factors to measured user perception ratings, task time, and error rate.

Because of the difficulties of conducting a controlled study on actual IT tasks with a large

population of practicing system administrators, we collected data in an alternative, more

accessible domain—route planning—with an experiment carefully designed to connect

features of decision-making in the route planning domain with analogous features in the

IT configuration domain.

Analysis of our study data reveals several interesting results. We found that task time

was primarily affected by the number and type of constraints controlling the key decisions,

as well as secondarily by the presence of short-term goal-related guidance. User-perceived

difficulty was affected primarily by the short-term goal-related guidance factor, with a sec-

ondary effect from the presence of status feedback and only minor effects from constraints.

Error rate was affected by short-term goal-related guidance and position guidance. The

contrasts in these results suggest the hypothesis that decision complexity has multiple in-

fluences, and that system designers can optimize differently to minimize time, error rate,

and perceived difficulty, respectively.

We have created a model from our study results that relates decision complexity in the

route-planning domain to some of the factors discussed above. Because of the construction

of our experiment, we believe that this model should apply to decision complexity in the

IT configuration complexity domain as well, and that it can be used to extract some initial

guidance for system designers seeking to reduce complexity. However, there is still a clear

need for further extension and validation of the model in actual IT contexts. We describe

some thoughts and future work on how we intend to accomplish that validation. These are

the next steps to continue the exploration of this crucial aspect of complexity analysis and
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can take us closer to a quantitative framework that can help shape a future with easier-to-

manage, less complex IT infrastructures.

The remainder of this appendix is organized as follows. Section A.2 briefly summarizes

our previous work in complexity modeling for experts. Chapter 9 discusses the related

work. Section A.3 describes our initial hypothesized model for decision complexity that

we used to construct the user study, which is in turn described in Sections A.4 and A.5. The

results and analysis of our study data are presented in Section A.6. Finally, we describe

our next steps in Section A.7, and conclude in Section A.8.

A.2 Complexity model for experts

To provide context for our work on decision complexity, we first summarize our previous

work on complexity modeling for experts, as described in [20, 22]. Our previous approach

focused on creating a standard framework for modeling and quantifying configuration

complexity from the point of view of an expert administrator. The intended use of this

model and related metrics was twofold: first, to provide an easy way for system design-

ers to obtain quantitative insight into the sources of complexity in their designs (without

the need for costly user studies), and second to serve as the foundation for a competitive

complexity benchmark.

The approach we followed is based on process analysis. The input to our expert-level

complexity model is a codified record of the actual configuration procedure used to accom-

plish some administrative task on the IT system under test, captured from actual execution

or documentation. This record contains information on the configuration contexts present

in the procedure, the detailed sequences of actions performed within those contexts, and

the data items and data flow between actions, as managed by the system administrator. The

model uses features of that record to extract complexity metrics in three dimensions: (1)
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execution complexity, reflecting the complexity of actually performing the needed action

sequences; (2) parameter complexity, reflecting the complexity of supplying the correct

values of all needed information to the configuration actions; and (3) memory complex-

ity, reflecting the burden of parameter management and data item tracking carried by the

system administrator. Metrics are calculated across the entire procedure to allow cross-

procedure comparison, and are also computed at a per-action level, allowing identification

of complexity “hot spots” and targeting of future development focus.

The metrics computed by our expert-level model are all objective scores, based solely

on the structure of the procedure record. Likewise, the procedure record reflects the opti-

mal configuration path as identified by an experienced expert, with no mis-steps or decision

branches. Thus the results of the analysis are objective and comparable across systems and

environments, and they reflect inherent structural complexities present in the configuration

procedures, but they do not capture any of the decision complexity in identifying the right

procedure or choosing the correct decision branches within that procedure. Hence the fo-

cus of this work is on extending the complexity model to include an initial understanding

of the impact of decision complexity.

A.3 Model and hypothesis

Table A.1: High-level model of decision making
Factors Definition Configuration analogy

Definition (examples)
Constraints Constraining conditions that restrict compatibility between software

users to avoid or make certain decisions products, capabilities of a machine
Guidance Guiding information on decisions documentation, previous

configuration experience
Consequence Results from the decision functionality, performance

To understand decision complexity, we initially approached it with an attempt to build
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Table A.2: Sub-factors within guidance
Sub-factors of
Guidance

Definition Configuration analogy (examples)

Global infor-
mation

Providing an overview of the situa-
tion across a set of short-term goals

A “Redbook” describing the options for
combining multiple software products
into a solution

Short-term
goal-oriented
information

Information needed for a particular
short-term goal, or goal of current
interest is co-located and directly an-
swers the major decision.

A configuration wizard, such as a
database tuning wizard

Confounding
information

Extraneous or misleading info not
related to goals are not presented.

A manual providing application config-
uration instructions for a different OS
platform than the one being used

Position infor-
mation

Information for identifying relative
order of current decision across a set
of decisions is provided.

Feedback on results of last configura-
tion action; a task-level progress bar

Table A.3: Route planning domain based on the model
Factors Route planning domain
Constraints Traffic
Guidance (Global info) Map, Expert path
Guidance (Goal-oriented info) GPS
Guidance (Position info) Current position indicator
Consequence Reach the destination or not

a low-level model that could capture and compute every aspect of a human-driven config-

uration procedure. We then realized that such a model requires a detailed understanding of

human cognitive processes. This approach is too complex for practical use, so we decided

to re-approach the problem from a high level, to understand what factors influence decision

making, and how those factors contribute to decision complexity.

To address these questions, we formulated an abstract high-level model. As shown in

table A.1, the three major factors we consider in our model are constraints, guidance and

consequences. We choose these factors based on results from the HCI literature [199] as

well as our own assessment of real IT configuration procedures, where the user is given
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various types of guidance and needs to make different decisions while facing various con-

straints. The decisions made by the user then generate different consequences in term of a

specific user goal.

For example, one IT procedure we studied involved the installation of a secured web

portal software stack, including a portal server, directory server, application middleware

server, and a security infrastructure. The procedure contained several decisions concern-

ing software version selection, feature selection (e.g., should the portal support SSL-based

secure access), configuration alternatives (e.g., authentication mechanisms), and sequenc-

ing.

In this procedure, guidance was provided in the form of product manuals, a step-by-

step “how-to”-style guide [64], and on-screen prompts. The procedure involved several

constraints, such as incompatibilities between different versions of the constituent soft-

ware products, different feature sets across different software versions, and resource con-

sumption requirements. Each of the several decision points in the process (for example,

choosing which security protocol to use) resulted in consequences relative to the original

goal—either performance or functionality implications in the resulting portal installation,

or the ability to achieve the goal state at all. An example of the latter style of consequences

is a case where certain product versions could not be co-located on the same machine. If

the decision was made to co-locate the incompatible versions, the procedure resulted in a

non-working system.

Of the guidance, constraints, and consequences factors, guidance is of particular inter-

est because it is the major source of information that user will consult with in making a

decision. Analogous to work in the HCI area [199], we further define the formulation of

a guidance system in table A.2. The definition is based on what a good guidance system

should provide.

In both tables A.1 and A.2, we give examples in the IT configuration domain to show



APPENDIX A. TOWARDS AN UNDERSTANDING OF DECISION COMPLEXITY
IN IT CONFIGURATION 267

the ground on which we build the model. For example, in our portal case study, the “how-

to” guide provided global information guidance about the structure of the entire task; spe-

cific dialog boxes in the install wizards for the portal’s components provided short-term

goal-oriented guidance for configuring each separate component. There was little ex-

plicit position information except what could be gleaned from matching screenshots in

the how-to guide with the on-screen display. Confounding information was present in the

standalone documentation for each product component of the overall portal stack.

As stated above, our goal in constructing the 3-facet model of guidance, constraints,

and consequences is to obtain a high-level understanding of the forces involved in creating

decision complexity for IT operational procedures. Thus with the key factors identified,

the next step is to validate their impact on decision complexity, and to begin to quantify

their relative effects. If we can do this, we can provide a high-level framework for assessing

decisions in IT processes and for providing guidance to system designers seeking to reduce

decision complexity.

A.4 Approach

To validate our model, ideally we should conduct a user study where users perform a

real IT configuration procedure. However we face some obvious difficulties here. First

it is challenging to obtain a large set of users with a consistent level of IT experience,

especially those with system administration training. Second, it is difficult to finely tune a

real IT configuration procedure to validate each component of our model in a controlled,

reproducible environment that allows data collection from large numbers of users.

Facing these challenges, we searched for an alternative domain that would allow us to

carefully control its elements, and that offered similar characteristics to the IT configura-

tion domain, so that a model built on it could be mapped back to IT configuration domain.
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We ended up settling on the domain of route planning.

In route planning, users navigate a set of interconnected paths to arrive at a prespecified

destination within certain limits of time and distance traveled. As they navigate, they make

multiple decisions based on information available to them at the time. If they are unfamiliar

with the map, the users are effectively non-experts, and thus face decision complexity at

each branch point. As shown in table A.3, the route planning domain contains examples

for all factors that we define in our model. In addition, it is familiar to ordinary users with

or without an IT administration background, so user training is unnecessary. Using this

domain, we can conduct a user study to learn how people make decisions in the context

of performing a prescribed procedure, which in our case is navigating a car from one

point to another, and extrapolate the results back to the IT configuration domain. While

the mapping is clearly not perfect, we believe that it is sufficient to provide a high-level

understanding of how our model factors affect decision complexity, giving us an initial

step towards the goal.

A.5 User study design

We designed an on-line user study that could be taken by participants over the web. The

study included multiple experiments with different test cases. Each test case varied the

levels of our key factors (guidance, constraints, consequences) and measured the user’s

time, correctness, and reported difficulty ranking.

A.5.1 Experiment and test cases

We designed 3 experiments for our user study. Each user was assigned an experiment ran-

domly after he logged in. Each experiment consists of 6 sequential test cases and 1 warm-

up test case in the beginning. We have 10 possible test cases (not including the warm-up)
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Figure A.1: The screen-shot of a running testcase.
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Table A.4: Summary of test cases; a × means the parameter is not presented while a check
means the opposite.

No Pos indicator Traffic type Update type Path diff Expert path GPS
1

√ × × × ×
2

√
static travel time × ×

3
√

dynamic road close × ×
4

√
dynamic travel time × ×

5
√ × × √ ×

6
√

dynamic travel time
√ ×

7
√

dynamic travel time × √
8

√
dynamic road close bigger × ×

9
√

dynamic travel time bigger × ×
10 × × × × ×

in total, which we carefully designed and believe will help us find out the answers to the

questions that we discussed in previous section A.3.

Table A.4 summarizes the test cases we used in the study. We also carefully selected

the set of test cases to be included in each experiment so that we can maximize our data

set. The major parameters we built into our test cases are:

• Traffic: we have two types of traffic update, representing constraints in our com-

plexity model. Static update presents the global traffic updates to the user in the

beginning of the test case, while the dynamic update only discloses the local traf-

fic to the user when he arrives at the traffic-related intersection or road. This is the

equivalent of listening to a traffic report versus running into a traffic jam, and in

the IT domain is analogous to prespecified versus unexpected constraints (such as

version compatibility). For dynamic update, we further design two types of update:

road close and travel time update. The former is analogous to the constraints in

the IT configuration domain that eliminate the viability of one installation path, and

cause user to undo and look for a new path, while the latter is an analogy to those
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constraints that only change the resulting performance of an otherwise-viable con-

figuration.

• Expert path: an expert path is the suggested route for user without considering

the traffic. It is analogous to the previous experience a user or expert brings to

configure the same system, or the information presented in a “how-to” or step-by-

step walkthrough guide.

• GPS: similar to the advanced Global Position System people use when driving in

the real world, it is analogous to an omniscient expert that directs people during a

configuration procedure, which we believe requires the least mental effort from the

user in making decisions.

• Position indicator: a pink circle on the map indicates current location of the user.

It is analogous to the position information defined in Table A.2, i.e. the feedback

information in IT context, which provides feedback on the current state of the system

and the effect of the previous action.

• Path differences: different length of routes from the starting point to the destination

reflects different consequences resulted from user’s decisions. To study the impact

of consequences on the decision complexity, we vary the path difference for different

maps so that some maps have small path differences among all possible routes, while

some maps have big path differences.

A.5.2 Perspective of the user

In each test case, the user is presented with a map consisting of a series of road segments

and intersections. Each road segment is marked with a travel time. The pink circle indi-

cates current position of the user in the map. The goal is to navigate a path from the stating
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point (home) to the airport in the minimum amount of driving time, using the navigation

buttons at the bottom of the interface. Each test case uses a slightly different map to avoid

learning effects; however, all maps are topographically equivalent with the same set of

decision points. The optimal path differs across test cases, but note that only one path is

optimal in each map. This scenario is roughly equivalent to the IT configuration problem

of being given a new system to install/configure and a set of documentation laying out

possible system- and resource-dependent sequences of configuration actions. Just as the

user has to work out the optimal path through the map, the IT administrator has to make

the configuration decisions at each branch point in the IT setup process, based on the state

of the system and the visible paths ahead.

To maximize the quality of our data, we requested users not to multi-task or walk

away from the system while a test case was in progress. In some test cases, users may

have encountered traffic or other obstructions that changed the travel time for certain road

segments or rendered them impassable. Users may also have received different levels

of guidance that may have helped them to identify the right path. Figure A.1 shows an

introductory page, with all possible components annotated. This is what the user saw after

logging in and before starting the experiment. Note that not all components showed up in

each test case.

In the beginning of the experiment, we ask the user about his or her background.

• What is your gender? (Male / Female)

• Do you have formal or informal training in mathematics, computer science and/or

engineering? (Yes / No)

• How long have you been driving? (specify years)

• How often do you drive a car? (Every day / A few times a week / A few times a
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month / Rarely / Never–do not drive)

• Do you use online map services like Mapquest, Yahoo Maps, Google Maps, etc when

you need to drive to an unfamiliar destination? (Always / Frequently / Occasionally

/ Never)

• How would you rate your proficiency with map-reading and navigating based on

maps? (Excellent / Very good / Good / Mediocre / Poor)

At the end of the set of test cases, we ask the user to rank the test cases according to

difficulty on a scale of 1 (easiest) to 6 (most difficult). Note that as the user proceeds

through the experiment, he has the opportunity to input a reminder at the end of each test

case to help him remember which one is which when he gets to the end of the experiment.

A.5.3 Implementation

We implemented our on-line user study using a JAVA Servlet-based architecture with

server-side collection of data, including timings. The web pages are dynamically gen-

erated based on the data submitted by the user. The experiment server records user navi-

gation sections (i.e. decision points) as well as the real time he takes to complete each test

case. The server also compares the user’s path with the optimal path for each map.

We used XML-based experiment configuration files so that we can not only design

various test cases and experiments using a standard data format, but also finely control

each parameter of the study by simply modifying the corresponding XML file.

We used JPEG images to represent the steps in the experiment. In the beginning of

the experiment and after each navigation action, a JPEG image was presented to the user.

In our experiments, these were images of the route map with the appropriate information

presented to the user (such as their current position, or the suggested expert-supplied path).

The implementation consists of approximately 3100 lines of JAVA and 211 JPEG files.
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One of our goals in implementing the user study is to design a general framework so

that it can be easily exploited for similar experiments. The core of our JAVA Servlet is

a general user-driven decision engine which can present information, react and record all

according to external XML-based configurations. By supplying different sets of JPEG im-

ages, along with corresponding XML files, our experiment framework should be adaptable

to explore many other aspects of IT administration and complexity. For example, the map

images could be replaced by screen-shots of actual configuration dialogs (with correspond-

ing XML files). We discuss this possibility later in Section A.7 as a possible next step in

validating our results in a more directly-IT-relevant context.

A.5.4 Two-stage User Study

Our user study consisted of two stages. In the first stage, 37 users from IBM T.J. Watson

Lab participated. In the second stage, we revised the order of test cases in each experiment

based on the analysis of the user data from the first stage. Note that we did not change

the content of the test cases. 23 users from IBM Almaden Lab, University of California,

Berkeley, and Harvard University participated.

In both stages, we advertised for participants via emails. The duration of the study for

each user was around 30 minutes. The 10 participants who did the best at the experiments

were automatically entered into a random drawing; two won a $50 gift certificate each.

Table A.5: Summary of complexity factors
Model Constraints Guidance Guidance Guidance Consequences
factors Constraints (global) (goal) (position)
Test case Test case Test case Found optimal
factors number order or not
Background Gender CS & math Driving Online-map Proficiency with map
factors background frequency usage & reading routing
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A.6 Results and Analysis

A.6.1 Metrics

We use three metrics to evaluate the study.

The AvgTimePerStep is the average time that users spent in one step in one test case.

Note that we have different number of steps in different test cases. The UserRating is the

average rank specified by users. Recall that users were asked to rank test cases from 1 to 6

in term of difficulty, where 6 indicates the most complex/difficult test case and 1 indicates

the easiest one. If they felt that two (or more) test cases have approximately the same level

of difficulty, they may give them the same rank. The ErrorRate is the percent of users who

failed to find the optimal path for a test case. Note that for each test case, we have only

one optimal path.

A.6.2 Qualitative results
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Figure A.2: User rating and time; Avg Std for time over all testcases: 4368 milliseconds

To reduce the variation across users, for each user we normalized his AvgTimePerStep

based on test case 7 (see Table A.4), where we provided GPS turn-by-turn guidance. This

test case involves no decision making at all on the user’s part, and thus reflects each user’s
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Figure A.3: Error rate and time; Avg Std for time over all testcases: 4368 milliseconds

baseline speed of navigating through the user interface of the study; in all cases each user

spent the least amount of time in testcase 7,

Figure A.2 shows that most parts of the trends for UserRating and normalized Avg-

TimePerStep are tracked, except for test case 8, which users felt was difficult but in which

they only spent a small amount of time. In figure A.3, we see similar tracking between Er-

rorRate and normalized AvgTimePerStep, except that in test case 10, where all users who

did that test case spent more time due to the lack of the position indicator. Interestingly all

users were able to find the optimal path in this test case. One possible reason for this is

that when there was no position indicator, users had to become more careful in each step

and spent more time in tracking their movement and planning their routes. As a result, the

ErrorRate was greatly reduced.

Overall, this result confirms that decision complexity has different impacts on:

• User-perceived difficulty

• Objective measures (time and error rate)

Figure A.2 and A.3 bring out some interesting discussion. However we can not draw

quantitative conclusions from them because the variation of AvgTimePerStep for each test
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case is very large across all users. The average standard deviation of AvgTimePerStep over

all test cases is 4368 milliseconds, almost half of the maximum AvgTimePerStep.

In an attempt to gain more insight into the data, we further analyzed the data in two

steps, with results discussed in the next section:

• Step I: general statistical analysis; treat each test case measured as an independent

data point, with the goal to identify factors that explain the most variance.

• Step II: pair-wise per-user test case comparisons; get more insight into specific ef-

fects of factor values, with the goal to remove inter-user variance.

A.6.3 Quantitative results

Table A.5 lists all factors that we identified within the study. The first row lists all factors

that we propose in our initial model. We call them complexity model factors. The second

row includes those test case related factors. The third row shows all background related

factors.

Time

Table A.6: Baseline analysis of variability for time
Factor Sum Squares
Test case # 32.778
Driving years 17.637
Online-map usage 7.260
Residual 45.192

As step I, we conduct an ANOVA (Analysis of Variance) test on AvgTimePerStep us-

ing a linear-space regression model. To see how much variance that we can explain, we

first include test case number, test case order, and all background related factors (e.g. gen-

der, driving years) in the ANOVA. Since test case number subsumes all of the factors we
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Table A.7: Analysis of complexity factors for time
Factor Sum Squares
Constraints 16.764
Guidance (goal) 11.397
Consequence 1.939

explicitly altered during the experiment, we believe that the variance that can be explained

by test case number should be a superset of what can be explained by our model factors.

Table A.6 is the summary of the ANOVA. We only list those factors which have significant

impact on Sum of Squares. As we can see, the maximum variability that can be explained

by model factors (those we explicitly varied in the experiment) is 32.778. Interestingly, the

length of driving years contributes 17.637 to the Sum of Squares, indicating experience

is a significant factor. Other factors are not listed due to their tiny impact. The residual,

we believe, comes from random per-user effects that can’t be explained by either model

factors or user background.

Based on this baseline analysis, we then do an ANOVA test on our model factors (i.e.

constraints, levels of guidance, consequence) to identify those factors that explain the most

variance. We know from our earlier analysis that at most 32.778 of the sum of squares

variance can be explained by these factors. Table A.7 indicates that constraints and short-

term goal related guidance have the most impact on time, followed by a small amount of

affect from consequences. Other factors have very little impact and are not listed. Note

that constraints and guidance together explain 96% of the total variance explainable by

model factors.

From this Step I data, we can conclude that the user’s decision time is primarily influ-

enced by the presence of constraints, along with goal-directed guidance such as step-by-

step instructions. The impact of visible consequences is also present, though at a lower

level. The regression fit data confirms this analysis, showing increased predicted step time
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when constraints are present, and decreased time when goal-directed guidance is provided

or consequences are more visible.

Table A.8: Pair-wise test for time
1st Study 95% CT 2nd Study 95% CT

Constraints static traffic > dy-
namic (road close)

(0.78, 1.07) static traffic > dy-
namic (road close)

(1, 1)

static traffic > without
traffic

(0.73, 1.01) static > dynamic
(travel time update)

(0.54, 1.13)

Guidance (goal) without expert path >
with expert path

(0.53, 0.89)

Next, in step II, we aim to remove inter-user variance and get more insight into spe-

cific effects of factor values. Table A.8 summarizes our pair-test analysis, providing 95%

confidence intervals. In these tests, we compared the results of a pair of test cases from a

single user, to determine a per-user effect of factor differences between the test cases. We

then averaged across users to test for a significant cross-population effect. Note that we

only list those results which allow us to discount the null hypothesis, that two test cases

have no difference, with > 95% confidence. This result confirms what we found in step I,

i.e. constraints and guidance (goal) are two major factors influencing task time. We further

discover that statically-presented constraints (like our static traffic) actually increase time

compared to dynamic constraints, likely due to the user’s need to assess the relevance of

the global information at each step of the procedure.

Rating

Similar to our analysis for time, we first do an ANOVA test on UserRating using test case

number, test case order, and all background related factors. From table A.9, we can see

that the maximum variability that can be explained by the model factors is 51.671. The

length of driving years again has some impact although the impact is small compared to

that in the time case.
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We then feed the model factors into the ANOVA test. Different from what we found

in the time case, here short-term goal related guidance is now the top 1 influential factor,

followed by position guidance. Constraints however only have small impact on the user’s

rating.

The results also show that a third factor, Log(order), impacts UserRating, although at

a much lower level than Guidance. The Order factor refers to the sequence in which the

user was shown the various test cases; the presence of the Log(order) term in the ANOVA

implies that there is a bias to users’ rating, with higher ratings given later in the sequence.

Table A.11 is the summary for step II - pair-wise test. Although it does not statisti-

cally show the impact of guidance (goal), it confirms the impact of position guidance and

constraints providing 95% confidence intervals.

Table A.9: Baseline analysis of variability for rating
Factor Sum Squares
Test case # 51.671
Driving years 7.125
Residual 67.087

Table A.10: Analysis of complexity factors for rating
Factor Sum Squares
Guidance (goal) 42.272
Guidance (position) 6.278
Log(order) 2.071
Constraints 1.683

Error rate

The analysis of ErrorRate is different from time and rating because we only have one data

point per test case, i.e. error rate averaged across all users who finished that test case. So

it is hard do any further statistical analysis. However from figure A.3, we can still draw
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Table A.11: Pair-wise test for rating
1st Study 95% CT 2nd Study 95% CT

Guidance (pos) without pos indicator
> with pos indicator

(0.51, 1.05) without pos indicator
> with pos indicator

(0.51, 1.05)

Constraints static traffic > dynamic
traffic (road close)

(0.54, 1.13)

two conclusions. First, all users were able to find the optimal path in test case 7, where we

provided GPS turn-by-turn guidance. So we can conclude that providing short-term goal

related guidance will reduce error rate. Second, the error rate in test case 10 is also zero,

where the position guidance was not provided. So the conclusion is that error rate will

be reduced when guidance (position) is not present, although perceived difficulty and time

both increase, illustrating the tradeoffs between different forms of decision complexity.

A.6.4 Summary and advice to designers

The contrasts and complexity in the above results suggest the hypothesis that decision

complexity has multiple influences on time, error rate, and user-perceived difficulty, and

suggests some rough approaches for reducing complexity along these dimensions.

Depending on its goal, optimization for lower complexity will have a different focus.

The examples below illustrate possible design approaches for reducing complexity.

• In the IT configuration domain, an installation procedure with easily-located clear

info (e.g. wizard-based prompts) for the next step will reduce both task time and

user-perceived complexity, though it is unclear how much it will affect error rate.

• A procedure with feedback on the current state of the system and the effect of the

previous action (e.g. message windows following a button press) will reduce user-

perceived complexity, but is unlikely to improve task time or error rate.
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Figure A.4: Mapping

• A procedure that automatically adapts to different software and hardware versions

to reduce compatibility constraints will reduce task time, and may also cause a small

reduction in perceived complexity.

• Omitting positional feedback (i.e., by not showing users the effects of their actions)

may, counterintuitively, increase user accuracy, but at the cost of significantly higher

perceived complexity and task time.

A.7 Next Steps

A natural next step following this study will be to extend and validate the model in the IT

configuration domain through a controlled user study. Again we are facing the challenge
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Figure A.5: Steps

of choosing a real scenario, which we can tailor to test various factors of our model. We

propose to use a simulated installation process (Figure A.4), where the user has a specific

installation goal to achieve and has to go through various decision steps based on provided

information (wizard, message windows, buttons...) and choose the right path. For example,

the installation process might be to install the web portal software stack mentioned earlier,

with the requisite decisions concerning product versions and deployment topology. This

approach has the following advantages:

• it is close to a real IT installation process and thus will be familiar to most IT-trained

people

• we will have full control over the process

• we can borrow the framework from our route-planning study (on-line experiment

engine, test case design etc)

In fact, as described earlier, there exists a mapping between the route-planning domain

and the installation domain. For example, the traffic in driving can be seen as analogous to

compatibility between software or to machine capacity limits. The global map is analogous

to an installation/configuration manual or to a flowchart of the overall process. Likewise,

the driving time per road segment can be mapped to the number of features achieved per

installation step.
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Extrapolating from our earlier results, we can hypothesize that the quality of guid-

ance provided—in terms of overall global configuration flow as well as step-by-step goal-

directed guidance—will dominate an IT administrator’s perception of decision complexity,

whereas the degree of compatibility and software configuration sequencing constraints will

dominate the decision time in the installation/configuration process. However, as next steps

we need to validate this hypothesis with concrete data from follow-on user studies in the

IT domain.

Making use of our current general framework as discussed in section A.5.3, we can

expect that conducting these next user studies would be straight-forwarded in terms of

implementation.

After validating and refining the model in the actual IT context, the next step to take

it further is to start producing mappings from the model-based measures to higher-level

measures that speak directly to aspects of IT administration cost. As figure A.5 shows, the

idea is to calibrate or map the model measures to higher-level measures such as the time

it takes to perform a configuration procedure, the skill level required, and the probability

of success at various skill levels. This calibration will almost certainly require the integra-

tion of decision complexity with the base complexity measures we developed in previous

work [22]. It will additionally require either an extensive user study with trained IT admin-

istrators of different skill levels performing real (but controlled) IT tasks, or the collection

of a corpus of field data from practicing system administrators performing configuration

tasks on production IT environments.

Once we have completed the above calibration to metrics such as time, skill, and error

rate for specific configuration procedures, we will then be able to recursively apply our

complexity analysis to the collections of IT configuration and administration tasks per-

formed in large IT shops. Here, we will use documented IT management processes to

guide the analysis; these may be the aforementioned ITIL best practices [144] or other
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multi-role IT processes formally-documented in swimlane format, as described in [21].

Ultimately, our hope is to be able to use such processes to guide an evaluation framework,

or benchmark, that can analyze each key process activity for complexity and produce a

prediction of the cost incurred by the process (in terms of labor cost and downtime cost).

While this is a lofty goal that will not be reached overnight, its realization would provide a

tremendous asset in helping to simplify current IT infrastructures and ensure that the new

ones we build have the least complexity possible.

A.8 Conclusions

We developed a model of decision complexity in the context of understanding the com-

plexity of configuring computing systems. The model includes three factors: constraints,

levels of guidance and consequences. Based on the model, we conducted a carefully con-

trolled user study in an analogous route-planning domain. We discussed both qualitative

and quantitative results. We revealed the important fact that decision complexity has sig-

nificantly different impacts on user-perceived difficulty than on objective measures like

time and error rate. And we identified the key factors affecting decision complexity, which

we use to extract some basic guidance for reducing complexity. We also proposed our next

step on validating the model in real IT contexts. And we described our future work on

mapping measures through the model to higher-level measures, which we believe will ul-

timately bring us to quantitative benchmarks towards less complex, more easily managed

IT infrastructures.
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Appendix B

User Study Instructions for Chapter 2

We are trying to understand how different users get irritated due to the slow performance

of their computers. Thank you for participating in our study. At the end of the study, you

will receive a receipt which you can redeem for $15.

During this study, which will take approximately 1.5 hours, you will simply use a

Windows computer for four tasks while we make it slower and faster in different ways.

The purpose is to get your feedback when the computer gets unexpectedly slow for

your operation. You can start each task by clicking on appropriately labeled shortcuts on

the Windows Desktop. Each task is 16 minutes long and you will receive an alert when

it is time to close the task and proceed to the next one. If an error occurs, please ask the

proctor for help.

Whenever you feel discomforted by the unexpected slowness of the computer, you

should express your irritation using the “I am Irritated” button located on top of the

keyboard or by right clicking the irritation icon (Figure B.1) in the system tray:

Figure B.1: Tray interface.
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Each time you press the button, the speed of the computer will return to normal and you

can resume your task. You may need to express irritation several times during your tasks.

Please press the button whenever you feel discomforted by the slowness of the computer.

The proctor will give you a short demo before you start.

The Tasks

You will perform the following tasks one after the other.

1. Adaptation Phase

Before beginning the actual tasks, we will simply let you use the computer for 10

minutes. You are recommended to have a feel of these tasks by using the applica-

tions (Word, PowerPoint, Internet Explorer and Quake) for couple of minutes. The

purpose is to get a feel for the normal speed of the PC.

2. Word Processing (16 minutes)

You will use Microsoft Word to type a document, which will be provided to you

in hardcopy. You should type at a comfortable pace for you. Please maintain the

original formatting of the document as closely as you can.

3. Presentation Software (16 minutes)

You will use Microsoft PowerPoint to draw some diagrams using the drawing fea-

tures of PowerPoint. The document will be given to you in hard copy. You should

work at a comfortable pace. Please try to duplicate the diagram as closely as possible

including fonts and positions etc.

4. Web browsing and searching (16 minutes)

The purpose of this task to do normal web browsing which involves opening and

closing several IE windows, and also saving several web pages onto the disk. The

assigned task is:
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You will search and save information about phrases from news stories at http:

//dailynews.yahoo.com/.

(a) You should go to the Yahoo news website and read the top news story briefly

(the first paragraph or so). You should then save the page a folder by your name

in C:.

(b) Then you should select several keywords or phrases from the story (at least

three) and search for these using Google. You can also search for images about

these topics using Googles Image search. You should save the results of your

searches to the folder by your name in C:.

(c) If you are done with the above, you can go the next news story and repeat.

5. Playing an Action/Arcade Game (16 minutes)

You will play a Windows first-person shooter game. You can play as you choose for

the duration. You need to play the game in the windows mode, not in the full screen

mode. If you havent played this game before, we can give a short demo.

Notes:

• You can save all the files in a directory by your name in C:.

• Four icons are placed on the desktop named “task1”, “task2” and so on, which start

each of the four tasks for you. It also starts a timer which automatically tells you

after 16 minutes that time is over.

• At the start and end of each task, please call the proctor for assistance and for setting

up the tasks for you.

All the best!
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The User Irritation Team

Date/Time:

Name:

Email:

ID:

Proctor Proctor Signature:
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Appendix C

User Study Instructions for Chapter 4

Thank you for participating in our study. At the end of the study, you will receive a receipt

which you can redeem for $15.

During this study, which will take approximately 1.5 hours, you will simply use a

Windows computer for four tasks (Word Processing, Presentation Creation, Web Browsing

and Game Playing). Each task has 3 sub-tasks. The proctor will start each task for you.

Each task is 15 minutes long with 5 minutes for each sub-task. You will receive an alert

when each subtask is done. When you finish a subtask, you will answer several simple

questions associated with that subtask, and then ask the proctor to start next subtask for

you. If an error occurs, please ask the proctor for help.

Video Taping

We will video tape you during the study. The purpose of the video tape is to help us

determine your degree of comfort during the study independently of the questions we will

ask you. After we have done so, we will destroy your video tape.

The Tasks

You will perform the following tasks one after the other. Please finish all tasks shown

on each page (5 pages in total) before you proceed to next page.

Adaptation Phase I (8 minutes)
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Before beginning the actual tasks, we will simply let you use the Windows-based com-

puter for 8 minutes. You should get a feel for the performance of the computer in our

four applications (Word, Powerpoint, Internet Explorer, and Quake). During this stage,

our control mechanism will be inactive.

When you are done with Adaptation Phase I, please answer the following questions:

• Do you feel you are familiar with the performance of this computer? (Y / N)

• Are you comfortable with these applications? (Y / N)

Adaptation Phase II (5 minutes)

This phase will familiarize you with our control mechanism, which is a non-centering

joystick. Moving the joystick will change the responsiveness of the computer. In gen-

eral, moving the joystick to the upper-right will make the machine faster, while moving

the joystick to bottom-left will slow the machine down. However, the control is not a

simple linear control—all joystick positions are valid. You will listen to mp3 music using

Windows Media Player and notice how the playback changes when you move the joystick.

When you are done with Adaptation Phase II, please answer the following questions:

• Do you feel that you understand the control mechanism? (Y / N)

• Do you feel that you can use the control mechanism? (Y / N)

Thanks. Then ask the proctor to start the first task for you.

Word Processing (15 minutes)

You will use Microsoft Word to type a document assigned to you. You should type at

a comfortable pace for you. Please maintain the original formatting of the document as

closely as you can.

Sub-task I (5 minutes) Youre trying to find a comfortable joystick setting. When the

timeout alert shows, answer these questions:
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• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)

Thanks. Then ask the proctor to start the next sub-task for you.

Sub-task II (5 minutes)

The proctor will bring up a cost bar for you, which will show the current cost of using

the Windows computer. When you move the joystick, both the responsiveness of the com-

puter and current cost will change. Do your best to find a comfortable joystick setting that

is of the lowest cost. When the timeout alert shows, answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)

• If yes, whats the cost?

Thanks. Then ask the proctor to start the next sub-task for you.

Sub-task III (5 minutes)

This sub-task is similar to previous one, except that now we will check for lowest

cost through a background computer efficiency measurement, and check for your comfort

through analysis of your input through mouse, keyboard and joystick and the video tape.

Do your best to find a comfortable joystick setting that is of the lowest cost. When the

timeout alert shows, answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)
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• If yes, whats the cost?

Thanks. Then ask the proctor to start the next task for you.

Presentation Software (15 minutes)

You will draw some diagrams using the drawing features of PowerPoint. You should

work at a comfortable pace for you. Please try to duplicate the diagram we give you as

closely as possible including fonts and positions etc.

Sub-task I (5 minutes) Youre trying to find a comfortable joystick setting. When the

timeout alert shows, answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Can you find a setting that is comfortable for your PowerPoint preparation? (Y

/ N)

Thanks. Then ask the proctor to start the next sub-task for you.

Sub-task II (5 minutes)

The proctor will bring up a cost bar for you, which will show the current cost of using

the Windows computer. When you move the joystick, both the responsiveness of the com-

puter and current cost will change. Do your best to find a comfortable joystick setting that

is of the lowest cost. When the timeout alert shows, answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)

• If yes, whats the cost?
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Thanks. Then ask the proctor to start the next sub-task for you.

Sub-task III (5 minutes)

This sub-task is similar to previous sub-task, except that now we will check for lowest

cost through a background computer efficiency measurement, and check for your comfort

through analysis of your input through mouse, keyboard and joystick and the video tape.

Do your best to find a comfortable joystick setting that is of the lowest cost. When the

timeout alert shows, answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)

• If yes, whats the cost?

Thanks. Then ask the proctor to start the next task for you.

Web browsing and searching (15 minutes)

You will search and save information about phrases from news stories at www.cnn.com.

1. You should go to the CNN website and read the top news story briefly (the first

paragraph or so). You should then save the page to the “Top Stories Folder” on the

desktop.

2. After saving the page, you should select several keywords or phrases from the story

(at least three) and search for these using Google. You can also search for images

about these topics using Googles Image search. You should save the results of your

searches to the “Top Stories Folder”.

3. If you are done with the above, you can go the next news story and repeat.
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Sub-task I (5 minutes) Youre trying to find a comfortable joystick setting. When the

timeout alert shows, answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)

Thanks. Then ask the proctor to start the next sub-task for you.

Sub-task II (5 minutes)

The proctor will bring up a cost bar for you, which will show the current cost of using

the Windows computer. When you move the joystick, both the responsiveness of the com-

puter and current cost will change. Do your best to find a comfortable joystick setting that

is of the lowest cost. When the timeout alert shows, answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)

• If yes, whats the cost?

Thanks. Then ask the proctor to start the next sub-task for you.

Sub-task III (5 minutes)

This sub-task is similar to previous sub-task, except that now we will check for lowest

cost through a background computer efficiency measurement, and check for your comfort

through analysis of your input through mouse, keyboard and joystick and the video tape.

Do your best to find a comfortable joystick setting that is of the lowest cost. When the

timeout alert shows, answer these questions:
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• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)

• If yes, whats the cost?

Thanks. Then ask the proctor to start the next sub-task for you.

Playing a First Person Shooter Game (15 minutes)

You will play a Windows first-person shooter game Quake II. You will need to play the

game in the windows mode, not in the full screen mode. If you havent played this game

before, we can give a short demo.

Sub-task I (5 minutes) Youre trying to find a comfortable joystick setting. When the

timeout alert shows, answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)

Thanks. Then ask the proctor to start the next sub-task for you.

Sub-task II (5 minutes)

The proctor will bring up a cost bar for you, which will show the current cost of using

the Windows computer. When you move the joystick, both the responsiveness of the com-

puter and current cost will change. Do your best to find a comfortable joystick setting that

is of the lowest cost. When the timeout alert shows, answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)
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• If yes, whats the cost?

Thanks. Then ask the proctor to start the next sub-task for you.

Sub-task III (5 minutes)

This sub-task is similar to previous sub-task, except that now we will check for lowest

cost through a background computer efficiency measurement, and check for your comfort

through analysis of your input through mouse, keyboard and joystick. Do your best to find

a comfortable joystick setting that is of the lowest cost. When the timeout alert shows,

answer these questions:

• Did you find that the joystick control was understandable in this application?

(Y / N)

• Were you able to find a setting that was comfortable? (Y / N)

• If yes, whats the cost?

Thanks. This is the end of the study. Please give this document to the proctor.
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Appendix D

User Study Instructions for Chapter 7

D.1 Instructions for VM scheduling game

We are trying to find out whether users can solve difficult optimization problems for com-

puter systems. Thank you for participating in our study. At the end of the study, you will

receive a receipt which you can redeem for $10.

During this study, which will take approximately 1 hour, you will simply use a Win-

dows computer to play a game through a graphical user interface. The proctor will start

each task for you. You will receive an alert when it is time to close the task. When you

finish a subtask, you will answer several simple questions associated with that subtask, and

then ask the proctor to start next subtask for you. If an error occurs, please ask the proctor

for help.

Please print

Name:

Date:

Time:
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Target Area 
1 

Target Area 2 Your 
line 

The higher a 
ball, the higher 
its average 
happiness 
level. 

Control Area 

Border line for 
that ball. 

The closer 
those two lines, 
the better. 

In general, 
moving a ball 
to the lower-
right corner 
will optimize it. 

History Area 

Choose how 
many past 
history points 
to see at one 
time. 

Figure D.1: Game interface.

Introduction to the game interface

Two target areas:

1. In the Target Area 1, the average happiness level of each ball will be dynamically

displayed.

2. In the Target Area 2, both your progress line (blue) across all balls and the target line

(red) will be dynamically displayed.

Goals: By moving your balls in the Control Area, you want to maximize the happi-

ness levels for all balls (Target Area 1) AND minimize the gap between your progress

line and the target progress line (Target Area 2).
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Constraints: There is one constraint line for each ball in the Control Area. The ball

and its constraint line will be displayed in the same color. You will not be able to move a

ball to the right of its constraint line. In addition, the constraint lines of all balls are related

in various ways so that when you move one ball, the constraint lines for other balls will

change.

Information: While the Target Area shows the average happiness level of a ball, in

the History Area, you will see the dynamic history of that ball. When you click on a ball

either in the Control Area or the Target Area 1, its happiness history will be displayed in

the History Area. You can further choose how many past history points (ahead of current

point of time) that you want to see at one time to help you make the next decision. Note

that the happiness level of a ball in the Target area is averaged over the number of past

history points that you choose. For example, 100 means that the happiness level (in the

Target Area) of a ball is the average value over last 100 happiness values.

Important hints:

• If there is only one ball in the game, moving it to the lower-right will optimize it and

achieve the goal of the game.

• After you move a ball to a new position, it will take some time for your action

to affect the happiness levels of balls and progress line. As the number of balls

increases, it may take longer for you to notice the change after each move.

• We suggest that after you make a move, observe the effect for some time before you

try to move again. Be patient!

• Moving a ball will not only change its own happiness and progress but also influence

other balls. Try to discover the relationship among balls.
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• The difficulty of the game will increase as you proceed. A good strategy will require

considering BOTH

– Short term happiness level of single ball in the Target Area 1 & History Area.

– Long term global progress of all balls in the Target Area 2.

– Note: the global progress of all balls depends on their happiness levels.

The Tasks You will perform the following tasks one after the other.

1. Adaptation Phase 1 (5 minutes)

Before beginning the actual tasks, we will simply let you play a simple game with

only 2 balls so that you can a feel of this game. Moving a ball will change its

happiness level and its progress, which will further influence other balls. In general,

moving a ball to the lower-right will make it happy. However, all positions in the

Control Area are valid.

• Do you feel that you understand the graphic interface? (Y / N)

• Do you feel that you can use the interface to achieve the goal of the game?

(Y / N)

2. Adaptation Phase 2 (5 minutes)

We will now let you play another simple game with only 3 balls so that t you can

have a further feel of this game. Try to develop your own strategy.

• Do you feel that you understand the graphic interface? (Y / N)

• Do you feel that you can use the interface to achieve the goal of the game?

(Y / N)

Thanks. Then ask the proctor to start the first task for you.
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3. 4 balls (8 minutes)

You will be given 4 balls to play with. When the timeout alert shows, answer these

questions:

• Were you able to use the interface to achieve the goal of the game? (Y / N)

• If no, why?

4. 4 balls (8 minutes)

You will be given 4 balls to play with. When the timeout alert shows, answer these

questions:

• Were you able to use the interface to achieve the goal of the game? (Y / N)

• If no, why?

5. 8 balls (8 minutes)

You will be given 8 balls to play with. When the timeout alert shows, answer these

questions:

• Were you able to use the interface to achieve the goal of the game? (Y / N)

• If no, why?

6. 8 balls (8 minutes)

You will be given 4 balls to play with. When the timeout alert shows, answer these

questions:

• Were you able to use the interface to achieve the goal of the game? (Y / N)

• If no, why?
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7. 16 balls (8 minutes)

You will be given 16 balls to play with. When the timeout alert shows, answer these

questions:

• Were you able to use the interface to achieve the goal of the game? (Y / N)

• If no, why?

8. 16 balls (8 minutes)

You will be given 16 balls to play with. When the timeout alert shows, answer these

questions:

• Were you able to use the interface to achieve the goal of the game? (Y / N)

• If no, why?

All the best!

D.2 Instructions for VM scheduling & mapping game

We are trying to find out whether users can solve difficult optimization problems for com-

puter systems. Thank you for participating in our study. At the end of the study, you will

receive a receipt which you can redeem for $12.

During this study, which will take approximately 1 hour and 15 minutes, you will

simply use a Windows computer to play a game through a graphical user interface. The

proctor will start each task for you. You will receive an alert when it is time to close the

task. When you finish a subtask, you will answer several simple questions associated with

that subtask, and then ask the proctor to start next subtask for you. If an error occurs,

please ask the proctor for help.
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Short-term 
happiness 

monitor

Target Area

Your global 
cumulative 
happiness line.

History MonitorChoose 
how many 
past 
history 
points to 
see at one 
time.

The higher a ball, the 
higher its short-term 
average happiness 
level.

Your current total 

cumulative happiness.

Your Control Area

Border line 
for that ball. Moving a ball towards the bottom-

right corner of its box will consume 
the most resource.A white box 

is a resource 
pool.

Your goal is to have your line 
grow as HIGH as possible and 
as FAST as possible.

The more resource you use, the more likely 
that your ball will be happy, but if a ball 
consumes too much resource than it can use, 
it will become unhappy.

Figure D.2: Game interface.

Please print Name:

Date:

Time:

Introduction to the game interface

Target Area: Your global cumulative happiness line (blue) will be dynamically dis-

played over time. You may think of the happiness line as the sum of the happiness levels

across ALL balls.

Goal:

By moving your balls in the Control Area, you want to push your global cumulative
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happiness line to as HIGH as possible. The growth speed of your line can be judged from

the slope of line. You want the slope to be as steep as possible. Note that the ceiling of the

Target Area may or may not be reachable.

History Area:

In this Area, the happiness history of your SELECTED ball will be displayed. You

can select a ball in the Control Area, Ball List or Short-term Happiness Monitor. Note that

you need to select how many past history points up to the current time that you want to

watch at one time to help you make the next decision.

Short-term Happiness Monitor:

The average happiness level (height) of each ball will be dynamically updated here.

The average is calculated over the number of past history points that your select in the

History Area. So if you select 10 in the History Area, the height of the balls in the monitor

is equal to the average happiness over last 10 happiness levels.

Constraint Line:

There is one constraint line for each ball in the Control Area. The ball and its constraint

line will be displayed in the same color. You will not be able to move a ball to the right

of its constraint line. In addition, the constraint lines of all balls are related in various

ways so that when you move one ball, the constraint lines for other balls will change. The

constraint line reflects the resource usage constraint for that ball.

Control Area:

You have two ways of controlling a ball, move it within the same resource box or

migrate it to a new resource box.

How to move a ball within the same box:

Left-click on the ball that you want to move until a surrounding black circle appears.

Then move the ball. The circle is an indicator of your current position and will disappear

after you move the ball to a new position and release the mouse button.
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Figure D.3: Migration.

How to migrate a ball to a different resource box (2 ways):

1. If you try to move a ball outside of its box, or across its constraint line, you may

see some green areas appear to indicate potential new resource boxes for this ball.

Hold the left-button and move the mouse to one green area, release the button, the

ball will be migrated to the new box. You need to make sure the center of the mouse

cross fall within the green area in order to migrate a ball.

2. If you hold the left SHIFT key, select and move a ball, release the mouse button and

then release the left SHIFT key, the position of the ball will remain UNCHANGED

no matter where you move your ball within the same box. You will notice that the

ball will jump back to its old position, after you release the SHIFT key. However, if

you keep holding the left SHIFT key and move the ball outside of its box, or across

its constraint line to a green area, the ball will be migrated.
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3. The difference between 1) and 2), in terms of migration, is that in 2) you will be

able to maintain the same position (i.e. the same resource usage level) of the ball

while moving it to a new resource box. In 1), you need to first of all move a ball to

the border of its current box or across its constraint line, which changes its resource

usage, before you are able to migrate it.

Penalty of moving a ball to a different box:

The ball will be frozen during the migration for a certain amount of time. During that

time, a red circle will appear surrounding the ball. You will not be able to move that ball

until the red circle disappears. In addition, during the migration, the ball being migrated

will not contribute to the global happiness line, and its own happiness level will not be

updated. The happiness level of other balls may be affected due to the temporary absence

of the frozen ball.

Important hints for you to beat the game:

• In general moving a ball downward and/or rightward will consume more resources.

However all positions in the Control Area are valid.

• The more resources you assign to a ball, the more likely that your ball will become

happier, BUT if a ball consumes more resources than it can use, it will become

unhappy. In addition, all balls share a global resource pool, so if one ball gets more

resources, the other balls will get less. Try to discover the relationship among balls

will help you select the correct resource usage level.

• After you move a ball to a new position, it will take some time for your action to

affect the happiness levels of balls and the cumulative global happiness line. As the

number of balls increases, it may take longer for you to notice the change after each

move. We suggest that after you make a move, observe the impact for a while before

making a new move again. Be patient!
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• If all balls are happy most of the time in the Short-term Happiness Monitor, your

cumulative global line will certainly grow fast and high, but keep in mind that your

ONLY goal is to get the global happiness line as high as possible. You may observe a

certain degree of fluctuation of the happiness of balls. If the fluctuation is temporary

and short, it does not necessarily mean that you need to adjust the balls. However, if

the fluctuation is persistent and/or displays a certain pattern, it is then necessary for

you to make some adjustment.

• In the end of each game, you will see a similar summary as shown in Figure D.4.

Your final score is calculated based on the global cumulative happiness averaged

across all balls and all history points. The closer your score to the highest possible

score, the better you perform. You will be asked to evaluate yourself in the end of

each game.

• Note that although we show the highest score in theory, we do not know the highest

achievable score in practice. That is why we bring you here to help us find it out!

The Tasks

You will perform the following tasks one after the other.

1. Adaptation Phase 1 (4 minutes) Before beginning the actual tasks, we will simply

let you play a simple game with only 2 balls so that you can a feel of this game. You

can try out different controls.

• Do you feel that you understand the graphic interface? (Y / N)

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))
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Figure D.4: final screen.

2. Adaptation Phase 2 (4 minutes) We will now let you play another simple game

with only 3 balls so that t you can have a further feel of this game. Try to develop

your own strategy.

• Do you feel that you understand the graphic interface? (Y / N)

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))

3. 4 balls (7 minutes)

You will be given 4 balls to play with. When the timeout alert shows, answer these

questions:

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))
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• If bad, why?

4. 4 balls (7 minutes)

You will be given 4 balls to play with. When the timeout alert shows, answer these

questions: What is your final score?

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))

• If bad, why?

5. 4 balls (7 minutes)

You will be given 4 balls to play with. When the timeout alert shows, answer these

questions: What is your final score?

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))

• If bad, why?

6. 8 balls (7 minutes)

You will be given 8 balls to play with. When the timeout alert shows, answer these

questions: What is your final score?

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))
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• If bad, why?

7. 8 balls (7 minutes)

You will be given 8 balls to play with. When the timeout alert shows, answer these

questions: What is your final score?

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))

• If bad, why?

8. 8 balls (7 minutes)

You will be given 8 balls to play with. When the timeout alert shows, answer these

questions: What is your final score?

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))

• If bad, why?

9. 10 balls (7 minutes)

You will be given 10 balls to play with. When the timeout alert shows, answer these

questions: What is your final score?

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))
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• If bad, why?

10. 10 balls (7 minutes)

You will be given 10 balls to play with. When the timeout alert shows, answer these

questions: What is your final score?

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))

• If bad, why?

11. 10 balls (7 minutes)

You will be given 10 balls to play with. When the timeout alert shows, answer these

questions: What is your final score?

• What is your final score?

• How do you evaluate your performance in this game session? (1 (bad) to 10

(outstanding))

• If bad, why?
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Appendix E

User Study Instructions for Chapter 8

We are trying to understand how different users get irritated due to the slow performance

of their computers. Thank you for participating in our study. At the end of the study, you

will receive a receipt which you can redeem for $15.

During this study, which will take approximately 1 hour, you will simply use a Win-

dows computer for six tasks while we make it slower and faster in different ways. The

proctor will start each task for you. You will receive an alert when it is time to close the

task and proceed to the next one. If an error occurs, please ask the proctor for help.

Whenever you feel discomforted by the unexpected slowness of the computer, you

should express your irritation using the “I am Irritated” button (F11) located on top

of the keyboard or by right clicking the irritation icon (Figure E.1) in the system tray.

You will hear a beep as feedback each time you press the button:

Each time you press the button, the speed of the computer will change. You may need

to express irritation several times during your tasks. Please press the button whenever you

Figure E.1: Tray interface.
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feel discomforted by the slowness of the computer. The proctor will give you a short demo

before you start.

The Tasks

You will perform the following tasks one after the other.

1. Adaptation Phase

Before beginning the actual tasks, we will simply let you use the computer for 5

minutes. You are recommended to have a feel of these tasks by using the applications

for couple of minutes and getting a feel for the normal speed of the PC.

2. Presentation Software (4 minutes)

You will listen to music and use Microsoft PowerPoint to draw some diagrams using

the drawing features of PowerPoint. You should work at a comfortable pace for

you. Please try to duplicate the diagram as closely as possible including fonts and

positions etc. You can save all the files in a directory by your name on the desktop

of Windows.

3. Watching 3D animation using Web browser (4 minutes)

You will watch a 3D animation using Microsoft Internet Explorer. You can use num

key 0-9 to change the cameras of the animation.

4. Playing a Game (8 minutes)

You will play a Windows game. If you havent played this game before, we can give

a short demo.

5. Presentation Software (4 minutes)

You will listen to music and use Microsoft PowerPoint to draw some diagrams using

the drawing features of PowerPoint. You should work at a comfortable pace for



APPENDIX E. USER STUDY INSTRUCTIONS FOR CHAPTER 8 315

you. Please try to duplicate the diagram as closely as possible including fonts and

positions etc. You can save all the files in a directory by your name on the desktop

of Windows.

6. Watching 3D animation using Web browser (4 minutes)

You will watch a 3D animation using Microsoft Internet Explorer. You can use num

key 0-9 to change the cameras of the animation.

7. Playing a Game (8 minutes)

You will play a Windows game. If you havent played this game before, we can give

a short demo.

All the best!
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