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Abstract 
 

Query-by-Humming (QBH) systems transcribe a sung or hummed query and search for 

related musical themes in a database, returning the most similar themes as a play list. A 

major obstacle to effective QBH is variation between user queries and the melodic targets 

used as database search keys. Since it is not possible to predict all individual singer 

profiles before system deployment, a robust QBH system should be able to adapt to 

different singers after deployment. Currently deployed systems do not have this 

capability. We describe a new QBH system that learns from user provided feedback on 

the search results, letting the system improve while deployed, after only a few queries. 

This is made possible by a trainable note segmentation system, an easily parameterized 

singer error model and a straight-forward genetic algorithm. Results show significant 

improvement in performance given only ten example queries from a particular user. 
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1 Introduction

Most currently deployed music search engines, such as Amazon.com and local
libraries, make use of metadata about the song title and performer name in
their indexing mechanism. Often, a person is able to sing a portion of the piece,
but cannot specify the title, composer or performer. Query by humming (QBH)
systems [1–5] solve this mismatch between database keys and user knowledge.
This is done by transcribing a sung query and searching for related musical
themes in a database, returning the most similar themes as a play list.

One of the main difficulties in building an effective QBH system is dealing
with the variation between user queries and the melodic targets used as database
search keys. Singers are error prone: they may go out of tune, sing at a different
tempo than expected, or in a different key, and notes may be removed or added [1,
6]. Further, singers differ in their error profiles. One singer may have poor pitch,
while another may have poor rhythm. Similarly, different environments may
introduce variation through different levels of background noise or availability
of different microphones.

Since it is not possible to predict all individual singer profiles or use cases
before deployment of a system, a robust QBH system should be able to adapt to
different singers and circumstances after deployment. Currently deployed QBH
systems do not have this capability.

While there has been significant prior work that addresses (or is applicable
to) singer error modelling [6–8, 5] for QBH, researchers have not focused on fully
automated, ongoing QBH optimization after deployment. Thus, these approaches
are unsuited for this task, requiring either hundreds of example queries [6, 7], or
training examples where the internal structure of each query is aligned to the
structure of the correct target [8].
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Fig. 1. System overview



We are developing a QBH system (shown in Figure 1) that personalizes a
singer model based on user feedback, learning the model on-line, after deploy-
ment without intervention from the system developers and after only a few ex-
ample queries. The user sings a query (step 1 in the figure). The system returns a
list of songs from the database, ranked by similarity (step 2). The user listens to
the songs returned and selects the desired one (step 3). The more a person uses
and corrects the system, the better the system performs. To do this, our system
employs user feedback to build a database of paired queries and correct targets
(step 4). These pairings are then used to learn optimal note segmentation and
note interval similarity parameters for specific users (step 5).

In this paper, we focus on how we automatically optimize backend QBH sys-
tem performance, given a small set of example queries. We refer the reader to [9]
for a description of the user interface and user interaction. Section 2 describes
our query representation. Section 3 describes our optimizable note segmentation
algorithm. Section 4 describes our melodic comparison algorithm. Section 5 de-
scribes our optimizable note interval similarity function. Section 6 describes our
genetic algorithm learning approach. Section 7 outlines an empirical study of
our system. Section 8 contains conclusions and future directions.

2 Query Representation

In a typical QBH system, a query is first transcribed into a time-frequency
representation where the fundamental frequency and amplitude of the audio is
estimated at very short fixed intervals (on the order of 10 milliseconds). We
call this sequence of fixed-frame estimates of fundamental frequency a melodic
contour representation. Figure 2 shows the melodic contour of a sung query as
a dotted line.
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Fig. 2. Several unquantized pitch intervals built from a melodic contour.

Finding queries represented by melodic contour imposes computational over-
head on the search engine [10]. The melodic contour representation uses absolute



frequency and tempo, making it sensitive to queries that vary in tempo and key
from the target. To overcome these problems one can transform the contour
through a number of keys and tempi [1] but this incurs significant overhead.

To improve system speed, we encode a query as a series of note intervals,
created as follows:

1. Divide the melodic contour into segments corresponding to notes.
2. Find the median pitch and the length in frames of each note segment.
3. Encode segments as a sequence of note intervals.

Each note interval is represented by a pair of values: the pitch interval (PI)
between adjacent note segments (encoded as un-quantized musical half-steps)
and the log of the ratio between the length of a note segment and the length of
the following segment (LIR) [10]. Since each LIR is a ratio, values do not have
units.

This representation is both transposition and tempo invariant. It is also com-
pact, only encoding salient points of change (note transitions), rather than every
10 millisecond frame. Figure 2 shows several note intervals.

We note that the use of unquantized PI and LIR values makes the repre-
sentation insensitive to issues caused by a singer inadvertently singing in an
unexpected tuning (A4 != 440), or slowly changing tuning and tempo over the
course of a query. This lets us avoid having to model these common singer errors.

The note-interval representation speeds search by a factor of roughly 100,
when compared with a melodic contour representation on real-world queries [1].
This speedup comes at the price of introducing potential errors when dividing
the query into note segments. We address note segmentation in Section 3.

3 Note Segmentation

In the initial transcription step, our system estimates the pitch, root-mean-
squared amplitude and harmonicity (the relative strength of harmonic compo-
nents compared to non-harmonic components) of the audio. This is done every
10 milliseconds, resulting in a sequence of fixed-length frames, each of which is
a vector of these three features.

We assume significant changes in these three features occur at note bound-
aries. Thus, we wish to find a good way to determine what constitutes significant
change. Our initial approach was to use a Euclidean distance metric on the se-
quence of frames. In this approach, a new note was assumed to begin whenever
the distance between adjacent frames exceeds a fixed threshold.

Unfortunately, this introduces error when a single fixed threshold is not ap-
propriate. For example, a singer may use vibrato at times and not at other times.
Thus, the local pitch variation that might constitute a meaningful note bound-
ary in one query may be insufficient to qualify as a note boundary in another
query by the same singer. We wish to take local variance into account when
determining whether or not a note boundary has occurred.



Note segmentation is related to the problem of visual edge detection [11, 12].
Accounting for local variation has been successfully used in image processing
to perform edge detection in cases where portions of the image may be blurry
and other portions are sharp [13, 11]. The Mahalanobis distance [14] differs from
the Euclidean distance in that it normalizes distances over a covariance matrix
M. Using the Mahalanobis lets one measure distance between frames relative to
local variation. In a region of large variance, a sudden change will mean less than
in a relatively stable region.

We find the distance between adjacent frames in the sequence using a Maha-
lanobis distance measure, shown in Equation 1. Recall that each frame is a three
element vector containing values for pitch (p), amplitude (a) and harmonicity
(h). Given a frame fi, fi = 〈pi, ai, hi〉, we assume a new note has begun wherever
the distance between two adjacent frames fi and fi+1, exceeds a threshold, T .
This is shown in Equation 1.

√
(fi − fi+1) M−1 (fi − fi+1)

′ (1)

Our covariance matrix M depends on local variation in the three features
of a frame. The matrix has three rows and three columns, with each row, ρ,
corresponding to one feature and each column, η, corresponding to one feature
(so ρ, η ∈ {pi, ai, hi} for fi). We calculate each element of M for a frame fi

using Equation 2:

Mρη =
1
2τ

i+τ∑

k=i−τ

(
ρk − ρ̄

wρ

) (
ηk − η̄

wη

)
(2)

In Equation 2, the w terms are weighting parameters that adjust the im-
portance of the features of the frame (pitch, harmonicity and amplitude). The
parameter τ is the size of a window (measured in frames) surrounding the cur-
rent frame. The window size determines the number of frames considered in
finding local variation. The averages for ρ and η (ρ̄ and η̄) are calculated over
this window.

Thus, Equation 2 finds the covariance between a pair of features: for example
with ρ = a, and η = h, Equation 2 would find the covariance between the
amplitude and harmonicity for frames i− τ to i + τ .

Our note segmenter has four tuneable parameters: the segmentation thresh-
old (T ), and the weights (w) for each of the three features (pitch, harmonicity
and amplitude). We address tuning of these four parameters in Section 6. We
leave the tuning of parameter τ for future work, setting it to a value of 25 frames
(250 milliseconds) to either side of the current frame i.

Once we have estimated note segment boundaries, we build note intervals
from these note segments.



4 Measuring Melodic Similarity

Once a query is encoded as a sequence of note intervals, we compare it to the
melodies in our database. Each database melody is scored for similarity to the
query using a classic dynamic-programming approach to performing string align-
ment [7]. The note interval matcher computes the similarity Q(A, B) between
two melodic sequences A = a1, a2, · · · am and B = b1, b2, · · · bn. by filling the ma-
trix Q = (q1···m,1···n). Each entry qij denotes the maximum melodic similarity
between the two prefixes a1 · · · ai and bh · · · bj where 1 ≤ h ≤ j.

We use a standard calculation method for the algorithm, shown in Equation 3

qi,j = max






0
qi−1,j−1 + s(ai, bi)
qi−1,j − ca

qi,j−1 − cb

(3)

Here, s(ai, bj) is the similarity reward for aligning note interval ai to note
interval bj . We define s(ai, bj) in Section 5. The costs for skipping a note interval
from melody A or from melody B are given by ca and cb, respectively. Equation 3
is a local alignment method, so any portion of the query is allowed to match any
portion of the target. The overall similarity is taken to be the maximum value
in the matrix Q.

5 Modeling Singer Error

We now define the similarity function s for note intervals. Ideally we would like
interval ai to be similar to interval bj if ai likely to be sung when a singer
intended to sing bj . That is, likely errors should be considered similar to the
correct interval, and unlikely errors should be less similar. Such a function lets a
string-alignment algorithm correctly match error-prone singing examples to the
correct targets, as long as the singer is relatively consistent with the kinds of
errors produced.

In our previous work [7], the similarity function was represented with a table
of 625 (25 by 25) values for 25 possible pitch intervals (from -12 to 12 half
steps). The similarity between a perfect fifth (7 half steps) and a tritone (6 half
steps) was determined by calculating the statistical likelihood of a person singing
a perfect fifth when instructed to sing a tritone. The more likely this was, the
higher the similarity. This required hours of directed training to learn all pairings
in our table. This is something users outside the laboratory setting are unwilling
to do.

For this work, we have developed a similarity function that captures singer
variation by tuning only a few parameters, so that suitable values can be learned
quickly. The normal function, N(a, µ,σ) returns the value for a given by a Gaus-
sian function, centered on µ, with a standard deviation σ. Equation 4 shows a
simple note-interval similarity function, based on the normal function.



s(x, y) = wpN(yp, xp, σp) + wrN(yr, xr, σr) (4)

Let x and y be two note intervals. Here, xp and yp are the pitch intervals of
x and y respectively, and xr and yr are the LIRs of x and y. The values wp and
wr are the weights of pitch and rhythm. The sum of wp and wr is 1. Equation 4
is maximal when x and y are identical. As the difference between x and y grows,
Equation 4 returns a value approaching 0.

Equation 4 assumes increasing distance between pitch intervals is equivalent
to decreasing similarity between intervals. There is at least one way in which
this is untrue for pitch: octaves. Shepard [15] proposes a pitch similarity measure
that accounts for two dimensions: pitch chroma and pitch height. In this model,
octaves are fairly close to each other. Criani [16] proposes a psychological model
of pitch similarity based on the Pearson correlations of temporal codes which
represent pitched stimuli. These correlations show strong peaks not only near
like pitches, but also near pitches an octave apart. In previous work [10] we also
found high likelihood of octave substitutions in sung queries. This suggests that,
at a minimum, we should account for octave similarities in our measure of pitch
similarity. We thus modify Equation 4 to give Equation 5.

s(x, y) = wrN(yr, xr, σr) + wp

n∑

i=−n

λ|i|N(yp, xp + 12i,σp) (5)

Here, the pitch similarity is modeled using 2n+1 Gaussians, each one centered
at one or more octaves above or below the pitch of x. The height of each Gaussian
is determined by an octave decay parameter λ, in the range from than 1 to 0.
This reward function provides us with five parameters to tune: the pitch and
rhythm weight (wp and wr), the sensitivity to distances for pitch and rhythm
(σp and σr), and the octave decay (λ). Figure 3 shows the positive portion of
the pitch dimension of this function, given two example parameter settings, with
two octaves shown.

6 System Training

We train the system by tuning the parameters of our note segmenter (Equa-
tions 1 and 2) and note similarity reward function (Equation 5). We measure
improvement using the mean reciprocal rank (MRR) of a set of n queries. This
is shown in Equation 6. Here, we define the rank of the ith query, ri as the rank
returned by the search engine for the correct song in the database.

MRR =

n∑

i=1

1
ri

n
(6)

MRR emphasizes the importance of placing correct target songs near the top
of the list while still rewarding improved rankings lower down on the returned
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Fig. 3. The pitch dimension of the similarity function in Equation 5.

list of songs [1]. Values for MRR range from 1 to 0, with higher numbers indicat-
ing better performance. Thus, MRR = 0.25 roughly corresponds to the correct
answer being in the top four songs returned by the search engine, MRR = 0.05
indicates the right answer is in the top twenty, and so on.

We use a simple genetic algorithm [17, 18] to tune system parameters. Each
individual in the population is one set of parameter values for Equations 1, 2
and 5. The fitness function is the MRR of the parameter settings over a set of
queries.

The genetic algorithm represents each parameter as a binary fraction of 7
bits, scaled to a range of 0 to 1. We allow crossover to occur between (not
within) parameters.

During each generation, the fitness of an individual is found based on the
Mean Reciprocal Rank (MRR) of the correct targets for a set of queries. Param-
eter settings (individuals) with high MRR values are given higher probability of
reproduction (fitness proportional reproduction). We speed training by finding
MRR over random subset of the database.

Given ten queries from each singer labeled with the correct target name and
a set of 250 target melodies from our database, the system personalizes two
singers per hour on our current hardware. These results are obtained with an
iMac 2.16 GHz Intel Core Duo 2, with 2 GB of RAM. At this speed, our system
can update models overnight for up to 16 singers who have provided new queries
during the previous day.

7 Empirical Evaluation

Our empirical evaluation sought to compare user-specific training to training on
a general set of queries. We also sought to verify the utility of two new design



choices: the use of a Mahalanobis distance to account for local variation during
note segmentation, and the use of unquantized, as opposed to quantized note-
intervals.

Our query set was drawn from the QBSH corpus [19] used during the 2006
MIREX comparison of query-by-humming systems [20]. We used 10 singers, each
singing the same 15 songs from this dataset. Our target database was composed
of the 15 targets corresponding to these queries plus 1471 distracter melodies
drawn from a selection of Beatles songs, folk songs and classical music, resulting
in a database of 1486 melodies. Chance performance, on a database of this size
would result in an MRR ≈ 0.005, given a uniform distribution.

For the genetic algorithm, we chose a population size of 60. Initial tests
showed learning on this task typically ceases by the 30th generation, thus re-
sults shown here report values from training runs of 40 generations. We used a
mutation probability of 0.02 per parameter.

We ran two experiments: the first examines the overall performance of user
specific training and the improvements the new system features introduced. The
second compares our system with using user-specific to a version without user-
specific training.

7.1 Experiment 1

For Experiment 1 we considered three different conditions. In the first condi-
tion we accounted for local variation during note segmentation using the Maha-
lanobis distance and used an unquantized note interval representation (Local).
In the second condition, we used Euclidean distance for note segmentation and
an unquantized note interval representation (Unquantized). In the third condi-
tion (Quantized) we used the Euclidean distance for note segmentation and a
quantized note interval representation. The quantized condition is equivalent to
a previous system we developed [7].

A single trial consists of selecting a condition (Local, Unquantized or Quan-
tized) and performing a training run for one singer, selecting ten of the singers
fifteen queries to train on and testing on the remaining five. To speed learn-
ing, training was done using a random sample of 250 target songs from the
database. The same sample of 250 songs was used for training in each of the
three conditions, so that results could be compared fairly. For each trial, the set
of parameters with the best training performance was evaluated by finding the
MRR of the five testing queries, searching over all 1486 melodies in the database.

We performed three-fold cross validation. Thus, there were three trials per
singer for a total of 30 trials per condition. The mean MRR for each of the three
conditions is shown in Table 1.

A paired-sample t-test was performed between each pair of conditions and
all difference in means were found to be statistically significant (p < 0.031 in all
cases). A t-test showed all three conditions also performed significantly better
than chance (p < 0.001 in all cases). This indicates user-specific training does
have a positive effect on search results. Further, the use of Mahalanobis distance



Local Unquantized Quantized Chance
0.228(0.14) 0.176(0.14) 0.089(0.09) 0.005

Table 1. Mean (Standard Deviation) MRR over 30 trials in Experiment 1.

for note segmentation and unquantized note interval representation significantly
improves performance.

One cause for concern is the variance in the results. In a few trials the learned
performance was below chance (< 0.005). In these cases it would make sense to
back off to a more generalized set of parameters, learned from a larger population
of singers. We explore this idea in Experiment 2.

7.2 Experiment 2

In practice, we would like to utilize user-specific training only when it improves
performance relative to an un-personalized system. One simple option is to only
use user-specific parameters if the user-specific performance (MRRu) is superior
to the performance using parameters learned on a general set of queries by
multiple users (MRRg).

To test this idea, we first trained the system on all queries from nine of
the ten singers used in Experiment 1. For these trials we used the Mahalanobis
distance for note segmentation and unquantized note intervals. We then tested
on all the queries from the missing singer. Cross validation across singers was
performed, thus the experiment was repeated ten times, testing with the queries
from a different singer each time. This gave us parameters for each singer that
were learned on the queries by the other nine singers. These are the General
parameter settings for a singer. The mean MRR testing performance of the
General parameters was 0.235 (Std. Dev. = 0.063).

We then repeated the user-specific training in Experiment 1 with the Local
condition. For each trial we determined whether the singer-specific parameters
found in a trial had an MRR on the training set (ten songs by one singer) that
exceeded by the MRR that would result from using general parameters learned
from the other nine singers. If, on the training set, MRRu > MRRg + ε we
used the user-specific parameters. Else, we used the general parameters. For this
experiment, ε is an error margin set to 0.04.

Once the parameters (general or user-specific) were selected, we tested them
on the testing set for that trial (the remaining five songs by that singer). We
called this a combined trial. The combined trials had an average MRR of 0.289
(Std. Dev. = 0.086). A t-test indicated the improvement of the combined results
over the general parameter settings is statistically significant (p = 0.024).

On 50% of the combined trials the user specific parameters were used and
improved performance compared to general training. On 13% of the trials, user-
specific parameters were selected, but made performance worse compared to
general training. On the remaining 36% of trials, the general data set parameters
were used. Figure 4 comaprers the results for conditions.



Fig. 4. Testing Performance on Experiment 2.

8 Conclusions

We have described a QBH system that can learn both general and singer-specific
error models and note segmentation parameters from labeled user queries. This
system can automatically customize parameters to individual users after deploy-
ment. Our results show that combining user-specific training with more general
training significantly improves mean search performance, resulting in a mean
MRR of 0.289 on a database of 1486 melodies. This roughly corresponds to con-
sistently placing the correct target in the top four results. Our results also show
both unquantized note intervals and modeling local singer variation for note
segmentation significantly improve performance.

In future work we plan to explore how performance varies with respect to the
number of training examples provided and improve the information that can be
used for training while maintaining user-specificity. We will also explore more
sophisticated criteria to determine when user-specific training should be used.
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