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Abstract 
 

Current distributed parallel platforms can provide the resources required to execute a scientific 
application efficiently. However, when these platforms are shared by multiple users, performance 
prediction becomes increasingly difficult due to the dynamic behavior of the system. This paper 
addresses the use of stochastic values, represented by intervals, to parameterize performance models. 
We describe a method for using upper and lower bound information to parameterize application 
prediction models in order to make better predictions about the application’s behavior in a 
contentious environment. We demonstrate this technique for a set of three applications under 
different workloads on a production network of workstations. 
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Abstract

Current distributed parallel platforms can provide the
resources required to execute a scientific application effi-
ciently. However, when these platforms are shared by multi-
ple users, performance prediction becomes increasingly dif-
ficult due to the dynamic behavior of the system.

This paper addresses the use of stochastic values, rep-
resented by intervals, to parameterize performance models.
We describe a method for using upper and lower bound in-
formation to parameterize application prediction models in
order to make better predictions about the application’s be-
havior in a contentious environment. We demonstrate this
technique for a set of 3 applications under different work-
loads on a production network of workstations.

1 Motivation and Outline

In order to achieve performance in multi-user distributed
environments, it is critical to provide performance models
which accurately represent the execution behavior of pro-
grams in contended systems. In [15], we explored the ac-
curacy of structural performance models which allowed for
stochastic input parameters. Stochastic values allow perfor-
mance models to be parameterized by a range of possible
values., Such values more accurately represent parameters
of system and application behavior. For example, band-
width cold be reported as 6-8 Mbits/second rather than a
single (point) value (for example, and average).

In previous work, we investigated the accuracy of struc-
tural models when parameterized by stochastic values that
could be adequately represented by normal distributions. In
this paper, we loosen the requirement and consider struc-
tural performance models which are parameterized by sim-
ple intervals. We demonstrate for three applications that
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�Supported in part by NSF grant #ASC-9701333, Darpa grant
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interval predictions resulting from structural models param-
eterized by interval values provide a good prediction of ob-
servable behavior in multi-user distributed environments.

In this paper we define an extension to a modeling tech-
nique to allow for model parameters that are stochastic val-
ues represented by an upper bound and a lower bound. Sec-
tion 2 gives a brief overview of the structural modeling
approach. Section 3 describes how intervals are defined,
and details interval arithmetic. This results in application
performance predictions that are stochastic predictions, and
more accurately describe the application behavior, as shown
experimentally in Section 4. Section 4.5 compares this ap-
proach to previous work that used normal distributions to
represent stochastic values, and other related work. We con-
clude and give future work in Section 6.

2 Overview of Structural Modeling
In previous work [13, 14] we developed a technique

calledstructural modeling as an approach to accurate per-
formance modeling. Structural modeling uses the func-
tional structure of the application to define a set of equa-
tions that reflect the time-dependent, dynamic mix of ap-
plication tasks occurring during execution in a distributed
parallel environment. A structural model consists of a top-
level model, component models, and input parameters. A
top-level model is aperformance equation consisting of
component models and composition operators. Each com-
ponent model is also defined to be a performance equation,
parameterized by platform and application characteristics,
such as benchmarks, dynamic system measurements, prob-
lem size, or the number of iterations to be executed. The
output of a structural model is a predicted execution time.
Structural models can also be developed for alternative per-
formance metrics, such as speedup or response time.

A good performance model, like a good scientific the-
ory, is able to explain available observations and predict fu-
ture events, while abstracting away unimportant details [5].
Structural models are represented by equations that allow
us to abstract away details into the top level models and the
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parameters, but still accurately model the performance by
showing the inter-relation of application and system factors
through the component models and their parameterizations.
If the predictions are for use in a timely manner – for exam-
ple, as part of a runtime scheduling approach – they must
be able to be evaluated quickly and with minimal computa-
tional overhead as well, a factor that we address throughout.

In order to use stochastic values, not only do we need to
describe how to define them, but we must define the needed
arithmetic. In the following we assume that accurate struc-
tural models are available to the user. Section 4.5 describes
some possible side effects if this is not the case.

3 Defining Stochastic Values using Intervals
Once an accurate structural model has been defined, sev-

eral practical issues must be addressed in order to parame-
terize it with stochastic values. In this section we discuss
how dynamic information can be used to define a stochas-
tic value using an upper bound and a lower bound, and the
needed arithmetic to combine the values.

3.1 Defining an Interval

Given data in the form of a time-series, the simplest way
to represent the variability of a stochastic value is as an in-
terval. A similar approach was used for queuing network
models in [8]. We define theinterval of a stochastic value
� to be the tuple

� � ��� �� ����� �� � � �� � � � �� (1)

The values� and� are called theendpoints of the interval.
The value� is the minimum value over all� � � and is
called thelower bound, and the value� is the maximum
value, called theupper bound. Thesize of an interval� �
��� �� is defined as�� � � �� �.

The main advantage of using intervals is the simplicity
and intuitiveness of the approach. Determining the max-
imum and minimum value of the interval for a stochastic
value is almost always possible, and correlates to the intu-
ition behind defining a lower and upper bound for a value.

The primary disadvantage of using intervals is that a
given interval may need to be a very large to account for
outlying values. Figure 1 shows four possible stochastic
values, all with very different distributions, all represented
by the same interval. For example, a stochastic value with
two or more “modes”, such as shown in lines two and three
of Figure 1, would be represented by the same interval as a
value with a single mode.

Another important concern is thesharpness of the de-
fined intervals [12]. A set of bounds��� 	� are sharper than
another set���� 	�� if �� � � and	� � 	, where both��� 	� and
���� 	�� contain all values of some stochastic value� . Sharp,
or tight, bounds on the resulting intervals of a computation
are especially important for predictions used for scheduling,

where tighter bounds on a predicted execution time can lead
to a more efficient execution time. This is a different issue
than the large interval resulting from outliers. In that case,
and for all the intervals depicted in Figure 1, the bounds
around the data are tight around the data, where an unsharp
interval is one that is “loose” around the data.

Figure 1. Four sample stochastic values, each
with the same interval representation.

3.2 Arithmetic over Intervals
Combining stochastic values represented as intervals in-

volves obeying well defined rules for computing interval
arithmetic [12]. Formulas are given in Tables 1, 2, and 3.
The result of arithmetic on intervals in structural models is
an interval which provides an upper bound and lower bound
on the prediction.

The standard interval arithmetic formulas are also de-
fined assuming any two values from the same stochastic
value may be correlated. That is, a mutual or reciprocal
relation exists between them, so each should be treated as a
separate variable in the range of possible values. This may
lead to the overestimation of apparently simple expressions.
For example, if A=[a

¯
, ā ], then A-A = [a

¯
- ā, ā - a

¯
], instead

of [0,0]. More concretely, if A = [5,7], A-A = [-2,2]. This
is also called thedependence or simultaneity problem [12].

In some cases, this problem can be mitigated by rewrit-
ing the expression to avoid multiple occurrences of argu-
ments [8]. For example, the expression
���� � � ���

���

for interval values� and� may be rewritten as�� �

�����

if � ��� . If the expression is evaluated in the latter form, it
results in the exact range of
��� 
� for � � � and
 � � .
Evaluating this expression with the intervals X = [4, 5], Y
= [1,2] results in [2/7, 4/5] using the first formula, and [1/3,
2/3] using the second.

Addition x + y = [x
¯

+ y
¯
, x̄ + ȳ]

Subtraction x - y = [x
¯

- ȳ, x̄ - y
¯
]

Table 1. Addition and Subtraction over inter-
val values, x = [x

¯
, x̄], y=[y

¯
, ȳ].

Despite these possible disadvantages due to the assump-
tions needed to use standard interval arithmetic, this ap-
proach is overwhelmingly appealing due to the low over-
head in acquiring the needed information and it’s intuitive
appeal.
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y � 0 y � 0 y � 0

x � 0 [x
¯
y
¯
, x̄ȳ] [x̄y

¯
, x̄ȳ] [x̄y

¯
, x

¯
ȳ]

x � 0 [x
¯
ȳ, x̄ȳ] [���(x

¯
ȳ, x̄y

¯
), ���(x

¯
y
¯
, x̄ȳ)] [x̄y

¯
, x

¯
y
¯
]

x � 0 [x
¯
ȳ, x̄y

¯
] [x

¯
ȳ, x

¯
y
¯
] [x̄ȳ, x

¯
y
¯
]

Table 2. Multiplication of interval values x =
[x
¯
,x̄] and y = [y

¯
,ȳ].

y � 0 y � 0

x � 0 [x
¯
/ȳ, x̄/y

¯
] [x̄/ȳ, x

¯
/y
¯
]

x � 0 [x
¯
/y
¯
, x̄/y

¯
] [x̄/ȳ, x

¯
/ȳ]

x � 0 [x
¯
/y
¯
, x̄/ȳ] [x̄/y

¯
, x

¯
/ȳ]

Table 3. Division of interval values x = [x
¯
,x̄]

and y = [y
¯
,ȳ]. Note that interval division of �

�

is only defined if 0 is not in 
.

4 Experimental Verification
The following experiments demonstrate that interval pre-

dictions can accurately capture program behavior in multi-
user distributed environments with reasonable sharpness.

In the experiments, the stochastic CPU information used
in the models was supplied by the Network Weather Ser-
vice [17, 18, 19]. In categorizing the multiple background
workloads seen for each experiment set, we define a ma-
chine with alow variation in CPU availability as having a
variation of 0.25 or less, on a scale from 0 to 1, amedium
variation when the CPU availability varied more than 0.25,
but less than 0.5, and ahigh variation when the CPU values
varied over half the range.

We examined three applications on a distributed network
of Sparc workstations located in the UCSD Parallel Com-
putation Lab. The machines are connected with a mix of
10 Mbit (slow) and 100 Mbit (fast) ethernet over an Intel
switch, and all run Solaris. Both the CPU and the network
were shared with other users. Additional experiments are
given in [14].

4.1 Performance Metrics

To evaluate the stochastic predictions, we use two differ-
ent performance metrics. The first we callcapture. This
measures the percentage of actual values falling within the
predicted range for a set of application runs. This statistic is
important because the primary goal is to define predictions
that are accurate in estimating the execution behavior of the
application under contention. However, this statistic can be
misleading since one reason a prediction may capture the
majority of the values is due to the fact that the bounds were
large, or the interval was not sharp.

Our second metric is calledsharpness. It is important to
not only predict a range of behaviors that reflects the actual
execution behavior range, but this range should be as tight

as possible in order to have more accurate information. We
define the sharpness metric by dividing the predicted range
into five equal parts, as shown in Figure 2. If the major-
ity of the values for a set of runs fall in the center portion,
the values could have been much tighter. If they fall into
the mid ranges, the prediction could have been somewhat
sharper, and if they fall into the outer ranges, they could not
have been sharper without sacrificing the capture propor-
tion. In addition, we can use this metric to evaluate if there
was a bias in the prediction, that is, if the majority of the
predictions were too high or too low. Bias can be caused
by outliers that don’t reoccur, or by a bias in the original
model. These values for the entire set of experiments are
given in Table 4.

CenterLo

Mid-HiMid-Lo

Hi

Figure 2. Sharpness intervals.

Figure Under Lo Mid Center Mid Hi Over
Lo Lo

SOR1 0 0 8 5 5 6 1
Figure 3
SOR2 0 2 6 8 4 3 3

Figure 4
GA 1 0 0 2 8 5 3 6

Figure 5
GA2 0 3 9 9 1 3 9

Figure 6
LU 1 0 0 8 9 2 1 0

Figure 7
LU2 0 2 10 9 0 1 0

Figure 8

Table 4. Sharpness table for experiments, la-
beled for area of interval where actual values
fell. Under and Over indicate actual values
that were not captured by the predictions.

4.2 Application 1 - Successive Over-Relaxation
Code

Successive Over-Relaxation (SOR) is a Regular SPMD
code that solves Laplace’s equation. Our implementation
uses a red-black stencil approach where the calculation of
each point in a grid at time� is dependent on the values in a
stencil around it at time���. The application is divided into
“red” and “black” phases, with communication and compu-
tation alternating for each. In our implementation, these two
phases repeat for a predefined number of iterations.

3



Figure 3 shows the interval stochastic value predictions
and the actual time of the SOR application, run when the
PCL cluster had two processors with a highly variable CPU
availability, one with a medium variable availability, and
one with a low variable availability. Using interval repre-
sentations, we capture 26 of 27 values. From the sharpness
information given in Table 4, we see a slight bias to the
higher values, but as this is not seen for the other SOR data
sets, it is likely due to an outlier value for the CPU avail-
ability. From this information we also see that these values
have a good sharpness to them, since decreasing the interval
would likely lower the capture percentage significantly.

A second set of experiments for the SOR code on the
PCL cluster are presented in Figure 4, run when the PCL
cluster had one high variable availability, two medium vari-
able availability, and one low variable availability. These
experiments show the benefits of stochastic predictions
when the execution times exhibit an extreme variance, in
this case variance production over 300%. For these runs, the
interval representation captured 24 of the 27 values. From
the sharpness table, the actual values are spread across the
entire range indicating that tighter bounds would adversely
affect the capture percentage, indicating a good fit in terms
of sharpness.
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Figure 3. SOR1- Interval stochastic value pre-
diction for the SOR benchmark.
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Figure 4. SOR2- Interval stochastic value pre-
diction for the SOR benchmark.

4.3 Application 2 - Genetic Algorithm Code

We implemented a genetic algorithm (GA) heuristic
for the Traveling Salesman Problem (TSP) [6, 16]. Our
distributed implementation of this genetic algorithm uses
a global population and synchronizes between genera-
tions [3]. All of the Slaves operate on a global population
(each member of the population is a solution to the TSP for
a given set of cities) that is broadcast to them. Each Slave
works in isolation to create a specified number of children
(representing new tours), and to evaluate them. Once all the
sets of children are received by the Master, they are sorted
(by efficiency of the tour), some percentage are chosen to
be the next generation, and the cycle begins again.

GA1, Figure 5, shows the interval stochastic value pre-
dictions and the actual time, run when the two machines on
the cluster had a highly variable availability, and two had
low variability. The predictions captured 19 of 25 values.
GA2, Figure 6, shows the interval stochastic value predic-
tions and the actual time run when the PCL cluster had two
highly variable machines and two low variability machines.
The interval representation captured 16 of 25 values. In
terms of sharpness, it appears that the intervals may have a
bias associated with them towards underestimation, or may
be too tight, and do not take into account the high variability
in the dedicated performance of this code in GA2.
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Figure 5. GA1- Interval stochastic value pre-
diction for the GA code.

4.4 Application 3 - LU Benchmark

The LU benchmark is a simulated CFD application that
solves a block-lower-triangular/block-upper-triangular sys-
tem of equations, and is one of the NAS Parallel Bench-
marks (NPB) [1]. This system of equations is the result
of an unfactored implicit finite-difference discretization of
the Navier-Stokes equations in three dimensions. The LU
benchmark finds lower triangular and upper triangular ma-
trixes such that� � � � � for an original matrix�. It has
the feature that it tests the communication aspects of the
system well by sending a relatively large number of 5 word
messages.
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Figure 6. GA2- Interval stochastic value pre-
diction for the GA code.

LU1, Figure 7, shows the interval stochastic value pre-
dictions and the actual time, run when two of the machines
showed a high variability in availability, and two had a low
variability. The interval representation captured 21 of the 25
values. LU2, Figure 8, shows the interval stochastic value
predictions and the actual time, run when the PCL cluster
one high variability machine, one medium variability ma-
chine and two low variability machines. The interval repre-
sentation captured 22 of the 25 values. The intervals could
be sharper, although no bias is evident. Again, we feel that
this may be due to the highly predictable dedicated perfor-
mance.
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Figure 7. LU1- Interval stochastic value pre-
diction for the LU benchmark.

4.5 Discussion

In summary, for the majority of the experiments, we
achieved predictions that captured the majority of the
execution behavior using interval representations for the
stochastic information. We saw that the sharpness of the
interval could be affected by both the predictability of the
application in a dedicated setting, the variation in available
CPU, and any bias in the original model. We postulate that
the time frame used for the range of values used to estimate
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Figure 8. LU2- Interval stochastic value pre-
diction for the LU benchmark.

the available CPU should be adjusted by these values, in-
stead of fixed in an application dependent manner. This is a
topic for future work.

5 Related Work

In previous work [15, 14] we investigated using a nor-
mal distribution instead of an upper bound and lower bound
to make predictions in contentions environments. This had
the advantage of being able to ignore outlying values, since
we used a prediction ranged based on the mean plus or mi-
nus two standard deviations, with the intention of captur-
ing only 95% of the values in the best case. However, this
methodology was complicated by the fact that many system
characteristics, available CPU for one, do not have a normal
distribution, thus leading to errors in the predictions, as well
as the more complicated arithmetic involved when handling
special cases like modal distributions.

There are several related approaches. Note that stochas-
tic values as defined here are not related to Petri net mod-
els [9, 11], also called “stochastic models”, in any way ex-
cept through the application of conventional statistical tech-
niques.

Some researchers are beginning to use probabilistic tech-
niques to represent data for predictions of application per-
formance in distributed environments. Brasileiro et al. [4]
use probability distribution functions to calculate wait times
on a token ring network. This work borrows heavily from
queuing theory in a much more theoretical setting than our
production setting.

The most closely related work to our approach is by
Mendes as part of the Rice Fortran D95 compiler [10].
They generate symbolic performance predictions using a
data parallel compiler. The compiler generates upper and
lower bounds for predicted execution time by considering
extrema of system-dependent constants (eg. memory ref-
erences times). This work assumes some baseline system
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benchmarks, but at a much lower level than we expect, and
cannot take into account dynamic runtime information ex-
cept as user-provided estimates.

Our work is somewhat related to “quality of informa-
tion” such as timeliness and accuracy is used in metacom-
puting [2, 7]. These approaches have begun to address the
need for additional information in order to make educated
decisions about performance in a cluster environment with
dynamic load. Using a stochastic value to represent the
range of values possible from some system or application
characteristic is one step in this direction.

6 Summary and Future Work

In this paper, we describe a new approach to application
performance prediction in multi-user (production) environ-
ments. We have defined stochastic values to reflect a likely
range of behavior for model parameters, and extended the
definition of structural models to allow for stochastic pa-
rameters as well as stochastic performance predictions. We
describe the representation of stochastic values using an up-
per bound and a lower bound. Our experiments demonstrate
that in production settings, stochastic values can accurately
identify the range of application execution behavior, pro-
viding more comprehensive and more accurate information
about application execution than point values.

Continuing work in this area includes analysis to help
further determine a proper time frame over which to deter-
mine the intervals, as well as how to use stochastic models
in stochastic scheduling techniques. We are also analyz-
ing the advantages and disadvantages of using histograms
to represent stochastic values as a way to combine the arith-
metic efficiency of intervals with the shape detail of distri-
butions.
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