NORTHWESTERN
UNIVERSITY

Computer Science Department

Technical Report
NWU-CS-99-3
May 27, 1999

Stochastic Scheduling

Jennifer M. Schopf Francine Berman

Abstract

There is a current need for scheduling policies that can leverage the performance variability
observed when scheduling parallel computations on multi-user clusters. We develop one solution to
this problem called stochastic scheduling that utilizes a distribution of application execution
performance on the target resources to determine a performance-efficient schedule.

In this paper, we define a stochastic scheduling policy based on time-balancing for data parallel
applications whose execution behavior can be adequately represented as a normal distribution. We
demonstrate using a distributed SOR application that a stochastic scheduling policy can achieve
good and predictable performance for the application as evaluated by several performance measures.

NU, CS Dept. TR #CS-99-03 submitted to SuperComputing 99

Stochastic Scheduling

Jennifer M. Schopf* Francine Berman'
Computer Science Department Dept. of Computer Science and Engineering
Northwestern University University of California, San Diego
jms@cs.nwu.edu berman@cs.ucsd.edu
May 27, 1999
Abstract

There is a current need for scheduling policies that can leverage the performance variability observed
when scheduling parallel computations on multi-user clusters. We develop one solution to this problem
called stochastic scheduling that utilizes a distribution of application execution performance on the target
resources to determine a performance-efficient schedule.

In this paper, we define a stochastic scheduling policy based on time-balancing for data parallel applications
whose execution behavior can be adequately represented as a normal distribution. We demonstrate using a
distributed SOR application that a stochastic scheduling policy can achieve good and predictable performance
for the application as evaluated by several performance measures.

1 Introduction

Clusters of PCs or workstations have become a common platform for parallel computing. Applications on
these platforms must coordinate the execution of concurrent tasks on nodes whose performance may vary
dynamically due to the presence of other applications sharing the resources. To achieve good performance,
application developers use performance models to predict the behavior of possible task and data allocations,
and to assist in the selection of a performance-efficient application execution strategy. Such models need to
accurately represent the dynamic performance variation of the application on the underlying resources in a
manner which allows the scheduler to adapt application execution to the current system state.

In this paper, we discuss a strategy to use the variability of performance information in scheduling to
improve application execution times. We focus in particular on data-parallel applications in which the per-
formance variation can be adequately represented by a normal distribution. Before describing the stochastic
scheduling policy, we first motivate the use of stochastic (distributional) information for scheduling in the
next subsection.

1.1 Stochastic Values

Performance models are often parameterized by values that represent system and/or application character-
istics. In dedicated, or single-user, settings it is often sufficient to represent these characteristics by a single
value, or point value. For example, we may represent bandwidth as 7 Mbits/second. However, point values
are often inaccurate or insufficient representations for characteristics that change over time. For example,
rather than a constant valuation of 7 Mbits/second, bandwidth may actually vary from 5 to 9 Mbits/second.
One way to represent this variable behavior is to use a stochastic value, or distribution.

By parameterizing models with stochastic information, the resulting prediction is also a stochastic value.
Stochastic-valued predictions provide valuable additional information that can be supplied to a scheduler

Partially supported by NASA GSRP Grant #NGT-1-52133, Darpa grant #N66001-97-C-8531.
Supported in part by NSF grant #ASC-9701333, Darpa grant #N66001-97-C-8531.

and improve the overall performance of distributed parallel applications. In this paper we assume that we
can adequately represent stochastic values using normal distributions, and that looking at a range around
the mean of two standard deviations will capture approximately 95% of the values.

This paper describes a methodology that allows schedulers to take advantage of stochastic
information to improve application execution performance. We define a prototype scheduler that
uses stochastic application execution time predictions to define a time-balancing scheduling strategy for data-
parallel applications. This strategy adjusts the amount of data assigned to a processor in accordance with the
variability of the system and the user’s performance goals. We demonstrate that the stochastic scheduling
approach promotes both good performance and predictable execution for a distributed data-parallel SOR
application' in two multi-user clustered environments.

The paper is organized as follows: Section 2 describes a time balancing scheduling policy and shows how
single values from stochastic parameters can be used to parameterize it. Experiments with this scheduling
policy are described in Section 3. Related work is presented in 4, and we conclude in Section 5.

2 Time Balancing

For the purposes of this paper, we assume that the target set of resources is a fixed set of shared, heterogeneous
workstations. We will consider the set of data parallel applications where the application is split into a number
of tasks, and the amount of work each task performs is based on the amount of data assigned to it. Given
these assumptions, scheduling simplifies to the data allocation problem: How much data should be assigned
to each processor, and how should that decision be made?

Time balancing is a common scheduling policy for data parallel applications that attempts to minimize
the execution time of a data parallel application by assigning data so that each processor finishes executing
at roughly the same time. This may be accomplished by solving a set of equations, such as those given in
Equation 1, to determine the data assignments ({ D; } in the following equations).

Diui+ Ci = Dju; + Cj Vi, j (1)
>-D; = Drotal

where
e u;: Time to compute one unit of data on processor i.
e D;: Amount of data assigned to processor i.
e Drpoiqr: Total amount of data for the application.
e (;: Time to distribute the data.

To solve these equations we assume that all variables are point-valued. We also assume that C; is
independent of the data assignment. (If the communication time is a function of the amount of data
assigned to a processor, this value can be added to the u; factor.) An example of developing and solving
time balancing equations to solve for a performance-efficient data allocation can be found in [BWFT96].

2.1 Stochastic Time Balancing

To allow for the use of stochastic information, we focus on the u; value (time to compute one unit of data on
processor i) in the time-balancing equations. In the non-stochastic setting, a single (point) value is provided
for u; and the equations are solved for D;. In the stochastic setting, we still use a single value for u; (to
allow for the solution of D;) but choose that value from the range given by the stochastic prediction of
performance. This allows us the flexibility to choose larger or smaller values of u; in the range. The choice
of a larger value of u; results in an assignment of less data to processor i, possibly mitigating the effects

n this extended abstract we focus only on SOR. Results for a distributed Genetic Algorithm and a distributed N-body
code will be discussed in the final paper.

of performance variability on the overall application behavior (by assigning less data to a high variability
machine).

Recall that we are assuming that the distribution of values for u; can be adequately represented by a
normal distribution.? One approach to determine which value to choose for u; is to consider the mean of the
normal distribution plus or minus some number of standard deviations. Since the standard deviation is a
value specific to the performance of a given machine, each processor would have its data allocation adjusted
in a machine-dependent manner. We call the multiplier that determines the number of standard deviations
to add to (or subtract from) the mean the Tuning Factor. The Tuning Factor can be defined in a variety
of ways, and will determine the percentage of “conservatism” of the scheduling policy.

With this in mind, we can define u; as

u; =m; +sd; xTF (2)
where
m;: The mean of the predicted completion time for task/processor pair i.
sd;: The standard deviation of the predicted completion time for task/processor pair i.

TF: The Tuning Factor, used to determine the number of standard deviations to add to (or subtract from)
the mean value to determine how conservative the data allocation should be.

Given the definition of u; in Equation 2, the set of equations over which we must find a solution is now:

Di(mi-f-TF*Sdi)-l-Ci:Dj(mj+TF*de)+Cj Vij (3)
> Di = Drota

2.2 The Tuning Factor

The Tuning Factor represents the variability of the system as a whole, defined by the amount of variation
in the available CPU, the variation in the available bandwidth between each pair of processors, a measure
of nondeterminism of the application, etc. The Tuning Factor is a key element in defining a stochastic time
balancing policy. It provides the “knob” to turn to make the scheduling policy more or less conservative.
The Tuning Factor can be provided by the user or calculated by the scheduler. The challenge lies in choos-
ing or calculating a Tuning Factor that promotes a performance-efficient schedule for a given application,
environment, and user.

Our computational method for determining the Tuning Factor uses a system of benefits and penalties cal-
culated using stochastic prediction information. This benefit and penalty approach to determining the value
of the Tuning Factor draws from the scheduling approach of Sih and Lee [SL90b]. In their work, data assign-
ments are increased for processors with desirable characteristics (such as a light load, fast processor speed,
etc.), considered as benefits, and decreased for machines with undesirable properties (such as poor network
connectivity, small memory capacity, etc.), considered as penalties. The basic idea behind our approach is
to assign more optimistic scheduling policies to platforms with a smaller variability in performance.

We use three values to provide information about the variability of the system as a whole: the number
of machines that exhibit fluctuating performance behavior in the platform; the variability of performance
exhibited of each machine, represented as the standard deviation, sd of a stochastic prediction; and a measure
of the available computing capacity of the machines, called power below. We want to benefit (give a more
optimistic schedule to) the platforms that have a smaller variability associated with them. Specifically, we
want to benefit:

Platforms with fewer varying machines. If only one machine on a platform has varying behavior, the
platform should have a more optimistic schedule than another platform that has the majority of the
machines exhibiting variable behavior.

2Previous work has shown that using normal distributions to represent such behavior leads to good predictions of application
behavior [SB97].

Low variability machines, especially those with lower powers. We want to benefit a platform more
for having a slow machine with a high variability than having a fast machine with a high variability.

The faster machine may have more data assigned to it, so the high variability is likely to have a greater
impact on the overall application execution time.

High Power
High Variability

Low Power

High Power
High Variability

Low Variability

Low Power
Low Variablity

Figure 1. Diagram depicting the relative values of Tuning Factors for different configurations of power and
variability.

We identify the partial ordering in Figure 1 for this requirement. In Figure 2 we define an algorithm
to calculate the Tuning Factor for stochastic values that obeys the partial ordering in Figure 1. Note that
many other functions satisfy the relative ranking in Figure 1, and are also viable.

For each task/processor pair, TP_i
if Power (TP_i) > Hi ghPower
if Varibility(TP_i) > HighVariability
Val ue_i = MaxTuni ngFact or
el se
Val ue_i = M dTuni ngFact or
el se
if Varibility(TP_i) > HighVariability
Val ue_i = M dTuni ngFact or
el se
Val ue_i = M nTuni ngFact or
Tuni ngFactor = 2 Value i
nunber of nmachi nes

Figure 2. Algorithm to Compute Tuning Factor.

The algorithm given in Figure 2 requires the definition of several parameters that are specific to the
execution environment:

Power(TP;): A measure of the communication and computation power of the machine with respect to the
resource requirements of the application. This can be determined by an application-specific benchmark.

HighPower: A value that identifies machines with “high” power. For our initial experiments, we calculated
an average power for the machines in the platform, and any machine with a greater value for power
than the average was considered a High Power machine.

Variability (TP;): A measure of the variability of performance delivered by a machine. For our experi-
ments we set Variability(TP;) equal to the standard deviation of the available CPU measurements for
processor i.

HighVariability: A value that identifies when a machine has a high variability. There are many ways
to chose this parameter. For our experiments, the CPU measurements generally fell into “modes” -
approximately 0.5 when two processes were running, 0.33 when three were running, etc. We defined
a HighVariability to be a standard deviation for the available CPU measurements greater than one-
quarter of the width of the average mode from previous experimental data. This metric should be
adjusted to the environment and can be defined by the user.

Tuning Factor Range: The Tuning Factor Range defines the range of values for the Tuning Factor. For
the algorithm defined in Figure 2, three values within the Tuning Factor Range must be defined:
MinTuningFactor, MidTuningFactor, and MazTuningFactor. These values can be used to determine
the percentage of conservatism for the schedule that impacts the data allocation.

In this initial work, we focused on stochastic values represented using normal distributions and con-
sequently focused on predictions at the mean, the mean plus one standard deviation, and the mean
plus two standard deviations®. Therefore, we set MinTuningFactor = 0, MidTuningFactor = 1, and
MazTuningFactor = 2.

Note that using the algorithm given in Figure 2, schedules range only from a 50% to a 95% conservative
schedule (i.e. a schedule which assigns less work processors whose performance exhibits high variance) as
illustrated in Figure 3. This is because on a single-user (dedicated) platform, we expect mean values to
achieve the best performance. Adding variability to the system (by adding other users) typically impacts
performance in a negative way, leading to a more conservative schedule to mitigate the effect of the variability.
The scheduling policy may also be adjusted to reflect other execution criteria such as socio-political factors
that may affect application execution in a multi-user environment [LG97].

3 Stochastic Scheduling Experiments

In this section we compare a time balancing scheduling policy parameterized by a mean-valued u; (i.e. when
the Tuning Factor is always 0) with two time balancing policies where u; is determined by a non-zero Tuning
Factor. We call the mean-valued scheduling policy (when TF=0) Mean. Mean represents a reasonable
choice of a scheduling policy based on a fixed value to the time-balancing equations given in Equation 1 (we
use the mean as it is the most likely point value representative of the normal distribution).

We compare Mean to two scheduling policies that use non-zero Tuning Factors. The first fixes the Tuning
Factor to a 95% conservative schedule (where two standard deviations are added to the mean for the u; value
for every run), called 95TF. The second determines a Tuning Factor at run-time based on environmental
data calculated using the system of benefits and penalties described previously by the algorithm given in
Figure 2, and is called the Variable Tuning Factor, or VTF. Qur goal is to experimentally determine in
which situations it was advantageous to use non-zero Tuning Factors.

All of the scheduling policies in our experiments use compositional structural performance prediction
models [Sch97] parameterized by run-time information provided by the Network Weather Service [Wol96,
Wol97, WSH98]. We ran the experiments on a set of applications using the data distribution determined by
each policy at runtime and compared their execution times.

In order to compare the policies fairly we alternate scheduling policies for a single problem size of the
application, so any two adjacent runs could experience similar workloads and variation in environment.
(Each run was short, between 30 and 90 seconds.)

3Given a normal distribution, a range around the mean plus or minus one standard deviation captures approximately 70%
of the values and two captures approximately 95% of the values.

Work allocation based on stochastic prediction

Mean - 1 SD Mean+ 1 SD
Mean - 2 SD Mean Mean + 2 SD
\ | \
| | |
5% Conservative 50% Conservative 95% Conservative

30% Conservative 70% Conservative

Schedules resulting from distinct work allocations

Figure 3. Diagram depicting the range of possible schedules given stochastic information.

In this extended abstract we focus only on SOR due to space constraints. Results for a
distributed Genetic Algorithm and a distributed N-body code will be discussed in the final
paper. The version of SOR (Successive Over-Relaxation) we use is a Regular SPMD code that solves
Laplace’s equation. Our implementation uses a red-black stencil approach where the calculation of each
point in a grid at time ¢ is dependent on the values in a stencil around it at time ¢ — 1. The application is
divided into “red” and “black” phases, with communication and computation alternating for each. In our
implementation, these two phases repeat for a predefined number of iterations.

The experiments were run on UCSD’s Parallel Computation Laboratory (PCL) and Linux clusters.
The PCL cluster consists of 4 heterogeneous Sparc workstations connected by a mixture of slow and fast
ethernet; the Linux Cluster consists of 4 PCs running Linux connected by fast ethernet. Both platforms and
all resources were shared with other users during the time of the experiments.

3.1 Performance Metrics

We consider a scheduling policy to be “better” than others if it exhibits the lowest execution time on a given
run. In the experiments, the “best” scheduling policy varies over time and with different load conditions.
To compare these policies, we define two summary statistics. The first, called Window, is the proportion
of runs by a scheduling policy that has the minimal execution time compared to the policy run before it
and the policy run after it, or a window of three runs. For example, given the first few run times for the
experiment in Figure 4, shown in Table 1, in the first set of three (Mean at 2623, VTF at 2689 and 95TF at
2758) the minimal time is achieved using the VTF policy. For the next set of three (VTF at 2689, 95TF at
2758 and Mean at 2821) VTF again achieved the minimal execution time, etc.

Using this metric for the runs shown in Figure 4, the lowest execution time was achieved by Mean 9 times
of 58 windows, for VTF 27 times of 58 windows and for 95TF 22 times of 58 windows, indicating that the
VTF policy was almost three times as likely to achieve a minimal execution time than Mean.

The second summary statistic, which we call Compare, evaluates how often each run achieves a minimal
execution time. There are three possibilities: it can have a better execution time than both the run before
and the run after, it can have a worse execution time than both, or it can be mized — better than one, and
worse than the other. Referring to the execution times given in Table 1, for VIF at 2689, it achieves a
better execution time than both the Mean run before it or the 95TF run after it; the 95TF run at 2758 does

| Time stamp || Execution Time | Policy |

2623 38.534076 Mean
2689 32.802351 VTF
2758 34.633066 95TF
2821 33.985560 Mean
2886 33.982391 VTF
2951 34.711265 95TF
3023 38.724127 Mean
3087 33.523844 VTF
3152 33.553239 95TF
3221 37.223270 Mean

Table 1. First 10 execution times for experiments pictured in Figure 4.

worse than either the VTF run before it or the Mean run after it, the Mean run at 2821 is mixed, it does
better than the 95TF run before it, but worse than the VTF run after it. These results are given in Table 2
and indicate that VTF is three times as likely to have a faster execution time than the runs before or after
it than the mean, and one-fourth as likely to be worse than both than the Mean for the experiments shown
in Figure 4.

| Experiment | Policy || Better | Mixed | Worse |

Mean 3 4 12
Figure 4 VTF 10 7 3
95TF 6 9 4
Mean 8 6)
Figure 5 VTF 8 7 5
95TF 3 6 10
Mean 3 7 9
Figure 6 VTF 15 2 3
95TF 3 8 8
Mean 8 4 7
Figure 7 VTF 5 8 7
95TF 6 8 5

Table 2. Summary statistics using Compare evaluation for SOR experiments.

The third metric we use is a an “average mean” and an “average standard deviation” for the set
of runtimes of each scheduling policy as a whole, as shown in Table 4. This metric gives a rough valuation
on the performance of each scheduling approach over a given period of time. For example, for the data given
in Figure 4, the Mean policy runs had a mean of 32.87 and a standard deviation of 3.780, the VTF policy
runs had a mean 30.91 and a standard deviation of 3.34, and for the 95TF policy runs had a mean 30.66
and a standard deviation of 2.75. This indicates that over the entire run, the VTF policy exhibited a 5-8%
improvement in overall execution time, and less variation in execution time than the Mean policy as well.

3.2 Experimental Data

Four representative experiments are shown in Figures 4 through 7. Figure 4 shows a comparison of the three
scheduling policies on the Linux cluster when the available CPU on two machines had a low variation, on

| Experiment || Mean | VTF | 95TF |

Figure 4 9 27 22
Figure 5 24 24 10
Figure 6 8 39 11
Figure 7 25 14 19

Table 3. Window metric for each scheduling policy out of 58 possible windows.

Experiment Mean VTF 95TF

Mean | SD [Mean [SD | Mean | SD
Figure 4 32.87 | 3.78 || 30.91 | 3.34 || 30.66 | 2.75
Figure 5 34.52 | 3.63 || 34.52 | 1.22 || 35.23 | 1.58
Figure 6 24.74 | 2.72 || 22.15 | 2.98 || 24.48 | 2.57
Figure 7 23.31 | 4.35 || 22.78 | 2.74 || 22.31 | 2.75

Table 4. Average mean and average standard deviation for entire set of runs for each scheduling policy.

one had a medium variation and on the fourth had a high variation * Figure 5 shows a comparison of the
three scheduling policies when there was a fairly constant low variance load on the Linux cluster. Figure 6
shows a comparison of the three scheduling policies when the PCL cluster had two machines with a very
low variability, and two machines with high variability in available CPU. Figure 7 shows a comparison of
the three scheduling policies when the PCL cluster had three machines with a high variability in available
CPU. The Compare, Window, and Average Mean metrics are given for all environments in Tables 2, 3,
and 4.

From Table 2, it is clear that different policies excel for different load conditions and that no one scheduling
policy is the clear choice for all runs. However, the experiments do show that the scheduling policy in which
the value of u; is not fixed before execution (VTF) appears to perform better overall (achieve the lowest
execution times) under a spectrum of load conditions. Moreover the conservative policy (95TF) appears to
perform slightly better than Mean under these same conditions.

Values for the Window metric are given in Table 3. Using this metric, VITF also achieves the best
performance on the whole although the ranking of the conservative policy 95TF and the Mean with respect to
one another is inconclusive. Based on our experience with building AppLeS application schedulers [BWF*96,
BW097], it is not surprising that adaptation to run-time load information promotes application performance.
What is significant is that a straightforward calculation of a Tuning Factor using run-time information can
be useful to the scheduler and promote performance-efficient application execution.

4 Related Work

The stochastic scheduling work grew out of the adaptive scheduling focus of the AppLeS Project [BW96,
BW97, BWF*96].

Our approach to data allocation is based on a scheduling approach originally presented by Sih and
Lee [SL90b, SL90a, SLI3]. Their work concentrated on a compile-time scheduling approach for interconnection-
constrained architectures, and used a system of benefits and penalties (although not identified as such) for
task mapping and data allocation. As a compile-time approach, it did not use current system information,
and targeted a different set of architectures than our work as well.

4We define a machine with a low variation in CPU availability as having a variation of 0.25 or less, on a scale from 0 to 1,
a medium variation when the CPU availability varied more than 0.25, but less than 0.5, and a high variation when the CPU
values varied over half the range.

40

35

30 -

Executoin Time (sec)

G—© Mean Scheduling Polic
3 --8VTF Scheduling Policy
<+ — < 95TF Scheduling Policy,

20 L L
910002000.0 910004000.0 910006000.0
Timestamps

Figure 4. Comparison of Mean, VTF, and 95TF policies, for the SOR benchmark on the Linux cluster
with 2 low variability machines, one medium and one high.

40
!
38 I 4
1!
|\
|\
) L
36 L f‘]
\ '| 1
4 i
\ |
1

A—P———

Executoin Time (sec)
w
s
T

\ /
u
32 - 1
G—© Mean Scheduling Polic
30 |-|E@--8VTF Scheduling Policy 4
<+ — <195TF Scheduling Polic
28 . !
910142000.0 910144000.0 910146000.0

Timestamps

Figure 5. Comparison of Mean, VTF, and 95TF policies, for the SOR benchmark on the Linux cluster
for 4 low variability machines.

35

30

N
o
T

Executoin Time (sec)
B
o
T
.

G—© Mean Scheduling Polic;
3 --8VTF Scheduling Policy
5 ||+ — < 95TF Scheduling Policy| b

0 L L L
910528000.0 910529000.0 910530000.0 910531000.0 910532000.0
Timestamps

Figure 6. Comparison of Mean, VTF, and 95TF policies, for the SOR benchmark on the PCL cluster
when 2 of the machines had a low variability in available CPU and two had high.

35

30 - 1

25 - 1
o
3
o 20 B
S
£
£
=]
315 4
[}
X
]

10 - B

G—© Mean Scheduling Polic
3 --8VTF Scheduling Policy
5 ||+ —<95TF Scheduling Policy| 1
0 | |
910531000.0 910533000.0 910535000.0
Timestamps

Figure 7. Comparison of Mean, VTF, and 95TF policies, for the SOR benchmark on the PCL cluster
when 1 of the machines had a low variability in available CPU and three had high.

10

Zaki et al. [ZLP96] also focused on the data allocation aspect of scheduling. Their work compared
load balancing techniques showing that different schemes were best for different applications under varying
program and system parameters. However, the load model used in this work did not accurately portray the
available CPU seen on our systems.

5 Summary and Future Work

In this paper we present an approach to stochastic scheduling for data parallel applications. We modify
a time-balancing data allocation policy to use stochastic information for determining the data allocation
when we have stochastic information represented as normal distributions. Our stochastic scheduling policy
uses a Tuning Factor that determines how many standard deviations should be added based on run-time
conditions. The Tuning Factor is used as the “knob” that determines the percentage of conservatism needed
for the scheduling policy. We apply this approach to the scheduling of a distributed SOR application. Our
experimental results demonstrate that it is possible to obtain faster execution times and more predictable
application behavior using stochastic scheduling.

We believe that adaptive techniques that can exploit variance and other representations of dynamic
information will be critical to the development of successful techniques for application execution in distributed
multi-user environments. The results reported here are promising in that they demonstrate that dynamic
information can be used successfully to promote adaptation and improve application performance in these
complex and challenging environments.

There are various possible areas for future work. The approach discussed here is one of many possible
ways to define the Tuning Factor, the heart of our stochastic scheduling policy. Other choices are possible
(e.g. the impact of network performance could be included in the calculation of the Tuning Factor), and we
plan to explore additional approaches that may better suit other particular environments and applications.
Finally, similar extensions could be evaluated for other scheduling policies than time balancing as well.

Acknowledgements

The Network Weather Service was developed by Rich Wolski, and supported by Neil Spring, Graziano
Obertelli and Jim Hayes in it’s use. Many thanks to Rich and the rest of the AppLeS group as well for
substantiative comments over the development of this work.

References

[BW96] Francine Berman and Richard Wolski. Scheduling from the perspective of the application. In Proceedings
of the Fifth IEEE International Symposium on High Performance Distributed Computing, 1996.

[BW97] Francine Berman and Richard Wolski. The apples project: A status report. In Proceedings of the 8th
NEC Research Symposium, 1997.

[BWF*196] Francine Berman, Richard Wolski, Silvia Figueira, Jennifer Schopf, and Gary Shao. Application-level
scheduling on distributed heterogeneous networks. In Proceedings of SuperComputing ’96, 1996.

[LGIT] Richard N. Lagerstrom and Stephan K. Gipp. Psched: Political scheduling on the cray t3e. In Proceedings
of the Job Scheduling Strategies for Parallel Processing Workshop, IPPS °97, 1997.

[SBI7] Jennifer M. Schopf and Francine Berman. Performance prediction in production environments. In Pro-
ceedings of IPPS/SPDP 98, 1997.

[Sch97] Jennifer M. Schopf. Structural prediction models for high-performance distributed applications. In CCC
’97, 1997. Also available as www.cs.ucsd.edu/ users/jenny/ CCC97/index.html.

[SL90a] Gilbert C. Sih and Edward A. Lee. Dynamic-level scheduling for heterogeneous processor networks. In
Proceedings of the Second IEEE Symposium on Parallel and Distributed Systems, 1990.

[SLI0b] Gilbert C. Sih and Edward A. Lee. Scheduling to account for interprocessor communication within
interconnection-constrained processor networks. In Proceedings of the 1990 International Conference on
Parallel Processing, 1990.

11

[SL93]

[Wol96]
[Wol97]
[WSHOS]

[ZL.P96]

Gilbert C. Sih and Edward A. Lee. A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Systems, 4(2),
1993.

Rich Wolski. Dynamically forecasting network performance using the network weather service(to appear
in the journal of cluster computing). Technical Report TR-CS96-494, UCSD, CSE Dept., 1996.

R. Wolski. Dynamically forecasting network performance to support dynamic scheduling using the network
weather service. In Proc. 6th IEEE Symp. on High Performance Distributed Computing, August 1997.

Rich Wolski, Neil Spring, and Jim Hayes. Predicting the cpu availability of time-shared unix systems. In
submitted to SIGMETRICS ’99 (also available as UCSD Technical Report Number CS98-602), 1998.

Mohammed J. Zaki, Wei Li, and Srinivasan Parthasarathy. Customized dynamic load balancing for
network of workstations. In Proceedings of HPDC 96, 1996.

12

	coverpage cs-99-03.pdf
	Technical Report �NWU-CS-99-3
	May 27, 1999
	Stochastic Scheduling
	Jennifer M. Schopf and Francine Berman
	
	Abstract

