

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-06-11

August 14, 2006

Process and User Driven Dynamic Voltage and Frequency Scaling

Arindam Mallik Bin Lin Peter Dinda Gokhan Memik Robert Dick

Abstract

We propose and evaluate two new and independently-applicable techniques, process-
driven voltage scaling (PDVS) and user-driven frequency scaling (UDFS), for improved
power management on processors that support Dynamic Voltage and Frequency Scaling
(DVFS), e.g, those used in current laptop and desktop computers. In PDVS, a CPU-
customized profile is derived offline that encodes the minimum voltage needed to achieve
stability at each combination of CPU frequency and temperature. On a typical processor,
PDVS reduces the voltage far below the worst-case minimum operating voltages given in
datasheets. UDFS, on the other hand, dynamically adapts CPU frequency to the
individual user and the workload through a simple user feedback mechanism, unlike
currently-used DVFS methods which rely only on CPU utilization. Our UDFS
algorithms dramatically reduce typical operating frequencies while maintaining
performance at satisfactory levels for each user. We evaluated our techniques
independently and together through user studies conducted on a modern Pentium M
laptop running Windows applications. Our studies include both single task and
multitasking scenarios. We measure the overall system power and temperature reduction
caused by our methods. Combining PDVS and the best UDFS scheme reduces measured
system power by 49.9% (27.8% PDVS, 22.1% UDFS), averaged across all our users and
applications, compared to the Windows XP DVFS scheme. The average temperature of
the CPU is decreased by 13.2 C on average. Using user trace-driven simulation to
evaluate the CPU only, we find average CPU dynamic power savings of 57.3% (32.4%
PDVS, 24.9% UDFS), with a maximum of reduction 83.4%. In a multitasking
environment, the same UDFS+PDVS technique reduces the CPU dynamic power by
75.7% on average.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ANI-0301108, EIA-
0224449, and CCF-0541337, and by the Department of Energy through grant FG02-05ER25691.

Keywords: DVFS (Dynamic Voltage and Frequency Scaling), power management,
human-computer interaction, process variation

Process and User Driven Dynamic Voltage and Frequency Scaling

Arindam Mallik Bin Lin Peter Dinda Gokhan Memik Robert Dick
Department of Electrical Engineering and Computer Science, Northwestern University

{arindam, binlin, pdinda, memik, dickrp}@eecs.northwestern.edu

Abstract

We propose and evaluate two new and independently-
applicable techniques, process-driven voltage scaling (PDVS)
and user-driven frequency scaling (UDFS), for improved power
management on processors that support Dynamic Voltage and
Frequency Scaling (DVFS), e.g, those used in current laptop
and desktop computers. In PDVS, a CPU-customized profile
is derived offline that encodes the minimum voltage needed
to achieve stability at each combination of CPU frequency
and temperature. On a typical processor, PDVS reduces the
voltage far below the worst-case minimum operating voltages
given in datasheets. UDFS, on the other hand, dynamically
adapts CPU frequency to the individual user and the workload
through a simple user feedback mechanism, unlike currently-
used DVFS methods which rely only on CPU utilization. Our
UDFS algorithms dramatically reduce typical operating fre-
quencies while maintaining performance at satisfactory levels
for each user. We evaluated our techniques independently and
together through user studies conducted on a modern Pentium
M laptop running Windows applications. Our studies include
both single task and multitasking scenarios. We measure the
overall system power and temperature reduction caused by our
methods. Combining PDVS and the best UDFS scheme re-
duces measured system power by 49.9% (27.8% PDVS, 22.1%
UDFS), averaged across all our users and applications, com-
pared to the Windows XP DVFS scheme. The average temper-
ature of the CPU is decreased by 13.2◦C on average. Using
user trace-driven simulation to evaluate the CPU only, we find
average CPU dynamic power savings of 57.3% (32.4% PDVS,
24.9% UDFS), with a maximum of reduction 83.4%. In a multi-
tasking environment, the same UDFS+PDVS technique reduces
the CPU dynamic power by 75.7% on average.

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ANI-0301108, EIA-0224449, and CCF-0541337, and Department of
Energy Grant FG02-05ER25691. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation (NSF).

1 Introduction

The increasing importance of low-power VLSI design has re-
sulted in numerous power-reduction techniques in circuits, ar-
chitectures, and operating systems. Energy consumption has
traditionally been one of the primary design criteria for mobile
systems. It determines battery life and is therefore of great im-
portance to end-users of mobile systems, a huge and growing
population. In line-powered systems, on the other hand, energy
consumption is important due to its impact on power dissipa-
tion, which affects cost and noise. As manufacturing technolo-
gies are enhanced, more and more transistors can be packed into
a given area, increasing the power density. As a result, in high-
end microprocessors, the chip temperature during execution is
elevated, affecting performance, reliability, and integrated cir-
cuit (IC) lifetime.

Dynamic Voltage and Frequency Scaling (DVFS) is one of
the most commonly used power reduction techniques in high-
performance processors. DVFS varies the frequency and volt-
age of a microprocessor in real-time according to processing
needs. Although there are different versions of DVFS, at its
core DVFS adapts power consumption and performance to the
current workload of the CPU. Specifically, existing DVFS tech-
niques in high-performance processors select an operating point
(CPU frequency and voltage) based on the utilization of the pro-
cessor. While this approach integrates OS-level control, such
control is pessimistic in the following respects:

• Existing DVFS techniques are pessimistic about the CPU.
They assume worst-case manufacturing process variation
and operating temperature by basing their policies on loose
worst-case bounds given by the processor manufacturer. A
voltage level for a given frequency is set such that all man-
ufactured processors in that generation are guaranteed to
work under worst-case assumptions, e.g., highest temper-
ature and process variation.

• Existing DVFS techniques are pessimistic about the user.
Indeed, they ignore the user, assuming that CPU utiliza-
tion is a sufficient proxy. A high CPU utilization simply
leads to a high frequency and high voltage, regardless of
the user’s satisfaction or expectation of performance.

In response to these observations, on which we elaborate
in Sections 2.1 and 3.1, we have developed two new power

1

management techniques that can be readily employed indepen-
dently or together. In particular, we introduce the following
techniques.

• Process-Driven Voltage Scaling (PDVS) creates a custom
mapping from frequency and temperature to the minimum
voltage needed for stability (Section 2.2). Hence, it takes
advantage of process variation. This mapping is then used
online to choose the operating voltage by taking into ac-
count the current operating temperature and frequency.
Researchers have shown that process variation causes IC
speed to vary up to 30% [2]. Hence, using a single sup-
ply voltage setting does not exploit the variation in slack
present among processors. We propose to take advantage
of this variation by a customization process that determines
the slack of the individual processor, as well as its depen-
dence on operating temperature. This offline measurement
is then used online to set dynamically supply voltage based
on frequency and temperature. The necessary processor
voltage is also highly dependent on temperature, as is pro-
cessor lifetime and reliability.

• User-Driven Frequency Scaling (UDFS) uses direct user
feedback to drive an online control algorithm that de-
termines the processor frequency (Section 3.2). We de-
scribe and evaluate two different frequency control algo-
rithms. UDFS automatically adapts OS power manage-
ment to user preferences. Processor frequency has strong
effects on power consumption and temperature, both di-
rectly and also indirectly through the need for higher volt-
ages at higher frequencies. Unlike voltage, however, the
choice of frequency is directly visible to the end-user as
it determines the performance. Just as there is variation
among processors, there is also variation among users with
respect to the satisfactory performance level for a given
workload mix. We exploit this variation to customize fre-
quency control policies dynamically to the user. Unlike
previous work, on which we elaborate in Section 5, our
approach employs direct feedback from the user during or-
dinary use of the machine.

We evaluate our techniques independently and together
through user studies conducted on a modern Pentium M laptop
running Windows applications. Our studies, described in de-
tail in Section 4, include both single task and multitasking sce-
narios. We measure the overall system power and temperature
reduction caused by our methods. Combining PDVS and the
best UDFS scheme reduces measured system power by 49.9%
(27.8% PDVS, 22.1% UDFS), averaged across all our users and
applications, compared to the Windows XP DVFS scheme. The
average temperature of the CPU is decreased by 13.2◦C on av-
erage. Using user trace-driven simulation to evaluate the CPU
only, we find average CPU dynamic power savings of 57.3%
(32.4% PDVS, 24.9% UDFS), with a maximum of reduction
83.4%. In a multitasking environment, the same UDFS+PDVS
technique reduces the CPU dynamic power by 75.7% on aver-
age.

1.1 Experimental setup

Our experiments were done using an IBM Thinkpad T43p
with a 2.13 GHz Pentium M-770 CPU and 1 GB memory run-
ning Microsoft Windows XP Professional SP2. Although eight
different frequency levels can be set on the Pentium M-770 pro-
cessor, only six can be used due to limitations in the SpeedStep
technology.

In all of our studies, we make use of three application tasks,
some of which are CPU intensive and some of which frequently
block while waiting for user input:

• Creating a presentation using Microsoft PowerPoint 2003
while listening to background music using Windows Me-
dia Player 10. The user duplicates a presentation consist-
ing of complex diagrams involving drawing and labeling,
starting from a hard copy of a sample presentation.

• Watching a 3D Shockwave animation using the Microsoft
Internet Explorer web browser. The user watches the an-
imation and is encouraged to press the number keys to
change the camera’s viewpoint. The animation was stored
locally. Shockwave options were configured so that ren-
dering was done entirely in software on the CPU.

• Playing the FIFA 2005 Soccer game. FIFA 2005 is a pop-
ular and widely-used First Person Shooter game. There
were no constraints on user gameplay.

In the following sections, we describe the exact durations of
these tasks for each user study and additional tasks the user was
asked to undertake. In general, our user studies are double-
blind, randomized, and intervention-based. The default Win-
dows DVFS scheme is used as the control. We developed a user
pool by advertising our studies within Northwestern University.
We selected a random group of users from among those who
responded to our advertisement. While many of the selected
users were CS, CE, or EE graduate students, our users included
staff members and undergraduates from the humanities. Each
user was paid $15 for participating. Our studies ranged from
number of users n = 8 to n = 20, as described in the material
below.

2 Process-Driven Voltage Scaling (PDVS)

Current DVFS techniques are pessimistic about the proces-
sor, which leads them to often use higher voltages than neces-
sary for stable operation, especially when they have low tem-
peratures. We elaborate on this pessimism and then explain our
response to it, process-driven voltage scaling (PDVS). Evalua-
tions of PDVS are given in Section 4.

2.1 Pessimism about the CPU

In this section, we analyze the minimum stable voltages of a
CPU under different operating conditions. The minimum stable

2

voltage is defined as the supply voltage that guarantees correct
execution for a given processing and environmental conditions.
It is mainly determined by the critical path delay of a circuit.
This delay consists of two components: transistor gate delay
and wire delay. Gate delay is inversely related to the operating
voltages used in the critical paths of the circuit. Furthermore,
temperature affects the delay. Carrier mobility in MOS transis-
tors decreases with increasing temperature, i.e., hot transistors
switch more slowly. Wire delay is also temperature-dependent
and increases under higher current/temperature conditions. The
maximum operating frequency (Fmax) varies in direct propor-
tion to the sustained voltage level in the critical timing paths,
and inversely with temperature-dependent RC delay [26]. In ad-
dition to the operating conditions, which dynamically change,
process variations also have an important impact on the mini-
mum voltage sufficient for stable operation. Even in identical
environments, a variation in time slack is observed among all
the manufactured processors of the same manufactured family.
As a result, each processor reacts differently to changes. For ex-
ample, although two processors can run safely at 2.8 GHz at the
default supply voltage, it is conceivable that the minimum sup-
ply voltages for them will differ. Customizing voltage choices
for individual processors adapts to, and exploits, these varia-
tions. Despite these known effects of process variation and tem-
perature on minimum stable voltage, DVFS ignores them: for
a given frequency, the traditional DVFS scheme uses a single
voltage level for all the processors within a family at all times.

The dynamic power consumption of a processor is directly
related to frequency and supply voltage and can be expressed
using the formula P = V 2CF , which states that power is equal
to the product of voltage squared, capacitance, and frequency.
In addition to its direct impact on the power consumption, reli-
able operation at increased frequency demands increased sup-
ply voltage, thereby having an indirect impact on the power
consumption. In general, if the frequency is reduced, a lower
voltage can be safely used.

As processors, memories, and application-specific integrated
circuits (ASICs) are pushed to higher performance and higher
transistor density, processor thermal management is quickly be-
coming a first-order design concern. The maximum operat-
ing temperature of an Intel Pentium Mobile processor has been
specified as 100◦C [14, 15]. As a general rule of thumb, the op-
erating temperature of a processor can vary from 50◦C to 90◦C
during normal operation. Thus, there is a large difference be-
tween normal and worst-case temperature.

We performed an experiment that reveals the relationship be-
tween operating frequency and minimum stable voltage of the
processor at different temperature ranges. We used Notebook
Hardware Control (NHC) [16] to set a particular Vdd value for
each operating frequency supported by the processor. When a
new voltage value is set, NHC runs an extensive CPU stabil-
ity check. Upon failure, the system stops responding and com-
puter needs to be rebooted. We execute a program that causes
high CPU utilization and raises the temperature of the processor.
When the temperature reaches a desired range, we perform the

Stable Vdd

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

55 65 75 85

Temperature in Celcius degrees

R
el

at
iv

e
V

d
d

1,06 GHz

1,20 GHz

1,33 GHz

1,46 GHz

1,60 GHz

1,86 GHz

2,13 GHz

Figure 1. Minimum stable Vdd.

CPU stability check for a particular frequency at a user-defined
voltage value.

Table 1 shows the results of this study for the machine de-
scribed in Section 1.1. For reference, we also show the nominal
core voltage given in the datasheet [15]. Note that the nominal
voltage is the voltage used by all the DVFS schemes by default.
The results reveal that, even at the highest operating tempera-
ture, the minimum stable voltage is far smaller than the nominal
voltage. The results also show that at lower operating frequen-
cies, the effect of temperature on minimum stable voltage is not
pronounced. However, temperature change has a significant im-
pact on minimum stable voltage at higher frequencies. In par-
ticular, at 1.46 GHz, the core voltage value can vary by 5.6%
for a temperature change of 30◦C. This would cause a differ-
ence of 11.4% in dynamic power consumption. Figure 1 shows
the relative change in supply voltages at different frequencies.
Note that for all frequency levels above 1.20 GHz, the minimum
stable voltage is affected by processor temperature.

As the results shown in Table 1 illustrate, there is an op-
portunity for power reduction if we exploit the relationship be-
tween frequency, temperature, and the minimum stable voltage.
The nominal supply voltage specified in the processor datasheet
has a large safety margin over the minimum stable voltages.
This is not surprising: worst-case assumptions were unneces-
sarily made at a number of design stages, e.g., about temper-
ature. Conventional DVFS schemes are therefore pessimistic
about particular individual CPUs, often choosing higher volt-
ages than are needed to operate safely. In addition, they omit
the effect of temperature, losing the opportunity to save further
power.

2.2 Technique

We have developed a methodology for exploiting the process
variation described in Section 2.1 that can be used to make any
voltage and frequency scaling algorithm less pessimistic about
the CPU and its temperature, thereby permitting a reduction in
power consumption.

Our technique uses offline profiling of the processor to find
the minimum stable voltages for different combinations of tem-
perature and frequency. Online temperature and frequency
monitoring is then used to set the voltage according to the pro-

3

Operating Nominal Stable Vdd (V) at temp ranges (◦C)
Freq. (MHz) Voltage 52–57 62–67 72–77 82–87

800 0.988 0.736 0.736 0.736 0.736
1,060 1.068 0.780 0.780 0.780 0.780
1,200 1.100 0.796 0.796 0.796 0.796
1,330 1.132 0.844 0.844 0.860 0.876
1,460 1.180 0.876 0.892 0.908 0.924
1,600 1.260 0.908 0.924 0.924 0.924
1,860 1.324 1.004 1.004 1.020 1.020
2,130 1.404 1.084 1.100 1.116 1.116

Table 1. Minimum stable Vdd for different operating frequencies and temperatures.

file. The offline profiling is virtually identical to that of Sec-
tion 2.1 and needs to be done only once. To apply our scheme,
the temperature is read from the online sensors that exist in
the processor. The frequency, on the other hand, is determined
by the dynamic frequency scaling algorithm in use. By setting
the voltage based on the processor temperature, frequency, and
profile, we adapt to the operating environment. While the fre-
quency can be readily determined (or controlled), temperature
changes dynamically. Hence, the algorithm should have built-
in filtering and headroom to account for this fact. Therefore,
our algorithm behaves conservatively and sets the voltage such
that even if there is a change of 5◦C in temperature before the
next reading (which happens every second), the processor will
continue working correctly.

To determine processor reliability when using reduced oper-
ating voltage, programs were run to test the stability of differ-
ent processor components, e.g., the ALU, at lower voltages. We
have set the processor to work at modified supply voltages as
indicated in Table 1. We have worked with the same settings
for approximately two months without any failures. Although
observing the stable operation of one machine does not prove
reliability, it gives evidence that the proposed approach is fea-
sible. We are exploiting processor-dependent and temperature-
dependent characteristics in order to minimize power consump-
tion under a fixed constraint on reliability. This approach will be
applicable to the majority of the processors with varying impact
based on the amount of time slack available for the particular
processor and temperature.

3 User-Driven Frequency Scaling (UDFS)

Current DVFS techniques are also pessimistic about the user,
which leads them to often use higher frequencies than necessary
for satisfactory performance. In this section, we elaborate on
this pessimism and then explain our response to it, user-driven
frequency scaling (UDFS). Evaluations of UDFS algorithms are
given in Section 4.

UDFS builds on insights first exposed in our work exploring
user comfort with resource borrowing [13] and in using direct
user input in CPU scheduling [17].

3.1 Pessimism about the user

Current software that drives DVFS is pessimistic about the
individual user’s reaction to the slowdown that may occur when
CPU frequency is reduced. Typically, the frequency is tightly
tied to CPU usage. A burst of computation due to, for example,
a mouse or keyboard event brings utilization quickly up to 100%
and drives frequency, voltage, and power consumption up along
with it. CPU-intensive applications also immediately cause an
almost instant increase in operating frequency and voltage.

In both cases, the CPU utilization is functioning as a proxy
for user comfort. Is it a good proxy? To find out, we conducted
a small (n = 8) randomized user study, comparing four pro-
cessor frequency strategies including dynamic, static low fre-
quency (1.06 GHz), static medium frequency (1.33 GHz), and
static high frequency (1.86 GHz). The dynamic strategy is the
default DVFS used in Windows XP Professional. Note that the
processor maximum frequency is 2.13 GHz. We allowed the
users to acclimate to the full speed performance of the machine
and its applications for 4 minutes and then carried out the tasks
described in Section 1.1, with the following durations:

• PowerPoint (4 minutes in total, 1 minute per strategy)

• Shockwave (80 seconds in total, 20 seconds per strategy)

• FIFA (4 minutes in total, 1 minute per strategy)

Users verbally ranked their experiences after each task/strategy
pair on a scale of 1 (discomfort) to 10 (very comfortable). Note
that for each application, strategies were tested in random order.

Figure 2 illustrates the results of the study in the form of
overlapped histograms of the participants’ reported comfort
level for each of four strategies. Consider Figure 2(a), which
shows results for the PowerPoint task. The horizontal axis dis-
plays the range of comfort levels allowed in the study and the
vertical axis displays the count of the number of times that level
was reported. The other graphs are similar.

User comfort with any given strategy is highly dependent
on the application. For PowerPoint, the strategies are indistin-
guishable in their effectiveness. For this task, we could sim-
ply set the frequency statically to a very low value and never
change it, presumably saving power. For animation, a higher
static level is preferred but the medium and high frequencies

4

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Comfort level

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(a) Microsoft PowerPoint.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Comfort level

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(b) 3D Shockwave animation.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Comfort level

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(c) FIFA Game.

Figure 2. User pessimism.

are statistically indistinguishable from the dynamic strategy de-
spite not using as high a frequency. For the game, the high static
setting is needed to match the satisfaction level of the dynamic
strategy. However, that setting does not use the highest possible
frequency, which was used by the dynamic strategy throughout
the experiment.

Comfort with a given strategy is strongly user-dependent,
i.e., it is important to note that for any particular strategy, there
is considerable spread in the reported comfort levels. Our dy-
namic policy automatically adapts to different users and appli-
cations. Hence, it can reduce power consumption while still
achieving high user satisfaction.

3.2 Technique

To implement user-driven frequency scaling, we have built
a system that consists of client software that runs as a Win-
dows toolbar task as well as software that implements CPU fre-
quency and temperature monitoring. In the client, the user can
express discomfort at any time by pressing the F11 key (the use
of other keys or controls can be configured). These events drive

the UDFS algorithm. The algorithm in turn uses the Windows
API to control CPU frequency. We monitor the CPU frequency
using Windows Performance Counter and Log [20] and temper-
ature using CPUCool [28].

It is important to note that a simple strategy that selects a
static frequency for an application (and/or for a user) is inade-
quate for three reasons. First, each user will be satisfied with
a different level of performance for each application. Finding
these levels statically would be extremely time consuming. Sec-
ond, typical users multitask. Capturing the effects of multiple
applications would necessitate examining the power set of the
application set for each individual user, resulting in a combi-
natoric explosion in the offline work to be done. Finally, even
when a user is working with a single application, the behavior of
the application and the expected performance varies over time.
Applications go through phases, each with potentially different
computational requirements. In addition, the user’s expected
performance is also likely to change over time as the user’s pri-
orities shift. For these reasons, a frequency scaling algorithm
should dynamically adjust to the user’s needs.

5

In response to these observations, we designed two algo-
rithms that respond to user experience feedback indicated via
button presses.

3.2.1 UDFS1 Algorithm

UDFS1 is an adaptive algorithm that can be viewed as an ex-
tension/variant of the TCP congestion control algorithm. The
TCP congestion control algorithm [24, 27, 3, 9] is designed to
adapt the send rate dynamically to the available bandwidth in
the path. A congestion event corresponds to a user button press,
send rate corresponds (inversely) to CPU frequency, and TCP
acknowledgments correspond to the passage of time.

UDFS1 has two state variables: r, the current control value
(CPU frequency) and rt (the current threshold). Adaptation is
controlled by three constant parameters: ρ, the rate of increase,
α = f(ρ), the slow start speed, and β = g(ρ), the additive
increase speed. Like TCP, UDFS1 operates in three modes, as
described below.

• Slow Start (Exponential Increase): If r < rt, we increase r
exponentially fast with time (e.g., r ∝ 2αt). Note that fre-
quency settings for most processors are quantized and thus
the actual frequency changes abruptly when quantization
levels are crossed.

• User event avoidance (Additive Increase): If no user feed-
back is received and r ≥ rt, r increases linearly with time,
r ∝ βt.

• User event (Multiplicative Decrease): When the user ex-
presses discomfort at level r we immediately set rt =
rt − 1 and set r to the initial (highest) frequency.

This behavior is virtually identical to that of TCP Reno, except
for the more aggressive setting of the threshold.

Additionally, unlike TCP Reno, we also control ρ, the key
parameter that controls the rate of exponential and linear in-
crease from button press to button press. In particular, for every
user event, we update ρ via

ρi+1 = ρi

(
1 + γ × Ti − TAV I

TAV I

)

where Ti is the latest inter-arrival time between user events.
TAV I is the target mean inter-arrival time between user events,
as currently preset by us. γ controls the sensitivity to the feed-
back.

We set our constant parameters (TAV I = 120, α = 1.5, β =
0.8, γ = 1.5) based on the experience of two of the authors us-
ing the system. These parameters were subsequently used when
conducting a user study to evaluate the system (Section 4). Ide-
ally, we would empirically evaluate the sensitivity of UDFS1
performance to these parameters. However, it is important to
note that any such study would require having real users in
the loop, and thus would be quite slow. Testing five values of
each parameter on 20 users would require 312 days (based on 8
users/day and 45 minutes/user). For this reason, we decided to

choose the parameters based on qualitative evaluation by the au-
thors and then “close the loop” by evaluating the whole system
with the choices.

Figure 3(a) illustrates the execution of the UDFS1 and Win-
dows DVFS algorithms for a typical user during the FIFA game
task. Note that Windows DVFS causes the system to run at
the highest frequency during the whole execution period except
the first few seconds. On the other hand, the UDFS1 scheme
causes the processor frequency to increase only when the user
expresses discomfort (by pressing the F11 key). Otherwise, it
slowly decreases.

3.2.2 UDFS2 Algorithm

UDFS2 tries to find the lowest frequency at which the user feels
comfortable and then stabilize there. For each frequency level
possible in the processor, we assign an interval ti, the time for
the algorithm to stay at that level. If no user feedback is received
during the interval, the algorithm reduces the frequency from ri

to ri+1, i.e., it reduces the frequency by one level. The default
interval is 10 seconds for all levels. If the user is irritated at
control level ri, we update all of our intervals and the current
frequency level via:

ti−1 = αti−1

tk = βtk,∀k.k �= i − 1
i = min(i − 1, 0)

Here α > 1 is the rate of interval increase and β < 1 is rate
of interval decrease. In our study, α = 2.5 and β = 0.8. This
strategy is motivated by the conjecture that the user was com-
fortable with the previous level and the algorithm should spend
more time at that level. Again, because users would have to be
in the inner loop of any sensitivity study, we have chosen the
parameters qualitatively and evaluated the whole system using
that choice, as described in Section 4. Figure 3(b) illustrates the
execution of the algorithm for a representative user in the FIFA
game task. Note that UDFS2 settles to a frequency of approxi-
mately 1.86 GHz, after which little interaction is needed.

4 Evaluation

We now evaluate PDVS and UDFS in isolation and together.
We compare against the native Windows XP DVFS scheme, dis-
playing reductions in power and temperature.

Our evaluations are based on user studies, as described in
Section 1.1 and elaborated upon here. For studies not involving
UDFS, we trace the user’s activity on the system as he uses the
applications and the selections DVFS makes in response. For
studies involving UDFS, the UDFS algorithm is used online to
control the clock frequency in response to user button presses.
We begin by studying PDVS as applied to the Windows DVFS
scheme. Next, we compare DVFS against UDFS with and
without PDVS. These evaluations concern dynamic CPU power

6

500

700

900

1100

1300

1500

1700

1900

2100

2300

8:36:52 8:37:43 8:38:43 8:39:40 8:40:35 8:41:38 8:42:32 8:43:26 8:44:28

Time

P
ro

ce
ss

o
r

fr
eq

u
en

cy

UDFS1 Windows DVFS

(a) UDFS1 scheme

500

700

900

1100

1300

1500

1700

1900

2100

2300

8:54:00 8:54:40 8:55:23 8:56:11 8:56:58 8:57:41 8:58:24 8:59:08 8:59:52 9:00:32 9:01:12 9:01:5

Time

P
ro

ce
ss

o
r

fr
eq

u
en

cy

UDFS2 Windows DVFS

(b) UDFS2 scheme

Figure 3. The frequency for UDFS schemes during FIFA game for a representative user.

and are done using trace-driven simulation. Next, we measure
the system power used by DVFS, UDFS, and UDFS+PDVS
through trace-driven emulation on actual hardware. In measure-
ment, we consider not only power consumption, but also CPU
temperature. Finally, we discuss a range of issues involving the
amount of user feedback needed and the effects of multitasking.

The following claims are supported by the evidence given in
this section:

• PDVS can be easily incorporated into any existing DVFS
scheme, such as the default Windows scheme, and leads
to dramatic reductions in power use by lowering voltage
levels while maintaining processor stability.

• UDFS effectively employs user feedback to customize pro-
cessor frequency to the individual user. This typically
leads to significant power savings compared to existing dy-
namic frequency schemes that rely only on CPU utilization
as feedback. The amount of feedback from the user is rea-
sonable, and declines quickly over time as an application
or set of applications is used.

• In most of the cases, the effects of PDVS and UDFS are
synergistic: the power reduction of UDFS+PDVS is more
than the sum of its parts.

• Multitasking increases the effectiveness of UDFS+PDVS.

• Together and separately, PDVS and UDFS typically de-
crease CPU temperature, often by large amounts, increas-
ing both reliability and longevity. In addition, the ef-
fects of PDVS and UDFS on temperature are synergistic.
UDFS+PDVS provides higher reductions than the sum of
its parts.

4.1 PDVS

Using the experimental setup described in Section 1.1, we
evaluated the effects of PDVS on the default Windows XP
DVFS scheme. In particular, we run the DVFS scheme, record-
ing frequency, then determine the power saving possible by set-
ting voltages according to PDVS instead of using the nominal
voltages of DVFS.

Table 4.1 illustrates the average results, comparing stock
Windows DVFS and our DVFS+PDVS scheme. The baseline
case in this experiment is running the system with the highest
possible CPU frequency and its corresponding nominal voltage.
The maximum power savings due to dynamic frequency scal-
ing with nominal voltages are observed for PowerPoint. For
this application, the system ran at the lowest clock frequency
most of the time, resulting in a reduction of 83.1% for the native
DVFS scheme. DVFS+PDVS reduces the power consumption
by 90.7%, improving the effectiveness of DVFS by 45.4%.

For the Shockwave animation and the FIFA game, the power
reductions due to dynamic frequency scaling are negligible be-
cause the Windows DVFS scheme runs the processor at the
highest frequency most of the time. DVFS+PDVS, however,
improve the energy consumption of the system by approxi-
mately 40%, compared to the baseline. These results clearly
demonstrate the benefits of process-driven voltage scaling.

The third column in Table 4.1 records the average reduc-
tion in power consumption when PDVS scheme is implemented
over native DVFS. For all the three applications, the observed
improvement is 40.9% on average (45.4%, 38.7%, and 38.7%,
respectively). The highest improvement seen in the PowerPoint
application because system runs at the lowest frequency most of
the time. As shown in Table 1, the relative difference in nominal
voltage and minimum stable voltage is higher at lower frequen-
cies.

7

Power Reduction (%)
Application over Max Freq. Improvement (%)

DVFS DVFS+PDVS
PowerPoint + Music 83.08 90.67 45.38

3D Shockwave Animation 3.19 40.67 38.72
FIFA Game 1.69 39.69 38.64

Table 2. Power reduction for Windows DVFS and DVFS+PDVS

4.2 UDFS

To evaluate the UDFS schemes, we ran a study with 20 users.
Experiments were conducted as described in Section 1.1. Each
user spent 45 minutes to

1. Fill out a questionnaire stating level of experience in the
use of PCs, Windows, Microsoft PowerPoint, music, 3D
animation video, and FIFA 2005 (2 minutes) from among
the following set: “Power User”, “Typical User”, or “Be-
ginner”.

2. Read a one page handout (2 minutes).

3. Acclimate to the performance of our machine by using the
above applications (5 minutes).

4. Perform the following tasks for UDFS1: Microsoft Power-
Point plus music (4 minutes); 3D Shockwave animation (4
minutes); FIFA game (8 minutes).

5. Perform the same set of tasks for UDFS2.

Each user was instructed to press the F11 key upon discomfort
with application performance. we recorded each such event as
well as the CPU frequency over time.

Figure 4 illustrates the performance of the two algorithms
in our study. The two columns represent UDFS1 and UDFS2
and the three rows represent the three applications. Each graph
shows, as a function of time, the minimum, average, maximum,
and standard deviation of CPU frequency, aggregated over our
20 users. Notice that almost all users felt comfortable using
PowerPoint while the processor was running at the lowest fre-
quency. As one might expect, the average frequency at which
users are comfortable is higher for the Shockwave animation
and the FIFA game. There is large variation in acceptable fre-
quency among the users for the animation and game. Gener-
ally, UDFS2 achieves a lower average frequency than UDFS1.
For both algorithms it is very rare to see the processor run
at the maximum CPU frequency for these applications. Even
the most sophisticated users were comfortable with running the
tasks with lower frequencies than those selected by the dynamic
Windows DVFS scheme. The effect of UDFS on CPU power
consumption is presented in the following two sections.

4.3 UDFS+PDVS (CPU dynamic power, trace-driven
simulation)

To integrate PDVS and UDFS, we used the system described
in Section 3.2, recording frequency over time. We then com-

bine this frequency information with the offline profile and tech-
niques described in Sections 2.1 and 2.2 to derive CPU power
savings for UDFS with nominal voltages, UDFS+PDVS, and
the default Windows XP DVFS strategy. We calculate the power
consumption of the processor. We have also measured online
the power consumption of the overall system, as described in
Section 4.4.

We conducted a user study (n = 20) with exactly the same
structure presented in Section 3.2, except that Windows XP
DVFS was also considered. Figure 5 presents both individ-
ual user results and average results for UDFS1, UDFS1+PDVS,
UDFS2, and UDFS2+PDVS. In each case, power savings over
the default Windows DVFS approach are reported. To inter-
pret the figure, first choose an application. Next, note the last
two bars on the corresponding graph. These indicate the av-
erage performance of UDFS1 and UDFS2, meaning the per-
centage reduction in power use compared to Windows DVFS.
Each bar is broken into two components: the performance of the
UDFS algorithm without PDVS is the lower component and the
improvement in performance of the algorithm combined with
PDVS is the upper component. The remaining bars on the graph
have identical semantics, but represent user-specific informa-
tion.

For PowerPoint, UDFS1+PDVS and UDFS2+PDVS reduce
power consumption by an average of 56%. The standalone
UDFS algorithms reduce it by an average of 17–19%. User 3
with UDFS2 is anomalous. This user pressed the feedback but-
ton several times and as a result spent most of the time at high
frequencies.

For the Shockwave animation, we see much more mixed re-
sponses from the users, although on average we reduce power
by 55.1%. On average, UDFS1 and UDFS2 independently re-
duce the power consumption by 15.6% and 32.2%, respectively.
UDFS2 performs better for this application because the users
can be satisfied by ramping up to a higher frequency rather than
the maximum frequency supported by the processor. Note that
UDFS1 immediately moves to the maximum frequency on a
button press. User 17 with UDFS1 is anomalous. This user
wanted the system to perform better than the hardware per-
mitted and thus pressed the button virtually continuously even
when it was running at the highest frequency. Adding PDVS
lowers average power consumption even more significantly. On
average, the power is reduced by 49.2% (UDFS1+PDVS) and
61.0% (UDFS2+PDVS) in the combined scheme.

The FIFA game also exhibits considerable variation among
users. Using conventional DVFS, the system always runs at the

8

0

500

1000

1500

2000

2500

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229
Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

0

500

1000

1500

2000

2500

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

(a) UDFS1 - PowerPoint (b) UDFS2 - PowerPoint

0

500

1000

1500

2000

2500

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

0

500

1000

1500

2000

2500

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

(c) UDFS1 - Shockwave (d) UDFS2 - Shockwave

0

500

1000

1500

2000

2500

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

0

500

1000

1500

2000

2500

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

(e) UDFS1 - Game (f) UDFS2 - Game

Figure 4. Frequency over time for UDFS1 and UDFS2, aggregated over 20 users.

highest frequency. The UDFS schemes try to throttle down the
frequency over the time. They therefore reduce the power con-
sumption even in the worst case (0.9% and 2.1% for UDFS1 and
UDFS2, respectively) while achieving better improvements, on
average (16.1% and 25.5%, respectively). Adding PDVS im-
proves the average power savings to 49.5% and 56.7% for
UDFS1 and UDFS2, respectively.

For the Shockwave animation and the FIFA game, we see a
large variation among users, but in all cases the combined ef-
fect of PDVS and UDFS leads to power savings over Windows
DVFS. On average, in the best case, the power consumption can
be reduced by 57.3% over existing DVFS schemes for all three
applications. This improvement is achieved by combining the
UDFS2 (24.9%) and PDVS (32.4%) schemes.

UDFS and PDVS are synergistic. The UDFS algorithms let

us dramatically decrease the average frequency, and PDVS’s
benefits increase as the frequency is lowered. At higher fre-
quencies, the relative change from the nominal voltage to the
minimum stable voltage is lower than that at lower frequencies.
In other words, the power gain from shifting to the minimum
stable voltage is higher at the lower frequencies. However, at
higher frequencies, PDVS also gains from the variation in min-
imum stable voltage based on temperature as shown in Table 1.
These two different advantages of the PDVS result in power im-
provement at different frequencies.

User self-reported level of experience correlates with power
improvement. For example, for FIFA, experienced users expect
faster response from the system causing the system to runs at
higher frequencies, resulting smaller power improvements. Our
interpretation is that familiarity increases both expectations and

9

-20

-10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

(a) Microsoft PowerPoint

-10

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

(b) 3D Shockwave animation

-10

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

(c) FIFA game

Figure 5. Comparison of UDFS+PDVS and Windows XP DVFS.

the rate of user feedback to the control agent, making annoyance
with reduced performance more probable and thus leading to
higher frequencies when using the UDFS algorithms.

4.4 UDFS+PDVS (System power and temperature
measurement)

To further measure the impact of our techniques, we replay
the traces from the user study of the previous section on our lap-
top. The laptop is connected to a National Instruments 6034E
data acquisition board attached to the PCI bus of a host work-
station running Linux, which permits us to measure the power
consumption of the entire laptop. The sampling rate is 10 Hz.
Figure 6 shows the experimental setup. Note that during the

measurements, we have turned off the display of the laptop to
make our readings closer to the CPU power consumption. Ide-
ally, we would have preferred to measure CPU power directly
for comparison with results of the previous section, but we do
not have the surface mount rework equipment needed to do so.

4.4.1 Power

Figure 7 presents results for UDFS1, UDFS1+PDVS, UDFS2,
and UDFS2+PDVS, showing the power savings over the default
Windows DVFS approach.

For PowerPoint, UDFS1+PDVS and UDFS2+PDVS reduce
power consumption by averages of 22.6% and 22.7%, respec-
tively. For the Shockwave animation, although we see much

10

Figure 6. Power measurement setup.

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

(a) Microsoft PowerPoint

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

(b) 3D Shockwave animation

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

(c) FIFA Game

Figure 7. Power improvement of the overall system over Windows DVFS.

11

more variety, UDFS1 and UDFS2 reduce the power consump-
tion by 17.2% and 33.6%, respectively. Using UDFS together
with PDVS lowers average power consumption by 38.8% and
30.4% with UDFS1 and UDFS2, respectively. The FIFA game
also shows considerable variation among users. On average, we
save 15.5% and 29.5% of the power consumption for UDFS1
and UDFS2, respectively. Adding PDVS improves the average
power savings to 56.8% and 62.9% with UDFS1 and UDFS2,
respectively.

On average, the power consumption of the overall system
can be reduced by 49.9% for all three applications. This
improvement is achieved by combining the UDFS2 scheme
(22.1%) and PDVS scheme (27.8%).

The results presented in the previous section, and in this sec-
tion, cannot be directly compared because the previous section
reports the simulated power consumption of the CPU and this
section reports the measured power consumption of the laptop.
However, some conclusions can be drawn from the data in both
sections. For applications like PowerPoint, where the CPU con-
sumes only a small fraction of the system power, the benefit on
system power is low. On the other hand, for the applications
that originally result in high CPU power consumption, the sys-
tem power savings can be substantial due to the reduction in
dynamic power as well as the operating temperatures (c.f. Sec-
tion 4.4.2) and consequently leakage power.

4.4.2 Temperature

We used CPUCool [28] to measure CPU temperature in the
system. Figure 8 shows the mean and peak temperatures of
the system when using the different combinations of DVFS,
PDVS, and UDFS schemes. The values reported for UDFS and
UDFS+PDVS are the averages over 20 users.

In all cases, the UDFS1 and UDFS2 schemes lower the tem-
perature compared to the Windows native DVFS scheme due
to the power reductions we have reported in the previous sec-
tions. The maximum UDFS temperature reduction is seen in
the case of the UDFS2 scheme used for the Shockwave appli-
cation (7.0◦C). On average, for all 3 applications, the UDFS1
and UDFS2 schemes reduce the mean temperature of the sys-
tem by 1.8◦C and 3.8◦C, respectively. Similarly, PDVS reduces
the mean system temperature by 8.7◦C on average for the three
applications. The best improvement is observed for the FIFA
game when the mean temperature is decreased by 12.6◦C.

The combination of PDVS and UDFS is again synergistic,
leading to even greater temperature reductions than PDVS or
UDFS, alone. For the Shockwave application, UDFS2+PDVS
reduces the mean temperature by 19.3◦C. The average temper-
ature reductions in all three applications by the UDFS1+PDVS
and UDFS2+PDVS schemes are 12.7◦C and 13.7◦C, respec-
tively.

4.5 Discussion

We now discuss the degree of user interaction needed to
make UDFS work, the CPU reliability and longevity benefits

of our techniques, and the effects of multitasking.

User interaction While PDVS can be employed without user
interaction, UDFS requires occasional feedback from the user.
Minimizing the required rate of feedback button presses while
maintaining effective control is a central challenge. Our cur-
rent UDFS algorithms perform reasonably well in this respect,
but could be improved. Table 4.5 presents the average number
of annoyance button presses over a 4 minute period for both
versions of UDFS algorithms in our 20 user study. Generally,
UDFS2 requires more frequent button presses than UDFS1, be-
cause a single press only increments the frequency. The trade-
off is that UDFS1 generally spends more time at the maximum
frequency and thus is more power hungry. On average, a user
pressed a button every 8 minutes for PowerPoint, every 18 sec-
onds for the Shockwave animation, and every 50 seconds for
the FIFA game. During the course of the study, for the 3D an-
imation, there were some extreme cases in which the user kept
pressing the button even when the processor was running at the
highest frequency. This can be explained by the user’s dissat-
isfaction with the original quality of the video or the maximum
performance available from the CPU, over which we had no
control. If we omit the three most extreme cases from both
maximum and minimum number of annoyances, on average a
user presses the annoyance button once every 30 seconds for the
Shockwave application.

We also note that the system adapts to users quickly, leading
to a reduced rate of button presses. In the Table 4.5, we show
both the first and second 4 minute interval for the FIFA game.
The number of presses in the second interval is much smaller
than the first. Our interpretation is that once a stable frequency
has been determined by the UDFS scheme, it can remain at that
frequency for a long time, without requiring further user inter-
action.

Table 4 records the average number of voltage transitions for
the six different schemes used in our study. A voltage transition
is caused either due to a button press or a significant change
in operating temperature. For the PowerPoint application, we
observe a reduction in the number of transitions because the
spikes observed for DVFS do not occur for UDFS1 and UDFS2.
On the other hand, the 3D animation and FIFA Game appli-
cations have more voltage transitions than observed with Win-
dows native DVFS, because they aim to reduce power by ad-
justing throttle and, in effect, voltage. In contrast, conventional
DVFS keeps the system at the highest frequency during the en-
tire interval. The increase in the number of average transitions
for the PDVS schemes implemented on top of UDFS are caused
by the extra voltage transitions due to changing temperature at
a given frequency level.

Reliability and longevity In addition to its direct impact on
power consumption, our techniques may ultimately improve the
lifetime reliability of a system. Earlier research [23] showed
that the effect of operating temperature on mean time to failure
(MTTF) is exponential. As we show in Section 4.4.2, the pro-

12

40

50

60

70

80

90

100

DVFS UDFS1 UDFS2 DVFS+PDVS UDFS1+PDVS UDFS2+PDVS

Mean Max

(a) Microsoft PowerPoint

40

50

60

70

80

90

100

DVFS UDFS1 UDFS2 DVFS+PDVS UDFS1+PDVS UDFS2+PDVS

Mean Max

(b) 3D Shockwave animation

40

50

60

70

80

90

100

DVFS UDFS1 UDFS2 DVFS+PDVS UDFS1+PDVS UDFS2+PDVS

D
eg

re
e

C
el

ci
u

s

Mean Max

(c) FIFA game

Figure 8. Mean and peak temperature measurement.

Algorithms
PowerPoint 3D animation FIFA Game

4 min 4 min 4 min 4 min
UDFS1 0.35 11.85 5.10 3.42
UDFS2 0.60 14.25 6.50 3.82

Table 3. Average number of user events.

Applications DVFS DVFS+PDVS UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS
PowerPoint+Music 11.00 11.00 4.40 4.65 6.55 6.50

3D Animation 3.00 4.00 10.30 11.50 16.3 17.55
FIFA Game 6.00 6.00 18.06 18.05 28.85 29.30

Table 4. Number of voltage transitions

13

posed schemes can reduce the operating temperature by 13.2◦C
on average, thereby potentially reducing the rate of failure due
to temperature-dependant processes such as electromigration.

Traditionally, the required supply voltage of a processor is
reported at the maximum operating temperature of the system.
Therefore, at temperatures below the maximum rated temper-
ature, timing slack exists. As long as the current temperature
is below the highest rated operating temperature, the operating
voltage can be reduced below the rated operating voltage with-
out reducing reliability below that of the same processor oper-
ating at the rated voltage and at the maximum temperature.

Multitasking A natural question to ask is whether the ex-
tremely simple “press the button” user feedback mechanism we
use in UDFS is sufficient for describing user preferences in a
multitasking environment. To see the effect of UDFS in a mul-
titasking environment, we conducted a small study (n = 8) sim-
ilar to that of Section 4.2. Instead of several consecutive tasks,
the user was asked to watch a 3D animation using the Microsoft
Internet Explorer web browser while listening to MP3 music
using Windows Media Player in compact mode with visualiza-
tion.

Figure 9 shows the measured system power improvements
compared to Windows DVFS. On average, the power consump-
tion of the overall system is reduced by 29.5% and 55.1% for
UDFS1 and UDFS2, respectively. Adding PDVS improves the
average power savings to 58.6% and 75.7% for UDFS1 and
UDFS2, respectively. Although these results are preliminary,
combined with the results from the combined PowerPoint+MP3
task described in Section 4.2, they suggest that the simple feed-
back mechanism is sufficient in a multitasking environment. It
is clearly a better proxy of the user’s satisfaction than the CPU
utilization of the combined task pool.

5 Related work

Dynamic voltage and frequency scaling (DVFS) is an effec-
tive technique for microprocessor energy and power control for
most modern processors [12, 4]. Energy efficiency has been
a major concern for mobile computers. Fei et. al. [10] pro-
posed an energy aware dynamic software management frame-
work that improves battery utilization for mobile computers.
However, this technique is only applicable to highly adaptive
mobile applications. Researchers have proposed algorithms
based on workload decomposition [6], but these tend to provide
power improvements only for memory-bound applications. Wu
et al. [29] presented a design framework of a run-time DVFS
optimizer in a general dynamic compilation system. The Ra-
zor [8] architecture dynamically finds the minimal reliable volt-
age level. This is similar to the PDVS scheme. However, our ap-
proach is completely software-oriented and does not require any
architectural modifications and therefore incurs no hardware
overhead. Other DVFS algorithms use task information, such
as measuring response times in interactive applications [19, 30]
as a proxy for the user. Unlike Vertigo [11], we monitor the user

instead of the application. We focus on the user because our ear-
lier research [13, 17] and the results presented here demonstrate
that there is tremendous variability in what different users find
acceptable for the same application. Anand et al. in [1] dis-
cussed the concept of a control parameter that could be used by
the user. However, they focus on the wireless networking do-
main, not the CPU. Second, it does not propose or evaluate a
user interface or direct user feedback. To the best of our knowl-
edge, the UDFS component of our work is the first to employ
direct user feedback instead of a proxy for the user.

Dynamic thermal management is an important issue for
modern microprocessors due to the high cost of cooling so-
lutions. Previous work has discussed microarchitectural mod-
eling and optimization based on temperature [7, 21, 22]. Liu
and Svensson made a trade-off between speed and supply volt-
age [18]. Brooks [5] proposed dynamic thermal manage-
ment for high-performance processors. For portable comput-
ers, Transmeta’s Crusoe [25] and Intel’s Pentium-M [12] are
notable commercial products that uses innovative dynamic ther-
mal management. To the best of our knowledge, the PDVS
component of our work is the first to consider exploiting pro-
cess variation via per-CPU customization using profiling. In
addition, it is the first scheme to consider temperature in volt-
age level decisions.

6 Conclusion

We have identified processor and user pessimism as key fac-
tors holding back effective power management for processors
with support for DVFS. In response, we have developed and
evaluated the following new, process- and user-adaptive DVFS
techniques: process-driven voltage scaling (PDVS) and user-
driven frequency scaling (UDFS). These techniques dramati-
cally reduce CPU power consumption in comparison with ex-
isting DVFS techniques. Extensive user studies show that we
can reduce power on average by over 50% for single task-
and over 75% for multitasking-workloads compared to the Mi-
crosoft Windows XP DVFS scheme. Furthermore, CPU tem-
peratures can be markedly decreased through the use of our
techniques. PDVS can be readily used along with any exist-
ing frequency scaling approach. UDFS requires that user feed-
back be used to direct processor voltage and frequency control.
PDVS and UDFS are synergistic. UDFS leads to lower average
frequencies and PDVS allows great decreases in voltage at low
frequencies.

References

[1] ANAND, M., NIGHTINGALE, E., AND FLINN, J. Self-
tuning Wireless Network Power Management. In The
Ninth Annual International Conference on Mobile Com-
puting and Networking (MobiCom’03) (2003).

[2] BORKAR, S., KARNIK, T., NARENDRA, S., TSCHANZ,
J., KESHAVARZI, A., AND DE, V. Parameter Variations

14

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 Mean

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Figure 9. Power improvement in the multitasking environment.

and Impact on Circuits and Microarchitecture. In Pro-
ceedings of the ACM/IEEE Design Automation Confer-
ence(DAC) (2003).

[3] BRAKMO, L. S., O’MALLEY, S. W., AND PETERSON,
L. L. TCP Vegas: New Techniques for Congestion De-
tection and Avoidance. In Proceedings of the Conference
on Communications Architectures, Protocols and Applica-
tions (1994), pp. 24–35.

[4] BROCK, B., AND RAJAMANI, K. Dynamic Power Man-
agement for Embedded Systems. In Proceedings of the
IEEE SOC Conference (2003).

[5] BROOKS, D., AND MARTONOSI, M. Adaptive Thermal
Management for High-Performance Microprocessors. In
Workshop on Complexity Effective Design (2000).

[6] CHOI, K., SOMA, R., AND PEDRAM, M. Dynamic Volt-
age and Frequency Scaling based on Workload Decompo-
sition. In Proceedings of The 2004 International Sympo-
sium on Low Power Electronics and Design (ISLPED ’04)
(2004), ACM Press, pp. 174–179.

[7] COHEN, A., FINKELSTEIN, F., MENDELSON, A., RO-
NEN, R., AND RUDOY, D. On Estimating Optimal Per-
formance of CPU Dynamic Thermal Management. IEEE
Computer Architecture Letters 2, 1 (2003), 6.

[8] ERNST, D., KIM, N. S., DAS, S., PANT, S., PHAM,
T., RAO, R., ZIESLER, C., BLAAUW, D., AUSTIN, T.,
AND MUDGE, T. Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. In ACM/IEEE Interna-
tional Symposium on Microarchitecture (MICRO) (2003).

[9] FALL, K., AND FLOYD, S. Simulation-based compar-
isons of Tahoe, Reno and SACK TCP. SIGCOMM Com-
puter Communication Review 26, 3 (1996), 5–21.

[10] FEI, Y., ZHONG, L., AND JHA, N. K. An Energy-aware
Framework for Coordinated Dynamic Software Manage-
ment in Mobile Computers. In IEEE/ACM Int. Symp.
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (2004).

[11] FLAUTNER, K., AND MUDGE, T. Vertigo: Automatic
performance-setting for linux. In Proceedings of the 5th
Symposium on Operating Systems Design and Implemen-
tation (OSDI) (December 2002).

[12] GOCHMAN, S., AND RONEN, R. The Intel Pentium M
processor: Microarchitecture and Performance. In Intel
Technology Journal (2003).

[13] GUPTA, A., LIN, B., AND DINDA, P. A. Measuring and
understanding user comfort with resource borrowing. In
Proceedings of the 13th IEEE International Symposium on
High Performance Distributed Computing (HPDC 2004)
(June 2004).

[14] INTEL CORPORATION. Intel Pentium M Datasheet.
http://developer.intel.com/design/mobile/pentiumm/documentation.htm

[15] INTEL CORPORATION. Intel Pen-
tium M Processor Thermal Management.
http://www.intel.com/support/processors/mobile/pm/sb/CS-
007971.htm.

[16] JAIDER, M. Notebook Hardware Control Personal Edi-
tion. http://www.pbus-167.com/chc.htm/.

[17] LIN, B., AND DINDA, P. Putting the user in direct con-
trol of cpu scheduling. Tech. Rep. NWU-EECS-06-09,
Department of Electrical Engineering and Computer Sci-
ence, Northwestern University, August 2006.

[18] LIU, D., AND SVENSSON, C. Trading Speed for Low
Power by Choice of Supply and Threshold Voltages. In
IEEE J. Solid-State Circuits (1993), vol. 28, pp. 10–17.

[19] LORCH, J., AND SMITH, A. Using User Interface Event
Information in Dynamic Voltage Scaling Algorithms. In
Technical Report UCB/CSD-02-1190, Computer Science
Division, EECS, University of California at Berkeley, Au-
gust 2002. (2002).

[20] MICROSOFT CORPORATION. Per-
formance Logs and Alerts overview.
http://www.microsoft.com/windows2000/en/advanced/help/.

15

[21] ROHOU, E., AND SMITH, M. Dynamically Managing
Processor Temperature and Power. In 2nd Workshop on
Feedback Directed Optimization (Nov 1999).

[22] SKADRON, K., STAN, M. R., SANKARANARAYANAN,
K., HUANG, W., VELUSAMY, S., AND TARJAN, D.
Temperature-aware Microarchitecture: Modeling and Im-
plementation. ACM Trans. Archit. Code Optim. 1, 1
(2004), 94–125.

[23] SRINIVASAN, J., ADVE, S. V., BOSE, P., AND RIVERS,
J. A. The Case for Lifetime Reliability-Aware Micropro-
cessors. In The International Symposium on Computer
Architecture(ISCA) (2004).

[24] STEVENS, W. TCP Slow Start, Congestion Avoidance,
Fast Retransmit and Fast Recovery Algorithms. In Internet
RFC 2001 (1997).

[25] TRANSMETA CORPORATION. The Technology behind the
Crusoe Processor, (2000).

[26] WAIZMAN, A., AND CHUNG, C. Resonant free Power
Network Design using Extended Adaptive Voltage Posi-
tioning (EAVP) Methodology. IEEE Transactions on Ad-
vanced Packaging 24, 3 (August 2001), 236–244.

[27] WANG, Z., AND CROWCROFT, J. Eliminating Periodic
Packet Losses in the 4.3-Tahoe BSD TCP Congestion
Control Algorithm. In ACM Computer Communications
Review (1992).

[28] WOLFRAM PODIEN. CPUCool.
http://www.cpufsb.de/CPUCOOL.HTM.

[29] WU, Q., REDDI, V., WU, Y., LEE, J., CONNORS, D.,
BROOKS, D., MARTONOSI, M., AND CLARK, D. W.
Dynamic Compilation Framework for Controlling Micro-
processor Energy and Performance. In 38th International
Symposium on Microarchitecture (MICRO-38) (2005).

[30] YAN, L., ZHONG, L., AND JHA, N. K. User-perceived
Latency based Dynamic Voltage Scaling for Interactive
Applications. In Proceedings of ACM/IEEE Design Au-
tomation Conference (DAC ’05) (2005).

16

