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Abstract

Current distributed parallel platforms can provide the resources required to execute a scientific
application efficiently. However, when these platforms are shared by multiple users, the
performance of the applications using the system may be impacted in dynamic and often
unpredictable ways. Performance prediction becomes increasingly difficult due to this dynamic
behavior. Even performance modeling techniques that are built specifically for distributed parallel
systems often require parameterization by single (point) values. However, in shared environments,
point values may provide an inaccurate representation of application behavior due to variations in
resource performance.

This paper addresses the use of practical histogram stochastic values to parameterize performance
models. Whereas a point value provides a single value representation of a quantity, a stochastic
value provides a set of possible values to represent a range of likely behavior. In previous work we
investigated using either normal distributions or an upper and lower bound to represent stochastic
data. In this work we examine using a combination of those methods, namely histograms, to
represent this data. We define a practical approach to using histograms in a production setting, and
then give experimental results for a set of applications under different load conditions.
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Abstract

Current distributed parallel platforms can provide the resources required to execute a scientific
application efficiently. However, when these platforms are shared by multiple users, the perfor-
mance of the applications using the system may be impacted in dynamic and often unpredictable
ways. Performance prediction becomes increasingly difficult due to this dynamic behavior. Even
performance modeling techniques that are built specifically for distributed parallel systems often
reguire parameterization by single (point) values. However, in shared environments, point values
may provide an inaccurate representation of application behavior due to variations in resource
performance.

This paper address the use of practical histogram stochastic values to parameterize per-
formance models. Whereas a point value provides a single value representation of a quantity,
a stochastic value provides a set of possible values to represent a range of likely behavior. In
previous work we investigated using either normal distributions or an upper and lower bound to
represent stochastic data. In this work we examine using a combination of those methods, namely
histograms, to represent this data. e define a practical approach to using histogramsin a pro-
duction setting, and then give experimental results for a set of applications under different load
conditions.

1 Motivation

Current distributed parallel platforms can provide the resources required to execute a scientific ap-
plication efficiently. However, when these platforms are shared by multiple users, the performance
of the applications using the system may be impacted in dynamic and often unpredictable ways. In
order to obtain good performance, accurate performance prediction models for distributed parallel
systems are needed. Most performance prediction models use parameters to describe system and
application characteristics such as bandwidth, available CPU, message size, operation counts, etc.
Model parameters are generally represented as a single likely value, which we refer to as a point
value. For example, a point value for bandwidth might be 7 Mbits/second.

In practice, point values are often a best guess, an estimate under ideal circumstances, or avalue
that is accurate only for agiven timeframe. In some situations it may be more accurate to represent
system and application characteristics as arange of possible values; for example, bandwidth might
be reported as varying between 6 and 8 Mbits/second. Werrefer to such values as stochastic values.
Whereas a point value gives a single value for a quantity, a stochastic value gives a set of values,
possibly weighted by probabilities, to represent arange of likely behavior [TK93].



One way to represent stochastic values is by using histograms. Histograms, also called VU-
lists [Lue98] or frequency distributions [Bla30], consist of a set of intervals with associated prob-
abilities. In this paper we present a practical definition for histograms and demonstrate their use
when predicting the performance of parallel distributed applications.

This paper is organized as follows. Section 2 gives a brief overview of a modeling technique
called structural modeling that can be parameterized by stochastic information. Section 3 details
apractical definition for histograms. We describe the arithmetic needed to combine histogramsin
Section 4. Section 5 presents experimental results, and summary.

2 Overview of Structural M odeling

In order to predict an application’s behavior on shared resources, we need both good models of the
implementation and accurate information about the application and system with which to param-
eterize the models. In previous work [Sch98] we developed a technique called structural mod-
eling that uses the functional structure of the application to define a set of equations that reflect
the time-dependent, dynamic mix of application tasks occurring during execution in a distributed
parallel environment. A structural model consists of a top-level model, component models, and
input parameters. A top-level model is a perfor mance equation consisting of component models
and composition operators. Each component model is aso defined to be a performance equation,
parameterized by platform and application characteristics, such as benchmarks, dynamic system
measurements, problem size, or the number of iterations to be executed. The output of a struc-
tural model is a predicted execution time. Structural models can aso be developed for aternative
performance metrics, such as speedup or response time.

A good performance model, like a good scientific theory, is able to explain available observa-
tions and predict future events, while abstracting away unimportant details. Structural models are
represented by equations that allow us to abstract away details into the top level models and the
parameters, but still accurately model the performance by showing the inter-relation of application
and system factors through the component models and their parameterizations. We parameterize
these models with stochastic values represented as histograms, which requires not only compute-
efficient definitions of histograms but the needed arithmetic as well. These are discussed in the
following sections.

3 Defining Histograms

A stochastic value X may be specified using a one-dimensional histogram H (X) asfollows:
H(X) = Xl,XQ, Xm; with
Xo=[z, 7] i pi; Xo=[22,%) :p2; -5 Xon = [Zm, Tm) © P

m
where Zpi =1
i=1
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Each X; entry in the definition of H(X) is apair consisting of an interval [z;,7;], and an as-
sociated probability, p;. One of the primary difficulties in defining histograms for dynamic system
values is the determination of the appropriate intervals and probabilities for each histogram. A
tradeoff exists between adding detail to the histogram description, which may be more accurate,
but increases the computational complexity. As will be seen in the next section, arithmetic over
extended histograms involves combining all possible sets of probabilistic choices, which can be
quite large.



3.1 PreviousHistogram Definitions and Related Wor k

There are anumber of guidelinesfor defining histogramsin the literature [MSW81, Bla80, Crat8,
Bai72, Stu26, Sco79]. These “rules of thumb” are used by researchers for defining histograms, al-
though in most cases these concentrate on ways to display the information, as opposed to using the
information as a summary technique in a practical setting, and do not provide a rigorous approach
to choosing the number of intervalsin a histogram. The collective experience of these researchers
indicatesthat the “ best” number of intervalsto select is data-dependent, application-dependent and
system-dependent, as well as dependent on how the histogram will be used and the granularity of
measurement [LMH96].

In the most closely related work to our research [LH95], histograms are defined initially based
on the number of intervals provided by the user. The intervals are then split, using interval split-
ting [MR95, Ske74] and a user supplied procedure to produce more sub-intervalsfor intervalswith
high probabilities and fewer for intervals of the same width but lower probability. This procedure
is iterated for each defined histogram until splitting the interval further does not change the re-
sulting predicted value. For their purposes, “Computational complexity is reasonable given that
the number of parameters specified as histogramsis not too high” [LMH96]. However, thisis not
practical for our setting as we do not have a good splitting routine or the compute time to spend on
an iterative method.

3.2 Practical Histograms

When defining histograms for use in making predictions to determine schedules at run-time, we
need an approach that uses few, if any, user supplied parameters, is computationally efficient, and
yet can adequately capture the behavior of the system being described. Furthermore, since the
number of partial results for arithmetic functions over histograms can be quite large (as described
in the next section) we need to limit this factor as well.

In our approach we used atwo-pass method and limited the number of intervalsin the histogram
aswell asthe partia results. The first pass over the data was used to evaluate an upper bound and
alower bound, and to determine the size of the individual interval bins. The second pass was used
to sort the data into the interval bins, and define the histogram for the stochastic data.

To select the number of intervals, we experimentally evaluated a range of intervals up to 25 on
apreliminary set of data. The primary source of varying behavior for this data was the available
CPU values for the contended system. This data was supplied by the Network Weather Service
(NWS) [W0ol97], an online tool that provides atime series of datafor CPU availability, bandwidth
and latency. In previous experiments [ Sch98] we had determined the amount of datafrom the time
series to use in our predictions, namely a5 minute window. This had been shown to be no worse
than using larger or smaller windows of data.

We experimentally examined the accuracy of the histogram for a range of interval sizes and
measured both the time to compute the prediction, which included the time to determine the his-
tograms for the input parameters, and the accuracy of the prediction. For load characteristics
commonly seen on networks of workstations [ Sch98], we determined that the predictive accurate
of more than five intervals did not increase significantly, although the computational expense grew
quite large at that point. Therefore, in the following, we used five intervals divided evenly over the
range unless stated otherwise.



3.3 Arithmetic over Histograms
One of the primary difficulties in defining histograms for dynamic system values is the determi-
nation of the appropriate intervals and probabilities for each histogram. Since adding detail to
the histogram description increases the computational complexity. Arithmetic over extended his-
tograms involves combining all possible sets of probabilistic choices, which given the set D of
stochastic values represented as histograms, each with &, intervals, thisresultsin I1k;  k; for all
i, € D. Thisvaue can be quite large, depending on how we define the number of intervals the
histogram for a given stochastic value should have.

Given a set of £ stochastic valued parameters, D, ... Dy, represented by histograms, assume
that parameter D; has m; intervals {Di,la ceey Dz,ml} with Di,j = [(_ii,ja Ez,]] 1 Dig i.e.

Dz' = {Dz’,la Di’g, Ceey Dlyml}wzth Di,j = [C_li,ja di,j] “Dij (2)
fori=1...kandj=1 ... my
Since histograms are just sets of intervals, the interval arithmetic rules [Neu90] be used to
combine them arithmetically. However, every interval has an associated probability. Hence, when
caculating F' = D ® FE for some arithmetic function ® and histogram values D and F, it is neces-
sary to calculate intermediate results for al possible combinations of intervals for each histogram.
For example, given the histograms pictured in Figure 1:

D— D;=][1,3]:025 D,=[35]:0.75

E— Ei—[24]:06 B —I[58:04 3)
F= D+FE—[1+23+4]:(025%0.6); [145,3+8]:(0.25%0.4); @
342,54+ 4]:(0.75%0.6); [3+5,5+8]:(0.75%0.4)
This givesintermediate results (depicted in Figure 2):
3,7] : 0.15; [6,1]:0.1; [5,9]:0.45; [8,13]:0.3 (5)

Once the intermediate results have been calculated, they must be aggregated to form the result
histogram, as pictured in Figure 3. A full definition of PDF's over histogramsis givenin [Lue98].
In this case, the resulting histogram is:

[3,5] : 0.15; [5,6]:0.6; [6,7]:0.7; [7,8]:0.55; [8,9]:0.85; [9,13]:04 (6)
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Figure 1. Histograms Figure 2. Histogram
for sample parameters of intermediate results
Dand E forD+E

Figure 3. Result of D +
E.



4 Predictions Using Histograms

Given a structural model for an implementation parameterized by point value and stochastic value
system and application characteristics, we can calculate a prediction for applications running in
contentious environments. This section details our experimental results, and compares using a
histogram to represent stochastic values to other methods.

We examined three applications on a distributed network of Sparc workstations located in the
UCSD Parallel Computation Lab. The machines are connected with a mix of 10 Mbit (slow) and
100 Mhit (fast) ethernet. Both the CPU and the network were shared with other users. For each
application we ran a series of experiments under different load conditions. To show the execution
time trends, we show the results of the actual execution times with the upper bound and lower
bound of the histogram predictions, and in Table 5 give the percentage of values which fell into
each probability interval of the histogram predictionsfor that graph. Figure 4isasample prediction
for asingle run of the SOR code.

In the experiments, the stochastic CPU information used in the models was supplied by the
Network Weather Service [Wol97]. In categorizing the multiple background workloads seen for
each experiment set, we define a machine with a low variation in CPU availability as having a
variation of 0.25 or less, on a scale from 0 to 1, a medium variation when the CPU availability
varied more than 0.25, but less than 0.5, and a high variation when the CPU values varied over
half the range.

T [ Figwe | Highes [ 2nd | 3rd | 4th | Lowes! | Outside |
. | SOR1Figure6 | 32 | 20| 25| 3| 12 4
t SOR2Figure7 || 18 | 23 | 21| 13| 14 11
4 GAlFigwe8 || 21 [ 28] 10| 15| O 25
GA2Figure9 | 33 |21 [ 20| 12| © 14
LUlFigue10| 55 | 26| 8 | 7 | 4 0
| LU2Figure11 || 42 [ 38| 0 | 12| 8 0

Figure 5. Percentage of actual values falling in each prob-

Figure 4. Sample His- ability interval for histogram predictions.
togram Prediction.

4.1 Application 1 - Successive Over-Relaxation Code

Successive Over-Relaxation (SOR) is a Regular SPMD code that solves Laplace’s equation. Our
implementation uses a red-black stencil approach where the calculation of each point in agrid at
timet is dependent on the valuesin astencil around it at timet — 1. The application isdivided into
“red” and “black” phases, with communication and computation alternating for each.

Figure 6 shows the stochastic value predictions and the actual time of the SOR application,
run when the PCL cluster had two processors with a highly variable CPU availability, one with a
medium variable availability, and one with alow variable availability. A second set of experiments
for the SOR code on the PCL cluster are presented in Figure 7, run when the PCL cluster had
one high variable availability, two medium variable availability, and one low variable availability.
These experiments show the benefits of stochastic predictions when the execution times exhibit an
extreme variance, in this case variance production over 300%.

5



70.0 150.0

B eren Stenmmi Vatne prediction]
g 50.0 \Z [b[n[ . «K 4 § o
i \ il
§40,07 ©l 1 4 % ézwl\u Z "
sl il H |l
i R | L
 tcreat Stehamic Vae Prediction
92100'853500 0 910254000.0 910254500.0 910255000.0 910255500.0 Ql%gssooeIDZSSSOQIDZSGDDQm256509m257009m257509]]3258000 o
Time Stamps Time Stamps
Figure 6. SOR1- stochastic Figure 7. SOR2- stochastic
value prediction for the SOR. value prediction for the SOR.

4.2 Application 2 - Genetic Algorithm Code

We implemented a genetic algorithm (GA) for the Traveling Salesman Problem (TSP) [LLKS85].
Our distributed implementation of this GA uses a globa population and synchronizes between
generations [Bha96]. All of the Slaves operate on a global population (each member of the popu-
lationisasolution to the TSP for agiven set of cities) that is broadcast to them. Each Slave works
inisolation to create a specified number of children (representing new tours), and to evaluate them.
Once all the sets of children are received by the Master, they are sorted (by efficiency of the tour),
some percentage are chosen to be the next generation, and the cycle repeats.

GA1, Figure 8, shows the stochastic value predictions and the actual time, run when the two
machines on the cluster had a highly variable availability, and two had low variability. GAZ2,
Figure 9, shows the stochastic value predictions and the actual time run when the PCL cluster had
two highly variable machines and two low variability machines.

60.0 150.0

-

100.0

a

Execution Time (sec)
Execution Time (sec)

thehth
theh chehch
ththch
L 1 oL I
T et}
Tt K lotte I x
¥ ——% Actual Execution Times thth theh8ch thch chchccrch gy
=—a

Interval Stochastic Value Predictionf ] e I Execution Times

—k
=—= Interval Stochastic Value Predictio

0.0 0.0
910328000.0 910328500.0 910329000.0 910329500.0 910330000.0 910329500.0 910330000.0 910330500.0 910331000.0 910331500.0
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Figure 8. GAl- stochastic value Figure 9. GA2- stochastic value
prediction for the GA code. prediction for the GA code.

4.3 Application 3- LU Benchmark

The LU benchmark is a ssimulated CFD application that solves a block-lower-triangul ar/block-
upper-triangular system of equations, and isone of the NAS Parallel Benchmarks (NPB) [BHS™95].
This system of equations is the result of an unfactored implicit finite-difference discretization of
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the Navier-Stokes equations in three dimensions. The LU benchmark finds lower triangular and
upper triangular matrixes such that L - U = A for an original matrix A. It has the feature that it
tests the communication aspects of the system well by sending arelatively large number of 5 word
messages.

LU1, Figure 10, showsthe stochastic value predictions and the actual time, run when two of the
machines showed a high variability in availability, and two had a low variability. LU2, Figure 11,
shows the stochastic value predictions and the actual time, run when the PCL cluster one high
variability machine, one medium variability machine and two low variability machines,

Execution Time (sec)

Execution Time (sec)

0.0
0399000.0 910398000.0 910399000 0 910400000 0 910401000 o

Figure 10. LU1- stochastic value Figure 11. LU2- stochastic value
prediction for LU. prediction for LU.

4.4 Summary of Experiments

In summary, for the majority of the experiments, we achieved predictions that captured the exe-
cution behaviors using histogram representations for the stochastic information. In addition, the
shape and percentages of the histogram intervals were close to the actual execution values, and
seemed to add valuable information to the prediction. Future work involves examining how these
values affect scheduling decisions as well as adaptive methods for defining histograms.

45 Comparison of Stochastic Representations

This work has given a detailed approach to using histograms to represent stochastic values. In
previous work, we represented stochastic values as distributions [SB97] and as intervals [SB99].
Each approach has advantages and disadvantages. Intervals are the most easily defined since the
minimum and maximum value in a data set for a stochastic value are easy to determine. However,
outliers in the data can affect the size of the interval, and no details about the shape of the data
areincluded in asimple range. Histograms allow the shape of a stochastic value to be elucidated,
and lend themselves to the grouping of values, but even with out approach, can be difficult to
accurately define in apractical setting. Distributions can be defined using well understood metrics
for the data, but in order to be tractable arithmetically, we must assume that the associated data fits
awell-defined and computationally efficient family of distributions, such as the family of normal
distributions, which is not always a valid assumption.
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