

Computer Science Department

Technical Report

NWU-CS-05-07

April 26, 2005

Adaptive Frameless Rendering

Abhinav Dayal
1
, Cliff Woolley

2
, Benjamin Watson

1
 and David Luebke

2

1Northwestern University, 2University of Virginia

Abstract

We propose an adaptive form of frameless rendering with the potential to dramatically in-
crease rendering speed over conventional interactive rendering approaches. Without the
rigid sampling patterns of framed renderers, sampling and reconstruction can adapt with
very fine granularity to spatio-temporal color change. A sampler uses closed-loop feed-
back to guide sampling toward edges or motion in the image. Temporally deep buffers
store all the samples created over a short time interval for use in reconstruction and as
sampler feedback. GPU-based reconstruction responds both to sampling density and
space-time color gradients. Where the displayed scene is static, spatial color change
dominates and older samples are given significant weight in reconstruction, resulting in
sharper and eventually antialiased images. Where the scene is dynamic, more recent sam-
ples are emphasized, resulting in less sharp but more up-to-date images. We also use
sample reprojection to improve reconstruction and guide sampling toward occlusion
edges, undersampled regions, and specular highlights. In simulation our frameless ren-
derer requires an order of magnitude fewer samples than traditional rendering of similar
visual quality (as measured by RMS error), while introducing overhead amounting to
15% of computation time.

Keywords: I.3.3 [Computer Graphics]: Picture-Image Generation—Display algorithms;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics And Realism—Raytracing; Vir-
tual reality.

Technical Report NWU-CS-05-07
Northwestern University, Evanston, IL 60201

Adaptive Frameless Rendering

Abhinav Dayal1, Cliff Woolley2, Benjamin Watson1 and David Luebke2

1Northwestern University, 2University of Virginia

Abstract

We propose an adaptive form of frameless rendering with the potential to dramatically increase rendering speed over

conventional interactive rendering approaches. Without the rigid sampling patterns of framed renderers, sampling

and reconstruction can adapt with very fine granularity to spatio-temporal color change. A sampler uses closed-loop

feedback to guide sampling toward edges or motion in the image. Temporally deep buffers store all the samples cre-

ated over a short time interval for use in reconstruction and as sampler feedback. GPU-based reconstruction re-

sponds both to sampling density and space-time color gradients. Where the displayed scene is static, spatial color

change dominates and older samples are given significant weight in reconstruction, resulting in sharper and eventu-

ally antialiased images. Where the scene is dynamic, more recent samples are emphasized, resulting in less sharp but

more up-to-date images. We also use sample reprojection to improve reconstruction and guide sampling toward oc-

clusion edges, undersampled regions, and specular highlights. In simulation our frameless renderer requires an or-

der of magnitude fewer samples than traditional rendering of similar visual quality (as measured by RMS error),

while introducing overhead amounting to 15% of computation time.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture-Image Generation—Display algorithms; I.3.7
[Computer Graphics]: Three-Dimensional Graphics And Realism—Raytracing; Virtual reality

1. Improving Interactive Rendering

In recent years a number of traditionally offline rendering
algorithms have become interactive or nearly so. The intro-
duction of programmable high-precision graphics processors
(GPUs) has drastically expanded the range of algorithms that
can be employed in real-time graphics; meanwhile, the steady
progress of Moore’s Law has made techniques such as ray
tracing, long considered a slow algorithm suited only for
offline realistic rendering, feasible in real-time rendering
settings [WDB*03]. These trends are related; indeed, some of
the most promising interactive global illumination research
performs algorithms such as ray tracing and photon mapping
directly on the GPU [PBMH02]. Future hardware should
provide even better support for these algorithms, bringing us
closer to the day when ray-based algorithms are an accepted
and powerful component of every interactive rendering sys-
tem.

What makes interactive ray tracing attractive? Researchers
in the area have commented on ray tracing’s ability to model
physically accurate global illumination phenomena, its easy
applicability to different shaders and primitives, and its out-
put-sensitive running time, which is only weakly dependent

on scene complexity [WPS*03]. We focus on another unique
capability: selective sampling of the image plane. By design,
depth-buffered rasterization must generate an entire image at
a given time, but ray-tracing can focus rendering with very
fine granularity. This ability enables a new approach to ren-
dering that is both more interactive and more accurate.

The topic of sampling in ray tracing may seem nearly ex-

Figure 1: Adaptive frameless rendering improves upon

frameless rendering [BFMS94] (left) with adaptive sam-

pling and reconstruction (right). Resulting imagery has

similar visual quality to a framed renderer but is produced

using an order of magnitude fewer samples per second.

2 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

hausted, but almost all previous work has focused on spatial

sampling, or where to sample in the image plane. In an inter-
active setting, the question of temporal sampling, or when to
sample with respect to user input, becomes equally important.
Temporal sampling in traditional graphics is bound to the
frame: an image is begun in the back buffer incorporating the
latest user input, but by the time the frame is swapped to the
front buffer for display, the image reflects stale input. To
mitigate this, interactive rendering systems increase the frame
rate by reducing the complexity of the scene, trading off fi-
delity for performance.

In this paper we investigate novel sampling schemes for
managing the fidelity-performance tradeoff. Our approach
has two important implications. First, we advocate adaptive

temporal sampling, analogous to the adaptive spatial sam-
pling long employed in progressive ray tracing [BFGS86;
M87; PS89]. Just as spatially adaptive renderers display de-
tail where it is most important, temporally adaptive sampling
displays detail when it is most important. Second, we advo-
cate frameless rendering [BFMS94], in which samples are
located freely in space-time rather than placed at regular tem-
poral intervals forming frames, and with images recon-
structed from a sampled space-time volume, rather than a
coherent temporal slice. Frameless rendering decouples spa-
tial and temporal sampling, enabling adaptive spatial and
temporal sampling.

Our prototype adaptive frameless renderer consists of four
primary subsystems. An adaptive sampler directs rendering
to image regions undergoing significant change (in space
and/or time). The sampler produces a stream of samples scat-
tered across space-time; recent samples are collected and
stored in two temporally deep buffers. One of these buffers
provides feedback to the sampler, while the other serves as
input to an adaptive reconstructor, which repeatedly recon-
structs the samples in its deep buffer into an image for dis-
play, adapting the reconstruction filters to local sampling
density and color gradients. Where the displayed scene is
static, spatial color change dominates and older samples are
given significant weight in reconstruction, resulting in
sharper images. Where the scene is dynamic, only more re-
cent samples are emphasized, resulting in a less sharp but
correctly up-to-date image.

We describe an interactive system built on these principles,
and show in simulation that this system achieves superior
rendering accuracy and responsiveness. We compare our
system’s imagery to the imagery that would be displayed by a
hypothetical zero-delay, antialiased renderer using RMS er-
ror. Our system outperforms not only frameless sampling
(Figure 1), but also equals the performance of a framed ren-
derer sampling 10 times more quickly.

2. Related work

Bishop et al.’s frameless rendering [BFMS94] replaces the
coherent, simultaneous, double-buffered update of all pixels
with samples distributed stochastically in space, each repre-
senting the most current input when the sample was taken.
Pixels in a frameless image therefore represent many mo-
ments in time. Resulting images are more up-to-date than
double-buffered frames, but temporal incoherence causes
visual artifacts in dynamic scenes.

Inspired by frameless rendering, other researchers exam-
ined the loosening of framed sampling constraints. The just in
time pixels scheme [OCMB95] takes a new temporal sample
for each scanline. The address recalculation pipeline [RP94]
sorts objects into several layered frame buffers refreshed at
different rates. The Talisman system [TK96] renders portions
of the 3D scene at different rates. Ward and Simmons
[WS99] and Bala et al. [BDT99] store and reuse previously
rendered rays. In work that is particularly relevant here, sev-
eral researchers have studied sample reprojection, which
reuses samples from previous frames by repositioning them
to reflect the current viewpoint. Walter et al.’s Render Cache
[WDP99; WDG02] reconstructs these temporally incoherent
samples using depth comparisons and filtering that span
small pixel neighborhoods. New samples are guided toward
regions that have not been recently sampled, are sparsely
sampled, or contain temporal color discontinuities. Simmons
and Séquin [SS00] use a hardware interpolated 2.5D mesh to
cache and reconstruct the samples, and guide new samples
toward spatial color and depth discontinuities. Tolé et al.’s
Shading Cache [TPWG02] stores samples in the 3D scene
itself, performing reconstruction by rendering that scene in
hardware. Sampling is biased toward spatial color disconti-
nuities and toward specular and moving objects. Havran et al.
[HDM03] calculate the temporal intervals over which a given
sample will remain visible in an offline animation and repro-
ject that sample during the interval. Shading is recalculated
for reprojected samples in every frame. Although the images
they produce combine samples created at many different
moments, all of these systems sample time at regular inter-
vals.

Woolley et al. [WLWD03] describe a fully framed but
temporally adaptive sampling scheme called interruptible
rendering. The approach adaptively controls frame rate to
minimize simultaneously the error created by reduced render-
ing fidelity and by reduced rendering performance. A pro-
gressive renderer refines a frame in the back buffer until the
error created by unrepresented input exceeds the error caused
by coarse rendering. At that point, the front and back buffers
are swapped and rendering begins again into the back buffer
using the most recent input. Coarse, high frame-rate display
results when input is changing rapidly, and finely detailed,
low frame rate display when input is static.

Many advances in high-speed ray tracing have been made
recently. These include clever software techniques to im-

3 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

prove memory locality [PKGH97; TA98; WBWS01], as well
as advances in hardware that enable interactive ray tracers on
supercomputers [PMS*99], on PC clusters [WSB01;
WBDS03], on the SIMD instruction sets of modern CPUs
[WBWS01], and on graphics hardware [PBMH02; CHH02].
Wald et al. provide a good summary of the state of the art
[WPS*03]. These advances will soon allow a very fine-
grained and selective space-time sampling, in real time.

This real-time, selective sampling enables a new adaptive
form of frameless rendering that incorporates techniques
from adaptive renderers, reprojecting renderers, non-uniform
reconstruction [M87], and GPU programming. The resulting
system outperforms framed and traditional frameless render-
ers and offers the following advantages over reprojecting
renderers:

Improved sampling response. Rather being clustered at
each frame time, samples reflect the most up-to-date input
available at the moment they are created. Further, closed-
loop control guides samples toward not only spatial but
temporal color discontinuities at various scales. These ele-
ments combine to reduce rendering latency.

Improved reconstruction. Rather than being non-adaptive
or hardware-interpolated, reconstruction is adaptive over
both space and time, responding to local space-time color
gradients. This drastically improves image quality, elimi-
nating the temporal incoherence in traditional frameless
imagery without requiring framed sampling and its in-
creased latency, and permitting antialiasing in static image
regions. Moreover this reconstruction is already interactive
and implemented on existing GPU hardware.

3. Adaptive frameless sampling

Previous importance sampling techniques [BFGS86; G95;
M87; PS89] are spatially adaptive, focusing on regions where
color changes across space. Our renderer is both spatially and
temporally adaptive, focusing also on regions where color
changes over time (Figure 2). Adaptive bias is added to sam-
pling with the use of a spatial hierarchy of image-space tiles.
However, while previous methods operated in the static con-

text of a single frame, we operate in a dynamic frameless
context. This has several implications. First, rather than oper-
ating on a frame buffer, we send samples to two temporally
deep buffers that collect samples scattered across space-time
(one buffer for the sampler, one for the reconstructor). Our
tiles therefore partition a space-time volume using planes
parallel to the temporal axis. We call each resulting sub-
volume a block. Second, as in framed schemes, color varia-
tion within each tile guides rendering bias, but variation
represents change over not just space but also time. More-
over, variation does not monotonically decrease as the ren-
derer increases the number of tiles, but rather constantly
changes in response to user interaction and animation. There-
fore the hierarchy is also constantly changing, with tiles con-
tinuously merged and split in response to dynamic changes in
the contents of the deep buffer.

The sampler’s deep buffer provides it with important feed-
back. This deep buffer is a 3D array sized to match the num-
ber of image pixels in two dimensions, and a shallow buffer
depth b in the third, temporal dimension (we use b = 4).
Buffer entries at each pixel location form a queue, with new
samples inserted into the front causing the removal of the
sample in the back if the queue is full. Each sample is also
sent to the reconstructor’s buffer as soon as it arrives in the
sampler’s buffer, and is described by its color, position in
world space, age, and a view-independent velocity vector. In
addition to filling the reconstructor’s deep buffer, the sampler
sends the reconstructor regular updates describing the current
view and tiling. This information is sent to the reconstructor
60 times per second, and includes each tile’s image coordi-
nates as well as the average temporal and spatial color gradi-
ents in the tile’s block.

We implement our sampler’s tiling hierarchy using a K-D
tree. Given a target number of tiles, the tree is managed to

Figure 2: A reconstructed image and an overlay showing

the tiling used by the sampler at that moment in time. Note

the finer tilings over object edges and occlusions.

fill deep buffers non-adaptively
loop

choose a tile to render and a pixel within it
find last location sampled in pixel
complete a crosshair of samples at last location
update deep buffers and tile statistics
repeat 5 times

choose a tile crosshair and reproject it
reevaluate tile gradients in crosshair
check visibility of crosshair center sample
if occluded then create new crosshair at same location
update deep buffers and tile statistics

end repeat

choose a different pixel in tile to sample
create sample, update last location sampled in pixel
update deep buffers and tile statistics
if one display time elapsed

then send reconstructor view and tile information
if another chunk of crosshairs has been completed

then adjust tiling
end loop

Figure 3: Pseudocode for the main loop in the sampler.

4 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

ensure that the amount of color variation in each tile’s block
is roughly equal: the tile with the most color variation is split
and the two tiles with the least summed variation are merged,
until all tiles have roughly equal variation. We calculate
variation across all of a tile’s samples using the equation vtile
= 1/n

Σ
i (Li – Lm)2, where Li is a sample’s luminance and Lm

the mean luminance in the tile. We ensure prompt response to
changes in scene content by weighting samples in the vari-
ance calculation using a function that declines exponentially
as sample age increases. As a result, small tiles are located
over dynamic or finely detailed buffer regions, while large
tiles emerge over static or coarsely detailed regions (Figure
2). The tiling is updated after a chunk of c new samples has
been generated (we set c = 150).

Sampling now becomes a biased probabilistic process (Fig-
ure 3). Since the current time is not fixed as it would be in a
framed renderer, we cannot just iteratively sample the tile
with the most variation—in doing so, we would overlook
newly emerging motion and detail. At the same time, we
cannot leave rendering unbiased and unimproved. Our solu-
tion is to select each tile with equal probability and select the
sampled location within the tile using a uniform distribution.
Because tiles vary in size, sampling is biased towards those
regions of the image which exhibit high spatial and/or tempo-
ral variance. Because all tiles are sampled, we remain sensi-
tive to newly emerging motion and detail.

This sampler thus constitutes a closed-loop control system
[DTB97], capable of adapting to user input with great flexi-
bility (Figure 4). In control theory, the plant is the process
being directed by the compensator, which must adapt to ex-
ternal disturbance. Output from the plant becomes input for
the compensator, closing the feedback loop. In a classic adap-
tive framed sampler, the compensator chooses the rendered
location, the ray tracer is the plant that must be controlled,
and disturbance is provided by the scene as viewed at the
time being rendered. Our frameless sampler faces a more
difficult challenge: view and scene state may change after
each sample.

To meet this challenge, we apply two control engineering
techniques. We first use a PD controller, in which control
responds not only in proportion to error itself (P), but also to
its derivative (D). In our sampler, error is color variation, and
by biasing sampling toward variation, we are already re-
sponding in proportion to it. By responding to error’s deriva-
tive, we bias sampling toward regions in which variation is
changing such as the edge of the moving table in Figure 2,
compensating for delay in our control system. We accomplish
this by tracking variation change d and adding it to normal-
ized variation p to form a new summed control error e in the
tile:

e = kp + (1-k)d,
where

∑
= ||tiles

j j

tile

v

svp

is the temporally weighted color variance in the tile block vtile
normalized by the sum of these variances over all tiles scaled
by the tile size s, d is the absolute difference between p’s
current value and its value u updates of the tile ago (we use u
= 4) divided by the time between those updates, and k in the
range [0,1] is the weight applied to the proportional term. The
left image in Figure 5 visualizes d for each tile by mapping
high d values to brighter colors.

Our prototype adaptive sampler will be less effective when
the rendered scene is more dynamic, changing the desired
image (or target signal in control theory) more rapidly. In
such cases, fixed delays in response will make control in-
creasingly ineffective. To address this problem we apply
another control engineering technique: adjusting gain. We
implement this by restricting or increasing the ability of the
sampler to adapt to deep buffer content. Specifically, we
adjust the number of tiles onscreen so that color change over
space and time are roughly equal in all tiles by ensuring that
dC/ds S = i dC/dt T, where dC/ds and dC/dt are spatial and
temporal color gradients averaged over the entire image (Fig-
ure 5), S is the average width of the tiles, T the average age of
the samples in each tile, and i is a constant adjusting the rela-
tive importance of temporal and spatial change in control. By
solving for S we can derive the appropriate number of tiles.

Figure 4: Adaptive frameless sampling as closed loop con-

trol. Samples from the ray tracer (plant) are sent to an

error tracker, which adjusts the tiling or error map. The

adaptive sampler (compensator) then selects one location

to render in a tile. Constantly changing user input (distur-

bance) makes it very difficult to track and limit error.

ray tracer

error tracker

model,

user input

image-loc

(x,y)
sample

error

map adaptive

sampler

_

+
ray tracer

error tracker

model,

user input

image-loc

(x,y)
sample

error

map adaptive

sampler

_

+

Figure 5: Error derivatives (left) and the tile gradients

(right) Gx, Gy, and Gt (shown here as red, green, and blue,

respectively) in a scene corresponding to Figure 2.

5 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

We find current spatial gradients by sampling five tightly
clustered image locations (xy, x±1y and xy±1) in a crosshair
pattern each time we add samples to the deep buffers, and
averaging the horizontal and vertical absolute differences. To
find a temporal gradient, we find the absolute difference be-
tween the center xy sample and a sample made at the same
location the last time we visited the same pixel region, and
divide by the time elapsed since that previous sample was
made. We then produce and store a sample at a new location
in the pixel region for pairing with the next crosshair made in
the pixel region. This set of six samples forms a single entry
in the xy queue of the sampler’s deep buffer (they are not
grouped when sent to the reconstructor’s deep buffer). To
determine average tile gradients, we reduce the weight of
each sample gradient as a function of time using the same
exponential scheme used to track color variation.

To permit antialiasing, we center sample crosshairs at ran-
dom spatial locations. However when the scene is particularly
dynamic and spatial sampling density is decreased, sharp
edges may appear to “shimmer” in reconstructed imagery.
Although adaptive reconstruction reduces these artifacts, we
eliminate them by randomizing crosshair location only when
the scene is locally static and temporal gradients approach
zero.

4. Interactive space-time reconstruction

Frameless sampling strategies demand a rethinking of the
traditional computer graphics concept of an “image”, since at
any given moment the samples in an image plane represent
many different moments in time. The original frameless work
[BFMS94] simply displayed the most recent sample at every
pixel. This traditional reconstruction results in a noisy image
that appears to sparkle when the scene is dynamic (see Figure
1). In contrast, we convolve the frameless samples in the
reconstructor’s temporally deep buffer with space-time filters
to continuously reconstruct images for display. This is similar
to the classic computer graphics problem of reconstruction of
an image from non-uniform samples [M87], but with a tem-
poral element: since older samples may represent “stale”
data, they are treated with less confidence and contribute less
to nearby pixels than more recent samples. The resulting
images greatly improve over traditional reconstruction (see
again Figure 1).

4.1. Choosing a filter

The key question is what shape and size filter to use. A tem-
porally narrow, spatially broad filter (i.e. a filter which falls
off rapidly in time but gradually in space) will give very little
weight to relatively old samples, emphasizing the newest
samples and leading to a blurry but very current image. Such
a filter provides low-latency response to changes and should
be used when the underlying image is changing rapidly. A
temporally broad, spatially narrow filter will give nearly as

much weight to relatively old samples as to recent samples;
such a filter accumulates the results of many samples and
leads to a finely detailed, antialiased image when the underly-
ing scene is changing slowly. However, often different re-
gions of an image change at different rates, as for example in
a stationary view in which an object is moving across a static
background. A scene such as this demands spatially adaptive
reconstruction, in which the filter extent varies across the
image. What should guide this process?

We use local sampling density (Figure 7) and space-time
gradient information (Figure 5) to guide filter size. The re-
constructor maintains an estimate of local sampling density
across the image, based on the overall sampling rate and on
the tiling used to guide sampling. We size our filter sup-
port—which can be interpreted as a space-time volume—as if
we were reconstructing a regular sampling with this local
sampling density, and while preserving the total volume of
the filter, perturb the spatial and temporal filter extents ac-
cording to local gradient information. A large spatial gradient
implies an edge, which should be resolved with a narrow
filter to avoid blurring across that edge. Similarly, a large
temporal gradient implies a “temporal edge” such as an oc-
clusion event, which should be resolved with a narrow filter
to avoid including stale samples from before the event. This
is equivalent to an “implicit” robust estimator; rather than
searching for edges explicitly, we rely on the gradient to al-
low us to size the filter such that the expected contribution of
samples past those edges is small.

Thus, given a local sampling rate Rl, expressed in samples
per pixel per second, we define VS as the expected space-time
volume occupied by a single sample:

1
S

l

V
R

= .

The units of VS are pixel-seconds per sample (note that the
product of pixel areas and seconds is a volume). We then
construct a filter at this location with space-time support pro-
portional to this volume. For simplicity we restrict the filter
shape to be axis-aligned to the spatial x and y and the tempo-
ral t dimensions. The filter extents ex, ey, and et are chosen to
span equal expected color change in each dimension, deter-
mined by our estimates of the gradients Gx, Gy, and Gt and
the total volume constraint Vs:

x x y y t te G e G e G= =

S x y zV e e e= .

Thus the filter extents are given by

3 332 2 2
, ,S y t S x yS x t

x y t

x y t

V G G V G GV G G
e e e

G G G
= = = .

What function to use for the filter kernel remains an open
question. According to signal theory, a regularly sampled,
band limited function should be reconstructed with a sinc
function, but our deep buffer is far from regularly sampled

6 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

and the underlying signal (an image of a three-dimensional
scene) contains high-frequency discontinuities such as occlu-
sion boundaries. We have experimented with a range of fil-
ters. Box and tent filters have poor bandpass properties but
are extremely cheap to evaluate. A gaussian filter looks better
but also requires more computation. The Mitchell-Netravali
filter [M87] is considered among the best filters for nonuni-
form sampling, but is still more costly and requires more
precision than is provided by our 16-bit GPU implementa-
tion. We have also experimented with a simple inverse expo-
nential filter, which has the nice temporal property that the
relative contribution of two samples does not change as both
grow older; however, the bandpass properties of this filter are
less than ideal. We are currently using a gaussian filter.

4.2. Scatter versus gather

We can consider reconstruction a gather process which loops
over the pixels, looks for samples in the neighborhood of
each pixel, and evaluates the contribution of those samples to
that pixel. Alternatively, we can cast reconstruction as a scat-

ter process which loops over the samples, projects each onto
the image plane, and evaluates its contribution to all pixels
within some footprint. We have experimented with both ap-
proaches.

We implemented the reconstructor initially as a gather
process directly on the sampler’s deep buffer. At display time
the reconstructor looped over the pixels, then adjusted the
filter size and extents at each pixel using gradient and local
sample density as described above. The reconstructor gath-
ered samples outwards from each pixel in space and time
until the maximum possible incremental contribution of addi-
tional samples would be less than some threshold ε . The final
color at that pixel was computed as the normalized weighted
average of sample colors. This process proved expensive in
practice—our unoptimized simulator required reconstruction
times of several hundred ms for small (256 × 256) image

sizes. It was also unclear how to efficiently implement hard-
ware sample reprojection

We have therefore moved to a scatter-based implementa-
tion that stores the N most recent samples produced by the
sampler across the entire image; the value of N is typically at
least 4× the desired image resolution. This store is a distinct
deep buffer for the reconstructor that organizes the samples
as a single temporally ordered queue rather than a spatial
array of crosshairs. At reconstruction time, the system splats
each of these samples onto the image plane and evaluates the
sample’s affect on every pixel within the splat extent by
computing the distance from the sample to the pixel center
and weighting the sample’s color contribution according to
the local filter function. These accumulated contributions are
then divided by the accumulated weight at each pixel to pro-
duce the final image (Figure 6).

We implement this scatter approach on the GPU, achieving
real-time or near real-time performance and improving on the
speed of our CPU-based gather implementation by almost
two orders of magnitude. The GPU treats the samples in the
deep buffer as vertices in a vertex array, and uses an OpenGL
vertex program to project them onto the screen as splats (i.e.,
large GL_POINTS primitives). A fragment program runs at
each pixel covered by a sample splat, finding the distance to
the sample and computing the local filter shape by accessing
tile information—local filter extent, precomputed from sam-
ple density and Gx,Gy,Gt gradients—stored in a texture. This
texture is periodically updated by rasterizing the latest tiling
(provided by the sampler) as a set of rectangles into an off-
screen buffer. To reduce overdraw while still providing broad
filter support in sparsely sampled regions, the vertex program
rendering the samples adaptively adjusts point size. Section
5.2 describes this process in more detail.

The reconstructor uses several features of recent graphics
hardware, including floating-point textures with blend sup-
port, multiple render targets, vertex texture fetch, dynamic
branching in vertex programs, and separate blend functions

 (a) (b) (c) (d)

Figure 6: Adaptive reconstruction illustrated in one moment of a scene with a moving view and car, sampled using our adap-

tive frameless techniques. In (a), traditional frameless reconstruction leaves many artifacts of the view motion in the image.

In (b), adaptive reconstruction rejects many of the outdated samples, eliminating artifacts and clarifying edges. (c) shows the

improvements possible by reprojecting samples as in [WDP99], even without adaptive reconstruction. When reprojection is

combined with adaptive reconstruction as in (d), the car’s motion and view-dependent reflections in the floor are clarified.

7 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

for color and alpha. The results presented in this paper were
obtained on a NVIDIA GeForce 6800 Ultra. In general, re-
construction occurs at 20 Hz rates when keeping a visually
sufficient number of samples N (N=400K). This is remark-
able considering that our use of the hardware differs greatly
from the rendering task the hardware was designed to sup-
port.

5. Reprojection

Our adaptive frameless sampling and reconstruction tech-
niques operate entirely in 2D image space and do not rely on
information about sample depth or the 3D structure of the
scene. However, because camera location and sample depth
are easily available from our ray-tracing renderer, we also
incorporate sample reprojection [WDP99; WDG02; BDT99;
WS99] into our algorithms. During sampling, reprojection
can help the sampler find and focus on image regions under-
going disocclusion, occlusion, view-dependent lighting
changes, or view-independent motion. During reconstruction,
sample reprojection extends the effective “lifetime” of a
sample by allowing older samples to contribute usefully to
imagery even after significant camera or object motion. This
section describes our strategies for using reprojection with
our sampler and reconstructor.

5.1. Reprojection in the sampler

It is not necessary to reproject every sample at fixed intervals,
and indeed this would not be desirable since it would intro-
duce periodicity into our frameless sampler. Instead, we re-
project a small number of recent samples as we generate each
new sample. When updates of tiling statistics (e.g. variation,
gradients) are included, reprojecting a sample takes roughly
1/35th the mean time required to generate a new sample. We
therefore reproject a small number (currently 5) of a tile’s
crosshairs each time the sampler visits a tile. In this way the
same useful rendering bias that guides generation of new
samples determines which samples are reprojected, focusing
reprojections on important image areas.

Within each tile, we choose the corresponding pixels to re-
project randomly and relocate the crosshairs from the front of
each pixel’s queue in the deep buffer. We apply both motion
and viewing transformations to the samples in the crosshair.
Despite being updated in some sense, reprojected samples
continue to age normally and do not receive increased weight
in variance and gradient calculations. On a local per-tile ba-
sis, every sample is treated similarly, and its age remains a
good indicator of its utility. We determine a crosshair’s new
location in the buffer solely by its relocated center sample,
and insert the crosshair sample at the back of its new queue,
updating source and destination tile statistics if necessary.
When updating tile gradients, spatial gradients for the cross-
hair are recalculated using the new spatial locations of the
crosshair samples (after reprojection, they are no longer sepa-

rated by one pixel length). We recalculate the crosshair tem-
poral gradients by finding the absolute difference between the
reprojected center sample and the newest sample in that pixel
region, and dividing this difference by the age of this newest
sample. Reprojection of a crosshair continues until it ages so
much that it no longer affects tile variance and gradients, or
until it is pushed out of its queue in the deep buffer by a
newly arriving crosshair.

Regions containing disocclusions will be undersampled as
samples reproject to other image locations. We bias sampling
toward these disocclusions with a new undersampling meas-
ure utile:

.
||

|||)|(
,1min1

||
1















−
∑ −

−= =

tilesb

tilesbufferwhbm
u

tiles
j

tile

Here the number of empty samples in a tile must be m times
greater than the mean number of empty samples in all tiles to
affect sampling. |buffer| and |tile| are the number of samples
in the deep buffer and the current tile’s block, while whb is
the number of samples the deep buffer can hold (with image
size w×h).

Regions undergoing occlusion will contain samples from
multiple surfaces at differing view depths, leading to uncer-
tainty about image content. To resolve this uncertainty, we
increase sampling in occluded regions. We detect occlusions
by casting rays from the eye to each reprojected sample. If
the sample is no longer visible from the eye, we add a new
sample at the occluded image location. We also increase
sampling density in the occluded region by increasing error in
tiles experiencing occlusion with an occlusion term otile =
|O|/sb, where |O| is the number of occluded samples in a tile’s
block, tracked by our occlusion test. Figure 7 shows the oc-
clusions that affect sampling. Proportional error p for the
sampler then becomes:

() 










∑
−−+

∑
+

∑
= |||||| 1 tiles

j j

tile
tiles
j j

tile
tiles
j j

tile

o

o

u

u

v

vsp λκλκ w

ith κ ,
λ

, and (κ +
λ

) all in [0,1].

Figure 7: A sample density map (left) used by the recon-

structor to determine the expected local sample volume Vs,

and occlusion detection (right) used direct sampling.

8 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

5.2. Reprojection in the reconstructor

Unlike the sampler, the reconstructor operates in a framed
context: to display an image on existing hardware, it scans
out a traditional image (i.e., a uniform grid of pixels) at the
regular intervals of the display refresh. Since each sample in
the reconstructor’s deep buffer stores the 3D hit point of the
primary ray that generated that sample, reprojecting and re-
constructing each of our renderer’s images reduces to render-
ing the vertex array in the deep buffer with the current cam-
era and projection matrices bound. Figure 6 shows the results
of using reprojection in reconstruction.

Reprojection sometimes generates regions of low sample
density, for example at disocclusions and near the leading
edge of the screen during camera rotation. In such regions,
the filter support for the few samples present must be quite
large, requiring the reconstructor to rasterize samples with
large splats. Rather than rasterizing all samples using large
splats, we avoid overdraw with an adaptive point size
scheme. All samples are accumulated into a coverage map
during rendering that tracks the number and average splat
size of all samples rendered to each pixel. To size splats, the
sample vertex program binds the previous image’s coverage
map as a texture, computes the projected coordinates of the
sample, and uses the coverage information at those coordi-
nates to calculate the splat size at which the sample will be
rasterized. Sample splats in a region are sized according to
the average point size used in that region during reconstruc-
tion of the previous image, but point sizes in undersampled
regions (defined currently as fewer than 4 samples affecting a
pixel) are multiplied by 4 to grow rapidly, while point sizes
in oversampled regions (more than 32 samples reaching a
pixel) are multiplied by 0.7 to shrink gradually.

6. Evaluation

Using the gold standard validation described in [WLWD03],
we find that our adaptive frameless renderer consistently
outperforms other renderers that have the same sampling
rates.

Gold standard validation uses as its standard an ideal ren-

derer I capable of rendering antialiased imagery in zero time.
To perform comparisons to this standard, we create n ideal
images Ij (j in [1,n]) at 60 Hz for a certain animation A using
a simulated ideal renderer. We then create n more images Rj
for animation A using an actual interactive renderer R. We
next compare each image pair (Ij,Rj) using an image compari-
son metric comp. Here we use root-mean-squared error
(RMS).

We report the results of our gold standard evaluation in Ta-
ble 1, which compares several rendering methods producing
256x256 images using various sampling rates. Two framed
renderings either maximize Hz at the cost of spatial resolu-
tion (lo-res), or spatial resolution at the cost of Hz (hi-res).

The traditional frameless rendering simply displays the new-
est sample at a given pixel. The adaptive frameless render-
ings use our system to produce the imagery. The hi-res 60Hz
is a framed renderer that uses a sampling rate 10 times higher
than other renderers to produce full resolution imagery at
60Hz. (The difference between the ideal renderer and this hi-
res 60Hz renderer is that the latter suffers from double-
buffering delay and does not use anti-aliasing). Rendering
methods were tested in 3 different animations, all using the
publicly available BART testbed [LAM00]: the viewpoint
animation in the testbed itself (BART); a fixed viewpoint
close-up of a moving car (toycar), and a recording of user
viewpoint interaction (interactive).

Adaptive frameless rendering is the clear winner, with
lower RMS error than all techniques using the same sampling
rate and comparable error to the hi-res 60Hz rendering, which
uses sampling rates 40, 10 and 5 times faster than the 100K,
400K and 800K adaptive frameless renderings.

Figure 8 offers a more detailed view that confirms this im-
pression. The graphs here show frame-by-frame RMS error
comparisons between several of these rendering techniques
and the ideal rendering. Note the sawtooth pattern produced
by the low-sampling rate hi-res renderer, due to double buff-
ering error. In the interactive animation, the periodic in-
creases in error correspond to periods of viewpoint change.
Once more, adaptive frameless rendering has lower RMS
error than all rendering techniques using equivalent sampling
rates, and comparable error to the much more densely sam-
pled hi res 60Hz renderer. The top right graph also depicts
the advantage of using reprojection in the sampler. RMS
error is considerably higher if reprojection is not used.

7. Discussion and future work

Frameless rendering and selective sampling have been criti-
cized for sacrificing spatial coherence and thus memory lo-
cality, which can reduce sampling speed. We plan to experi-
ment with increases in the number of samples we generate
each time we visit a tile, increasing spatial coherence at the
cost of slightly less adaptive sampling overall. However,
exploiting spatial coherence has its limits: ultimately, it will
limit our ability to take advantage of temporal coherence and
force us to sample more often. Traditional renderers must
sample every single pixel dozens of times each second; as
displays grow in size and resolution, this ceaseless sampling

Table 1: Summary error analysis using the techniques of

Figure 8, with some additional sampling rates.

100k 400k 800k 400k 800k 400k 800k

Framed: lo-res 92.7 71.8 60.9 112 100 47 42.8

Framed: hi-res 110 72.6 60.4 127 112 43.8 38.9

Traditional Frameless 80.8 48.8 39.3 92.3 74.8 35.3 32.5

Adaptive 34.4 24.1 23.6 50.1 51.9 20.4 18.5

hi-res 60Hz 28 28 28 30.7 30.7 29.4 29.4

Render Method

Animation/Sampling rate

Interactive Bart Toycar

9 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

becomes wasteful of computation, power, and heat. With this
work, we hope to shift the emphasis of interactive ray tracing
research from spatial to temporal coherence, and from brute-
force to selective sampling.

Good filter design for the adaptive space-time reconstruc-
tion of frameless sample streams remains an open problem.
We have begun investigating the edge-preserving concepts of
bilateral and trilateral filtering [DD02; CT03], which perform
nonlinear filtering by weighting samples according to their
difference in luminance as well as their distance in space.
However, extending these approaches to include a third tem-
poral dimension and to operate on a non-uniformly distrib-
uted samples presents a significant challenge. A related pos-
sibility is to exploit a priori information about the underlying
model or animation, as do Bala et al. [BWG03].

We believe this work has great potential, and will continue
this research in several longer-term directions. Extending our
temporally adaptive methods to more sophisticated global
illumination algorithms is one obvious avenue. With its abil-
ity to selectively alter sampling and reconstruction across
both space and time, our adaptive frameless renderer is an
ideal platform for experimenting with perceptually driven
rendering in interactive settings [LRC02]. We are studying

the possibility of extremely high resolution (“gigapixel”)
display hardware fed streams of frameless samples, with
adaptive reconstruction performed in the display itself. This
might be one solution to the immense bandwidth challenge
posed by such displays. Such a rendering configuration
would also enable a truly asynchronous parallelism in graph-
ics, since renderers would no longer have to combine their
samples into a single frame [MCEF94]. For this reason we
are particularly interested in implementing these algorithms
in graphics hardware.

8. Conclusion

In conclusion, we advocate a revival of frameless rendering,
based on temporally adaptive sampling and reconstruction,
and enabled by recent advances in interactive ray tracing.
This approach improves traditional framed and frameless
rendering by focusing sampling on regions of spatial and
temporal change, and with adaptive reconstruction that em-
phasizes new samples when scene content is changing
quickly and incorporates older samples when the scene is
static. In testing, our prototype system displays greater accu-
racy than framed and frameless rendering schemes at compa-
rable sampling rates, and comparable accuracy to a framed

Figure 8: An error analysis of rendering techniques for several animation sequences created using 100K or 400K sam-

ples/sec. Graphs show frame-by-frame RMS error between each technique’s images and the ideal image that would be dis-

played by a hypothetical zero-delay, antialiased renderer at the same moment in time. Resolution is 256x256 pixels at 60 Hz.

Interactive Animation 100k samples/sec

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200

#Frame

R
M

S
 e

rr
o

r

Interactive Animation 400k samples/sec

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600 1800

Frame#

R
M

S
 e

rr
o

r

400k Full Res

400k 60Hz

traditional frameless

Full Res 60Hz

adaptive no reprojections

adaptive

Bart Animation 400k samples/sec

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Frame#

R
M

S
 e

rr
o

r

Toycar Animation 400k samples/sec

0

10

20

30

40

50

60

70

0 50 100 150 200

#Frames

R
M

S
 e

rr
o

r

10 A. Dayal, C. Woolley, B. Watson & D. Luebke / Adaptive Frameless Rendering

Technical Report NWU-CS-05-07, Northwstern University

renderer sampling 10 times more quickly. Based on these
results, we believe that a temporally adaptive frameless ap-
proach shows great promise for future rendering algorithms
and hardware.

9. Acknowledgements

We would like to thank Edward Colgate and Kevin Lynch
(Department of Mechanical Engineering, Northwestern Uni-
versity) for their fruitful discussions on control systems and
the Saarland University Graphics Group for providing us
with the OpenRT ray tracer. This work was supported in part
by the NSF grants 0092973, 0093172, 0112937, and
0130869. The 3D model (kitchen) is the courtesy of the
BART (A Benchmark for Animated Ray Tracing) project at
Chalmers University of Technology, Sweden.

10. References

[BDT99] BALA, K., DORSEY, J., TELLER, S. 1999. Radiance
interpolants for accelerated bounded-error ray tracing. ACM Trans.

Graph, 18, 3, 213-256.
[BWG03] BALA, K., WALTER, B., GREENBERG, D.P. 2003.

Combining edges and points for interactive high-quality rendering.
ACM Trans. Graph., 22, 3, 631–640 (Proc. ACM SIGGRAPH).

[BFGS86] BERGMAN, L., FUCHS, H., GRANT, E., SPACH, E.
1986. Image rendering by adaptive refinement. Proc. ACM

SIGGRAPH, 29–37.
[BFMS94] BISHOP, G., FUCHS, H., MCMILLAN, H., SCHER

ZAGIER, E.J. 1994. Frameless rendering: double buffering con-
sidered harmful. Proc. ACM SIGGRAPH, 175–176.

[CHH02] CARR, N.A., HALL, J.D., HART, J.C. 2002. The ray
engine. Proc. ACM SIGGRAPH/Eurographics Graphics Hard-

ware, 37–46.
[CT03] CHOUDHURY, P., TUMBLIN, J. 2003. The trilateral filter

for high contrast images and meshes. Proc. Eurographics Work-

shop on Rendering, 186–196.
[DD02] DURAND, F., DORSEY, J. 2002. Fast bilateral filtering for

the display of high-dynamic-range images. ACM Trans. Graphics,

21, 3, 257–266 (Proc. ACM SIGGRAPH).
[DTB97] DUTTON, K., THOMPSON, S., BARRACHLOUGH, B.

1997. The Art of Control Engineering, 1st ed. Addison-Wesley.
[G95] GLASSNER, A. 1995. Principles of Digital Image Synthesis,

1st ed. Morgan Kaufmann.
[HDM03] HAVRAN, V., DAMEZ, C., MYSZKOWSKI, K. 2003.

An efficient spatio-temporal architecture for animation rendering.
Proc. Eurographics Symposium on Rendering, 106-117.

[J01] JENSEN, H.W. 2001. Realistic Image Synthesis Using Photon

Mapping. AK Peters.
[LAM00] LEXT, J., ASSARSSON, U., MOELLER, T. 2000. Bart: A

benchmark for animated ray tracing. Tech. Rpt. 00-14, Dept. Com-
puter Engineering, Chalmers Univ. Tech.
http://www.ce.chalmers.se/BART.

[LRC*02] LUEBKE, D., REDDY, M., COHEN, J.D., VARSHNEY,
A., WATSON, B., HUEBNER, R. 2002. Level of Detail for 3D

Graphics, 1st ed. Morgan Kaufmann.
[M87] MITCHELL, D.P. 1987. Generating antialiased images at low

sampling densities. Proc. ACM SIGGRAPH, 65–72.
[MCEF94] MOLNAR, S., COX, M., ELLSWORTH, D., FUCHS, H.

1994. A sorting classification of parallel rendering. IEEE Com-

puter Graphics and Applications, 14, 4, 23–32.

[OCMB95] OLANO, M., COHEN, J., MINE, M., BISHOP, G. 1995.
Combatting rendering latency. Proc. ACM Interactive 3D Graph-

ics, 19–24.
[PS89] PAINTER, J., SLOAN, K. 1989. Antialiased ray tracing by

adaptive progressive refinement. Proc. ACM SIGGRAPH, 281–
288.

[PMS*99] PARKER, S., MARTIN, W., SLOAN, P.-P.J., SHIRLEY,
P., SMITS, B., HANSEN, C. 1999. Interactive ray tracing. Proc.

ACM Interactive 3D Graphics, 119–126.
[PKGH97] PHARR, M., KOLB, C., GERSHBEIN, R.,

HANRAHAN, P. 1997. Rendering Complex Scenes with memory-
coherent ray tracing. Proc. ACM SIGGRAPH, 101– 108.

[PBMH02] PURCELL, T.J., BUCK, I., MARK, W.R.,
HANRAHAN, P. 2002. Ray tracing on programmable graphics
hardware. ACM Trans. Graphics, 21, 3, 703–712 (Proc. ACM

SIGGRAPH).
[RP94] REGAN, M.J.P., POSE, R. 1994. Priority rendering with a

virtual reality address recalculation pipeline. Proc. ACM

SIGGRAPH, 155–162.
[SS00] SIMMONS, M., SÉQUIN, C. 2000. Tapestry: A dynamic

mesh-based display representation for interactive rendering. Proc.

Eurographics Workshop on Rendering, 329–340.
[TA98] TELLER, S., ALEX, J. 1998. Frustum Casting for Progres-

sive, Interactive Rendering. Massachusetts Institute of Technology

Technical Report LCS TR-740. Available at
http://graphics.csail.mit.edu/pubs/MIT-LCS-TR-740.ps.gz

[TPWG02] TOLE, P., PELLACINI, F., WALTER, B.,
GREENBERG, D.P. 2002. Interactive global illumination in dy-
namic scenes. ACM Trans. Graphics, 21, 3, 537–546 (Proc. ACM

SIGGRAPH).
[TK96] TORBORG, J., KAJIYA, J. 1996. Talisman: Commodity

Reality Graphics for the PC. Proc. ACM SIGGRAPH, 353-363.
[WBDS03] WALD, I., BENTHIN, C., DIETRICH, A.,

SLUSALLEK, P. 2003. Interactive distributed ray tracing on
commodity PC clusters—state of the art and practical applications.
Lecture Notes on Computer Science, 2790, 499–508 (Proc. Eu-

roPar).
[WBWS01] WALD, I., BENTHIN, C., WAGNER, M.,

SLUSALLEK, P. 2001. Interactive rendering with coherent ray
tracing. Computer Graphics Forum, 20, 153–164 (Proc. Euro-

graphics).
[WPS*03] WALD, I., PURCELL, T.J., SCHMITTLER, J.,

BENTHIN, C., SLUSALLEK, P. 2003. Realtime ray tracing and
its use for interactive global illumination. Eurographics State of

the Art Reports.
[WSB01] WALD, I., SLUSALLEK, P., BENTHIN, C. 2001. Interac-

tive distributed ray tracing of highly complex models. Proc. Euro-

graphics Workshop on Rendering, 277– 288.
[WDG02] WALTER, B., DRETTAKIS, G., GREENBERG, D.P.

2002. Enhancing and optimizing the render cache. Proc. Euro-

graphics Workshop on Rendering, 37–42.
[WDP99] WALTER, B., DRETTAKIS, G., PARKER S. 1999. Inter-

active rendering using render cache. Proc. Eurographics Workshop

on Rendering, 19–30.
[WS99] WARD, G., SIMMONS, M. 1999. The Holodeck Ray

Cache: An Interactive Rendering System for Global Illumination in
Nondiffuse Environments, ACM Trans. Graph. 18, 4, 361-398.

[WLWD03] WOOLLEY, C., LUEBKE, D., WATSON, B.A.,
DAYAL, A. 2003. Interruptible rendering. Proc. ACM Interactive

3D Graphics, 143–151.

