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Abstract 
 

Recent work in blind source separation applied to anechoic mixtures of speech 
allows for reconstruction of sources that rarely overlap in a time-frequency 
representation.  While the assumption that speech mixtures do not overlap 
significantly in time-frequency is reasonable, music mixtures rarely meet this 
constraint, requiring new approaches. We introduce a method that uses spatial cues 
from anechoic, stereo music recordings and assumptions regarding the structure of 
musical source signals to effectively separate mixtures of tonal music. We discuss 
existing techniques to create partial source signal estimates from regions of the 
mixture where source signals do not overlap significantly.  We use these partial 
signals within a new demixing framework, in which we estimate harmonic masks for 
each source, allowing the determination of the number of active sources in important 
time-frequency frames of the mixture.  We then propose a method for distributing 
energy from time-frequency frames of the mixture to multiple source signals.  This 
allows dealing with mixtures that contain time-frequency frames in which multiple 
harmonic sources are active without requiring knowledge of source characteristics. 

 
 
*An abbreviated version of this paper was submitted on December 1st, 2006, to the EURASIP 
Journal on Applied Signal Processing. 



1.  INTRODUCTION 
Source separation is the process of determining individual source signals, when given only mixtures 

of the source signals.  When prior analysis of the individual sound sources is not possible, the 

problem is considered blind source separation (BSS).  BSS is an active area of research in many 

fields, including audio signal processing, telecommunications and medical imaging.  This work 

focuses on the BSS problem as it relates to recordings of music. A tool that can accomplish blind 

separation of musical mixtures would be of use to recording engineers, composers, multimedia 

producers and researchers.  Accurate source separation would facilitate post-production of pre-

existing recordings, automated music transcription, vocalist and instrument identification, melodic 

comparison of polyphonic music, sample-based musical composition, multi-channel expansion of 

mono and stereo recordings, and structured audio coding. 

The following section contains a discussion of related work in source separation, with an emphasis 

on current work in music source separation. In Section 3 we present the Active Source Estimation 

(ASE) approach, designed to isolate multiple simultaneous instruments from an anechoic, stereo 

mixture of tonal music. ASE incorporates existing statistical BSS techniques and perceptually 

significant signal features utilized in computational auditory scene analysis to deal more effectively 

with the difficulties that arise in recordings of music. Section 4 provides a comparison of ASE to the 

DUET source separation algorithm on anechoic, stereo mixtures of three and four harmonic 

instruments, and a discussion of the advantages and limitations of using ASE.  Finally, in section 5 

we summarize our findings and discuss directions for future research.   

2.  CURRENT WORK IN SOURCE SEPARATION 

Approaches to source separation in audio are numerous, and vary based on factors such as the 

number of mixture channels available, the number of source signals, the mixing process used, or 

whether prior analysis of the sources is possible.  Independent component analysis (ICA) is a well-

established statistical technique that can be used on the BSS problem when the number of mixtures 

equals or exceeds the number of source signals (Anemüller 2000, Hyvarinen 2000, Lee 1997, Parra 

2001, Stone 2004).  ICA assumes source signals are statistically independent, and iteratively 

determines time-invariant demixing filters to achieve maximal independence between sources.  Often 

ICA is performed independently across frequency sub-bands, and bands are grouped based on cross-

channel amplitude and time-shift differences (Lee 1997) or amplitude modulation (Anemüller 2000).   



When fewer mixtures than sources are available (i.e. stereo recordings of three or more instruments), 

the problem is considered the degenerate case of BSS and traditional ICA approaches cannot be 

used. 

Researchers have proposed sparse statistical methods to deal more effectively with the degenerate 

case (O’Grady 2005).  Sparse methods assume that in a time-frequency representation, most time-

frequency frames of individual source signals will have magnitude near zero.  If sources are also 

independent (in terms of pitch and amplitude), the assumption that at most one source signal has 

significant energy in any given time-frequency frame can be made (Rickard 2002). Given this 

assumption, binary time-frequency masks can be constructed based on cross-channel amplitude and 

phase differences in an anechoic stereo recording and multiplied by the mixture to isolate source 

signals (Aarabi 2003, Balan 2000, Jourjine 2000, Yilmaz 2004).  The DUET algorithm, which we 

discuss in more detail in a later section, operates in this manner. 

     

 

Figure 1: (top left) The spectrogram of a piano playing a C (262Hz).  (top right) The 
spectrogram of the DUET source estimate of the same piano tone when extracted from a 
mixture with a saxophone playing G and French horn playing C.  (bottom)  The spectrogram 
of ASE source estimate of the same piano tone extracted from the same mixture. 

Tonal music makes extensive use of multiple simultaneous instruments, playing consonant intervals. 

When two harmonic sources, such as pitched musical instruments, form a consonant interval, their 

fundamental frequencies are related by a ratio that results in significant overlap between the 

harmonics (regions of high-energy at integer multiples of the fundamental frequency) of one source 



and those of another. This creates a problem for binary time-frequency masking methods that 

distribute each mixture frame to only one source signal.  Reconstructed music signals can have 

audible gaps and artifacts.  Figure 1 provides an illustration of this. 

One approach to overcome the challenge presented by overlapping source signals has been to 

incorporate prior analysis or models of the source signals (Balan 2005, Ellis 2006, Reyes-Gomez 

2004, Srinivasan 2005, Vincent 2004, Vincent 2005).  Srinivasan and Wang (Srinivasan 2005) 

reconstruct a target speech signal when corrupted by interfering signals by using pre-determined 

phonemic templates and existing techniques for phonemic recognition from the corrupted speech 

signal.  If the correct phonemes can be identified, the corrupted signal is refined based on the 

phonemic templates, resulting in improved audio quality.  Due to the diversity of timbre in different 

instrument signals, pre-existing timbral templates, which would be the musical counterpart phonemic 

templates in speech, do not exist.  Researchers that do not rely on pre-existing templates or models 

often analyze isolated source signals to create models that can be used in a similar manner (Balan 

2005, Reyes-Gomez 2004, Vincent 2004, Vincent 2005).  In this work we are interested in blind 

source separation, and thus avoid prior analysis of the individual signals.   

Other researchers have incorporated heuristics commonly used in Computational Auditory Scene 

Analysis (CASA) to deal more effectively with source signal overlap.  CASA researchers are 

interested in the source separation problem as it relates to human auditory perception. Humans are 

particularly adept at selectively listening to individual sound sources in a complex auditory scene. 

This provides motivation for computational methods based on the known principles governing the 

organization of sound by human listeners (Rosenthal 1998). CASA methods typically process a 

single mixture (one-channel) and model low-level auditory processing with a correlogram 

representation.  High-energy components of the mixture are identified and grouped into auditory 

objects by utilizing perceptually important cues, such as pitch, amplitude and frequency modulation, 

and common onset and offset (Brown 2005, Hu 2004, Ellis 1996).  An auditory object can be 

considered an individual sound event, a musical note or a spoken utterance. Auditory streams are 

formed by sequentially grouping the perceptually significant objects based on the sound source that 

generated them. 

The goal of most CASA research is to create a symbolic representation of a sound scene in terms of 

individual sources (Rosenthal 1998). CASA heuristics can be used within source separation 



algorithms however, to both identify mixture regions in which source signals overlap and to guide 

the reconstruction of source signals in overlap regions (Anemüller 2000, Every 2004, Klapuri 2001, 

Vincent 2004, Vincent 2006, Virtanen 2001, Virtanen 2002, Viste 2003, Viste 2003).  We now 

describe the implementation of these features in current music separation systems in more detail.   

In the one-channel (monophonic) case, multiple researchers (Every 2004, Klapuri 2001, Virtanen 

2001, Virtanen 2002) assume source signals are harmonic in order to determine time-frequency 

regions of source signal overlap based on the pitch of the individual sources. Virtanen and Klapuri 

(Klapuri 2001, Virtanen 2001, Virtanen 2002) use multi-pitch estimation to determine instrument 

pitches, time-frequency overlap regions are resolved by assuming the magnitude of each source 

signal’s harmonics decreases as a function of frequency.  Signals are then reconstructed using 

additive synthesis.  Published results based on this method have been shown only in cases when 

pitches were determined correctly, so it is difficult to assess the robustness of this approach. 

Reconstructing signals based solely on additive synthesis also ignores residual, or non-harmonic 

energy in pitched instrument signals (Risset 1982), which can cause the resulting signal to sound 

artificial. 

Every and Szymanski (Every 2004) assume that pitches are known in advance.  Overlap regions are 

identified based on instrument pitch and resolved by linearly interpolating between neighboring 

harmonics of each source and applying spectral-filtering to the mixture. This approach resolves the 

limitations imposed by additive synthesis in (Virtanen 2001, Virtanen 2002), but the assumption that 

linear interpolation between the amplitude of known harmonics can be used to determine the 

amplitude of unknown harmonics is somewhat unrealistic.   

In the two-channel case, Viste and Evangelista (Viste 2003b) show they can perform iterative source 

separation by maximizing the correlation in amplitude modulation of frequency bands in the 

reconstructed source signals.  Although this is a promising framework for demixing overlapping 

signals, the current approach cannot be applied to mixtures where more than two signals overlap.   

Stereo recordings of three or more instruments frequently violate this constraint.  

Vincent and Rodet (Vincent 2004, Vincent 2006) propose demixing stereo recordings with two or 

more instruments by incorporating CASA heuristics, spatial cues and time-frequency source signal 

priors to cast the demixing problem into a Bayesian estimation framework. This approach is 



designed to handle reverberant recordings, but requires significant prior knowledge of each source 

signal in the mixture, making it unsuitable for mixtures where the acoustic characteristics of each 

source are not known beforehand. 

3.  ACTIVE SOURCE ESTIMATION 

In this section, we present the Active Source Estimation (ASE) algorithm.  ASE is designed to 

separate anechoic, two-mixture (stereo) recordings of any number of harmonic musical sources 

without prior analysis of the sources and without knowledge of the musical score. ASE is similar to 

recent approaches in that it incorporates signal features commonly associated with CASA to achieve 

separation of signals that overlap in time-frequency. Our technique differs from existing methods in 

that it is designed to work when the number of sources exceeds the number of mixtures, the score is 

unknown, and prior modeling of source signals is not possible. Since ASE uses an existing time-

frequency masking approach for initial source separation, it requires a portion of the time-frequency 

frames in the mixture contain energy from only one source signal.  This requirement is, however, 

substantially reduced when compared to existing time-frequency masking techniques. 

3.1 An Overview of ASE 

Assume N sources are recorded using two microphones.  If the sound sources are in different 

locations, the distances that each source travels to the individual microphones will produce a specific 

amplitude and timing difference between the two recorded signals.  These differences, often called 

spatial cues or mixing parameters, provide information about the position of the sources relative to 

the microphones.  The first step in numerous BSS methods is the determination of mixing parameters 

for each source signal. Once mixing parameters are determined, they can be used to distribute time-

frequency frames from the mixture to individual source signals. In our approach, we assume that 

mixing parameters can be determined using the DUET algorithm, or from known source locations. 

In assigning energy from a time-frequency frame in a pair of anechoic mixtures to a set of sources, 

we note three cases of interest.  The first case is where at most one source is active; we call these 

one-source frames.  In this case, the full energy from one mixture may be assigned directly to an 

estimate of the source j, denoted Ŝj.  The second case is where exactly two sources are active; two-

source frames.  In this case, we can explicitly solve for the correct energy distribution to each active 

source using the system of equations provided by (1) and (2).  The third case is where more than two 



sources are active; multi-source frames.  Since there are at least three unknown complex values, we 

cannot solve for the appropriate source energy and must develop methods to estimate this energy. 

We approach source separation in three stages, corresponding to the three cases described above. 

Figure 2 provides a diagram of the three stages of analysis and reconstruction in ASE. In the first 

stage, we create initial signal estimates using the Delay and Scale Subtraction Scoring (DASSS) 

method (Master 2003), which identifies time-frequency frames from the mixture that contain energy 

from only one source. If we assume sources are harmonic and monophonic, there is often sufficient 

information in these initial signal estimates to determine the fundamental frequency of each source. 

If fundamental frequencies can be determined, we can estimate the time-frequency frames associated 

with each source’s harmonics, which lets us categorize additional mixture frames as one-source, two-

source or multi-source.  Two-source frames are then distributed, further refining the source 

estimates.  

In the final stage we analyze the amplitude modulation of the partially reconstructed sources to 

inform the estimation of source energy in multi-source frames.   The remainder of this section 

describes the implementation of the ASE algorithm in greater detail. 

 

Figure 2: An Illustration of the three stages of the Active Source Estimation algorithm.  



3.2 Mixing Parameter Estimation 

In this section, we give a brief overview of mixing parameter estimation and demixing using DUET. 

A more thorough discussion of the DUET algorithm is provided in (Yilmaz 2004). 

Let X1(τ ,ω) and X2(τ,ω) represent the short-time Fourier transforms of two signal mixtures 

containing N source signals, Sj(τ,ω), recorded by two, omni-directional microphones. 
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Here, aj is the amplitude scaling coefficient and δ j is the time-shift between the two microphones for 

the jth source, τ  represents the center of a time window and ω represents a frequency of analysis 

used in the STFT. Given these mixture models, parameter estimation is simply associating a 

particular amplitude scaling and time-shift value with each source.  

DUET assumes signals are approximately window-disjoint orthogonal, meaning most time-

frequency frames in the mixture contain energy from no more than one source (Rickard 2002). Any 

frame that meets this requirement should match the amplitude scaling, aj, and time-shift, δ j, 

properties resulting from one source’s physical location relative to the microphones.  Finding the 

most common pairs of amplitude scaling and time-shift values between the two mixtures provides a 

means of estimating the mixing parameters of each source.  

Amplitude scaling and time-shift values between the two mixture signals are first calculated for 

every time-frequency frame of the mixtures. This is accomplished by calculating the ratio R(τ ,ω), as 

defined in (3). The amplitude scaling and time-shift are then calculated as shown in (4) and (5). 
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The notation |z| denotes the magnitude and the notation ∠z denotes the phase angle of a complex 

number.  In the case where either X1(τ ,ω) or X2(τ ,ω) is 0, a(τ ,ω)  is set to 1 and δ(τ,ω)   is set to 0.  

The most common values for a(τ ,ω) and δ(τ ,ω) can be found by creating a smoothed (using a 

rectangular kernel) two-dimensional weighted histogram in the space of amplitude scaling and time-

shift values, H(a,δ). When the number of sources is known, DUET uses a k-means clustering 

algorithm (Theodoridis 2003) to find the N most prominent peaks in the smoothed histogram. The 

amplitude scaling and time-shift values associated with each peak in histogram H(a,δ) are assumed 

to be the mixing parameters corresponding to a particular source in the mix.  

Once the mixing parameters for each source have been estimated, binary time-frequency masks are 

created for each source.  Yilmaz and Rickard propose a maximum likelihood function to determine 

which source was most likely to have generated each time-frequency frame.  In each frame, the 

binary mask of the source with the highest likelihood score is given a value of 1, while all other 

sources are given a 0.  The binary masks are then multiplied by the mixture signal, X1(τ ,ω), and 

transformed back to the time domain, resulting in source signals estimates (Yilmaz 2004).  

In the rest of this work we assume that the amplitude scaling, aj, and time-shift, δ j, can be estimated 

correctly for each source j using DUET’s parameter estimation. Alternate approaches that simulate 

binaural hearing in humans have been proposed to localize and separate source sounds with 

significant overlap or in reverberant environments (Roman 2003, Viste 2003a, Viste 2004), however 

in this work we assume recordings are made with a stereo pair of omni-directional microphones. 

3.3 Stage One: DASSS Analysis and Initial Source Reconstruction 

The DUET algorithm allows for successful demixing when sources do not simultaneously produce 

energy at the same frequency and time.  The DASSS method (Master 2003) was developed to 

determine which time-frequency frames of the mixture satisfy this condition, allowing reconstruction 

of sources from only the disjoint, or one-source frames.  ASE uses DASSS in the first stage to create 

partial signal estimates from the single source frames. These estimates are then analyzed to provide 

guidance in further distribution of mixture frames. 



Finding One-source Frames 

To determine which frames in a stereo mixture correspond to a single source, define a function, Yj, 

for each pair of mixing parameters, (aj,δ j), associated with a source signal j. 
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If only one source is active in a given time-frequency frame, Yj(τ,ω) takes on one of two values.  

Equation (7) represents the predicted values of the Yj(τ ,ω) functions, under the assumption that a 

single source, g (represented by the superscript g), was active.  
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Equation (8) is a scoring function to compare the predicted values in ),(ˆ !"gjY  to the calculated 

Yj(τ ,ω). 
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As the function d(g,τ ,ω) approaches zero, the likelihood that source g was the only active source 

during the time-frequency frame (τ ,ω) increases.  A threshold value can then be used to determine 

which frames are one-source. These can be assigned directly to the estimate for source g (Master 

2003).  

Initial Source Reconstruction 

We distribute the full energy from each one-source frame directly to the appropriate initial signal 

estimate, Ŝg, as shown in equation (9).   
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Here, T is a threshold value that determines how much energy from multiple sources a frame may 

contain and still be considered a one-source frame.  Once an initial signal estimate is created for each 

source, the signals are analyzed and further source reconstruction is accomplished in stage two. 

 
Figure 3: Hit to false-positive ratio in one-source frame identification at various DASSS 
threshold values, T, over 400 instrument signals.  Disjoint masks are determined according to 
(30) and (31) at two TdB values and (9) is used to identify one-source frames at 35 T values, 
ranging from 0.015 to 0.21). 

When setting T, we must both limit the error in Ŝg and distribute enough frames to each source 

estimate so fundamental frequency estimation in stage two is possible.  In Section 4.1, we discuss the 

calculation of disjoint masks for each source signal in a mix using equations (30) and (31).  We 

determine an acceptable amount of error in the reconstructed source signals and use this value to 

identify the time-frequency frames of the mixture we will consider one-source frames.  In setting the 

threshold value, T, we attempt to identify as many of the correct one-source frames as possible, 

while limiting the number of frames that are falsely identified.  Figure 3 shows the ratio of correctly 

identified frames (hits) and misidentified frames (false-positives) at 35 different values of T.   In a 

test on 100 four-instrument mixtures, we found that values below T = 0.15 provide an acceptable hit 



to false-positive ratio, while values above T = 0.1 identify at least 50% of the true one-source frames.  

For the testing provided in section 4, we set T = 0.15. 

Figure 4 shows spectrograms of the initial source estimates, created during stage one of ASE, and the 

remaining mixture signals.  The figure illustrates that many of the source’s harmonics are correctly 

resolved during stage one, although with significant gaps or missing regions.  The motivation for this 

approach comes from the fact that useful features can be estimated from these partial signals, and 

used to assist with the distribution of energy remaining. 

        

Figure 4: (left) Initial signal estimates of four string instruments, created during stage one of 
ASE.  (right) Remaining mixture signals after stage one. 

3.4 Stage Two: Source Activity Analysis and Further Source Reconstruction 

In this stage, we estimate the fundamental frequency of each source from the partially reconstructed 

signals.  These estimates are used to create harmonic masks, which allow the determination of the 

number of active sources in important time-frequency frames remaining in the mixture.  We then 

refine the initial source estimates by distributing mixture energy from additional mixture frames in 

which either one or two sources are estimated to contain significant energy. 

Determining the Active Source Count using Harmonic Masks 

We denote the fundamental frequency of signal estimate Ŝg for time window τ  as Fg(τ) (shown in 

Figure 5). We determine fundamental frequency and harmonics-to-noise ratio, HNRg(τ), of each 

signal estimate using an autocorrelation-based technique described in (Boersma 1993).   

To smooth spurious, short-lived variation in the Fg estimates, any change in Fg over 6% (roughly a 

semitone) that lasts less than 60ms is changed to match the fundamental frequency estimate in the 

frame prior to the transition.  60ms was chosen because it is nearly a sixteenth note at 120bpm (beats 



per minute) and is the shortest event we expect to process.  This parameter can be altered for 

processing music in which more rapid note transitions are present.  

We have low confidence in Fg estimates for times τ  with low harmonics-to-noise ratio (HNRg(τ)< 

Hmin). For these times, we set the fundamental frequency estimate to be equal to that of the most 

correlated neighbor estimate. Let Ŝg(τn,ω) indicate the vector of values for signal estimate Ŝg  at all 

frequencies of analysis at time τn.  For each low-confidence estimate, we measure cross-correlation 

between Ŝg(τn,ω) and the immediately preceding step,  Ŝg(τn-1,ω), and between Ŝg(τn,ω) and the 

next time step with a confident fundamental frequency estimate, Ŝg(τn+d,ω). We replace Fg(τn) with 

the value from the time-step (either Fg(τn-1) or Fg(τn+d))  with the greatest cross-correlation. 

      
Figure 5: (left) Fundamental frequency estimates of all four instruments, created during stage 

two.  (right) Harmonic mask of each instrument, created during stage two. 

Since we assume harmonic sound sources, we expect there to be energy at integer multiples of the 

fundamental frequency of each source. Accordingly, we create a harmonic mask, Mg(τ ,ω), or binary 

time-frequency mask for each source (shown in Figure 5). Each mask has a value of 1 for frames 

near integer multiples of the fundamental frequency and a value of 0 for all other time-frequency 

frames.  
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Here, k is an integer and ∆ω is the maximal allowed difference in frequency from the kth harmonic 

and is set to 1.5 times the frequency resolution used in the STFT processing.   



We use the harmonic masks to divide high-energy frames of the mixtures into three categories: one-

source frames, two-source frames and multi-source frames. We do this by summing the harmonic 

masks for all the sources to create the active source count for each frame, C(τ,ω).  
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Further Source Reconstruction 

Identification of one-source frames using DASSS is not perfect because two sources can interfere 

with each other and match the cross-channel amplitude scaling and time-shift characteristics of a 

third source. Also, we set the threshold in (9) to accept enough time-frequency frames to estimate 

Fg(τ) for each source. We remove energy that might have been mistakenly given to each source by 

taking,    

),(),(ˆ),(ˆ !"!"!" g

one

g

two

g MSS =  (12) 

In (12) and (13) we add superscripts to the source estimate notation to clarify which stage of source 

reconstruction is specified. Thus, equation (12) eliminates time-frequency frames from the initial 

source estimates that are not near the predicted harmonics of that source. We then add energy to the 

estimates in any one-source frames identified by the active source count that were not identified by 

DASSS. 
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In time-frequency frames where the source count C(τ ,ω) = 2, we presume the frame has two active 

sources and use the system of equations in (14) and (15) to solve for the source values.   
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We can solve for source g as in (16) and use (14) to solve for source h. 
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Once we have calculated the energy for both sources in the frame, we add this energy to the source 

signal estimates.  Any time-frequency frames with C(τ ,ω) > 2 are distributed in stage three.  Figure 6 

shows the refined source estimates and the mixture signals still remaining.  Notice the changes in the 

remaining mixtures between Figure 4 and Figure 6.  The mixtures remaining after stage one still 

contained many instrument harmonics, especially in low frequency regions.  The mixtures after stage 

two, although still containing some harmonic energy, are primarily made up of attack noise, or non-

harmonic energy.  Stage three will first distribute any remaining harmonic energy before distributing 

the non-harmonic energy. 

        

Figure 6: (left) Refined signal estimates of each instrument, created during stage two.  (right) 
Remaining mixtures after stage two. 

3.5 Stage Three: Amplitude Modulation Analysis and Final Reconstruction 

In this section we propose a method to estimate the energy contribution from each source in a multi-

source mixture frame, using the reconstructed source signals created during stages one and two as a 

guide.   

We first note that when instrument pitches are stable for even a short duration of time (20ms or so), 

overlap between source signals tends to occur in sequences of time-frequency frames.  With this in 

mind, the proposed multi-source estimation method deals with sequences of time frames at a 

particular frequency of analysis when possible.  



Let [τ s,τ s+n] be a sequence of multi-source frames at frequency of analysis ω.  In order to estimate 

the energy in multiple sources over this sequence of time-frequency frames, we assume that each 

source signal’s harmonics will have correlated amplitude envelopes over time. Although this is not 

precisely the case, this principle is used in instrument synthesis (Risset 1982). In source separation,  

(Anemüller 2000, Viste 2003b) make this assumption and CASA algorithms commonly use 

correlated amplitude modulation as a grouping mechanism (Brown 2005, Hu 2005, Ellis 1996). 

If harmonic amplitude envelopes, or the amplitude modulation trend of each source’s harmonics, can 

be determined, we can use them as a guide for the amplitude modulation of each source during the 

sequence of multi-source frames. If we also assume that each source’s phase progresses linearly over 

the sequence, we have a means of estimating how each source’s energy changes during the sequence 

[τ s,τ s+n].   

If we can then estimate the value of Ŝg(τ s,ω) for each active source, the linear phase change 

assumption and harmonic amplitude envelopes can be used to determine Ŝg(τ s+1,ω) through 

Ŝg(τ s+n,ω). 

We first show the method used for determining harmonic amplitude envelopes, and then proceed 

with a discussion of how to estimate Ŝg(τ s,ω), the first complex value of each active source in the 

sequence of multi-source frames. 

Determining Harmonic Amplitude Envelopes 

To calculate the overall harmonic amplitude envelope for source g, we first find the amplitude 

envelope of each harmonic in the signal estimate for g, using (17). Here, k denotes the harmonic 

number.  We include time-frequency frames in the estimate of Ag(τ ,k) if the center frequency of the 

frame is both within ∆ω (as defined in (10)) of the harmonic frequency, and the source signal estimate 

from stage two contains energy in that frame. 
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Equation (19) normalizes each amplitude envelope so that each harmonic contributes equally to the 

overall amplitude envelope.  
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Equation (20) is used to determine the overall harmonic amplitude envelope, which we denote, 

Hg(τ).  This equation simply finds the average amplitude envelope over all harmonics, and scales 

this envelope by the short-term energy of the signal estimate, as shown in Equation (21). Here, L 

specifies a time window over which the signal energy is calculated.  We include the amplitude 

scaling in (20) so the relative strength of each source’s harmonic amplitude envelope corresponds to 

the overall loudness of each source during the time window L.   
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Figure 7: Harmonic amplitude envelopes for each instrument, created during stage three. 

Estimating Ŝg(τs,ω) 

If, for each source g, the first value in the sequence, Ŝg(τ s,ω), can be estimated, then (22) and (23) 

can be used to estimate the values of the sources in the remaining multi-source frames, [τ s+1,τ s+n].  

Here, we set τa = τ s and τb ∈ [τ s+1,τ s+n]. 
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Estimation from a prior example 

The frame immediately before the start of the sequence of multi-source frames in question is (τ s-1,ω). 

If a source estimate was already given energy in this frame during stage one or two (if |Ŝg(τ s-1,ω)| > 

0), we can use Ŝg(τ s-1,ω) to estimate Ŝg(τ s,ω) using (22) and (23) by setting τa = τ s-1 and τb = τ s. 

Since stage one and two only resolve one-source and two-source frames, no matter how many 

sources we are estimating in frame τ s, we can expect that |Ŝg(τ s-1,ω)| > 0 for at most two sources.  

We estimate |Ŝg(τ s,ω)| for the remaining active sources by assuming that the relationship between the 

amplitudes of two different sources’ harmonics at frequency ω will be proportional to the 

relationship between the two sources’ average harmonic amplitude, or Hg(τ). 

We denote a source whose amplitude was estimated using (22) as h, and now estimate the amplitude 

of any remaining active source in frame τ s.   
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We set the phase of sources whose amplitudes are derived using (24) to a value of 0.  

Estimation without a prior example 

If after stage two, |Ŝg(τ s-1,ω)| = 0 for all sources, we must use an alternate method of estimating 

Ŝg(τ s,ω). In this case, we rely on the assumption that overlapping signals will cause amplitude 

beating (amplitude modulation resulting from interference between signals) in the mixture signals. 

The time frame with maximal amplitude in the mixture signals during the sequence [τ s,τ s+n] 

corresponds to the frame in which the most constructive interference between active sources takes 

place. We assume that this point of maximal constructive interference results from all active sources 

having equal phase and call this frame τMaxInt.  With this assumption, equation (12), altered for the N 

active source case in frame (τMaxInt,ω), yields (25), where Φ is the set of active sources in the multi-

source sequence, [τ s,τ s+n].  
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The amplitude of any active source g can then be determined using (26). 
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To find |Ŝg(τ s,ω)| from |Ŝg(τMaxInt,ω)|  we apply (22) with τa = τMaxInt and τb = τ s. We set the phase 

values of each active source during the first frame, ∠Ŝg(τ s,ω), to a default value of 0.   

We now apply (22) and (23) to determine Ŝg(τ s+1,ω) through Ŝg(τ s+n,ω) from Ŝg(τ s,ω), and complete 

this process for each sequence of multi-source frames determined by the source count, C(τ ,ω).   

Distributing Residual Energy 

Thus far, we have focused our attention on the harmonic regions of individual source signals.  Even 

though we are assuming that source signals are harmonic, harmonic instrument signals also contain 

energy at non-harmonic frequencies due to factors such as excitation noise (Risset 1982).  The non-

harmonic energy in a harmonic signal is often called the residual energy.  We take a simple approach 

to the distribution of residual energy in that we distribute any remaining time-frequency frame of the 

mixture to the most likely source using an altered version of (9),   
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Once the residual energy has been distributed, each source estimate, Ŝg(τ ,ω), is transformed back 

into the time domain using the overlap-add technique (Openheim 1989). The result is a time domain 

waveform of each reconstructed source signal.  Figure 8 shows the final estimate of the source 

shown in Figures 4 and 6 in both the time-frequency and time domains.   



        

Figure 8: Final source signal estimates for each instrument in the time-frequency (left) and 
time (right) domains. 

4.  EXPERIMENTAL RESULTS 

In this section we compare the performance of the ASE and DUET algorithms on mixtures of three 

and four harmonic instruments.  We use two data sets, one consisting of short mixtures containing a 

single long-tone from each instrument, and the other consisting of short excerpts from J.S. Bach 

chorale harmonizations.  We chose to compare the performance of ASE to DUET because ASE is 

designed with the same mixture models and constraints, making it a natural extension of time-

frequency masking techniques such as DUET.  We now describe the methods used in the creation of 

signal mixtures and analysis of algorithm performance. 

4.1 Three and Four Instrument Mixtures 

The instrument recordings used in the testing mixtures are individual long-tones played by alto flute, 

alto and soprano saxophone, bassoon, B-flat and E-flat clarinet, French horn, oboe, trombone and 

trumpet, all taken from the University of Iowa musical instrument database (Fritts).   

Mixtures of these recordings were created to simulate the stereo microphone pickup of spaced source 

sounds in an anechoic environment. We assume omni-directional microphones, spaced according to 

the highest frequency we expect to process, as in (Yilmaz 2004).  Instruments were placed in a semi-

circle around the microphone pair at a distance of one meter.  In the three-instrument mixtures, the 

difference in azimuth angle from the sources to the microphones was 90°.  In the four-instrument 

case, it was 60°. 



For each mixture, each source signal was assigned a randomly selected instrument and a randomly 

selected pitch from 13 pitches of the equal tempered scale, C4 through C5. We created 1000 three-

instrument mixtures and 1000 four-instrument mixtures in this manner.  

We wanted mixtures to realistically simulate a performance scenario in which instrument attacks are 

closely aligned.  For this reason, each sample used was hand cropped so that the source energy is 

present at the beginning of the file. Although the instrument attack times vary to some extent, 

cropping samples in this manner ensures that the created mixtures contain each instrument in all time 

frames of analysis.  

Each source was normalized to have unit energy prior to mixing. Mixtures were created at 22.05 kHz 

and 16 bits, and were 1 second in length. Each mixture was separated into reconstructed source 

signals by the ASE and DUET algorithms, using a window length of 46ms and step size of 6ms for 

STFT processing. Extracted sources were then compared to the original sources using the signal-to-

distortion ratio (SDR) described in (Gribonval 2003).  
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In order to assess the utility of the multi-source distribution stage proposed in section 3.5, we 

compared performance results using the algorithm as presented in section 3 (denoted ASE 1 in table 

1) and a simpler multi-source distribution scheme. The alternate algorithm, denoted ASE 2, is 

identical to ASE 1 until the multi-source distribution stage, where ASE 2 distributes multi-source 

frames of the mixture, unaltered, to each active source. 

 

Figure 9: Histogram of ASE 1 and DUET SDR performance over all signals. 



Table 1 shows the median performance of ASE 1, ASE 2 and DUET on the testing data.  The median 

performance is measured over the total number of source signals, 3000 in the three-instrument tests 

and 4000 in the four-instrument tests.  Results of all mixtures containing consonant musical intervals 

are also shown.  The ASE performance data is not normally distributed (see Figure 9), so we 

performed a nonparametric sign test over all mixtures and found the median performance to be 

significantly different between ASE 1, ASE 2 and DUET, with p < 10-50 in all three comparisons. 

 ASE 1 ASE 2 DUET 
All Mixtures 13.77 dB 12.26 dB 10.22 dB 

3-Instrument Mixtures 18.63 dB 17.57 dB 14.12 dB 
4-Instrument Mixtures 10.22 dB 9.01 dB 8.13 dB 

Unison 4.72 dB 3.63 dB 2.92 dB 
Octave 8.79 dB 6.82 dB 6.38 dB 
Fifth 13.36 dB 11.44 dB 8.13 dB 

Fourth 13.99 dB 13.05 dB 10.45 dB 

Table 1: Median Signal-to-Distortion Ratio of the ASE and DUET algorithms on 1000 3-
instrument mixtures and 1000 4-instrument mixtures (7000 signals). Also shows median 
performance on 3 and 4-instrument mixtures containing specific musical intervals: unison 
(2383 signals), octave (366 signals), perfect fifth (1395 signals) and perfect fourth (1812 
signals). 

 A primary goal of the ASE system was to reduce the reliance of time-frequency masking techniques 

on nearly disjoint source signals.  Since ASE relies on fundamental frequency estimation of partial 

signals, created from only the disjoint (non-overlapping) time-frequency frames of each signal, we 

expect source reconstruction to deteriorate as the amount of interference from other source signals 

increases.   

To determine how both ASE and DUET perform as a function of interference from other sources, we 

use a measure of disjoint energy, DE.  Disjoint energy represents the amount of energy in a source 

signal that is not heavily interfered with by other sources in the mix.  We calculate DE as a simple 

ratio, where the energy in all time-frequency frames that are deemed disjoint (less than a threshold 

value, TdB, error caused by interfering sources) in a particular mixture is divided by the total energy 

in the signal, resulting in a value between 0 and 1.  A DE score of 0 reflects that all time-frequency 

frames of a source signal are distorted by at least TdB due to the other sources in the mixture, while a 

value of 1 reflects that interference from other sources is restricted to less than TdB in all time-

frequency frames.   



We define the disjoint energy, DEg, of each source signal as, 
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The calculation of disjoint energy relies on (30) and (31).  
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Equation (30) defines the mixture-to-signal ratio, MSRg(τ ,ω), and (31) defines disjoint masks, 

DMg(τ ,ω), for each source.  The MSR represents the amount of possible amplitude difference we 

could see in the mixture, which gives us a guide of how much the other source signals interfere with 

a particular source.  By defining an allowable decibel error, TdB, we create disjoint masks that isolate 

the time-frequency frames of each source signal that are relatively unaffected by energy from other 

sources.  For the data presented here, we set TdB to 1 dB because on informal tests, subjects were 

unable to detect random amplitude distortions of less than 1 dB when applied to all time-frequency 

frames of a signal independently. 

Figure 10 shows SDR performance for ASE 1 and DUET as a function of DE.  We first divided the 

data set into five categories:  source signals with DE ∈ (0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.6, 0.8) and 

(0.8, 1). We show box-plots of the SDR performance by ASE 1 and DUET on all signals within 

these groupings. The lower and upper lines of each box show 25th and 75th percentiles of the 

sample. The line in the middle of each box is the sample median. The lines extending above and 

below the box show the extent of the rest of the sample, excluding outliers. Outliers are defined as 

points further from the sample median than 1.5 times the interquartile range and are not shown.  



If we examine the five cases in Figure 10, we can see that the performance improvement provided by 

ASE is moderate for signals with DE greater than 0.8.  This is not surprising considering DUET 

reconstruction is quite good for these signals (median SDR is over 20 dB).  As the disjoint energy in 

a source signal decreases, the improvement provided by ASE becomes more substantial, as we can 

see on signals with DE between 0.2 and 0.8.  This suggests that our approach can deal more 

effectively with partially obstructed source signals. Performance improvement is greatest for signals 

with DE between 0.4 and 0.8 (over 4 dB), or signals with roughly half of their energy obstructed.    

As a source signal’s DE falls below 0.2, the performance by both algorithms is poor.   

 

Figure 10: ASE 1 and DUET SDR performance over five groups of signals.  Signals are 
grouped according to disjoint energy, DE.  Median performance is shown in the lower half of 
each box. 

It is also clear that as DE falls, the variability of ASE SDR performance increases.  This results from 

the fact that ASE relies on fundamental frequency estimation of partial signals, created from only the 

disjoint (non-overlapping) time-frequency frames of each signal.  In cases where fundamental 

frequency is estimated correctly, performance of ASE is good despite significant source overlap.  

When fundamental frequencies are incorrect, reconstruction of signals can be degraded when 

compared to DUET.  While this is a limitation of our approach, the data is promising in that more 

reliable fundamental frequency estimation techniques may provide significant performance 

improvements.  We found that fundamental frequencies were estimated correctly in 89.42% of the 



total time frames in the three-instrument data set and in 84.3% of the time frames in the four-

instrument data set.  

Figure 11 represents the difference in SDR performance between ASE and DUET of as a function of 

DE, without quantizing the data into five groups.  For each signal, the performance of DUET was 

subtracted from ASE, so a positive value in Figure 11 shows better performance by ASE.  The heavy 

dashed line represents the trend of the difference in performance, which was calculated as the line 

that minimizes that least square error.   

 

Figure 11: Difference in SDR performance between ASE 1 and DUET (ASE 1 – DUET) over 
all 3 and 4-instrument mixtures as a function of Disjoint Energy. 

4.2 Incorporating a Time-Aligned Musical Score 

ASE was also tested on 100 four-part chorale harmonizations by J.S. Bach in order to determine the 

utility of incorporating pitch information from a time-aligned musical score. For each 

harmonization, we randomly chose a four second segment, typically equating to about one or two 

measures in the music.  Choosing small sections of the harmonizations allows us to better 

understand the relationship between the amount of source signal overlap in the mixtures and source 

separation performance. For each segment of the harmonization chosen, we created three MIDI 

versions. The first version was an unaltered representation of the selected segment of the 

harmonization.  We call this the original score. 



From each original score, we created the second MIDI version by randomly altering the tempo of 

each piece between 71% and 140% of the original tempo, with the average deviation being roughly 

20%.  This version was used to generate the audio mixture, and we call this the ideal score.  

Although a typical interpretive performance of a piece of music would likely include tempo 

variation throughout the duration of the piece, our scored segments were only a measure or two long, 

so we felt that a simple tempo scaling was a reasonable simulation of a performance of the 

harmonization segment.  

For each notated instrument part in the ideal score we created an audio file using recorded samples 

of violin (soprano and alto part), viola (tenor) and cello (bass). The samples used were from a 

commercial instrument sample library, Xsample Professional Sound Libraries, Volume 41: Solo 

Strings.  These individual audio recordings (one for each instrument part in the score) were then 

combined to create a stereo audio mixture of each chorale harmonization.  We created mixtures in 

this way in order to measure the difference between the ideal (the pre-mix individual signals) and the 

source estimates extracted from each mixture. 

We then performed score following on each audio mixture, aligning the original score to the audio 

mixture, as in (Hu 2003). The output of the score follower was a MIDI file that had been time-

altered to match the timing of the audio mixture. This is the aligned score. 

4.3 Performance Results when Incorporating a Musical Score 

For each audio mixture we performed source separation four times: once with no score (the standard 

ASE algorithm), once with the ideal score, once with the aligned score, and once with the original 

score. For this experiment, we used a window length of 186 ms and a 163 ms overlap between time 

frames in the time-frequency analysis of the mixture.  

We found that using knowledge of the score greatly improved the performance of the source 

separation algorithm. Without score knowledge, the fundamental frequency estimation in stage 2 of 

ASE was accurate (within half a semitone) in an average of 69.4% of a source signal’s time frames.  

Using the aligned and refined scores increased this accuracy to 92.9%.  The increased accuracy of 

the fundamental frequency estimates resulted in improved separation performance in 78.25% of the 

separated signals.  The SDR improvement between the median blind and median aligned score 

performance was 1.7 dB.  



Figure 12 shows notched box-plots of the SDR over all trials for the four score knowledge scenarios. 

Each box represents the performance on 400 signals, four for each chorale harmonization.  The 

notches in each box show the 95% confidence interval around the median. Since the notches in the 

box-plot for the blind case and the aligned score do not overlap, we conclude, with 95% confidence, 

that use of the aligned score provides significant performance improvement. 

 

Figure 12: Performance results over all mixtures, compared between score knowledge conditions. 

While knowledge of the score can improve the algorithm’s performance, a misaligned score can 

actually degrade separation.  In comparing the blind algorithm performance to the performance with 

the original score (the non-aligned score), the median SDR decreased by 3.51 dB with 79.25% of the 

cases performing worse when the algorithm had knowledge of the misaligned score.  This result 

emphasizes the necessity of score alignment if one is to incorporate score knowledge into a signal 

separation algorithm. 

5.  CONCLUSIONS AND FUTURE WORK 
In this work we have presented the ASE algorithm, which extends time-frequency disjoint techniques 

for blind source separation to the case where there are harmonic sources with significant time-

frequency overlap. We showed the ASE algorithm’s improvement over the DUET method at 

separating individual musical instruments from contexts that contain low amounts of disjoint signal 

energy.  



ASE improves source reconstruction by predicting the expected time-frequency locations of source 

harmonics. These predictions are used to determine which sources are active in each time-frequency 

frame. These predictions are based on fundamental frequencies estimated from incomplete source 

reconstructions. In the future, we intend to develop methods to generate source templates from 

disjoint mixture regions that don’t assume harmonic sources.  

In this paper, we introduced an analytic approach to assign energy from two-source time-frequency 

frames. Our methods of assigning energy from frames with more than two sources make somewhat 

unrealistic assumptions.  Despite this, source separation is still improved, when compared to systems 

that do not attempt to appropriately assign energy from tine-frequency frames with three or more 

sources. In future work we will explore improved ways to determine source amplitude and phase in 

these cases. 

The theme of this work and our future work will remain rooted in the idea of learning about source 

signals through partial output signals.  Considering that in any truly blind algorithm we will have no 

a priori knowledge about the source signals, techniques such as these can provide the necessary 

means for deconstructing difficult mixtures.   

Although there are still numerous obstacles to overcome before robust, blind separation of real-world 

musical mixtures is a reality, we believe the performance of our approach on anechoic mixtures 

provides promising evidence that we are nearing a tool that can deal with situations encountered in 

real recordings.   
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