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Abstract

Virtual  Machine  Monitors  (VMM)  provide  Virtual  Machine 
software which runs on them with a virtual hardware interface. 
The Virtual Machine's activity is visible to the VMM through 
this interface but the VMM sees an amalgamation of the activity 
from all  programs running within the Virtual Machine.  As a 
result,  it  is  difficult  to partition the activity  by program and 
understand what is really happening inside the Virtual Machine.
In this paper, I present a mechanism to associate  the activity 
done within the Virtual  Machine with the different programs 
and threads running within it.  I will show that each process and 
thread  has  certain  characteristics  visible  from the  hardware 
level  to  allow  for  the  reconstruction  of  process  and thread 
tables.  I  will  then  show  that  by  using  these  reconstructed 
tables, system activity can be associated with the threads and 
processes which do it.
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Abstract
Virtual  Machine  Monitors  (VMM) provide Virtual 
Machine software which runs on them with a virtual 
hardware interface.  The Virtual Machine's activity 
is visible to the VMM through this interface but the 
VMM sees an amalgamation of the activity from all  
programs running within the Virtual Machine.  As a 
result,  it  is  difficult  to  partition  the  activity  by 
program and understand what is really happening 
inside the Virtual Machine.
In this paper, I present a mechanism to associate  
the activity done within the Virtual  Machine with 
the different programs and threads running within 
it.   I  will show that each process and thread has 
certain  characteristics visible from the hardware 
level to allow  for the reconstruction of process and 
thread tables. I will then show that by using these 
reconstructed  tables,  system  activity  can  be 
associated with the threads and processes which do 
it.

1. Introduction

Virtual  Machine  Monitors  (VMM)  emulate  a 
complete computer hardware environment.  Guest 
operating  system  software  running  within  the 
Virtual  Machines (VM) interfaces with the virtual 
hardware environment as if it were a physical one, 
using low-level hardware protocols.  The low-level 
data which  is  being communicated though  these 
protocols  conveys  little  immediate  information 
about  the  meaning  of  the  data  within  the  guest 
operating system.  The goal of this paper is to take 
a  step in  the direction  of  building meaning from 
these interactions.

Inside  of  the  virtual  machine,  a  modern 
multiprogrammed  operating  system  switches 
between many computational tasks usually referred 
to as processes and threads. The tasks each work 
with their own resources.

On  the  hardware  level,  these  tasks  are  not 
immediately visible.  The hardware sees a blur of 
the activity caused by every one of the tasks.  In this 
paper, I recreate the set of tasks that are running 

and division the activity done into the tasks that are 
performing it.

The  implications  are  large.   The  traditional 
design of  many  applications  revolves  around  the 
division of tasks.  If this state can be derived from 
the  low  level  hardware  operations,  these 
applications  may  be  able  to  function  outside of 
virtual machines.

Intrusion  Detection  Systems  (IDS)  are  a 
particularly  important  application.  The  more 
information  that  these  systems  have,  the  more 
effectively  they  are  able to  detect intrusions.  If 
intrusion  detection  systems  run  within  the 
operating system they are trying to protect, they 
must proactively stop the intrusions before the IDS 
itself  is  disabled  by  them.  As  a  result,  the  IDS 
frequently is deployed on the network where it is 
more resistant to attack but is not able to defend as 
effectively against intrusions as  when running on 
the  user's  machine  because  it  does not  have  as 
much information available to it. 

Garfinkel [12] proposed the idea of running the 
user's operating system within  a  virtual  machine 
and running the intrusion detection system outside 
of  it.   With  this  method,  the  intrusion  detection 
system  will  likely  be  less  vulnerable  than  when 
running within the user's operating system but will 
have more state accessable to it.  In this paper, I 
describe a method of reconstructing this state from 
outside the virtual machine which is applicable to 
this form of intrusion detection.

The remainder of paper is organized as follows. 
In section 2 I give background on the technologies 
used in my work. In section 3, I give an overview of 
my goals, the challenges associated with them and 
the   approaches that  I  take  to  solve  them.   In 
section 4, I discuss related work. In sections 5-7, I 
describe  and  analyze  my  implementation.   In 
section 8, I present future venues for the work and 
conclude the paper.

2. Background

In this section, I present background information 
on  the  technologies  used  in  my  work:  Virtual 



Machine  Monitors,  Intel  VT-x,  the  Kernel-Based 
Virtual  Machine,  and  EM64T  /  AMD64.   I  also 
present  an  overview  of  how  system  calls  and 
interrupts  are  handled  on  modern  computer 
architectures.  In later sections, I describe how my 
implementation makes use of these technologies as 
well as decribe adaptations of my implementation to 
use different technologies.

2.1. Virtual Machine Monitors

Virtual Machine Monitors are pieces of software 
which present the software running on them with 
an  interface  that  resembles  physical  hardware. 
Operating System software, which traditionally runs 
on the physical hardware itself, can then interface 
with this virtual hardware layer as a “guest OS”. 
One  challenge  in  virtualization  is  presenting  the 
guest OS with a  believable and functional  virtual 
hardware interface.

Virtual Machine Monitors vary in implementation 
based on the hardware they run on, but many share 
similar  techniques.   Many  VMMs  operate  by 
executing  all  guest  instructions  in  user  mode. 
When privileged instructions are reached, they trap 
into the VMM and the VMM emulates the effect of 
instruction execution.  In order for this technique to 
work all sensitive instructions, as defined by Popek 
and Goldberg [2],  must trap.  If this is the case, the 
architecture is considered virtualizable.

The x86 architecture  has historically  not  been 
virtualizable [3].   There are a number of sensitive 
instructions for the architecture that do not trap.  

There  are  other  common  problems  that  span 
architectures  which  make  efficient  processor 
virtualization difficult.  Since privileged instructions 
trap, manipulation of guest operating system state 
can be very inefficient.  This problem is called Ring 
Compression.   Another  issue  is  called  Address- 
Space Compression, where the VMM takes up some 
of the guest OS's linear address space.

2.2. Intel Virtualization Technology - VT-x

Intel developed its VT-x virtualization technology 
[1] to address the problems associated with running 
virtual  machines  on  the  x86  architecture,  ease 
development of VMMs and increase performance.

VT-x  adds  two  new  execution  modes  to  the 
processor: VMX root mode and VMX non-root mode. 
The VMM runs in VMX root mode.  It populates the 
Virtual Machine Control Structure (VMCS), which 
contains guest state when the processor is in root 
mode and host state when the processor is in non-
root mode.  In order to run a virtual machine and 

load guest state,  the VMM performs a VM entry. 
Likewise, to return to the VMM a #VMEXIT occurs 
which reloads the host state.

The separation of host and guest state solves a 
number  of  problems  that  arise  with  x86 
virtualization.   Ring Compression is no longer an 
issue, as the guest can run in ring 0.  When a VM 
entry occurs, the linear-address space changes so 
Addres-Space Compression does not occur.

With VT-x the guest OS can usually run without 
intervention from the VMM.  There are some cases, 
however,  where  the  VMM  needs  to  intervene. 
These include handling page faults, I/O, exceptions 
and some interrupts.  When these events occur, the 
processor performs a VM exit and makes the VMM 
handle it.  The VMM has some control over which 
events cause VM exits and can specify these options 
in the VMCS.

2.3. Kernel-Based Virtual Machine

The Kernel-based Virtual Machine (KVM) [6,7] is 
a combination of a linux kernel-mode virtualization 
driver  and a  modified QEMU userspace program 
that  interfaces  with  the  driver.   When  a  virtual 
machine  is  to  be  started,  the  modified  QEMU 
portion allocates the guest OS memory image, uses 
ioctl  to  request  that  the  driver  create  the 
architecture-specific  portion  of  the  state,  and 
finally runs the virtual machine through the driver. 
The virtual machine is scheduled as the modified 
QEMU  process.   Because  of  this,   the  virtual 
machine  can  be  stopped  through  normal  unix 
commands like kill.

When  a  VM  exit  occurs  in  a  KVM  Virtual 
Machine, it is dispatched to kernel-mode handlers 
which  either  try  to  perform  the  needed  action 
directly  in  the  kernel  or  return  to  userspace 
handlers.   In  KVM,  I/O  and  CPUID  events  are 
handled  in  user-space  while  other  events  are 
managed in kernel-mode.

KVM currently  supports one  virtual  processor 
per  guest VM.   KVM initially  required  hardware 
virtualization support like VT-x and AMD's Secure 
Virtual Machine (SVM) technology [8], but it now 
supports a paravirtualized architecture [10] as well.

2.4. System Call and Interrupt Handlers

System  calls  and  interrupts  are  handled  in  a 
similar  manner  on  most  modern  computer 
architectures.  In order to prepare the system to 
handle the interrupt or system call, the operating 
system specifies the address of the handler in an 



area  of  memory  that  is  easily  locatable  by  the 
processor.   When  a  system  call  instruction  or 
interrupt occurs, the processor switches to kernel-
mode  and  begins  executing  instructions  at  the 
specified  handler's  address.    On  the  x86 
architecture, there is a different handler for each 
interrupt but there is typically only one handler that 
is used for system calls.

2.5. EM64T / AMD64 Architecture

Intel's EM64T [19,20,22,23] technology is a set 
of  extensions  to  the  x86  architecture  for  64-bit 
integer  computation  and  extended  addressing. 
EM64T is based off  of AMD's AMD64 technology 
[8,9] so the description is applicable to both.  

In order to simplify the development of AMD64-
dependent  operating  systems,  AMD  decided  to 
remove architectural support for a number of x86 
processor technologies..

EM64T/AMD64  introduces a  long-mode  to  the 
processor which supports the use of 48-bit virtual 
addressing as well as new 64-bit general purpose 
registers.  In long-mode, segmentation is disabled 
and a flat 48-bit virtual address space is mapped 
only through  paging  mechanisms  to  a  52-bit 
physical address space.

In  addition,  system  calls  made  with 
SYSENTER/SYSEXIT  instructions  are  no  longer 
allowed  and  only  SYSCALL/SYSRET  instructions 
can be used for fast system calls.  The processor 
setup  for  both  SYSENTER  and  SYSCALL 
instructions is similar.  The Operating System set an 
entry point Model-Specific Register (MSR) on the 
processor  corresponding  with  the  system  call 
instruction  to  point  to  the  system  call  handler 
location.

3. Overview

My goal  is  to  associate activity  visible to  the 
VMM with the processes and threads which cause 
or respond to it.  The hardware activity that I focus 
on is I/O activity.  In addition,  I  associate system 
calls  with  the  processes  and  threads  which 
complete them.

In order to track activity of individual processes 
and  threads,  tables  of  the  active  processes  and 
threads need to  be  constructed.  I  will  show in 
section 5 that there are hardware signatures that 
can be used to identify the individual threads and 
processes.  Once the threads and processes can be 
identified,  reconstructing  these  tables  is 
straightforward.

Using the signature of  the thread and process 

that are active, I/O and system call activity can be 
associated with them so long as the activity itself is 
visible  to  the  VMM.   KVM  already  handles  I/O 
activity for the guest OS so no changes are needed 
to intercept it.  Intercepting system calls is more of 
a challenge.

When system calls occur in the guest VM, the are 
routed through handlers in the guest kernel.  The 
location  of  the handlers  is  stored as  part of  the 
processor state.  As a result, either the location or 
the handler itself can be modified to jump into the 
VMM, from which I can associate the call with the 
running thread and process.

4. Related Work

Internal virtual machine state has been collected 
before through other mechanisms.  

Garfinkel [15] used Mission Critical's crash tool 
[16]  to  examine the  memory  state of  the  virtual 
machine and parse kernel structures from it.  My 
work differs as it does not rely on knowledge of a 
particular operating system type and version, with 
the  exception  of  using  system  call  calling 
conventions.  My version also does not attempt to 
interpret guest OS state from its memory image.

SimOS  [17,18]  takes  advantage  of  the  wide 
range of control offered by simulation platforms to 
construct  state.   It  active  process  information is 
collected by triggering the execution of a collection 
script whenever a hardware context switch occurs 
or when code gets executed in the operating system 
scheduler.   The  scripts  are  dependent  on  the 
operating  system.   The  methods  SimOS  share 
similarities  with  mine  because  both  trigger  the 
execution  of  data  collection  code when  low-level 
events occur.

5. Implementation Details

In this section, I describe the methods that I use 
to  construct  process  and  thread  tables  and 
associate I/O and system calls with the processes 
and threads that are involved with them.  In section 
6,  I  will critique and analyse these methods  and 
offer  alternatives.   Source  code  can  be  made 
available upon request.

5.1. Process Identification

I  take advantage of  the fact that each process 
runs  in  its  own virtual  memory  space.   On  the 
EM64T architecture,  a  virtual  memory  space  is 
defined  solely  by  page  tables.   When  processes 
switch, the virtual memory space and therefore the 



active page table needs to  switch as  well.   This 
switch is usually done by changing a pointer to the 
head of the active page table which is stored in a 
processor register.

On x86 processors the register which points to 
the head of the page table is the cr3 register.  Since 
the location pointed to by the cr3 is unique to each 
process, the value stored in the cr3 can be used as 
a process identifier.

As will be described further in section 6, a VM 
EXIT can be forced to occur whenever a switch to 
kernel  mode  occurs  within  the  virtual  machine. 
When the VM EXIT occurs, the last value of the cr3 
– representing the process that was executing – is 
recorded and previous actions are associated with 
that process.

5.2. Thread Identification

For a given process, any number of threads could 
be executing.  Like processes, each active thread 
has a unique characteristic which can be used as a 
thread identifier.  In this case the identifier is the 
location  of the bottom of the current stack in the 
process virtual memory space.  

Two  assumptions  are  made  in  the  current 
implementation.  When a new thread execution is 
detected, it is assumed that the stack pointer points 
to a location on the bottom page of the stack.  In 
addition, it is assumed that threads do not use more 
than two pages of memory for their stack.  A more 
sophisticated implementation which does not have 
these issues is planned for a future revision.

5.3.  Interception  of  Exceptions  and 
Interrupts

One  point  of  transfer  to  the  kernel,  where 
process and thread switches may occur, is exception 
and interrupt handling.  VM EXITs  can  occur for 
exceptions, depending on the configuration of VT-x 
in the VMCS.  By default in KVM only page faults, 
non-maskable  interrupts  (NMI)  and  external 
interrupts cause VM EXITS.  In this implementation, 
all  possible  exceptions  and  interrupts  cause 
VMEXITS  except  for  the  #NM  “Device  Not 
Available”  exception which is used to enable the 
floating point coprocessor.

5.4. Interception of System Calls

Fast system call instructions (SYSCALL/SYSRET) 
do not naturally perform VMEXITs when they occur 
with VT-x.  In order to force VMEXITs when these 
instructions occur, a VMCALL instruction is injected 

as the first instruction in the system call entry point. 
The operating system is required to do most post-
SYSCALL  setup  operations  manunally.  Since  the 
VMCALL  is  the  first  instruction  executed,  most 
guest state before the call is maintained and can be 
interpreted  as  process  and  thread  identifiers, 
system call numbers and arguments.  The format of 
system call  numbers and arguments is  operating 
system dependent.  In order to demonstrate that the 
system  call  functionality  in  my  implementation 
works, I read the system call number using the 64-
bit Linux convention [21] of storing it in the RAX 
register.  The system call is then associated with the 
active process and thread.

5.5. I/O Monitoring

I/O  operations  are  already  managed  through 
KVM  in userspace. My logging code runs in kernel 
space so I use ioctl to send data to the driver.  The 
driver logs the last I/O completed for each thread.  

5.6. Collection and Logging of Data

Data is stored in two levels of tables.  One of the 
tables is the process table.  For each process entry 
there is  a  table  of  the  process's  threads.   Each 
thread and process has a field storing the number 
of the last system call which was made and the last 
byte of I/O which occurred.  More detailed system 
call  and  I/O  information  can  be  logged easily  if 
necessary.

5.7. Client Application

I  constructed  a  client  program which queries 
information from the KVM driver.  The number of 
processes and the list of processes can be outputted 
through  a  command.  There  are  also  commands 
querying information about the processes and their 
threads.  For processes, there are  commands to do 
the following: print the number of threads used in 
the process, list the threads, output the number of 
the last system call made and output the last byte of 
I/O completed.  For threads, there are commands to 
print  the last byte of  I/O completed and the last 
system call made.

6. Analysis of Implementation

In the following subsections, I  discuss, critique 
and analyze the effectiveness of my implementation. 
The performance analysis is in section 7.



6.1. Reconstruction of Process and Thread 
Tables

The methods used to detect both processes and 
threads  rely  on  memory  addressing.   In  both 
situations, the data could move in memory, resulting 
in two entries for the same object.  I have not yet 
resolved this situation.  A thread or process could 
also  stop  executing  and  a  different  thread  or 
process could use the same resources, conflicting 
with the old identifier.  Because of this, it is useful 
to detect the death of threads and processes.

One method that I tried for detecting the death of 
threads and processes was Declared Death, the use 
of system call information.  Of course, this method 
requires knowledge of the guest OS's system calls 
and  calling  conventions.   On  Linux  guests,  I 
monitored exit()  and exit_group()  calls. exit()  and 
exit_group()  calls  are  frequently  used to  tell  the 
operating system to terminate a process.  They can 
be  embeded  in  code  and  are  sometimes 
automatically  appended to  the  end of  the  main() 
function by compilers.  

 The  exit()  and  exit_group()  call  monitoring 
reduced  the  number  of  processes  and  threads 
active reported by my software, but the number of 
processes  and threads  active  was  still  about  ten 
times  higher  than  that  reported  by  the  guest 
Operating System.   This  could  mean one of  two 
things.   Either  the  use of  the  cr3  as  a  process 
identifier is an inaccurate one, or that processes die 
through another mechanism.

I also experimented with the use of an expiration 
time for each thread and process.  I call this method 
Expiration.  With Expiration, the last time of thread 
activity is  logged and a thread is declared to be 
dead when it has not been active within the past 
few seconds.   A  problem with  Expiration is  that 
threads may block on a synchronization object for 
long  periods  of  time  and  appear dead.   With  a 
process death time of 5 seconds, the process count 
reported by my software was very close (usually no 
more than 2 away with a total count of about 37)  to 
that reported within the virtual machine but also 
very volatile  and sometimes was higher than the 
number  of  processes  reported  within  the  virtual 
machine.  

One source of additional process listings could be 
kernel drivers. Kernel drivers have their own virtual 
memory space for mapping high memory physical 
addresses which may show up as processes through 
my software.  I  changed the code to check if the 
current processor ring is kernel mode when a trap 
occurs and is to be logged.  If it is in kernel mode, 

the logging does not occur.   This change did not 
solve the problem entirely.

Another  possible  source  are  intermediate 
processes,  used  to  complete  work for  another  a 
process.  On a  Linux  guest,  it  is  difficult  to  test 
whether  this  is  this  cause  of  the  extra  process 
listings accurately.

The reported process count by my software did 
increase as more applications were being used and 
decrease when the system was idle.

One idea I originally considered for tracking the 
executing  thread  was  using  the  location  of  the 
program counter when a thread enters and leaves 
the system as a temporary thread identifier.   For 
example, when a thread enters the kernel, the last 
user-mode  program  counter  location  would  be 
stored as the thread identifier.  When the operating 
system re-enters user-mode, the starting user-mode 
program counter location would be used to look up 
the appropriate thread information.

This has a number of problems.  First, multiple 
threads within a process may be interrupted at the 
same instruction.  This is particularly a problem if 
multiple threads are started at approximately the 
same time in a process with the same entry point. 
There is a chance that they will be interrupted by a 
timer at the same point. Second, a VMEXIT needs to 
be performed when the thread resumes execution in 
user mode in order to record the program counter. 
This can be done in a number of ways. All of the 
ways  I  evaluated  have  accuracy  problems  with 
ensuring  that  a  VMEXIT  only  occurs  when  the 
kernel returns to user mode.  Also, the additional 
VMEXIT  for  this  user  mode entry  decreases  the 
speed of execution.

6.2. Interception of System Calls

I  originally  planned  to  implement  system  call 
monitoring by injecting a new system call handler 
into the guest OS's virtual memory.  I will refer to 
this method as Additional Handler Injection.  When 
a  system call  occurs, the  processor would  begin 
executing instructions in the new handler.  This new 
handler would perform a VMCALL and then jump 
into the guest OS's default  handler.    Additional 
Handler Injection could support many guest OS's 
with  minimal  interference.   The  problem  is  the 
complication of finding a location in memory to put 
the  handler  into,  setting  up  page  tables  and 
ensuring that  guest memory management  doesn't 
conflict with the mapping.  

In order to simplify my implementation, I avoided 
this  method.   My  original  workaround  was 
admittedly not very good.  With Double Instruction 



Swap, two VMCALLs were performed and the guest 
OS's default handler was modified frequently.  At 
first, a VMCALL instruction was inserted into the 
beginning  of  guest  OS's  default  handler, 
overwritting 3 bytes previously in the handler  The 
replaced  bytes  were  saved.   After  the  VMCALL 
occured, the VMCALL instruction was replaced by 
the  original  3  bytes  and  another  VMCALL 
instruction  was  placed  below  them.   After  this 
second VMCALL occured, a  VMCALL instruction 
was inserted in the first location and the second 
VMCALL  was  replaced by  the  bytes  that  were 
originally there.

This  implementation  makes  two  assumptions. 
First, it assumes that the initial instructions after a 
system call will be setup instructions which do not 
branch.   Second,  it  assumes  that  an  instruction 
doesn't span across both the third and fourth byte 
of  the  handler.   In  addition,  this  implementation 
performs two VMEXITs and with them, additional 
overhead.

Because  of  these  problems,  I  changed  my 
implementation  to  take  advantage  of  another 
observation  of  guest  OS  code  –  that  there  are 
frequently gaps between function bodies in memory. 
Before the system call handler of my Fedora Core 6 
guest, there is a gap large enough to fit the vmcall 
instruction.   With  Fill  the  Gap,  a  VMCALL 
instruction is inserted in the gap and the SYSCALL 
MSR is set accordingly.

When a system call is performed, the processor 
begins executing  instructions  3  bytes  above  the 
guest  OS's  default  handler  location,  where  a 
VMCALL instruction is located. When the VMCALL 
returns, the remainder of the handler's instructions 
are  executed  normally.   Performance  improved 
slightly with  Fill the Gap over  Double Instruction 
Swap, as will be shown in section 7.

For  an  implementation  that  supports  many 
different  guest OS's,  Additional  Handler Injection 
would be most appropriate.  This would likely have 
similar performance characteristics as Fill the Gap, 
which performs just one VMCALL. There would be 
additional  overhead,  though,  as  a  result  of 
managing page tables to support the handler.

Changes  made  to  the  kernel  handler  are 
detectable by  a  scan through the kernel  memory 
which  an  antivirus  program  might  perform. 
Injecting a custom handler in a separate page is 
less  detectable,  because  MSR  reads  can  be 
emulated.

An alternative method is to set the permissions 
on the guest OS's normal handler's page to trap on 
accesses.   This  method  would  incur  a  lot  of 
overhead, because there is  likely  a  lot  of  kernel 

code on the page and all  of  it would need to be 
emulated.

A clever process might take advantage of the fact 
that  only  the  fast  system  call  handler  has  been 
modified and could make calls through interrupts. 
User-specified  interrupts  can't  directly  be  set  to 
perform  VMEXITs  with  VT-x,  but  the  interrupt 
handler can be modified in the same way as the fast 
system call handler to perform a VMCALL.

6.3.  Interception  of  Exceptions  and 
Interrupts

In  order to  monitor  a  full  range  of  guest  OS 
transitions  into  kernel  mode,  I  modified  KVM so 
that  the  VM  performs  VMEXITS  for  all  the 
interrupts  that  VT-x  can  perform  VMEXITS  for, 
except #NM.  These interrupts include breakpoints, 
general protection faults and other fixed hardware 
interrupts but not user defined interrupts.  As will 
be shown in section 7, performance is harmed when 
VMEXITS  are  performed  for  these  additional 
interrupts.

6.4. I/O Monitoring

The same information used to associate system 
calls with the process and thread which is running 
could be used for some I/O.  One problem occurs 
with  I/O  which  is  completed  by  the  kernel.  A 
different stack would be used by the kernel.
Depending  on  the  cause  of  the  I/O  (external 
interrupt from device, system call, etc.) it may be 
possible to associate it with a process or thread. 
A simple way to do this is to associate the I/O with 
the thread and process that runs just after it occurs. 

This  is  the  approach  that  is  taken  in  my 
implementation.   When  I/O  occurs,  information 
about the I/O which occured is saved.  When the 
next interrupt or system call occurs, the thread that 
was  running  is  determined  and  the  saved  I/O 
information is associated with it.

A problem with this approach is that if it is input 
I/O,  the  operating  system might  not  immediately 
handle it and the thread and process that executes 
afterward may not be involved with it.

My I/O logging implementation performs extra 
context  switches  using ioctl  because the  logging 
code is inside of  the kernel driver and the I/O is 
handled  in  user  mode.  Because  most  of  the 
overhead in  doing the  logging  is  implementation 
specific  (the  ioctl  call  used),  I  won't  perform  a 
performance evaluation of the I/O logging overhead.



6.5.  Adaptation  for  traditional  x86 
Processors

My  implementation  takes  advantage  of  the 
properties of newer 64-bit x86 processors with 64-
bit  operating  systems  for  simplicity.   Similar 
techniques  can  be  applied  to  traditional  x86 
processors.

One EM64T feature I took advantage of was the 
imposed requirement on 64-bit operating systems to 
use  a  flat-address  model,  without  segmentation 
having any effect.   With a flat-address model,  all 
reasonable  methods  to  switch  virtual  memory 
spaces involve simply modifying a  pointer to  the 
head of  the page table  so these changes can be 
interpreted as process switches.  

Even without this model, some change to at least 
one  table  referencing  the  part  of  the  physical 
memory  being  accessed  must  occur  during  a 
process  switch.   Because  of  this,  an  efficient 
operating system would swap either the active page 
table, the active segments or both.  The VMM could 
examine  both  the  page  table  location  and  the 
segment configuration to come up with an identifier 
for the process.  This could be as simple as an array 
of  the  relevant  segment  and  page  data  or  a 
cryptographic hash of it.

Thread identification methods are also affected 
when  a  64-bit operating system isn't  used.  The 
stack  segment  is  likely  changed  instead  of  the 
virtual address  of  the stack.  The stack segment 
information can then be used as a thread identifier 
instead of the stack location itself.

In  64-bit  long  mode,  software  must  perform 
system calls through SYSCALL instructions.  32-bit 
software  typically  uses  SYSENTER  instructions 
instead but has a number of avenues through which 
it can perform system calls.  In order to support 
this, similar changes can be made.  32-bit SYSCALL 
and SYSENTER instructions both set MSRs with the 
call handler location.  The handler can be modified 
with the same method as for the 64-bit SYSCALL 
instructions.   Call  gates  are  rarely  used  but  if 
necessary a VMCALL could be inserted at the entry 
point of every one.

7. Performance Evaluation

In  this  section  I  provide  quantitative  data 
generated from benchmarks run on my test system. 
In  the  first  subsection,  I  analyze  the  KVM's 
performance without any modifications.  In the two 
subsequent subsections, the performance changes 
due to my modifications are analyzed.

The system configuration is the same across all 
tests.  The system is a 2.00 ghz T7200 Intel Core 2 
Duo dual core machine with 2 GB of memory and a 
Nvidia Quadro NVS 120M graphics chip.  The kvm 
module allocates 1 GB of the memory.   The host OS 
is Debian Etch 4.0 amd64 “Testing” with a modified 
kvm-12  kernel  module  running  with  a  Debian 
2.6.18-3  kernel.  The  guest OS is  Fedora  Core 6 
x86_64.

The primary performance benchmark I used was 
unixbench.   Unixbench  [16]  is  a  comprehensive 
benchmark  which  performs  the  following  tests 
multiple  times  each:  Dhrystone  2  [17]  using 
Register  Variables,  Double-Precision  Whetstone 
[18],  execl()  Throughput,  File  Copying,  Pipe 
Throughput,  Process Creation,  Shell  Scripts  and 
System Call  Overhead.   All  benchmarked  results 
will be normalized.  The File Copy benchmark has 
units of amount of data per second and the other 
benchmarks have units of  operations per second. 
For all the benchmarks, higher is better.

7.1. KVM Performance

Before evaluating the impact of my modifications, 
it is important to first evaluate the performance of 
KVM itself.  In the charts that follow, the baseline 
“No KVM”  represents the results of the test being 
run  on  my  System  without  using  virtualization. 
“KVM” represents the results of the test being run 
inside KVM on the same system.

First, I evaluated KVM's numerical computation 
performance  using  the  Dhrystone  integer 
performance benchmark and the Whetstone floating 
point  performance  benchmark.  The  normalized 
results are shown below.

KVM had about 23% the integer performance of 
that  without  KVM  and  approximately  the  same 
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floating point performance both with and without 
KVM.

Next,  I  will  evaluate  the  performance 
degradation for system tasks due to KVM.  The tests 
performed were  the File Copy,  Pipe Throughput, 
Process  Creation,  Shell  Script  and  System  Call 
benchmarks.  The  results  presented  below  are 
normalized.

All  tests show a  large amount of  performance 
degradation.  The  file  copy,  pipe  throughput  and 
system  call  tests  resulted  in  15-25%  of  the 
performance seen running on the system without 
KVM. 

KVM  performed  very  poorly  with  these 
benchmarks. Previous results [11]  showed that  it 
performed similarly but slightly worse than Xen.

7.2. System Call Performance

I assessed the performance of system calls on the 
system, using the standard trunk build of kvm, and 
three  modified  versions  of  kvm.   The  modified 
versions are as follows.  The first (2VMCALLnolog) 
is  the  version  that  performs  two  VMCALLs  as 
described in section IV (Double Instruction Swap), 
but does not call my code which logs the process 
and  thread  information.   The  second  version 
(2VMCALLlog) is identical to the first but now logs 
process  and  thread  information.   The  third 
(1VMCALLnolog) is my newer version (Fill the Gap), 
described in section 6 which performs one system 
call but does not log.  All three modified versions 
have only  been modified in  the  way they  handle 
system calls.

First I will compare all of these systems using the 
System  Call  Overhead,  Shell  Script  and  Pipe 
Throughput benchmarks.  The following chart uses 
normalized data from these benchmarks.

There is a large drop in performance in all three 
tests when using KVM versus the performance seen 
when  running  on  the  host  operating  system.  In 
addition,  there  is  another  large  performance 
decrease when system calls are monitored for both 
the  System  Call  Overhead  and  Pipe  Throughput 
benchmarks .

In order to better examine the affect of logging 
and  of  the  change  to  a  single  VMCALL  on 
performance I present Pipe Throughput and System 
Call  Overhead  results  for  the  three  modified 
versions of kvm in their own chart.  This chart is 
shown below.

As can be seen in  the chart,  logging incurs a 
small  5%  overhead.   Reducing  the  number  of 
VMCALLs increased performance by 2-15%.

7.3.  Performance  of  Performing Logging 
when Exceptions and Interrupts Occur

For  these tests,  I  used four  versions  of  KVM. 
“Trunk”  is  the  regular  kvm-12  with  default 
exceptions enabled and no logging. “ExcpRegLog” 
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is like the “Trunk” version, but has logging enabled. 
I  also  created  two  versions  which  use  a  larger 
number of exceptions.  These versions are identical 
in every respect, except one performs logging and 
one doesn't. “ExcpFullNL” is the version which does 
not  log  while  “ExcpFullLog” does.   All  of  these 
versions of  KVM are  only  modified  in  how they 
handle exception and interrupts..

In  the  first  test,  I  evaluate  file  copying 
performance.  I use results from three file copying 
tests with varying buffer sizes of  256, 1024, and 
4096  bytes.   The  results  are  provided  below, 
normalized to the “Trunk” version's results.

Even  when  no  additional  exceptions  and 
interrupts are caught, logging has a non-negligible 
impact of file copying performance. Performance is 
then 60-65% of that without it with 256 and 1024 
byte  buffers.   With  a  4096  byte  buffer,  the 
performance difference is minimal.

Catching a larger number of exceptions reduces 
performance to 20-25% of what it is otherwise, with 
256  and  1024  byte  buffers.   Enabling  logging 
results in a 10-20% decrease in performance with 
256 and 1024 byte buffers.

With  a  4096 byte  buffer,  performance  is  even 
lower.  Performance is then about 12-13% of that 
without the additional exceptions.

Next, I  evaluated system performance with the 
same  four  versions  of  KVM.  I  used  the  Pipe 
Throughput,  Process  Creation  and  System  Call 
benchmarks.  The  normalized results  are  on the 
next page

An increase in the number of exceptions caught 
reduced  the  pipe  throughput  significantly.   The 
impact  of  enabling  logging  was  less  significant. 
With the additional exceptions, logging decreased 
the throughput by less than 5%. When using the 
additional exceptions, performanced drop to 40% of 

that   seen  otherwise.   Enabling  logging  again 
caused a less than 5% drop in performance over the 
similar version without logging.

Process creation performance was also impacted. 
Enabling logging with the default set of exceptions 
decreased  performance  to  about  2/3  of  that 
otherwise  seen.    When  the  number  of  caught 
exceptions is increased, performance is about 1/3 of 
that otherwise. When logging is then enabled, ¾ of 
the process creation performance of ExcpFullNL is 
experienced.

System  call  performance  is  also  severely 
impacted.  When  logging  is  enabled  with  default 
exceptions,  performance  is  about  20%  of  that 
without  logging.  When  the  number  of  caught 
exceptions is increased, performance is about 8% of 
that of the trunk, both with and without logging.

8. Conclusion and Future Directions

I  presented  a  system  that  could  reconstruct 
process and thread information from low level data 
and  associate  I/O  and  system  calls  with  those 
processes  and threads.   The process  and thread 
information  was  reconstructed  in  a  manner 
independent of  the running operating system. I/O 
and system call information is accessable the same 
independent way, but can only be interpreted with 
knowledge of the operating system's conventions.

While  I  succeeded  in  building  a  system  to 
construct this data, the performance impact of its 
use  is  significant.   Coupled  with  the  overhead 
already  caused  by  virtualization,  the  slowdown 
reduces the usefulness of the system.  

Despite this, the ability to divide system activity 
into the work of individual processes and threads 
may help make sense of  the activity.   Once data 
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streams within the virtual machine can be isolated, 
the data itself may be interpreted more simply.

Applications  which  work  with  process  and 
threads as objects may be able to move outside of a 
virtual  machine  and  experience  the  benefits  of 
doing so.  They will be able to find and access the 
process's memory easily.

The performance degradation due to this system 
is significant but the benefits of its use are as well. 
As a result, these methods may still find some use.
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