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Abstract 
 

Variability is one of the important issues in nanoscale processors. Due to increasing 
importance of interconnect structures in submicron technologies, the physical location 
and phenomena such as coupling have an increasing impact on the latency of operations. 
Therefore, traditional view of rigid access latencies to components will result in 
suboptimal architectures. In this paper, we devise a cache architecture with variable 
access latency. Particularly, we a) develop a non-uniform access level 1 data-cache, b) 
study the impact of coupling and physical location on level 1 data cache access latencies, 
and c) develop and study an architecture where the variable latency cache can be 
accessed while the rest of the pipeline remains synchronous. To find the access latency 
with different input address transitions and environmental conditions, we first build a 
SPICE model at a 45nm technology for a cache similar to that of the level 1 data cache of 
the Intel Prescott architecture. Motivated by the large difference between the worst and 
best case latencies and the shape of the distribution curve, we change the cache 
architecture to allow variable latency accesses. Since the latency of the cache is not 
known at the time of instruction scheduling, we also modify the functional units with the 
addition of special queues that will temporarily store the dependent instructions and allow 
the data to be forwarded from the cache to the functional units correctly. Simulations 
based on SPEC2000 benchmarks show that our variable access latency cache structure 
can reduce the execution time by as much as 19.4% and 10.7% on average compared to a 
conventional cache architecture. 
 
 
Keywords:  Memory hierarchies, non-uniform access latencies, technology scaling, on-
chip interconnect latency 
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ABSTRACT  
Variability is one of the important issues in nanoscale processors. Due to increasing importance of interconnect structures in 

submicron technologies, the physical location and phenomena such as coupling have an increasing impact on the latency of 

operations. Therefore, traditional view of rigid access latencies to components will result in suboptimal architectures. In this paper, 

we devise a cache architecture with variable access latency. Particularly, we a) develop a non-uniform access level 1 data-cache, b) 

study the impact of coupling and physical location on level 1 data cache access latencies, and c) develop and study an architecture 

where the variable latency cache can be accessed while the rest of the pipeline remains synchronous. To find the access latency with 

different input address transitions and environmental conditions, we first build a SPICE model at a 45nm technology for a cache 

similar to that of the level 1 data cache of the Intel Prescott architecture. Motivated by the large difference between the worst and 

best case latencies and the shape of the distribution curve, we change the cache architecture to allow variable latency accesses. Since 

the latency of the cache is not known at the time of instruction scheduling, we also modify the functional units with the addition of 

special queues that will temporarily store the dependent instructions and allow the data to be forwarded from the cache to the 

functional units correctly. Simulations based on SPEC2000 benchmarks show that our variable access latency cache structure can 

reduce the execution time by as much as 19.4% and 10.7% on average compared to a conventional cache architecture. 

1. INTRODUCTION  

Sub-wavelength lithography used for aggressive technology scaling is causing increased variability in process 

technology parameters. Irrespective of its source or manifestation, variability poses a major challenge in designing high 

performance processors or complex systems [4]. Techniques that deal with reducing variability have been proposed at 

lower levels of abstraction, i.e., at the circuit level [18]. These techniques mostly aim at minimizing the variance and 

tend to have large overheads. In this paper, we propose an architecture-level technique to minimize the impact of 

operation latency variation. In the heart of our technique lies a pseudo-asynchronous cache architecture that can provide 

data with varying latencies. Particularly, we analyze the variability in memory access latencies due to coupling effects 

in the cache lines and data location and propose a self-timed, pseudo-asynchronous cache architecture that can utilize 

such variations to gain performance.  

Each generation of technology scaling reduces the minimum transistor dimensions by roughly 30%, approximately 

doubling the transistor density [24]. It has been discovered that the importance of wire delay is increasing with 

decreasing dimensions. Additionally, as technologies scale, designers tend to pack more and more modules onto a chip, 
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which results in a rapid growth of wire lengths [11]. The increase in wire delay with each technology generation has an 

impact on large memory-oriented elements. Memory (SRAM, DRAM) is organized as an array of bit cells. Very long 

wires connect all the bit cells together, resulting in heavy capacitive loads. Therefore, much of the access time for 

memory is spent in charging the word and bit lines that run horizontally and vertically across the array. This impact can 

be reduced through dividing the array into sub-arrays, but at some point, we need to select the bit cell and propagate the 

value from the bit cell to the edge of the array, which can still be a costly operation. As a result, elements such as 

caches and register files cannot be accessed in one cycle. An alternative commonly used is to pipeline the cache or 

register file accesses and allow an access to take multiple cycles to complete. However, this approach also has 

limitations. It is predicted that every stage inserted into the critical path of the pipeline reduces the performance by 

approximately 5% [34]. As a result, level 1 cache sizes are limited. On the other hand, the increasing gap between the 

performance of the processor cores and the access times to memory, commonly referred to as the memory wall 

problem, is a primary bottleneck for increasing performance of computing systems. Designers are compelled to develop 

new techniques to close this gap. Therefore, there is strong motivation to implement larger level 1 caches. By using the 

pseudo-asynchronous architecture proposed in this paper, the penalty of employing larger level 1 caches will be 

reduced. In addition, the impact of the wire delays on the latency of cache operations will also be minimized.  

Growing wire delays have a negative effect on designing large on-chip caches. For a cache, access latencies can vary 

significantly. This observation can be attributed to two reasons. First, physical location of the data affects the cache 

access latency. Data residing in the part of a cache close to the port could be accessed much faster than data that reside 

physically farther from the port [15]. Second, coupling capacitance is a dominant factor in interconnect latencies. For a 

set of long interconnect wires in parallel, where coupling capacitance dominates the total load capacitance, the wire 

delay can vary by several times as a function of the switching activities of neighboring wires [9]. The bulk of the access 

time will involve routing to and from the banks, not the bank accesses. Hence, coupling becomes an important factor in 

determining the access latency. Since the latencies are going to vary up to several times, a single, discrete hit latency 

becomes inadequate. We must note that a number of circuit-level optimizations have been proposed that minimize the 

latency variation of interconnect wires [10, 21, 33]. However, these techniques are usually costly. In addition, they 

eliminate the advantages of coupling as well. For example, two neighboring wires that switch in the same direction are 

shown to have lower latency and lower energy consumption [33]. Circuit-level optimizations eliminate such 

advantages. Therefore, we argue that architectural techniques that minimize the negative impact of variation while 

taking advantage of faster execution times is a better alternative than simply trying to eliminate it.  
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Figure 2. Cumulative distribution of access latencies for different manufacturing technologies.

A recent work proposed an adaptive, non-uniform cache architecture (NUCA) [15] to manage large on-chip caches. By 

exploiting the variation in access time across subarrays, NUCA allows fast access to close subarrays while retaining 

slow access to far subarrays. The NUCA work deals with level 2 caches. Therefore, the latency of the accesses can be 

adjusted without any impact on the rest of the processor. Our work, on the other hand, deals with level 1 caches. 

Therefore, our decisions impact the remainder of the datapath. 

 

 

 

 

 

 

 

 

 

 

 

 

Since we are dealing with level 1 data caches, we have first analyzed the access latency variation for a representative 

cache architecture. Figure 1 shows the SPICE simulation results for a 32 KB, 4-way associative cache with different 

input address transitions, hence accesses to different locations within the cache, and different coupling factors in the 

cache lines. Figure 2 shows the same results using a cumulative distributive function. We have plotted the distribution 

of cache access latencies in both 45 nm and 90 nm technologies. For the 90 nm technology, majority of the cache 

accesses take at least 70% of the maximum latency. However, for the 45 nm technology, a very small percentage 

(roughly 2.3%) of all cache accesses take longer than 90% of the maximum cache latency and almost 80% of the 

accesses are resolved in less than 75% of the maximum cache latency. Note that, these fractions are based on all 

possible switching combinations without any consideration on representative switching patterns. In Section 4, we 

present the latency distribution of accesses for a variety of applications and show that the fraction of the accesses that 
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Figure 1. Variation of load access latencies for different manufacturing technologies. 
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require full latency is even lower, 7.4% on average. These results show that there is a scope for improvement at the 

level 1 cache by utilizing this variation. Our work aims at this objective. First, we show that smaller manufacturing 

technologies would cause variability in the load access latencies. Based on such a cache model, we propose a variable 

load latency architecture that exploits this phenomenon. Particularly, our contributions in this work are: 

• Based on our SPICE simulations, we develop a model that considers physical phenomena (e.g., coupling 

capacitance, temperature) and physical location to estimate the access latency of various cache accesses, and 

• We implement a cache architecture with variable access latency and show that this can be achieved with small 

overhead while increasing the overall processor performance by 10.7% and the data access latency by 18.7% on 

average. 

The rest of the paper is organized as follows. In Section 2, we describe our cache design and the corresponding latency 

model. In Section 3, we give an overview of the processor architecture. The experimental environment is explained in 

Section 4 and Section 5 presents the results. In Section 6, we give an overview of related work. Section 7 concludes the 

paper with a summary. 

2. CACHE ARCHITECTURE AND CIRCUIT MODELING  

This section describes the key components of our proposed cache architecture and the circuit models to understand their 

latency behavior. 

2.1 Need for a Pipelined Cache Architecture 

Technology scaling has enabled us to put great number of transistors in a single chip. However, this comes with the 

added overhead of longer wire delays [2]. Furthermore, in smaller technologies, coupling capacitance dominates the 

total interconnect capacitance and affects the cache latency causing large variations as evidenced by our experiments 

presented in Section 1. Uniform access latency fails to represent this variability. In addition, popular performance 

boosting techniques like wave-pipelining [32] will not be efficient in such technologies. To assure correct execution in 

wave-pipelining, it must be guaranteed that signals from two consecutive accesses will not cross each other. As we 

have shown in the previous section, to preserve this guarantee, the cycle time of the cache should be set extremely high, 

which will cause significant performance degradation. Therefore, there is a strong need to implement pipelined cache 

architectures. Hence, we implement our adaptive cache architecture based on a pipelined design.  

Pipelining reduces the cycle time of a block, which may otherwise be governed by the critical delay of the block. The 

key hurdle in pipelining the cache into more stages is the bitline delay, which cannot be pipelined because the signals 
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on the bitlines are weak, and not digital; latching can be done only after the sense amplifiers convert the bitline signals 

from analog to digital. A bitline is loaded by both the multiple memory cells' capacitances and the bitline's wire 

capacitance and resistance. Consequently, the bitline delay depends on the bank size. 

The cache access delay can be divided into five parts: Address bus Delay (DelayAD), Decoding Delay (DelayDD), 

Wordline Delay (DelayWD), Bitline to Sense Amplifier Delay (DelayBSD), and Mux to Data Out Delay (DelayMDD) as 

shown in ‎Figure 3. The locations of pipeline registers are determined by the relative delays of these stages, which 

depend on cache parameters. Another important characteristic that determines these latencies is subbanking, which is a 

primary hit time reduction technique in caches. In subbanking, the memory is partitioned into M smaller banks. An 

extra address word called bank address selects one of the M banks to be read or written. This technique reduces the 

wordline and bitline (capacitance) and in turn reduces the DelayWD and DelayBSD. The array can be split with either 

vertical cut lines (creating more, but shorter wordlines), or with horizontal cut lines (creating shorter bitlines). 

However, reduced hit time by increasing these parameters comes with extra area, energy, and/or delay overhead. 

Increasing horizontal cut increases the number of sense amplifiers, while increasing vertical cuts translates into more 

wordline drivers and bigger decoder due to increase in the number of wordlines. Most importantly, a multiplexer is 

required to select the data from the appropriate bank. Horizontal cut increases the size of the multiplexer, which in turn 

increases the critical hit time delay and energy consumption. As a result, partitioning the cache into multiple banks 

decreases DelayBSD, but increases DelayMDD. Beyond a certain point, further partitioning increases the multiplexer 

delay, and it dominates the decrease in bitline delay. In an optimally banked cache, DelayMDD delay catches up with 

DelayWD + DelayBSD delay. Therefore, placing a latch in between divides the wordline to data out delay into two 

approximately comparable portions. This technique has the advantage of having more banks (low bitline delay) than the 

conventional design. The increase in multiplexer delay due to aggressive banking is hidden in a pipeline stage. The 

clock cycle of the cache is governed by the wordline to sense amplifier delay (DelayWD+DelayBSD) and can be made 

smaller by aggressive banking. The technique can be used to aggressively bank the cache to get the least possible 

DelayWD+DelayBSD, which is limited by DelayWD. In addition to these two stages, our cache architecture has two more 

stages for the address bus to the decoder (DelayAD) and the decoder itself (DelayDD). With the increasing memory size 

and aggressive banking, DelayAD also increases, and it is a significant fraction of the total delay in our sub-banked 

cache architecture. Hence, similar to the data cache in the Intel Pentium Prescott [3], our cache design has 4 pipeline 

stages.  

We put latches to store the result of each of the cache pipeline stages after every clock cycle. Sense amplifiers are 

duplicated for each of the horizontal cuts. A latch is placed at both input and output paths of every sense amplifier to 
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Figure 3. Different components of a cache access delay.

pipeline both read and write delays. Note that, only a single set of latches dissipates energy since switching occurs only 

on the datalines of the accessed bank. Thus we have incurred area overhead for the latches, but power overhead is 

negligible. As shown by Agarwal et al. [1], a pipelined implementation can improve the bandwidth of the cache by 60% 

compared to the conventional cache. The area overhead for their implementation is about 30% for a 64 KB, 4-way 

associative cache.  

The vertical cuts increase the number of wordlines. This requires a bigger row decoder and more latches. However, at 

most only two lines switch in a single read/write operation: one that was decoded in the last cycle and one that is being 

selected in the current cycle. Hence, the power overhead is negligible. 

 

 

 

 

 

 

 

2.2 Circuit Design Issues for Variable Latency Cache 

2.2.1 Asynchronous Pipelined Cache 

Our variable latency cache consists of four pipelined stages as described in Section 2.1. The first stage is the address 

bus to the decoder. The second stage is the decoder, and the third stage consists of wordlines, bitlines, and sense 

amplifiers. Finally, the last stage has the multiplexers (column decoders) and the output driver. The clock frequency is 

determined such that a data is guaranteed to pass through one stage in a clock period in the worst case. These four 

stages form the basis of our self-timed cache architecture. As we will explain in the following, accesses will traverse 

through these stages one-by-one similar to a synchronous pipelined cache. However, we implement handshaking 

mechanisms between the stages that will allow an access to complete two stages in a single cycle if there is no access in 

the next stage. In fact, based on the architecture, it is possible that three consecutive stages are merged into two cycles. 

Overall, as long as the proceeding stages are empty, an access will try to merge those stages and finish the operation as 
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Figure 4. Asynchronous design of pipelined datapath.

Figure 5. Logic of the Muller C-element used for handshaking. 

fast as possible. If, for example, the cache is empty at the time an access is initiated, it is possible that the four stages 

will be merged and the access will complete in 1, 2, 3, or 4 cycles. However, if there are already intermediate load 

operations (i.e., accesses that have not completed, yet), the cache will merge the pipeline stages as long as the signals 

are not crossing each other. The control of the relative timing of the signals are implemented with the help of the cache 

pipeline registers and the handshaking signals that use Done signals generated at each cache stage.  

Figure 4 illustrates the flow of the asynchronous pipelined datapath for our cache. The Muller C-elements whose logic 

is shown in Figure 5 are used in the handshaking process. We used the four-phase signaling as the handshaking 

protocol between different stages in which the Req(uest) signal goes high followed by the Ack(nowledge) signal, then 

the Req signal goes low again followed by the Ack signal in a cycle. If the Req signal from the previous stage goes high 

while the Start signal of the current stage is low (which indicates the precharge phase), the first C-element is triggered 

to raise the En(able) signal, effectively latching the input data from the previous stage into the register of the current 

stage. At the same time, the Ack signal is sent to the previous stage from the current stage, and the Start signal in the 

previous stage goes low, starting the precharge phase for that stage. As the Start signal goes low for precharge, the Req 

signal from the previous stage also goes low. If the Ack signal from the next stage is low, the second C-element is 

triggered as well, which starts the logical operation in the current stage by raising the Start signal. The rise in the Start 

signal also makes both the En signal of the current stage and the Ack signal to the previous stage go low. When the 

logical operation of the current stage is completed, the Done signal is raised, and this becomes the Req signal for the 

next stage repeating the cycle.  

 

 

 

 

 

 

 

2.2.2 Done Signal Generation 

In order for the asynchronous design to work without overlapping different data, each pipelined stage requires the Done 

signal generating circuitry except for the first stage since it is guaranteed that a data is able to pass through the first 
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Figure 7. Done signal generating circuit after sense amplifiers. 
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stage within a clock period. The remaining three stages need to be able to generate the Done signal whenever the 

logical operation is completed in the corresponding stage. 

The Done signal generating circuit in the second stage is placed after the decoder. We employed a dynamic NAND 

decoder instead of a static one since it has the precharging component built in, which can be used for detecting signal 

transitions to generate the Done signal. Furthermore, since it has a NAND structure, only one signal is going to change 

during the evaluation phase, thereby making the Done signal generation easier and faster. Figure 6 shows the 

implementation of the circuit with an example with four wordlines. When the Start signal is raised in a dynamic NAND 

decoder, only the selected wordline goes low while all the other lines remain at Vdd. When all the wordlines are 

inverted, and fed into NMOS transistors in a NOR gate implemented in pseudo-NMOS style as shown in Figure 6, only 

the transition in the selected line will turn one of the NMOS transistors on. This effectively discharges the current from 

the output node of the NOR gate, and thus the Done signal can be generated after inverting the output of the NOR gate. 

 

 

 

 

 

 

Figure 6. Done signal generating circuit after decoder. 

 

 

 

 

‎Figure 7 illustrates the implementation of the Done signal generating circuit in the third stage. This circuit is placed 

after the changes in the bitlines (and !bitlines) are amplified through the sense amplifiers. Thus, before entering this 

extra circuitry, the values of the data should be correctly amplified. In other words, the value of either Data or !Data in 

Figure 7 should reach Vdd if the data is being read. These input signals are first inverted using a set of skewed inverters 

as shown in the figure. Note that these are not typical balanced inverters, instead, the transistor sizes are skewed such 

that the output of the inverter becomes zero only when the input is very close to Vdd. Hence, the output of the skewed 
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inverters will stay at Vdd unless either Data or !Data reaches close to Vdd. Therefore, there exists a tradeoff between 

delay and noise when the transistors are sized. The more the sizing of the pull-up and pull-down transistors is skewed, 

the closer the input signal has to be to Vdd in order to generate zero as the output, which is better in terms of robustness. 

However, at the same time, the driving force of the pull-down network becomes relatively weaker, thereby increasing 

the falling delay of the output. Then, the output signals are fed into a 2-input NAND gate as inputs, which outputs Vdd 

only if at least one of the inputs is zero. Since the output of the NAND gate takes care of only one bit of the data output, 

we need to AND all the data bits in order to generate the final Done signal. To avoid a huge sizing of the gate, the 

outputs of the NAND gates are first inverted, then fed into a NOR gate implemented in pseudo-NMOS style as inputs, 

which is logically the same as an AND gate. 

Based on SPICE simulation results, it was found that there is a little variation within the last stage. Since the delay of 

the last stage is almost constant, we used a critical-path replica to generate the Done signal for the last stage, where the 

Start signal is fed into both the real logic and the critical-path replica. The Done signal is generated when the critical-

path replica is completed. 

We implemented the extra circuits needed for the asynchronous cache design, and ran simulations using HSPICE. The 

simulation results showed that the worst-case delay overhead due to the extra circuitry will require the clock period to 

increase by 13.2% compared to a conventional (synchronous) case. However, note that within the cache, the 

asynchronous design proceeds at the average speed of the hardware, whereas the synchronous design proceeds at the 

worst case speed. Furthermore, based on the 256 x 256 bit memory bank that we laid out, the area overhead due to the 

extra circuitry for the asynchronous design was found to be 4.6% when compared to a synchronous pipelined cache 

architecture.  

2.3 Deriving a Circuit Level Cache Model using SPICE 

The proposed design technique is applicable to future generation processors where smaller manufacturing technologies 

will be used. To analyze our architecture realistically, we propose a new delay model for the proposed cache 

architecture. 

CACTI [28] has been a popular tool for estimating cache latency. However, CACTI has some drawbacks for deep 

submicron technologies. First, the models used in CACTI are based on an old technology (0.8um). Although the 

properties can be scaled to a certain extent, for current technologies that reached sub-100nm scale, the results are less 

reliable. Furthermore, some important effects that arise in deep submicron regime such as coupling capacitance 

crosstalk, IR drop, and temperature are not considered by CACTI. Thus, a new delay model is required to correctly 

estimate the cache latencies in nanoscale technologies. Most importantly, CACTI does not provide input dependent 
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(e.g., the location of the block, address, data value, switching activity) latency models. In the following, we describe 

our model that considers such phenomena.  

We built a new SPICE model for a 32 KB cache that is based on the structure used in CACTI using 45nm PTM 

technology models [5]. Note that although we take this model as our base architecture, our approach can be applied to 

many cache architectures. In addition, since we are considering the latency of the data array, we believe that our results 

are representative of a large number of implementations. In our model, each memory bank consists of 256 x 256 bits. 

We employed a dynamic NAND decoder instead of a static one for the reasons explained in Section 2.2. There are three 

places in the cache where coupling capacitances were added in our new cache model; address bus, parallel wires in 

decoder, and bitlines (between bitline and !bitline). These lines are modeled as distributed RC ladders, and coupling 

capacitances between adjacent lines are added in each section in the ladder. The parasitic values of the interconnect 

wires are based on the interconnect models from PTM [5]. The gate sizes are then optimized using HSPICE simulations 

to minimize the overall cache latency. 

With aggressive technology scaling, both the wire width and the spacing between wires are decreased, thereby making 

coupling capacitance between adjacent wires a dominating component of the total interconnect capacitance. The 

effective value of coupling capacitance depends on the signal transitions. In order to analytically capture the effective 

coupling capacitance, capacitive decoupling is usually used where the nominal coupling capacitance value is multiplied 

by a discrete constant called Miller Coupling Factor (MCF). Interconnect total capacitance, Ct is then expressed as 

∑+=

linesj
allcoupled

cjgt CMCFCC

 
(1) 

where Cg and Cc are ground and coupling capacitance, respectively. For simple models, the value of MCF is usually 

taken to be 2 for two adjacent lines switching simultaneously in the same direction, and 0 for switching simultaneously 

in the opposite direction. However, the value of MCF actually also depends on the slew rates of the input signals and 

relative delay between them. It has been shown that MCF can have its theoretical maximum value of 3.85 and 

theoretical minimum value of -1.85 [9]. Therefore, as the coupling capacitance becomes a dominant portion of the total 

interconnect capacitance, the variation in the RC delay that depends on the input state and transition also increases 

significantly. 

Besides the inclusion of coupling capacitance, we also varied the temperature and the supply voltage during our SPICE 

simulations in order to observe the thermal and IR drop effects on the cache latency. Temperature adversely affects both 

gate and wire delay. As temperature rises, both mobility and saturation velocity decreases which usually outweighs the 
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effect of decreasing threshold voltage, and it results in a slight increase in the gate delay. Note however, that the 

temperature dependence of gate delay is also affected by the value of the supply voltage [22]. Metal resistance also 

increases linearly with temperature, and this increases the wire delay. Furthermore, as the IR drop increases, the 

decrease in the supply voltage results in a decrease in the drain current of the transistors, increasing the gate delay. 

Therefore, temperature and IR drop both have an impact on the clock cycle. In our cache model, we assume the clock 

cycle time to be 36% of the maximum cache latency measured in room temperature and without any variation in the 

supply voltage. According to the SPICE simulations, this selection guarantees that our circuit model will resolve a 

cache access in at most 4 cycles with worst case temperature and supply voltage variations. Note that, this variation 

changes the maximum frequency that the cache can work and has an impact on the latency distribution with respect to 

the worst-case delay. In other words, the latency curve in Figure 1 (in Section 1) is further skewed with the voltage and 

temperature variation and the fraction of the accesses that can be completed in small number of cycles increases.  

In spite of our efforts, we were not able to define a closed formed formula to represent the latency of cache accesses for 

each possible input combination mainly due to the nonlinear circuit components. Therefore, the results of the SPICE 

simulations indicating the exact latency of operations are stored in a four dimensional table. This table determines the 

exact latency of the cache operations based on (a) last accessed address in the cache, (b) current accessed address, (c) 

physical location, and (d) the coupling capacitance dependent on the switching combinations. During the architectural 

simulations, this table is used to determine the cache access latency. Then, using the clock cycle time found as 

described previously, we can determine the number of cycles a particular cache access takes. 

2.4 Discussion  

Throughout this paper, we describe our schemes based on the Intel Prescott core, which has level 1 data cache with one 

read and one write port. Since the write port is separate, there are individual decoders for store operations. Hence, as 

long as the addresses of a store and load operation are not identical, the store operations can be performed at full 

latency without impacting the load operations.  

Another interesting property of a self-timed component is that the idea can be applied to most of the structures in the 

processor datapath, such as the issue queue and the register file. We particularly targeted the level 1 data cache due to 

its high latency variation, its regular structure, and the relatively high number of pipeline stages occupied by it in the 

datapath. 
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3. PROCESSOR ARCHITECTURE FOR VARIABLE LATENCY CACHES  

An important issue with the self-timed, variable latency caches is the capability of forwarding the values that are read 

by the load instruction to the dependent instructions. Without a variable latency load operation, the time that the loaded 

data is available is known exactly (assuming a load hit). However, with the variable latency cache, the data will be 

available in a window of cycles. Therefore, we need to augment the corresponding structures in the datapath, namely 

the scheduler and the functional units, such that when the data is available from the cache, it is sent to the correct 

destination as fast as possible allowing the dependent operation to proceed immediately.  

  

 

 

 

 

 

An overly conservative approach is to schedule the dependent instructions assuming the load will take maximum 

possible hit latency, but this delays the dependent instructions for loads that actually take shorter than this maximum 

latency, thereby undoing all the possible gains from variable latency cache. Here, we propose a new forwarding and 

scheduling mechanism that can actually exploit variable latency accesses. After a load instruction is scheduled, the 

dependent instructions start executing assuming the load access will take the shortest possible amount of time, which is 

single cycle in our architecture. To avoid these instructions from reaching the execute stage before the data from cache 

is available, we also add queues at the inputs of each functional unit. These queues are called load-bypass queues. Each 

queue has MAXhit_latency-MINhit_latency number of entries that will allow the instructions to wait until the data is available. 

These entries will be used if load does not complete in MINhit_latency cycles. For the base case, the load-bypass queues 

have 3 entries in our study. It is also possible to add these queues into the dispatch units, however, to eliminate any 

effect on the rest of the processor, we choose to implement them just before the functional units. Once the cache access 

is complete, the destination register number and the data read from the cache is forwarded and broadcasted to the load-

bypass queues; where each entry compares the stored register number (which is the input register for the dependent 

instruction) with the forwarded value. If the two values are identical, the data (i.e., the output of the load operation) is 

latched into the queue. Then, in the next cycle, the operation will start execution if the functional unit is empty, i.e., not 

Figure 8. Forwarding the Cache Return Value to the Execute Stage through Load-Bypass Queue. 
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used by another operation that proceeds it in the queue. Figure 8 shows the hardware for this approach. Note that we 

omitted the multiplexers at the inputs of the functional unit that selects from different forwarded values for simplicity. 

If the input operands of an instruction are ready, i.e., no forwarding is needed from the cache; it can simply skip the 

queue and start the execution. However, if one of the input operands will be provided by the cache, then the instruction 

will enter the queue from the tail. Once an instruction enters the queue, it will move forward one by one every cycle 

until it reaches the head of the queue or receives the data from the cache. Once it receives the data, it will move to the 

functional unit and start execution as described above. The start of the dependent instruction will also initiate the 

dispatching of its dependent operations. Assuming that the functional unit latency is longer than the register file read 

latency, the pipeline stages will be overlapped (i.e., the dependent instruction will reach the functional unit exactly at 

the time its input data is available). Therefore, only instructions that are dependent on a load will have to enter the load-

bypass queue and the rest of the instructions can directly go to the functional units or receive their inputs from one of 

the existing forwarding sources. To illustrate this relative timing, consider three instructions: L1, D1, D2, where D1 is 

dependent on L1 and D2 is dependent on D1. The cycle after the L1 finishes, D1 will start its execution. At the same 

cycle, D2 will be sent to the RF stage. As soon as D1 finishes, D2 will be at the execute stage and will start its execution. 

If the relative timing in the architecture is different, e.g., the register file stage takes longer than the execution stage, the 

architecture needs to be augmented with another queue. Particularly, we need to add queues for dependents of 

dependents. In other words, instead of having a single queue that synchronizes the cache output with the dependents of 

the load instructions, we will need to add a second queue (named ALU-bypass queue) of same length that will 

synchronize the output of the functional units with the instructions that depend on the output of the functional units. 

Note that this queue should be connected to the outputs of all the functional units. In such a case, each instruction will 

be marked by the scheduler which queue it should go to. It is also possible for an instruction to be dependent on a load 

and an ALU operation. In that case, the instruction will have an entry in both queues. Considering the same example, if 

the timing of the architecture does not allow explicit synchronization, D2 will be scheduled two cycles after D1. If at the 

time it reaches the execute stage, D1 is not completed, then it will enter the ALU-bypass queue and wait until D1 is 

completed. Once D1 completes, its result will be broadcasted to the ALU-bypass queue (only to the ALU-bypass queue, 

the broadcasts on the load-bypass queue will be initiated by the cache only). Then, D2 will store the results and start 

execution in the next cycle assuming that the functional unit is empty.  

If the instruction reaches the head of the queue, and still has not received its input, it means that the load access missed 

in the cache. Hence, the data will never be forwarded to the queues. Therefore, the dependent instruction needs to be 



 14

flushed and re-executed based on the replay mechanism that is employed in the processor. Note that, the complexity of 

replay and the miss penalty of the load operations are not affected by our variable latency architecture. 

We also want to point out that the load-bypass queue depicted in Figure 8 resembles the issue queue of an out-of-order 

processor. Particularly, the operation of our architecture resembles a distributed issue queue used similar to that of 

Alpha 21264 [14]. However, we instantiate a single small queue for each function unit. Since this “mini issue queue” is 

designed for the specific cache structure of the datapath, it is much more efficient than a regular issue queue. In 

addition, the instructions leave this queue regardless of whether they finish their execution or not. 

In our experiments we are not modeling process variation, which is crucial for an on-chip cache implementation due to 

the large area occupied by this component. We must note that, our self-timed cache architecture will handle the effects 

of latency variation caused by process variation. If for some reason one of the stages fail to complete in a single 

processor cycle, the done signal will not be generated for that stage, effectively stalling the following load instructions 

in the cache thereby allowing adequate time for that particular load to complete. To accommodate this increase, we 

have to assume a maximum cache latency of 5 cycles. Thereby, any increase in access latencies due to process variation 

will be effectively handled. In this case, such variations will cause a performance degradation, however, the processor 

will continue working correctly. If there is no process variation, the addition of this extra cycle will not cause any 

performance degradation because of our variable access latency architecture. The only cost associated with this addition 

will be the increase in the size of load-bypass queues before the functional units. 

4. SIMULATION ENVIRONMENT  

The SimpleScalar 3.0 [29] simulator is used to measure the effects of the proposed techniques. The necessary 

modifications to the simulator have been implemented to model the variable access load latencies, functional unit 

queues, selective replay, the busses between caches, and port contention on caches. We have also made changes to 

SimpleScalar to simulate a realistically sized issue queue and to model the events in the issue queue in detail 

(instructions are released from the issue queue only after we know there is no misscheduling). We simulate 13 floating-

point and 11 integer benchmarks from the SPEC2000 benchmarking suite [30]. We simulate 100 Million instructions 

after fast-forwarding application-specific number of instructions as proposed by Sherwood et al. [26]. Important 

characteristics of the applications are explained in Table 1. This table presents the number of simulation cycles for the 

applications, number of DL1 accesses and its miss rate as well as the distribution of the DL1 latencies. Note that the 

level 1 data cache latency distribution is derived for each application running on the processor core; hence the 

percentages for different number of cycles are not necessarily equal to the distribution of cache latencies described 

Figure 1. To explain the difference, consider a loop that consists of a single load Lx that can retrieve the data in x-
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cycles; iterating throughout the program. The load accesses the same location repeatedly, effectively having 100% x-

cycle accesses rather than the curve given in the motivational results. In addition, if the load accesses consecutive 

addresses, the probability of a bit-switch in the address bus reduces, which in return decreases the coupling capacitance 

and hence the latency of the load operation. Therefore, the principle of locality helps in reducing the average access 

latency of our cache architecture.  

The base processor is a 4-way processor with an issue queue of 128 entries and a ROB of 256 entries. The simulated 

processor has separate level 1 instruction and data caches. The level 1 instruction and data caches are 32 KB, 4-way 

associative with 64-byte block size and 4 cycle latency. Unified level 2 cache is 512 KB, 8-way associative cache with 

128-byte line size and 18 cycle latency. The level 3 cache is 8 MB 8-way associative cache with 128-byte line size and 

50 cycle latency. The memory access delay is set to 160 cycles. All caches are lockup-free. In all the simulations, we 

assume 7 cycles between the schedule and execute stages and model a bimodal branch predictor with 4 KB table. 

Table 1. SPEC 2000 application characteristics: Execution cycles (cycles), number of level 1 data cache accesses (DL1 acc), 
level 1 data cache miss rate (DL1 miss), Cache model latency distribution (1,2,3 and 4 cycles). 

DL1 Latency Distribution Application Cycles 
[M] 

DL1 acc 
[M] 

DL1 miss
[%] 1 cycle [%] 2 cycles [%] 3 cycles [%] 4 cycles [%]

168.wupwise 97.2 56.9 0.9 0.8 35.7 58.2 5.3 
171.swim 115.7 41.5 10.0 0.3 26.1 63.0 10.6 
172.mgrid 106.8 39.0 4.0 1.0 30.8 59.5 8.7 
173.applu 165.9 25.1 7.2 1.7 35.1 56.2 7.0 
177.mesa 85.9 37.7 0.3 1.6 29.2 64.0 5.1 
178.galgel 100.1 34.8 0.1 0.1 25.8 65.5 8.6 

179.art 206.1 30.1 32.9 1.7 36.5 54.4 7.4 
183.equake 220.4 33.8 6.0 2.5 35.1 56.8 5.7 
187.facerec 116.0 34.5 1.5 1.2 28.5 60.7 9.6 
188.ammp 123.5 24.6 4.8 3.1 34.9 55.7 6.3 
189.lucas 108.2 37.2 5.3 0.2 35.9 58.5 5.5 

200.sixtrack 97.4 39.7 1.3 1.3 33.4 58.4 6.9 
301.apsi 107.1 29.8 6.4 2.1 29.3 60.8 7.8 
FP avg. 126.9 35.7 6.2 1.3 32.0 59.4 7.3 
164.gzip 121.7 36.2 6.9 0.7 46.4 49.0 3.9 
175.vpr 154.2 48.4 4.0 0.6 20.6 62.7 16.1 
176.gcc 169.5 35.8 1.4 1.7 27.6 60.5 10.3 

186.crafty 137.5 33.0 0.9 0.8 29.0 62.6 7.6 
197.parser 169.1 39.2 5.4 1.6 30.6 59.5 8.3 

252.eon 117.4 33.3 0.1 2.2 38.1 55.4 4.3 
253.perlbmk 135.9 39.6 2.2 2.5 39.6 52.9 5.1 

254.gap 140.7 35.0 0.2 2.0 27.4 64.5 6.1 
255.vortex 83.5 47.6 0.3 1.2 19.2 65.3 14.3 
256.bzip2 93.2 31.3 0.2 0.7 45.4 49.1 4.7 
300.twolf 166.9 43.9 4.6 1.8 43.0 51.8 3.4 
INT avg. 135.4 38.5 2.4 1.4 33.4 57.6 7.6 

Arith. Mean 130.8 37.0 4.6 1.4 32.6 58.5 7.4 
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Figure 9. Reduction in execution time. 

 

 

 

 

 

 

 

5. EXPERIMENTAL RESULTS  

This section presents the simulation results for the variable latency cache architecture. Figure 9 shows the reduction in 

execution time relative to base case for the proposed cache architecture. Note that the base case architecture has a fixed 

4-cycle latency data cache access. The performance is improved by up to 19.4% (for galgel application) and 10.7% on 

average. From Table 1 and Figure 9, one can observe that the main factor affecting the performance improvement is the 

level 1 data cache miss rate. A high miss rate translates into more accesses to the higher levels. As a result, the average 

data access latency increases, which in turn, diminishes the advantages obtained by employing our idea in the level 1 

data cache (swim, applu and art). Similarly any scheme that reduces the average latency spent on the memory hierarchy 

improves the effectiveness of our scheme. This correlation can also be observed in Figure 10, which shows the 

reduction in average data access latencies. As expected, there is a very strong correlation between the reduction in the 

data access latencies and the performance improvement: the applications that have lower latency reduction tend to have 
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Figure 10. Reduction in average data access latency. 
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less performance improvement compared to other applications. It is also important to note that by having a variable 

latency level 1 data cache we can reduce the average cycles spent in the memory access per load instruction by up to 

34.2% and 18.7% on the average. 

5.1 Design Alternatives  

In this section, we explore different design alternatives to our scheme. More specifically, we measure the execution 

time for two caches, where one is smaller and the other one is larger than the base cache we have implemented. Starting 

from the 32KB, 4-way associative cache, which has a 4 cycle access latency, using CACTI we found the largest caches 

that can be implemented for having 3 and 5 cycles of maximum access latency. We calculated that a 16KB, direct 

mapped cache can complete accesses in 3 cycles, hence it was the configuration we adopted for the small cache. 

Similarly we chose a 128 KB, 4-way set associative cache as our large cache configuration, which has a maximum 

access latency that corresponds to 5 cycles.  

The results for these two alternatives are presented in Figure 11 along with our proposed variable access latency cache 

(32 KB). In addition, we show the performance of a larger variable access latency cache (128 KB). An interesting 

observation is that regular pipelining for the large cache performs worse than the base case, because of the extra cycle 

in the cache access despite reduced cache miss rates due to larger cache size. Similarly, the small cache with regular 

pipelining has very small gain over the base case even though the load execution path is 1-cycle shorter. This clearly 

shows that ignoring the variability in access latency either hurts our performance or in the very best results in lost 

opportunity. On the other hand, both of the variable latency schemes result in considerable reduction in execution time. 

Even the large cache with longer access latency reduces the execution time by 8.0% on average. 
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Also, note that the behavior of gzip application is a good example showing how cache miss ratio affects the 

performance. Using a 128KB large cache, the dl1 miss rate is reduced from 6.9% to 0.5% reflected as 24.4% 

improvement in execution time for the 128 KB variable access latency cache. We must note that the SPEC applications 

generally have low miss rates. Particularly, with the base architecture, the average miss rate is 4.6%. With a more data-

intensive application set, the advantages of a larger cache will likely be more profound.  

6. RELATED WORK  

Caches supporting non-uniform accesses are not new [23]. Kim et al. proposed NUCA [15] architecture to manage 

large on-chip caches. By exploiting the variation in access time across subarrays, NUCA allows fast access to close 

sub-arrays while retaining slow access to far subarrays. NURAPID [6] improves over NUCA by using sequential tag-

data access, which causes low power consumption. It is also more fault-tolerant and area-efficient. Variable latency 

functional units have also been studied by Mueller in the context of parallel machines [20]. However, these studies are 

proposed for lower level caches or for remote machines. In contrast, we utilize the variability in the level 1 cache in our 

proposal.  

To support variation in the load access latency, we use a pipelined cache. Previous research has proposed pipelined 

cache architectures for high bandwidth applications [1]. However, the pipeline used in that study has been static in 

nature. Our proposal of varying the number of pipeline stages is novel for the cache structure. Note that, collapsible 

pipelining has been proposed to reduce clock power in pipelines [12, 16, 27]. In addition, Constructive Timing 

Violation [8, 25, 31] has been proposed for variable latency pipelines. However, none of these studies have considered 

the architectural implications of such schemes.  

Various researchers have realized the impact of load scheduling and instructions dependent on them on the processor 

efficiency [13]. Mowry and Luk [19] examine software profiling to predict hit/miss outcome of accesses to dispatch 

these instructions earlier. Alpha 21264 utilizes a hardware-based hit-miss predictor [14]. Memik et al. [17] proposed a 

novel precise scheduling technique that determines the accurate access latencies of load operations. However, these 

studies do not consider variable latency operations. 

7. CONCLUSIONS  

In this paper, we have proposed a novel self-timed variable access latency cache architecture that optimizes the 

performance of a processor utilizing the variability in the load access latencies. First, we showed that there will be a 

large variation in load access latencies in future manufacturing technologies due to effects such as coupling 
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capacitance. We have provided SPICE simulations to support our claim. Based on this observation, we proposed a 

pipelined cache architecture that can support variable access latency. Our proposed instruction scheduling and data 

forwarding scheme improves the processor performance by as much as 19.4% and 10.7% on the average. 
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