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Abstract

Over the past decade, wide-area distributed computing has emerged as a powerful computing paradigm. However, developing
applications to execute over the wide-area has remained a challenge, primarily due to issues involved in providing automatic,
dynamic and run-time adaptation. A virtual execution environment consisting of virtual machines (VMs) interconnected with
virtual networks provides opportunities to dynamically optimize, at run-time, the performance of existing, unmodified distributed
applications without any user or programmer intervention. Along with resource monitoring, inference and application-independent
adaptation mechanisms, efficient adaptation algorithms are key to the success of such an effort. In this paper we formalize the
adaptation problem in virtual execution environments. We show that this adaptation problem is NP-hard. Further, we characterize
the adaptation problem’s hardness of approximation and show that it is NP-hard to approximate within a factor of m1/2−δ for
any δ > 0, where m is the number of edges in the virtual overlay graph. We then present greedy adaptation algorithms followed
by an evaluation that shows that the greedy strategy works well in practice.

1. Introduction

Over the past decade, wide-area distributed comput-
ing has emerged as a powerful computing paradigm [1–
3]. However, developing applications for such environ-
ments has remained a challenge, primarily due to the is-
sues involved in designing automatic, dynamic and run-
time adaptation schemes. Any application running in a
distributed environment needs to adapt to available com-
putational and network resources to optimize its per-
formance. Despite many efforts [4, 5], until recently, all
adaptation in distributed applications had remained ap-
plication specific and dependent on direct involvement
of the developer or user. Such custom adaptation involv-
ing the user or developer is extremely difficult due to
the dynamic nature of application demands and resource
availability.

Since then it has been argued that OS-level virtual
machines (VMs) [6] provide a very flexible and pow-
erful abstraction to perform wide-area distributed com-
puting [7–9]. In particular, we have previously shown
that virtual execution environments consisting of virtual

machines tied together via virtual networks provide an
opportunity to dynamically optimize, at run-time, the
performance of existing, unmodified distributed applica-
tions running on existing, unmodified operating systems
without any user or programmer intervention [10, 11].
The relative virtualization overhead has been previously
shown to be less than 5% [7, 12], deeming this abstrac-
tion feasible.

Such virtual execution environments [11] provide
an ideal platform for inferring application resource
demands and measuring available computational and
network resources. Further, they also make available
application independent adaptation mechanisms such
as VM migration, overlay network topology and rout-
ing changes and resource reservations. However, the
key to success is an efficient algorithm to drive these
adaptation mechanisms as guided by the measured and
inferred data. To gain a better understanding of the
adaptation problem and to devise efficient algorithms
it is important to formalize and characterize the adap-
tation problem.

In this paper we provide a rigorous formalization of



the adaptation problem that occurs in virtual execution
environments. We characterize its computational com-
plexity and hardness of approximation. We also present
a few greedy algorithms that perform well in practice.
The contributions of this work include:

(i) Formalizing a real adaptation problem that occurs
in virtual execution environments. To the best of
our knowledge there currently exists no theoret-
ical analysis for real problems that involve both
mapping and routing aspects. The formalization is
abstract and generic enough to allow other adapta-
tion problems in many different contexts, such as
hardware chip design [13], to possibly map onto
it.

(ii) Proving the problem to be NP-hard thereby ne-
cessitating the search for approximate solutions.

(iii) Characterizing the problem’s hardness of approx-
imation by proving that it is NP-hard to approx-
imate within a factor of m1/2−δ for any δ > 0,
where m is the number of edges in the virtual over-
lay graph. This shows that the adaptation problem
is hard to approximate as well.

(iv) Devising four different variations of greedy algo-
rithms as solutions that work well in practice.

(v) Comparing and contrasting the algorithms with
a view to gaining a better understanding of the
problem.

2. Related Work

Over the last decade there has been a great deal of
interest in wide area distributed computing, primarily
due to the substantial increase in commodity computer
and network performance. GLobal Object Based Envi-
ronment, GLOBE, is a wide area distributed system that
provides a convenient programming abstraction and full
transparency [1]. The computational grid refers to the
abstraction of a single unified computing resource that
harnesses computational resources geographically dis-
tributed under different administrative domains and con-
nected via wide area networks [2]. Legion is an object-
based meta-system [3] that provides the software in-
frastructure for a system of heterogeneous, geographi-
cally distributed high-performance computers to inter-
act seamlessly.

An application running in any distributed computing
environment must adapt to the (dynamically chang-
ing) available computational and networking resources
to achieve stable high performance. Over the years
there have been numerous attempts at adaptation in
different settings such as load balancing in networks
of shared processors [14], solutions to workflow prob-
lems, component placement problems and support for

heavyweight applications in computational grids [5],
distributed mobile applications [15], automated runtime
tuning systems [4], adaptation, load balancing and fault
tolerance in message passing and parallel processing
systems spread over heterogeneous resources [16, 17],
and extensions to commercial standards such as
CORBA [18]. Despite these efforts adaptation and con-
trol mechanisms are not common in today’s distributed
computing environments as most of the approaches are
very application-specific and require considerable user
or developer effort.

Recently, interest in using OS-level virtual machines
as the abstraction for distributed computing has been
growing [7, 19]. These build upon operating-system
level virtual machines, of which there are essentially
two kinds, fully virtualized virtual machine monitors [6]
and paravirtualized technology [20]. The former pro-
vides a full virtualization, of at least a subset, of the
underlying hardware while the latter provides a soft-
ware interface to virtual machines that is similar but
not identical to that of the underlying hardware. Virtu-
oso [21], PlanetLab [22], SODA [8] and Terra [9] are
all virtual execution environments for distributed com-
puting. Though this work has been done in the context
of Virtuoso, it should be noted that the adaptation prob-
lem generalizes to other scenarios as well. Virtuoso is
described in Section 3.

In a previous work [23] we laid the groundwork for
the characterization of the adaptation problem in virtual
execution environments. This work directly builds upon
it by further generalizing the adaptation to include all
the pieces involved in such a system. We show that
not only is it hard to find an efficient solution but that
it is hard to approximate it within a factor of m1/2−δ

for any δ > 0, where m is the number of edges in the
virtual overlay graph. In response we have come up with
efficient greedy algorithms that work well in practice.

We formulate the generic adaptation problem in vir-
tual environments with the objective of maximizing the
sum of the residual bottleneck bandwidths over all the
mapped paths. Numerous cases of related work exist
in optimizing network flows. The two closest problems
to our formulation are the Edge Disjoint Path Prob-
lem (EDPP) and the Unsplittable-flow problem (UFP).
EDPP appears in Karp’s original list of NP-complete
problems [24] and has been extensively studied. A com-
prehensive background on these problems is available
elsewhere [25].

One of the motivations for formulating UFP is to
address the problem of allocating bandwidth for traf-
fic with different bandwidth requirements in hetero-
geneous networks [25]. The UFP has been shown to
be MAX SNP-hard [26]. Hence numerous prior works
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Fig. 1. Virtuoso system architecture.

have explored approximation algorithms for UFP [25–
28]. An LP-based algorithm provided a O(

√
m) approx-

imate algorithm, where m is the number of edges in the
graph [27]. This was followed by a simpler combina-
torial algorithm with the same approximation guaran-
tee [29].

The main difference between our problem and UFP is
that the profits in UFP associated with each source-sink
pair are predetermined and static, while in our prob-
lem the profits depend on the particular solution (path
between each source-sink pair) to the instance of the
problem at hand. Further, our problem has an additional
mapping component that is absent in network flow prob-
lems typically investigated. Hence our adaptation prob-
lem also has a strong connection to parallel task graph
mapping problems [30]. To the best of our knowledge
no prior theoretical works exists that includes both the
mapping and network flow components.

3. Dynamic adaptation in virtual execution
environments

Virtuoso is our middleware system for virtual ma-
chine based wide-area distributed computing [11, 21].
For a user, it very closely emulates the existing process
of buying, configuring, and using a computer or a col-
lection of computers from a web site [31]. Instead of
a physical computer, the user now receives a reference
to the virtual machine which she can then use to start,
stop, reset, and clone the machine. Since such a virtual
machine could be hosted on any foreign network, the
nature of the network presence that the virtual machine
gets depends solely on the policies of the remote site.
Figure 1 illustrates our system architecture. We next de-
scribe the different pieces of Virtuoso that are salient to

this work.
VNET [21] is a simple and efficient Ethernet layer vir-

tual network tool that interconnects all the VMs of a user
and creates the illusion that they are located on the user’s
local area network (LAN) by bridging the foreign LAN
to a Proxy on the user’s network. VNET makes available
application independent adaptation mechanisms that can
be used to automatically and dynamically optimize at
run-time the performance of applications running inside
of a user’s VMs [11].

It has been previously shown that VNET is ideally
placed to monitor the resource demands of the VMs. The
VTTIF (Virtual Topology and Traffic Inference Frame-
work) component of Virtuoso, integrated with VNET,
achieves this [32]. Wren is a passive network mea-
surement tool developed at the College of William and
Mary [33], that we have integrated with Virtuoso. It can
use the naturally occurring traffic of existing, unmod-
ified applications running inside of the VMs to mea-
sure the characteristics of the underlying physical net-
work [34]. VRESERVE [35] and VSched [36] are our
network and CPU reservation systems respectively.

Such virtual execution environments provide an ideal
platform to build an automatic, dynamic and run-time
adaptation scheme that works for unmodified applica-
tions running on unmodified operating systems. In sim-
ple terms a successful adaptation scheme will involve
an efficient algorithm that matches the application’s
inferred resource (network and computation) demands
to the measured available resources using adaptation
mechanisms at hand such that some defined metric is
optimized. However, what is missing is a rigorous for-
malization of the adaptation problem, characterization
of its hardness and the hardness of its approximability,
solutions that work well in practice and the charac-
terization of the same. This work, in part, serves this
purpose. Figure 2 illustrates how these pieces fit in
together.

Inferring application resource demands: This in-
volves measuring the computational and network de-
mands of applications running inside the virtual ma-
chines. In previous work it has been shown how VTTIF
successfully accomplishes this in the context of Virtu-
oso [32].

Measuring available resources: This involves moni-
toring the underlying network and inferring its topology,
bandwidth and latency characteristics, and also measur-
ing the availability of computational resources. Again,
it has been previously shown that this can be achieved
with very little overhead in the context of virtual envi-
ronments [34].

Adaptation mechanisms at hand: Virtual execution
environments make available the following adaptation
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mechanisms: VM migration, virtual network topology
and routing changes, CPU and network resource reser-
vation. These have been previously described in the con-
text of Virtuoso [11, 35, 36].

Measure of performance: For the purposes of this
work, we are attempting to maximize the application’s
throughput. We claim that optimizing the defined met-
ric will achieve our goal. At this point in time it is not
known if a single optimization scheme will work effec-
tively for a range of distributed applications.

Adaptation algorithm: Finally we need an efficient
adaptation algorithm that will tie all these individual
pieces together.

Figure 3 illustrates a simplified version of a typi-
cal adaptation scenario in Virtuoso wherein a heuristic
drives application independent adaptation mechanisms
(in this case overlay topology and routing changes),
while leveraging inferred application resource demands
and measured resource information.

4. Adaptation problem formulation

VNET monitors the underlying network and provides
a directed VNET topology graph, G = (H,E), where
H are VNET nodes (hosts running VNET daemons and
capable of supporting one or more VMs) and E are
the possible VNET links. Note that this may not be a
complete graph as many links may not be possible due
to particular network management and security policies
at different network sites. Wren [33] (integrated with
VNET [34]) provides estimates for the available band-
width and latencies over each link in the VNET topology
graph. These estimates are described by a bandwidth
capacity function, bw : E → �, and a latency function,
lat : E → �.

In addition, VNET is also in a position to collect infor-
mation regarding the space capacity (in bytes) and com-
pute capacity made available by each host, described by
a host compute capacity function, compute : H →� and
a host space capacity function, size : H → �. The set of
virtual machines participating in the application is de-
noted by the set VM. The size and compute capacity de-
mands made by every VM can also be estimated and de-
noted by a VM compute demand function, vm compute
: VM → � and a VM space demand function, vm size
: VM → �, respectively. We are also given an initial
mapping of virtual machines to hosts, M , which is a
set of 3-tuples, Mi = (vmi,hi,yi), i = 1,2 . . .n, where
vmi ∈ VM is the virtual machine in question, hi ∈ H is
the host that it is currently mapped onto and yi ∈ {0,1}
specifies whether the current mapping of VM to host
can be changed or not. A value of 0 implies that the cur-
rent mapping can be changed and a value of 1 means
that the current mapping should be maintained.

The bandwidth and compute rate estimates do not
implicitly imply reservation, they are random variables
that follow a normal distribution with a mean of the es-
timated value. As mentioned previously Virtuoso pro-
vides for network and CPU reservations, in which case
the estimates are exactly the resources we get as we can
reserve the same. Hence for each edge in E, we define
a function nw reserve : E → {0,1}. If the value associ-
ated with the edge is 0 then we cannot reserve the link
and the actual bandwidth has a normal distribution with
a mean of bw(E) and a variance σ2

bw(E), else the link is
reservable and the actual bandwidth is bw(E). Similarly
for each host we define a function cpu reserve : H →
{0,1}, where a value of 0 means that the compute ca-
pacity made available by the host is not reservable and
the actual value has a normal distribution with a mean
of compute(H) and a variance σ2

compute(H).
VTTIF infers the application communication topol-

ogy in order to generate the traffic requirements of
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the application, A , which is a set of 4-tuples, Ai =
(si,di,bi, li), i = 1,2 . . .m, where si is the source VM, di

is the destination VM, bi is the bandwidth demand be-
tween the source destination pair and li is the latency
demand between the source destination pair.

It should be noted that there is always a cost involved
with all the measurements and adaptation mechanisms.
Because the overheads of VNET, VTTIF and Wren have
been shown to be negligible [34] we do not include them
in our formalization. However, the cost of migrating a
virtual machine is dependent on the size of the virtual
machine, the network characteristics between the corre-
sponding hosts and the specific migration scheme used.
These estimates are described by a migration function,
migrate: VM x H x H → �

+, that provides an estimate
in terms of the time required to migrate a virtual ma-
chine from one host to another. There is more than one
way to take into account the cost of migration, one be-
ing to keep the costs of migration for each of the VMs
below a certain threshold. Online migration of virtual
machines is receiving a lot of interest in the research
community [37–39]. As the migration times are being
continually driven down the relevance of our work will
continue to increase.

The goal then is to find an adaptation algorithm that
uses the measured and inferred data to drive the adapta-
tion mechanisms at hand in order to improve application
throughput. In other words we wish to find

(i) a mapping from VMs to hosts, vmap : VM → H,
meeting the size and compute capacity demands
of the VMs within the host constraints and lever-
aging CPU reservations where available. Further,
the new mapping should also reflect the mapping
constraints provided.

(ii) a routing, R : A → P , where P is the set of
all paths in the graph G = (H,E), i.e. for ev-
ery 4-tuple, Ai = (si,di,bi, li), allocate a path,
p
(
vmap(si),vmap(di)

)
, over the overlay graph,

G, meeting the application demands while satis-
fying the bandwidth and latency constraints of
the network and leveraging network reservations
where available.

Once all the mappings and paths have been decided,
each VNET edge will have a residual capacity, rce,
which is the bandwidth remaining unused on that edge,
in that direction

rce = bwe − ∑
e∈R(Ai)

bi

For each mapped path, R(Ai), we can also define its
bottleneck residual capacity

brc
(
R(Ai)

)
= min

e∈R(Ai)

{
rce

}

and its total latency

tl
(
R(Ai)

)
= ∑

e∈R(Ai)

(
late

)

It should be noted that the residual capacity can be
spoken of at two levels, at the level of VNET edges and
at the level of paths between communicating VMs. The
various objective functions that could be defined would
fall into one of two classes, an edge-level or a path-level
objective function.

(i) Edge-level: a composite function, f , that is a func-
tion of, g, a function of the migration costs of all
the VMs and h, a function of the total latency over
all the edges for each routing and k, a function
of the residual bottleneck bandwidths over all the
edges in the VNET graph.

(ii) Path-level: a composite function, f , that is a
function of, g, a function of the migration costs
of all the VMs and h, a function of the total la-
tency over all the edges for each routing and k,
a function of the residual bottleneck bandwidths
over all the paths in the routing.

Problem 1 (Generic Adaptation Problem In Virtual Ex-
ecution Environments (GAPVEE))
INPUT:

• A directed graph G = (H,E)
• A function bw : E → �

• A function lat : E → �

• A function compute : H → �

• A function size : H → �

• A set, VM = (vm1,vm2 . . .vmn), n ∈ N

• A function vm compute : VM → �

• A function vm size : VM → �

• A function migrate : (VM,H,H) → �

• A function nw reserve : E → {0,1}
• A function cpu reserve : H → {0,1}
• A set of ordered 4-tuples

A = {(si,di,bi, li) | si,di ∈ VM; bi, li ∈�; i = 1, . . . ,m}
• A set of ordered 3-tuples M = {(vmi,hi,yi) | vmi ∈

VM; hi ∈ H; yi ∈ {0,1}; i = 1, . . . ,n}
OUTPUT: vmap : VM → H and R : A → P such that

• ∑vmap(vm)=h
(
vm compute(vm)

) ≤ compute(h), ∀ h ∈ H

• ∑vmap(vm)=h
(
vm size(vm)

) ≤ size(h), ∀ h ∈ H
• hi = vmap(vmi) ∀ Mi = (vmi,hi) ∈ M if yi = 1
• rce ≥ 0, ∀e ∈ E
• (

∑e∈R(Ai) late
) ≤ li, ∀e ∈ E

• For some functions f ,g,h and k the function

f (g(migrate),h(lat),k(rce)) is optimized

It should be noted that for this most generic incarnation
we have not specified any particular objective function.
The intent of providing this formulation is to provide an
abstract description of all the components of the adap-
tation problem. We next take a significant piece of this
generic problem and analyze and characterize it in great
detail.
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Mapping and routing are the two main components
of our adaptation problem. With a view to better under-
stand these two components we define a simpler version
wherein we drop the size, compute and latency con-
straints. We also neglect the cost of migration, which
is reasonable as recently migration costs as low as a
few seconds have been reported [38]. It should be noted
that if the migration is conducted online then the down-
time is virtually zero [39]. We also assume that all the
links are reservable and that the compute capacity made
available is reserved as well.

The specific objective function we choose belongs
to the second category mentioned above wherein we
consider residual bandwidths of the various paths in the
routing. The objective is to maximize the sum of resid-
ual bottleneck bandwidths over each mapped path. The
intuition behind this objective function is to leave the
most room for the application to increase its throughput.

Problem 2 (Mapping and Routing Problem In Virtual
Execution Environments (MARPVEE))
INPUT:

• A directed graph G = (H,E)
• A function bw : E → �

• A set, VM = (vm1,vm2 . . .vmn), n ∈ N

• A set of ordered 3-tuples
A = {(si,di,bi) | si,di ∈ VM; bi; i = 1, . . . ,m}

• A set of ordered 3-tuples M = {(vmi,hi,yi) | vmi ∈
VM; hi ∈ H; yi ∈ {0,1}; i = 1, . . . ,n}

OUTPUT: vmap : VM → H and R : A → P such that
• hi = vmap(vmi) ∀ Mi = (vmi,hi) ∈ M if yi = 1
• rce ≥ 0, ∀e ∈ E

• ∑m
i=1

(
mine∈R(Ai)

{
rce}

)
, where rce = (bwe −∑e∈R(Ai) bi), is

maximized

From now on when we refer to the adaptation problem
we will be referring to MARPVEE.

5. Computational complexity of the adaptation
problem

We first formulate the decision version of the adap-
tation problem.

Problem 3 (Mapping and Routing Problem In Virtual
Execution Environments (MARPVEED))
INPUT:

• A directed graph G = (H,E)
• A function bw : E → �

• A set, VM = (vm1,vm2 . . .vmn), n ∈ N

• A set of ordered 3-tuples
A = {(si,di,bi) | si,di ∈ VM; bi; i = 1, . . . ,m}

• A set of ordered pairs
M = {(vmi,hi) | vmi ∈ VM,hi ∈ H; i = 1,2 . . .r,r ≤ n}

• α ∈�
OUTPUT:

• YES, if there exists a mapping vmap : VM → H and a
routing R : A → P such that

• hi = vmap(vmi), ∀Mi = (vmi,hi) ∈ M
• rce ≥ 0, ∀e ∈ E

• ∑m
i=1

(
brc(R(Ai))

) ≥ α

• NO, otherwise

To establish the hardness of the problem, we consider a
further special case of the problem wherein all the VM
to host mappings are constrained by the set of 3-tuples
M , leaving us only with the routing problem.

Since the mappings are pre-defined, we can formu-
late the problem in terms of only the hosts and exclude
all VMs. Also, as the latency demands have been
dropped, the application 4-tuple reduces to 3-tuple,
Ai = (si,di,bi), si,di ∈ H, bi ∈ �, i = 1,2 . . .m. Notice
that now si,di ∈ H as VM to host mappings are fixed
and VMs are synonymous with the hosts that they are
mapped to.

This further constrained version of the adaptation
problem with only the routing component is defined as
follows.

Problem 4 (Routing Problem In Virtual Execution En-
vironments (RPVEE))
INPUT:

• A directed graph G = (H,E)
• A function bw : E → �

• A set of ordered 3-tuples

A = {(si,di,bi) | si,di ∈ H; bi ∈�; i = 1, . . . ,m}
OUTPUT: R : A → P such that

• rce ≥ 0, ∀e ∈ E,

• ∑m
i=1

(
brc(R(Ai))

)
is maximized

Further, The decision version of RPVEE can be formu-
lated as follows.

Problem 5 (Decision version of Routing Problem In
Virtual Execution Environments (RPVEED))
INPUT:

• A directed graph G = (H,E)
• A function bw : E → �

• A set of ordered 3-tuples
A = {(si,di,bi) | si,di ∈ H; bi ∈�; i = 1, . . . ,m}

• α ∈�
OUTPUT:

• YES, if there exists a routing R : A → P such that

• rce ≥ 0, ∀e ∈ E;

• ∑m
i=1

(
brc(R(Ai))

) ≥ α

• NO, otherwise
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For the proofs of hardness we will reduce the Edge
Disjoint Path Problem to the Routing Problem in Virtual
Execution Environments. The edge disjoint problem has
been shown to be NP-complete [24] and NP-hard to
approximate within a factor of m1/2−δ [26].

The edge disjoint path problem can be formulated as
follows.

Problem 6 (The Edge Disjoint Path Problem (EDPP))
INPUT:

• A graph G = (H,E), |H| = p, |E| = q

• A set of ordered 2-tuples

S = {(si,di) | si,di ∈ H; i = 1, . . . ,k}
OUTPUT:

• The maximum numbers of pairs (si,di) ∈ S that can be

connected via edge disjoint paths from si to di in G = (H,E)

Further, the decision version of the edge disjoint path
problem can be stated as follows.

Problem 7 (Decision version of Edge Disjoint Path
Problem (EDPPD))
INPUT:

• A directed graph G = (H,E), |H| = p, |E| = q

• A set of ordered 2-tuples

S = {(si,di) | si,di ∈ H; i = 1, . . . ,k}
OUTPUT:

• YES, if ∀(si,di) ∈ S there exist edge disjoint paths from si

to di in G = (H,E)

• NO, otherwise

5.1. Reduction of the Edge Disjoint Path Problem to
the Routing Problem in Virtual Execution Environments

Given an instance I = {S,G = (H,E)} of EDPPD or
EDPP we reduce it to an instance R(I) of RPVEE or the
instance RD(I) or RPVEED as follows. Construct a com-
plete directed graph G′ = (H,E ′) where bw((u,v)) =
1 + ε for ε < 1 if (u,v) ∈ E and bw((u,v)) = 1 if
(u,v) �∈ E. Further for all (si, ti) ∈ S, let (si,di,1) ∈ A
(see Figure 4) to get the instance R(I) for RPVEE. Let
α = k·ε to get the instance RD(I) for RPVEED. The
reductions are trivially accomplished in O(n2) time.

Theorem 1 MARPVEED is NP-complete.

Proof Given an instance I = {S,G = (V,E)} of
EDPPD, construct the instance RD(I) of RPVEED as
described earlier. We now claim that (a) a YES instance
of EDPPD yields a YES instance of RPVEED; and

V3

V2

V1
V4

1

V3

V2

V1
V4

1

1 1

1

1

1+ε 1+ε

1

1+ε

1+ε 1+ε

V3V1

V4V2

V4V1

V2V1

A set of ordered 2-tuples

V3

V4

V4

V2

1V1

1V2

1V1

1V1

A set of ordered 3-tuples

si di

disi bi

Given an arbitrary instance of EDPP

Converted to a particular instance of RPVEED

A directed graph G = (H,E)

A complete directed graph G = (H,E)

A function bw : E -> R

Fig. 4. Reducing EDPPD to RPVEED. The edge weights are band-
widths as specified by the function bw.

(b) a NO instance of EDPPD yields a NO instance of
RPVEED;

The proof for (a) is by construction. Given a YES
instance of EDPPD, we know that there exists a set of
k edge disjoint paths in G for each of the k (si,di) tu-
ples in S. Construct the routing R for RPVEED as fol-
lows. For every Ai = (si,di,1)∈A , let R(Ai) be the edge
disjoint path for the corresponding (si,di) pair in the
EDPPD instance. For every edge e included in the rout-
ing, bw(e) = 1 + ε. Further, since the routing consists
of edge disjoint paths, each edge is assigned to at most
one route. Therefore, rce = (bwe −∑e∈R(Aj) b j) = ε for

all edges e ∈ R(Ai)∀i. Thus, ∑k
i=1

(
mine∈R(Ai){rce}

)
=

k·ε = α. Hence, the corresponding instance of RPVEED
is a YES instance.

The proof for (b) is by contradiction. Suppose a NO
instance of EDPPD yields a YES instance of RPVEED.
We will use the YES instance of RPVEED to construct
a YES instance of EDPPD. Since the weight of every
edge in G′ is at most 1+ ε and bi = 1∀i, an edge could
belong to at most one route. This implies that all the
routes in R are disjoint. Further, since the bottleneck
residual capacity for each route (mine∈R(Ai){rce}) could
at most be ε and the total residual capacity is at least
α = k·ε, the residual capacity of each route should be
exactly ε. This implies that the bandwidth of each edge
in the route is 1+ε. Therefore, all the edges included in
the routing exist in the graph G and the routes constitute
edge disjoint paths in G, thus yielding a YES instance
of EDPPD. Hence, the contradiction.

Since RPVEED is a special case of MARPVEED,
the NP-completeness of RPVEED immediately implies
that MARPVEED is NP-complete. �
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6. Hardness of Approximation

A natural way to cope with NP-completeness is to
seek approximate solutions instead of exact solutions.
An algorithm with approximation ratio C computes, for
every problem instance, a solution whose cost is within
a factor C of the optimum. In this section, we investi-
gate the approximability of MARPVEE. We show that
unless P=NP, there does not exist a polynomial approx-
imation algorithm with an approximation ratio better
than m1/2−δ for any δ > 0.

We again use the edge disjoint problem for the pur-
poses of our reduction. It has been previously shown
that the problem is NP-hard to approximate within
m1/2−δ [26]. We will prove an essentially matching
hardness result on the optimization version of the rout-
ing problem RPVEE and then use that result to prove
the same bounds for MARPVEE.

6.1. Hardness of approximation of RPVEE

For establishing the hardness of approximation for
RPVEE, we reduce an instance I of EDPP to instance
R(I) of RPVEE as described earlier in Section 5.1.

Lemma 1 If the value of the optimal solution to an
instance I of EDPP is k∗ then the value of optimal
solution to the instance R(I) of RPVEE is k∗·ε.

Proof Let the value of optimal solution to R(I) be OPT.
If there are k∗ edge disjoint paths in I the corresponding
routes for each of those paths in R(I) will have a bot-
tleneck residual capacity of ε. Therefore, OPT ≥ k∗·ε.

Note that for any route in R(I), the bottleneck resid-
ual capacity is either 0 or ε. Therefore the total bottle-
neck residual capacity is a factor of ε. Let OPT = z·ε.
We then need to show that z ≤ k∗. Since a route with
a bottleneck residual capacity of ε consists of only the
edges in the input graph to I and no two routes share
a common edge, there are at least z disjoint paths in I.
Since the value of optimal solution to I is k∗, z ≤ k∗.
Hence, we are done. �

Theorem 2 For any δ > 0, it is not possible to approx-
imate RPVEE within a factor of m1/2−δ unless P=NP.

Proof We will prove this by contradiction. Let us as-
sume that there exists a polynomial time approximation
algorithm A for RPVEE that achieves an approximation
guarantee of factor m1/2−δ. Using Lemma 1, algorithm
A in conjunction with the reduction R yields a poly-
nomial time m1/2−δ-approximation algorithm for EDPP
which is not possible unless P=NP [26]. �

6.2. Hardness of approximation of MARPVEE

We use the inapproximability result obtained above
for RPVEE to state the inapproximability result for
MAPRVEE with the same bounds. The proof is by con-
tradiction and follows very closely the proof for Theo-
rem 2.

Corollary 1 For any δ > 0, it is NP-hard to approxi-
mate MARPVEE within m1/2−δ unless P=NP.

7. Greedy adaptation algorithms

The adaptation problem is not only NP-complete, but
is also hard to approximate. We have devised two greedy
algorithms for mapping VMs to hosts. One finds all
the mappings in a single pass, while the other takes
two passes over the input data. We have also adapted
Dijkstra’s shortest path algorithm [40] that now finds
the widest path for an unsplittable network flow. Since
MARPVEE involves both, mapping and routing net-
work flows we can first apply the mapping algorithm
(either one) followed by the routing algorithm, thus first
determining all the VM to host mappings which is then
followed by computing the routing. Alternatively we
can interleave the two wherein we find a mapping for a
pair of communicating VMs immediately followed by
finding a path for it over the network, before we map
any other VM. The work in this section directly builds
upon our previous work [34], but for the sake of com-
pleteness we present the entire analysis.

7.1. Greedy algorithm for mapping VMs to Hosts

As stated above we have two versions of the algo-
rithm. Algorithm 1 makes a single pass over the input
data while Algorithm 2 makes two passes. In both, VMs
are mapped onto physical hosts and the input to the al-
gorithm is the application communication behavior as
captured by VTTIF and available bandwidth between
each pair of VNET daemons, as reported by Wren, both
expressed as adjacency lists.

7.2. A greedy heuristic mapping communicating VMs
to paths

We use a greedy heuristic algorithm (Algorithm 3) to
determine a path for each pair of communicating VMs.
As above we use VTTIF and Wren outputs expressed
as adjacency lists as inputs.
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Algorithm 1 Greedy One-pass Mapping
(GreedyMapOne)

Order the VM adjacency list by decreasing traffic
intensity
Order the VNET daemon adjacency list by decreasing
throughput
while There is are unmapped VMs do

if both the VMs for a communicating pair are not
mapped then

Map them to the first pair of hosts which cur-
rently have no VMs mapped onto them

else
Map the VM to a VNET daemon such that the
throughput estimate between the VM and its al-
ready mapped counterpart is maximum

end if
end while
Compute the difference between the current mapping
and the new mapping and issue VM migration in-
structions to achieve the new mapping.

Algorithm 2 Greedy Two-pass Mapping
(GreedyMapTwo)

Order the VM adjacency list by decreasing traffic
intensity
Order the VNET daemon adjacency list by decreasing
throughput
/* First pass */
while There is a pair of VMs neither of which has
been mapped do

Locate the first pair of communicating VMs such
that neither of them have been mapped
Map them to the first pair of hosts which currently
have no VMs mapped onto them

end while
/* Second pass */
while There is an unmapped VMs do

Locate a VM that have not been mapped
Map the VM to a VNET daemon such that the
throughput estimate between the VM and its al-
ready mapped counterpart is maximum.

end while
Compute the difference between the current mapping
and the new mapping and issue VM migration in-
structions to achieve the new mapping.

7.3. Adapted Dijkstra’s algorithm

We use a modified version of Dijkstra’s algorithm [40]
to select a path for each 3-tuple that has the maximum
bottleneck bandwidth. This is the “select widest” ap-
proach.

We adapt Dijkstra’s algorithm for single source short-

Algorithm 3 Greedy Routing (GreedyRouting)
Order the set A of VM to VM communication de-
mands in descending order of communication inten-
sity (VTTIF traffic matrix entry)
while There is are unmapped 3-tuple in A do

Map it to the widest path possible, using an adapted
version of Dijkstra’s algorithm described later
Adjust residual capacities in the network adjacency
list to reflect the mapping

end while

est path to find the maximum bottleneck bandwidth be-
tween each VNET daemon and to find for each 3-tuple
A(si,di,ci), the widest path p(i, j) with respect to the
residual capacity.

Dijkstra’s algorithm solves the single-source short-
est paths problem on a weighted, directed graph G =
(H,E). We have created a modified Dijkstra’s algorithm
that solves the single-source widest paths problem on a
weighted directed graph G = (H,E) with a weight func-
tion c : E →� which is the available bandwidth in our
case.

As in Dijkstra’s algorithm we maintain a set U of
vertices whose final widest-path weights from source u
have already been determined. That is, for all vertices
v∈U , we have b[v] = γ(u,v), where γ(u,v) is the widest
path value from source u to vertex v. The algorithm
repeatedly selects the vertex w ∈ H−U with the largest
widest-path estimate, inserts w into U and relaxes (we
slightly modify the original Relax algorithm) all edges
leaving w. Just as in the implementation of Dijkstra’s
algorithm, we maintain a priority queue Q that contains
all the vertices in H −U , keyed by their b values. This
implementation too assumes that graph G is represented
by adjacency lists.

Similar to Dijkstra’s algorithm we initialize the
widest path estimates and the predecessors by the pro-
cedure described in Algorithm 4.

Algorithm 4 Initialize(G,u)
1: for each vertex v ∈ H[G] do
2: {

b[v] ← 0
π[v] ← NIL

}
3: end for
4: b[u] ← ∞

The modified process of relaxing an edge (w,v)
consists of testing whether the bottleneck bandwidth
decreases for a path from source u to vertex v by going
through w, if it does, then we update b[v] and π[v]. This
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procedure is described in Algorithm 5

Algorithm 5 ModifiedRelax(w,v,c)
1: if b[v] < min(b[w],c(w,v)) then
2: {

b[v] ← min(b[w],c(w,v))
π[v] ← w

}
3: end if

We can very easily see the correctness of Modi-
fiedRelax. After relaxing an edge (w,v), we have b[v] ≥
min(b[w],c(w,v)). As, if b[v] ≤ min(b[w],c(w,v)), then
we would set b[v] to min(b[w],c(w,v)) and hence the
invariant holds. Further, if b[v] ≥ min(b[w],c(w,v)) ini-
tially, then we do nothing and the invariant still holds.

Algorithm 6 is the adapted version of Dijkstra’s al-
gorithm to find the widest path for a single tuple.

Algorithm 6 AdaptedDijkstra(G,c,u)

1: Initialize(G,u)
2: U ← /0
3: Q ← H[G]
4: while Q �= /0 do {loop invariant: ∀ v ∈ U , b(v) =

γ(u,v)}
5: {

w ← ExtractMax(Q)
U ←U ∪w

6: for each vertex v ∈ Ad j[w] do
7: {

Modi f iedRelax(w,v,c)
}

8: end for
}

9: end while

7.4. Correctness of adapted Dijkstra’s algorithm

Similar to the proof of correctness for Dijkstra’s
shortest paths algorithm, we can prove that the adapted
Dijkstra’s algorithm is correct by proving by induc-
tion on the size of set U that the invariant, ∀v ∈ U ,
b[v] = γ(u,v), always holds.

Base case: Initially U = /0 and the invariant is triv-
ially true.

Inductive step: We assume the invariant to be true
for |U | = i.

Proof: Assuming the truth of the invariant for |U |= i,
we need to show that it holds for |U | = i+1 as well.

Let v be the (i + 1)th vertex extracted from Q and
placed in U and let p be the path from u to v with
weight b[v]. Let w be the vertex just before v in p. Since
only those paths to vertices in Q are considered that use
vertices from U , w ∈U hence by the inductive step we
have b[w] = γ(u,w).

Next, we can prove that p is the widest path from u to
v by contradiction. Let us assume that p is not the widest
path and instead p∗ is the widest path from u to v. Since
this path connects a vertex in U to a vertex in H −U ,
there must be a first edge, (x,y) ∈ p∗ where x ∈U and
y∈H−U . Hence the path p∗ can now be represented as
p1.(x,y).p2. By the inductive hypothesis b[x] = γ(u,x)
and since p∗ is the widest path, it follows that p1.(x,y)
must be the widest path from w to y, as if there had been a
path with higher bottleneck bandwidth, that would have
contradicted the optimality of p∗. When the edge x was
placed in U , the edge (x,y) was relaxed and hence b[y] =
γ(u,y). Since v was the (i+1)th vertex chosen from Q
while y was still in Q, it implies that b[v] ≥ b[y]. Since
we do not have any negative edge weights and γ(s,v)
is the bottleneck bandwidth on p∗, that combined with
the previous expression gives us bottleneck bandwidth
of p∗ ≤ b[v] which is the bottleneck bandwidth of path
p. This contradicts our first assumption that path p∗ is
wider than path p.

Since we have proved that the invariant holds for the
base case and that the truth of the invariant for |U | =
i implies the truth of the invariant for |U | = i + 1, we
have proved the correctness of the adapted Dijkstra’s
algorithm using mathematical induction.

7.5. Complexity of adapted Dijkstra’s algorithm

Similar to Dijkstra, it can be shown that the running
time of the adapted Dijkstra’s algorithm is O(H2 +E).
This bound can be reduced by a faster implementation
of the priority queue Q.

8. Evaluation of the greedy algorithms

We evaluated two different combinations of our
greedy algorithms. We first state the two combinations
and next compare the combinations with each other for
different problem instances.

GreedyMapOne followed by GreedyRouting: In
this, we first run the two pass mapping algorithm to
compute all the VM to host mappings and follow
that by running the greedy routing algorithm to map
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the tuples to paths in the network.

GreedyMapTwo followed by GreedyRouting: In
this, we first run the two pass mapping algorithm to
compute all the VM to host mapping and follow that
by running the greedy routing algorithm to map the
tuples to paths in the network.

GreedyMapOne interleaved with GreedyRouting:
In this, for each application 3-tuple, we first use the
one-pass mapping algorithm and find a mapping from
VM to hosts and then immediately we map it greed-
ily to a path in the network. We then repeat the same
for each of the remaining application three tuples.

GreedyMapTwo interleaved with GreedyRouting:
In this, for each application 3-tuple, we first use the
two-pass mapping algorithm and find a mapping from
VM to hosts and then immediately we map it greed-
ily to a path in the network. We then repeat the same
for each of the remaining application three tuples.

We have previously [34] presented a detailed evalua-
tion of a simulated annealing heuristic and compared it
to a greedy heuristic. In search heuristics such as sim-
ulated annealing the objective function and constraints
can be readily changed without having to change the
optimization system. It is also more amenable to multi-
objective optimization. We found that the simulated an-
nealing heuristic took a long time to complete as com-
pared to the greedy approach, however, producing better
results in certain cases.In this work we try to conduct
a more detailed study of the different variations of the
greedy strategy.

We implemented an evaluator that was used to calcu-
late the residual bandwidth for multiple test cases. We
evaluated the four algorithm variations in three differ-
ent settings, a real world scenario, randomly generated
topologies and smaller topologies created by hand. The
table in Figure 5 summarizes our findings.

8.1. Randomly generated topologies

We used BRITE [41] to generate network topolo-
gies. BRITE was chosen because of its ability to anno-
tate topology maps with bandwidth capacity for each
link, this was necessary as the algorithms were de-
signed to maximize the sum of the bottleneck residual
capacities. Similarly we generated VM communication
topologies using a random generator which we devel-
oped. These VM topologies were generated to match
the data collected by our VTTIF aggregation tool. We
studied a large number of cases with different topol-

IP network

Illinois, USA                         
100 Mbit backplane        
internal bandwidth 11 MB/sec

0.89

1.58

1.76

Virginia, USA                      
100 Mbit backplane      
internal bandwidth 10 MB/sec

Pittsburgh, USA 
Numbers indicate end-to-end available bandwidth 
(MB/sec) between the different locations

vm3

vm4vm5

vm2

vm7

vm6

vm8

vm1

0.7 0.98

0.7

0.98

0.59

1.3 0.56

0.75 0.56

0.56 0.56

0.33

An application consisting of two disjoint pieces executing inside of the virtual machines (VMs). 
The numbers indicate the bandwidth (MB/sec) demand among the communicating pairs

Physical Topology

Application Topology

Mapping an application topology 
onto a physical topology

Fig. 6. Experimental setup.

ogy maps to determine whether one algorithm version
was superior. The results demonstrated that no variation
out-performed the others in any of the cases. However,
qualitative reasoning about the algorithms shows that,
at least for simple cases, the 2-pass variation is suscep-
tible to clustering.

8.2. Smaller topologies created by hand

To understand the differences between the 1-pass and
2-pass variations we developed simple test cases by
hand demonstrating clustered topologies. The differ-
ence arises when the algorithms are faced with clustered
topologies. For a simple scenario consider the case of
two sites, each with 4 physical machines connected to
a high capacity LAN and connected to the other site
via a low capacity WAN Internet connection. Now con-
sider two independent VM sets, one with 3 VMs and
the other with 2, which have large amounts of commu-
nication traffic inside each set but no traffic to the other
set. Ideally each VM set would be mapped onto dif-
ferent physical sites, such that the low capacity WAN
connection would never be used. All of the algorithm
variations are susceptible to incorrectly mapping this
scenario, however the 2-pass variation is the most sus-
ceptible for these cases.

In order to evaluate the algorithms we created by
hand the scenario described above, as well as several
other variations on the scenario, and evaluated the per-
formance of each algorithm. The results clearly show
that the 2-pass version is the most susceptible to creat-
ing an inefficient mapping.
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GreedyMapOne (Algorithm 1) GreedyMapTwo (Algorithm 2)

Followed by GreedyRouting Interleaved with GreedyRouting Followed by GreedyRouting Interleaved with GreedyRouting

Real world example 94 94 34 34

Random BRITE topology 237 237 237 237.12

Clustered topology 56 56 38 38

Fig. 5. Example results from our four different algorithm variations. The values represent the objective function being maximized, the sum of
residual bottleneck bandwidths over all the mapped paths in MB/s.

8.3. A real world scenario

We were also able to analyze the algorithms on real
world topology data. Figure 6 illustrates our experimen-
tal setup. Using bandwidth measurements and VM traf-
fic aggregations previously collected we were able to
evaluate the algorithms on actual scenarios. The band-
width data was collected from physical machines hosted
at CMU, College of William and Mary and Northwest-
ern University that had been used in earlier experiments.
The VM traffic aggregations was collected by running
several benchmarking tools on actual VMs. The results
of this evaluation again show that the 1-pass algorithm is
clearly superior when clustered topologies are present.

The table in Figure 5 summarizes our findings. For
randomly generated topologies we do not see any dif-
ferences between the different variations. However for
the topology created by hand and for the real world sce-
nario that result in a clustered setting, the 1-pass varia-
tion outperforms the 2-pass algorithm. Further, we did
not notice in difference between the interleaved and non-
interleaved variations.

9. Conclusion

The decade gone by has seen the emergence of a pow-
erful computing paradigm, wide-area distributed com-
puting. An application running in any distributed envi-
ronment must adapt to available resources. However, un-
til recently, all adaptation attempts had remained appli-
cation specific requiring direct user involvement. Since
then it has been shown that virtual execution environ-
ments consisting of virtual machines inter-connected by
virtual networks provide opportunities to dynamically
optimize, at run-time, the performance of existing, un-
modified distributed applications running on existing,
unmodified operating systems without any user or pro-
grammer intervention. Efficient and effective adaptation
algorithms in such environments will help realize the
full potential of wide-are distributed computing.

We formalized the adaptation problem that arose in
such environments. We have shown that the adaptation
problem is NP-hard. Further, we have shown that it hard

to find efficient approximate solutions for it. In partic-
ular we have proven that it is NP-hard to approximate
within a factor of m1/2−δ for any δ > 0, where m is
the number of edges in the virtual overlay graph. We
presented greedy adaptation algorithms for the mapping
and routing components of the problem. We evaluated
four different combinations of the algorithms and found
them to perform well in practice. We are currently fo-
cusing on researching the feasibility of a single opti-
mization metric that would be effective for a range of
distributed applications.
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