

Computer Science Department

Technical Report
NWU-CS-03-19
May 9th, 2003

Vision in Context: Using Special Purpose Routines to Achieve

More General Purpose Vision

Joshua D. Flachsbart

Abstract

Recently researchers have used task driven computer vision routines to solve specific
problems. These routines have been successful by relying on specific traits of the task
they solve and the environment in which they operate. One disadvantage of this method
is that the specific constraints on which the routines rely may not hold in a given
situation, or may even cease to hold in situations where they held before due to changes
in the world. We believe that reasoning about those constraints explicitly and selecting
appropriate special purpose routines for specific situations allows us to create a general
purpose computer vision system both robust and broad in task coverage.

This dissertation presents our work testing this hypothesis. The Intelligent Classroom is
our primary testbed for utilizing vision in different contexts. The Classroom is an
automated lecture facility that acts as its own audio/visual technician. The Classroom
environment is a good choice for this research because it provides interesting computer
vision tasks by interacting with a human user, and it also has structure which provides
constraints for reasoning about that computer vision.

In addition, we present a framework for low level computer vision, and two additional
systems which utilize that framework to solve similar problems in different domains.

The main contributions of the work described here are:

• The Intelligent Classroom, a system which is able to use computer vision to
produce a video of a lecture, as well as reason about how to sense for different
user interaction tasks.

• Our vision system, Gargoyle, which provides a framework for constructing vision

routines on the fly, which is required to allow reasoning systems to manage the
vision routines. It also provides a modular interface for designing and reusing
parts of vision routines.

• An implementation of existing vision routines in a robotic system, CHIP, utilizing

this framework, which demonstrates the capability of the framework to implement
proven systems.

• The Interactive Image Mosaic, which demonstrates the ease of reuse by being

built quickly using a number of the Classroom's Gargoyle routines.

Keywords: Computer Vision, Intelligent Environments, Automatic Filming

NORTHWESTERN UNIVERSITY

Vision in Context:

Using Special Purpose Routines to Achieve

More General Purpose Vision

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Joshua D. Flachsbart

EVANSTON, ILLINOIS

June 2003

c© Copyright by Joshua D. Flachsbart 2003

All Rights Reserved

ii

Abstract

Vision in Context:

Using Special Purpose Routines to Achieve

More General Purpose Vision

Joshua D. Flachsbart

Recently researchers have used task driven computer vision routines to solve

specific problems. These routines have been successful by relying on specific traits of the

task they solve and the environment in which they operate. One disadvantage of this

method is that the specific constraints on which the routines rely may not hold in a given

situation, or may even cease to hold in situations where they held before due to changes

in the world. We believe that reasoning about those constraints explicitly and selecting

appropriate special purpose routines for specific situations allows us to create a general

purpose computer vision system both robust and broad in task coverage.

This dissertation presents our work testing this hypothesis. The Intelligent

Classroom is our primary testbed for utilizing vision in different contexts. The Classroom is

an automated lecture facility that acts as its own audio/visual technician. The Classroom

environment is a good choice for this research because it provides interesting computer

vision tasks by interacting with a human user, and it also has structure which provides

constraints for reasoning about that computer vision.

In addition, we present a framework for low level computer vision, and two
iii

additional systems which utilize that framework to solve similar problems in different

domains.

The main contributions of the work described here are:

• The Intelligent Classroom, a system which is able to use computer vision to produce

a video of a lecture, as well as reason about how to sense for different user interaction

tasks.

• Our vision system, Gargoyle, which provides a framework for constructing vision

routines on the fly, which is required to allow reasoning systems to manage the vision

routines. It also provides a modular interface for designing and reusing parts of vision

routines.

• An implementation of existing vision routines in a robotic system, Chip, utilizing this

framework. This demonstrates the capability of the framework to implement proven

systems.

• The Interactive Image Mosaic, a system which demonstrates the ease of reuse by being

built quickly using a number of the Classroom’s Gargoyle routines.

iv

Acknowledgements

The road to a Ph.D. is never an easy one, and my journey has taken a number of turns.

Somehow I seem to have made it. That is of course not through some miracle, but rather

through the help and patience of many different people over they years.

My first thanks go to those people who saw me through to the end, to my degree

at Northwestern. My advisor, Kris Hammond, probably never thought he would see the

day that he had a vision student, however he took me on and allowed me to continue my

work. Without that I surely would have never gotten to where I am. He went beyond that

however, and helped me focus on maintaining a vision of always keeping in mind, how the

research is going to be used. Especially in Computer Vision it is easy to fall into the habit

of research for its own sake, and I can not thank Kris enough for keeping my eye on the

utility of what I was doing. That will serve me well in the future.

I also want to thank the other members of my committee, who saw this through.

Ian Horswill helped me more clearly state who I am, and who I am not, while Larry

Birnbaum was available with the big picture, when I became too focused on details, sometimes

on an emergency basis!

Of course, the thing that makes graduate school more bearable are the other

graduate students. My time at Northwestern has been blessed with many good friends.

Dave of course, muddled through it all with me on the Intelligent Classroom; through good

times and bad. Robb, Jay and Shannon have also spent many years keeping me sane, and

v

for that I thank them. In any school, students come and go, but in the InfoLab there is

a camaraderie that I have seldom seen. All of the lab members have been there for me at

one time or another: Andy, Azra, Kate, Kevin, Lou, Marko, Noura, Robin, Sara, Sanjay,

Vidya, Xiaobin and shouts to Ayman.

Mike Swain, Jim Firby and Alain Roy all had their parts to play starting me on

my journey in Computer Science. Without them I would have never found it, and my life

would have taken a very different course.

Many of my friends in Chicago have been instrumental in keeping me together

through this process. Mike, Pam and Ligia have spent more years than anyone should have

to listening to me complain as I pace in the living room when I get home from school.

Katherine, Alain, Jose, Jen and Marty have all also done their parts. My Sensei Kevin,

and my Sempai Dave have both helped to keep me in line. I want to thank my family, my

mom and dad, for putting up with my constant waffling on when I was going to be done,

my brother for being there when I needed him, along with my sister.

And finally, the love of my life, Sue. Sue has been there with me through the

end of this process, putting up with ever changing end dates, near constant agonizing and

self doubt. Without her, this work may never have been finished.

So to all the people listed here and the still more people who helped me who

are not named, thank you all so very much. Your kindness and help are well remembered.

Without you, I would not be here today. But here I am. Thank you.

vi

Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vii

List of Figures xi

1 Introduction 1
1.1 Computer Vision . 2
1.2 Using Special Purpose Routines More Generally 2
1.3 Thesis Statement and Contributions . 4

1.3.1 Thesis . 4
1.3.2 Contributions . 4

1.4 Motivations . 6
1.4.1 Build a framework for a general purpose vision system 7
1.4.2 Build a real system . 10

1.5 Our Methodology for Computer Vision . 15
1.5.1 Use Task Based Special Purpose Routines 16
1.5.2 Reason About Which Routine to Use When 17
1.5.3 Explicitly Represent the Vision Routines’ Constraints 17
1.5.4 Break Up the Vision Routines into Atomic Units 18

1.6 Road map to the dissertation . 18

2 Special Purpose Vision Routines 20
2.1 Advantages of Special Purpose Vision Routines 22

2.1.1 Task Constraints . 24
2.1.2 Environmental Constraints . 27
2.1.3 Successful Systems . 28
2.1.4 Special Purpose Routines Work . 31

2.2 Problems with Special Purpose Routines . 32
vii

2.2.1 Constraint Failure . 33
2.2.2 Speed Concerns . 34
2.2.3 Reuse . 35

2.3 Moving On . 36

3 Reasoning About Computer Vision 37
3.1 Our Methodology for Building a Vision System 37

3.1.1 Use Special Purpose Vision Routines 38
3.1.2 Reason About Vision . 38
3.1.3 Represent vision Routine Constraints Explicitly 40
3.1.4 Break Up the Routine . 41

3.2 Understanding Constraints . 43
3.2.1 Acquiring Constraints . 44

3.3 Types of Constraints . 47
3.3.1 Task Constraints . 47
3.3.2 Environmental Constraints . 52

3.4 Using Constraints . 53
3.4.1 Pick a Vision Routine to Run . 53
3.4.2 Change How a Vision Routine Runs 56
3.4.3 Stopping a vision Routine . 57

3.5 Final Thoughts on Constraints . 59

4 CHIP 61
4.1 Background . 62
4.2 Hardware . 63
4.3 Animate Agent Architecture . 64

4.3.1 The RAP Execution System . 66
4.3.2 Reactive Skills . 67
4.3.3 Vision Routines . 68
4.3.4 Problems . 69

4.4 Vision on CHIP . 70
4.4.1 Obstacle Avoidance and Tracking . 70
4.4.2 Object Identification and Tracking 71
4.4.3 Person Tracking . 72
4.4.4 Robotic Waiter . 73

4.5 Obituary . 74

5 Gargoyle 75
5.1 Design . 76

5.1.1 Breaking Up the Vision Routine . 77
5.1.2 Providing Control Mechanisms . 79

viii

5.2 Implementation . 79
5.2.1 Overview . 80
5.2.2 Server . 81
5.2.3 Pipelines . 83
5.2.4 Modules . 84
5.2.5 Libraries . 88

5.3 Gargoyle in use . 88
5.3.1 CHIP . 90
5.3.2 Intelligent Classroom . 90
5.3.3 Interactive Image Mosaic . 90

6 The Intelligent Classroom 92
6.1 Overview . 93
6.2 Hardware . 96
6.3 Process and Skill Managers . 97

6.3.1 The Process Manager . 99
6.3.2 The Skill Manager . 101

6.4 Tasks . 103
6.4.1 Film The Speaker . 104
6.4.2 More Filming Possibilities . 107
6.4.3 Operate Videos and Slides . 109
6.4.4 Handle Initialization . 112

6.5 Vision Routines . 113
6.5.1 Background Subtraction Tracking 114
6.5.2 Color Tracking . 127
6.5.3 Automatic Color Histogram Generation 133
6.5.4 Motion Detection . 136
6.5.5 Template Matching . 137

6.6 Final Thoughts on the Classroom . 140

7 The Interactive Image Mosaic 141
7.1 Background . 142
7.2 Execution System . 143
7.3 Tasks and Vision Routines . 146

7.3.1 Viewer Identification . 146
7.3.2 Mosaic Image Integration . 148
7.3.3 Filming the Viewer . 151

7.4 Conclusions . 151

ix

8 Related Work 153
8.1 Automated Control . 154

8.1.1 University of Rochester: Driving System 154
8.1.2 MIT: Kidsroom, Smart Studio . 155
8.1.3 RECIPE . 157

8.2 Automatically Building Routines . 157
8.2.1 Colorado State: ADORE . 158
8.2.2 Carnegie Mellon University: Learning Routines 158

8.3 Combined Estimation . 159
8.3.1 MIT: Lightweight Robotic Navigation 159
8.3.2 MIT: Pfinder . 160
8.3.3 University of Massachusetts Amherst: Adaptive Systems 160

8.4 Vision Routine Studies . 161
8.5 Reasoning and Execution Techniques . 162

8.5.1 Subsumption Networks . 162
8.5.2 Action Selection . 163
8.5.3 Three Layer Architectures . 163

8.6 Computer Vision Frameworks . 164
8.6.1 Khoros . 164
8.6.2 CVIPtools . 165
8.6.3 IUE . 165

9 Conclusions 166
9.1 Building Useful Systems Incrementally . 167
9.2 The Future of This Work . 168

9.2.1 More Vision Routines . 169
9.2.2 Constraint Representation . 169

9.3 Vision and the InfoLab . 170
9.4 Final Thoughts . 172

Bibliography 174

x

List of Figures

1.1 A Venn diagram representing the space covered by special purpose routines. 4

1.2 Our framework for vision routines must be combined with a reasoning system

to provide a complete computer vision system. 9

1.3 Ayman using the Intellligent Classroom on the left, and the hardware for the

Classroom on the right. 11

1.4 Chip: A testbed for autonomous agent planning and vision research. 13

1.5 Starry Night, and a partially constructed Image Mosaic built from images of

users interacting with the system. 14

2.1 The constraints that a vision routine relies on come from the world and the

task the system is accomplishing. 25

3.1 A diagram of a complete vision system built using our methodology. 39

3.2 A diagram showing a library of vision routine components being used to make

a number of routines. 42

3.3 The component breakdown for a generic system which interacts with the

world using a vision framework for sensing data. 44

3.4 Chip merely selected routines to use, whereas the Classroom updates how

those routines run. 49

4.1 A representation of Chip’s processing spread out over a number of off-board

computers. 64

xi

4.2 The high level breakdown of the Animate Agent Architecture as implemented

on Chip. 65

4.3 The skill system as implemented on Chip. 67

5.1 Gargoyle when used as part of a complete vision system. 80

5.2 A client requesting a specific pipeline from Gargoyle’s vision routine library.

The pipeline is made up of connected modules. 81

5.3 The flow of information and control in Gargoyle as it communicates with the

client. 82

5.4 A representation of data flowing through a person tracking pipeline from one

module’s output to the next module’s input. Control comes from the client

and results are continuously returned. 85

5.5 A graphical user interface gargoyle client which allows a user to easily build

and configure pipelines. 89

6.1 The system architecture diagram for the Classroom. 95

6.2 The Intelligent Classroom hardware stack. 96

6.3 The connections between the different Classroom physical components. . . . 98

6.4 The process manager with active processes waiting for specific events. . . . 100

6.5 A complete skill pipeline spanning the Classroom’s skill manager and Gargoyle.102

6.6 Summary of filming tasks, showing the information required to accomplish

the given task. 104

6.7 A number of alternate framings for filming the speaker, clockwise from top

left: generic, walking, writing, and gesturing. 105

6.8 Summary of audio video controlling tasks, showing the task constraints. . . 109

6.9 Classroom generated and user generated virtual buttons in use. 111

6.10 The background subtraction tracking pipeline and constraints. 114

6.11 The functioning output of the background module and a person “burning”

into the background on the right. 117
xii

6.12 The color tracking pipeline and constraints. 128

6.13 Results from the color histogram backprojection module. 131

6.14 The pipeline and constraints for the pipeline that uses background subtraction

to automatically generate a color histogram of the user. 134

6.15 The pipeline and constraints for the motion tracking pipeline. 136

6.16 The pipeline and constraints for the Hausdorff matching icon finding pipeline. 138

7.1 A diagram of the eventual installation, as it should appear in a museum,

with a user interacting with a partial mosaic by way of a camera positioned

to film a person viewing the artwork. 142

7.2 The system architecture for the Interactive Image Mosaic project. 144

7.3 A simple state machine for controlling the Interactive Image Mosaic, showing

which routine is used for each state. 145

7.4 An alternate implementation of the color tracking pipeline built to determine

when someone has walked in front of the camera. 147

7.5 A pipeline for figuring out the best location for an image in a mosaic representing

another image. 148

7.6 The progress of building an image mosaic, some images are replaced, and

some new ones are added. 150

xiii

Chapter 1

Introduction

As the state of the art advances, more and more problems are being solved using computer

vision. Vision is a very general purpose sensor. Humans use it for a wide variety of tasks,

implying that computers should be able to use it for a wide variety of tasks. Unfortunately

the implementation of vision on modern computers is a nontrivial and unsolved problem.

However, great progress has been made using computer vision to solve specific tasks.

This dissertation examines combining these special purpose computer vision

techniques to obtain a more robust and general purpose computer vision system by allowing

it to choose which computer vision routine to use for different tasks. In addition, we show

the validity of this framework by demonstrating it in a number of different complete systems.

We are specifically interested in using computer vision to allow our systems to interact with

the physical world. We found a number of commonalities between the information needed

by the different systems indicating that a more general framework could be shared between

them.

1

2

1.1 Computer Vision

General purpose computer vision has long been a goal of artificial intelligence researchers.

From a theoretical standpoint the complexity of the vision algorithms is not a hindrance

to obtaining the desired visual information from a scene. In the real world, however, we

are bound by time and memory constraints which do not allow us the luxury of obtaining

a complete world model. Vishvjit Nalwa defines general purpose vision as vision “without

restriction to a particular task or domain” [72, page 25]. By not restricting ourselves, the

general task becomes too hard to achieve. Researchers who have worked on developing

general systems for solving vision tasks have found themselves either failing to solve their

specific tasks, or failing to maintain the generality of their vision system.

The desire to use vision for specific tasks, and the difficulty of the general

problem, led to researchers to develop task based, lightweight, and active vision routines,

which we collectively call special purpose vision routines. Much progress has been made in

the area of special purpose vision in the past decade. Many specific tasks have been solved

using special purpose routines, from human computer interaction to robotic navigation.

Unfortunately all of these tasks were solved with specific tasks and environments in mind,

making them brittle and hard to reuse.

1.2 Using Special Purpose Routines More Generally

Looking at the research into both general purpose, and special purpose computer vision, we

believe that there are problems with both approaches. On the one hand, special purpose

routines allow us to build systems that work and rely on computer vision, however they

break as the environment changes. On the other hand, true general purpose vision will not

be attainable any time in the foreseeable future.

3

Active vision suggests an easier method of achieving general purpose vision:

extracting only that information from a scene which is required for a given task. This

alternate way of framing the problem proves to be crucial. Most systems that use computer

vision have some information goal that they are trying to achieve from the vision system. If

the system has a goal in mind, it does not need to extract all possible information from the

scene, just the information it is looking for. By constraining it in this manner, the system

can function, since it is using special purpose routines which can work reliably. However

if, instead of simply relying on a specific special purpose routine, the system had a library

of routines to pick from, it could pick the appropriate special purpose routine for the given

situation.

This leads to our methodology for achieving general purpose computer vision:

provide only that information that is required for a given task and given world state when

requested, whatever that task and world state may be. Similarly to Nalwa’s definition of

general purpose vision, our methodology can be expanded to work for any task and world

state. Unlike his definition, ours cares deeply about what those states are. Using this

methodology this system actually adapts what it processes depending on the task of the

system it is embedded in, and potentially on the state of the external world.

Stated another way, general purpose vision seeks to cover the entire problem

space of computer vision. Special purpose routines cover only a small portion of that space.

Figure 1.1 represents a special purpose routine covering only a small portion of the problem

space. We seek to cover the problem space by using multiple special purpose routines which

cover different parts of the space. By extracting different information for different problems

we are able to cover the space.

It is the ability to change what information we are trying to extract from the

scene that makes this different from special purpose routines. This dissertation examines

4

Computer Vision
Problem Space

Special
Purpose
Routine

Single Special
Purpose Routine

Multple Special
Purpose Routines

Routine A

Routine C

Routine B

Figure 1.1: A Venn diagram representing the space covered by special purpose routines.

using different special purpose vision routines at appropriate times to achieve general

purpose vision.

1.3 Thesis Statement and Contributions

1.3.1 Thesis

Reasoning about explicit constraints and using those constraints to choose between special

purpose routines allows us to create a general purpose computer vision system which is

both broad in coverage and robust.

1.3.2 Contributions

The main implementational contributions of the work described here are:

5

• Our vision system, Gargoyle, which provides a framework for constructing vision

routines on the fly, which is required to allow reasoning systems to manage the vision

routines. It also provides a modular interface for designing and reusing parts of vision

routines.

• An implementation of existing vision routines in a robotic system, Chip, utilizing this

framework. This demonstrates the capability of the framework to implement proven

systems.

• The Intelligent Classroom, a system designed from the ground up with reasoning

about vision as a goal. This demonstrates the ability to reason with constraints about

vision routines built in this framework.

• The Interactive Image Mosaic, a project quickly built using many existing routines,

proving the ease of reuse that Gargoyle provides.

Generally, these systems embody the following contributions:

A system for filming people delivering a lecture. The initial work done for this

dissertation focused on developing the ability for a computer to automatically produce a

reasonable film of a lecture. This required the ability for the computer to reason about how

to film the lecture, as well as the ability to see where the lecturer is. The system produces

the film by deciding which part of the scene has the most relevant information and focuses

the camera on that part. For example, if the lecturer is standing and speaking the facial

features will be most important, so it will zoom in to his head. On the other hand, if he is

writing on the board, what he is writing will be focus of attention and it trains the camera

on the board instead. Special purpose vision routines were developed specifically for this

task.

6

A system for choosing vision routines based on the current task. The Classroom

has a number of other tasks for which it uses vision. In order for the vision system to be

more general, we developed a system which picks the appropriate special purpose routine

for the given task it is accomplishing.

A system for choosing vision routines based on the current environment. We

developed a system for reasoning about which vision routines to use for which environments

while filming the lecture. By expanding the capabilities of the Intelligent Classroom we were

able to demonstrate a system which reasons about which vision routines to use for following

a person, based on the specifics of the current environment. By providing the Classroom

with different methods of tracking the lecturer it is able to produce much better films of

the lecture. These contributions are described in the Intelligent Classroom, Chapter 6.

A system which utilizes previously built vision routines for novel environments

and tasks. The Classroom contributions demonstrate a need to design the special purpose

routines with an eye towards configurability and reuse. This allowed us to demonstrate the

generality of our system by reusing it in a novel environment with similar tasks. This work

is described in the Interactive Imagemosaic, Chapter 7.

Finally, we describe a methodology for reusing vision routines under different

task and environment constraints. We feel that we have made some progress in the direction

of utilizing special purpose routines for general purpose vision. We have taken the work

done for this dissertation and distilled it to a set of “rules” for building a general vision

system. These are found in Section 1.5.

1.4 Motivations

The goal of this research was very straightforward: We wanted to build a robust framework

that could provide vision for a wide variety of tasks. We already had a robotic platform

7

that could accomplish a number of different tasks using vision based skills, but whenever

we wanted to expand its set of tasks, we had to start over and construct new routines for

the context implied by this new set of tasks. We wanted to build a system that would allow

us to easily adapt the old vision routines to a new task or environment, or take parts of

old vision routines and use them to build new ones for novel situations rather than starting

again from scratch.

New vision systems are written for new tasks all the time; we just want to

make that work available for different tasks in a reasonable manner. In order to see if the

vision system was effective, in addition to building the vision system, it would need to be

integrated with another system that used it.

Because of this we have two subgoals for this research: We needed to build a

vision framework that would support the vision needs of our systems, and we needed to

evaluate our methodology by building a real system that utilized this framework.

1.4.1 Build a framework for a general purpose vision system

Building the framework to enable this type of vision was an iterative process, but in the end

it was clear that it needed to provide structure for building special purpose vision routines,

and for switching between those vision routines as dictated by the changing context of the

world.

Given our definition of general purpose vision, the ability to change which special

purpose vision routine is running is critical. In order to do this the framework would need

to be run-time reconfigurable, and controllable by the system that is utilizing the visual

information. There are many ways in which the framework might need to be reconfigured.

A new vision routine might be needed, or an existing vision routine might need to be

reparameterized. Our system provides for both these types of reconfiguration, as well as

8

actually reconstructing given routines on the fly, although we have yet to actually use this

ability in an automated manner.

We also wanted to create a framework that made it easier for vision routine

programmers to build new routines. Reusing old code has always been a problem, and

reasoning about the constraints of those routines from scratch each time can be cumbersome

at best. One thing we found very useful was the ability to break up the vision routines into

atomic units. This allows the programmer to reuse parts of old vision routines for new ones.

In addition, if the constraints on a given section of code are well understood, then when

those parts are used in a novel routine, the programmer has a start on understanding the

constraints involved in that one.

Finally, by having a single framework take on all of these tasks, it becomes

very easy to reuse the same routines in completely different situations which require similar

visual information. In our experience we were able to reuse not only the same routines,

but in many instances also reuse parts of old routines in new routines altered for the new

constraints.

One interesting thing to note with this framework is that it does not do anything

without a control architecture. If there is no information for the framework to extract from

the scene, then it does nothing. This makes sense because the goals of the controlling

system, along with the current state of the world, determine the constraints the system

can utilize, and allow processing power to be used where it will be most effective. For our

purposes, general purpose vision can be achieved only through grounding the vision system

with goals. Vision for vision’s sake is not only an incoherent goal, but also not possible in

the general case—it needs to be grounded in a real system. Therefore, the vision system is

actually the combination of the low level routines and the part of a higher level system that

controls the sensing. Figure 1.2 shows how this framework is combined with a reasoner to

9

Vision Routine Vision Routine Vision Routine

Reasoning System

Framework Controller

Vision Routine Framework

Vision System

Figure 1.2: Our framework for vision routines must be combined with a reasoning system
to provide a complete computer vision system.

provide a complete vision system.

This way of thinking about sensing is not new, it is similar to active vision as

described by Bajcsy and Ballard [7, 10]. Active vision routines look for specific objects in

the world, but only look for them in a specific manner. This framework, however, allows

the system to determine not only what to look for, but also how to look for it. Since this

framework relies on reasoning about the world that it lives in, we need to build a real system

which can tell the vision framework what to look for and how to go about it.

Gargoyle

Gargoyle is the framework we built to meet these goals. It provides a number of mechanisms

to achieve the three points discussed in this section but provides none of its own reasoning.

Instead, it provides a communication architecture which a higher level reasoning system uses

10

to control all of the decision making that our vision system needs as shown in Figure 1.2.

Section 1.4.2 talks about the reasoning behind this. This means that Gargoyle can not

reconfigure itself, but is very amenable to reuse for completely different tasks, even ones

with entirely different system architectures.

1.4.2 Build a real system

In order to evaluate the effectiveness of our methodology it was important to build a real

system in which to run our vision framework. When we say real system, we are referring to

a system that is designed around a task that we are trying to solve rather than trying to

build a system around the problem that we are interested in. Given our goal of building a

general purpose system, it would be very easy to fall victim to having every problem look

like a nail to our hammer. In order to avoid this we were careful to define the needs of the

system before applying our framework to it.

Defining the system that you are trying to build rather than simply designing the

vision framework has the additional advantage of providing a structure in which to build the

needed routines. Once a problem has been defined, you can determine what information

is required to accomplish the tasks needed for that problem. This will then provide the

task context which you can use to develop new special purpose vision routines. We have

found that designing vision routines is much more straightforward from a conceptual to an

implementational level when you have a real system to connect them to.

In addition to making the routines easier to construct, the system keeps track of

the current context in the world. By explicitly representing the constraints the system can

reason about them in the current context and tell the framework what to do. The vision

framework can then assemble the special purpose vision routine that will work in the given

context and return the requested information. This is critical because the system will have

11

Figure 1.3: Ayman using the Intellligent Classroom on the left, and the hardware for the
Classroom on the right.

knowledge about what it is doing, and possibly about the state of the world, that the vision

routines themselves should not need to know about.

Making a clean separation allows the special purpose routines to be written with

an eye to reusability. Since the system programmer needs to understand the constraints

on the special purpose routine, the routine programmer can use this information to make

appropriate decisions about parameterization and how to break up the routine into atomic

units. By making smart decisions here, the special purpose routines become much easier to

modify for new tasks.

The Intelligent Classroom

To accomplish these ends, we implemented a system called the Intelligent Classroom. The

goal of the Classroom was to provide a way for users to interact naturally with a computer

system that controlled many aspects of a multi-media classroom. In order to meet this

12

goal, the Classroom can film the lecture, run a slide show, and do other tasks that the user

might find useful. To accomplish this, the Classroom is composed of a number of interacting

sensing, reasoning and execution systems. These systems allow the Classroom to listen to

and watch the user.

By observing the user, the Classroom is able to reason about what the user is

doing. By reasoning about this, the Classroom can decide what the user might need to do

next and help him by doing it. This means that the Classroom has the goal of helping the

user, and in order to do this needs to know what the user is doing.

The Intelligent Classroom was built at Northwestern University in the Intelligent

Information Laboratory (the InfoLab). It is worth mentioning how the general InfoLab

goals interact with those of the Intelligent Classroom project. The InfoLab mantra is that

of frictionless information access. That is, the computer gives the user the information he

wants as soon as he needs it, without the user having to ask for it. This is compatible with

the Classroom’s goal of doing what the user wants without the user having to ask for it in

an unnatural manner. The behavior that the user is engaged in solicits the information or

service rather than having the user break the flow of his task to ask for it. Of course this

implies that the Classroom must keep track of the task that the user is engaged in.

Since the classroom has the specific long running goal of helping the user, it has a

large number of sub tasks that it accomplishes to meet that end. Each of these sub tasks has

specific information needs which the Classroom can fulfill by utilizing Gargoyle. This proved

to be an excellent testbed for our ideas on computer vision, because the Classroom has

changing goals that provide changing information needs. In addition the Classroom controls

a number of environmental elements, and therefore provides a good source of contextual

information about how the different vision routines should run.

Having a real system in which to test our framework is required; however to test

13

Figure 1.4: Chip: A testbed for autonomous agent planning and vision research.

our aims of achieving general purpose vision, we really need to have more than one system

in which to test it. This dissertation also looks at two other systems that used Gargoyle.

They are a robot system, Chip, and a real time Image Mosaic system,

CHIP

Chip was a robot built at the University of Chicago. It was entered in the first AAAI

robot competition and successfully located, identified and picked up a piece of garbage, and

then located the appropriate trash receptacle and dropped the trash into the can, all using

computer vision control techniques [37]. Chip had a number of vision routines that it used

to accomplish these different tasks. Unfortunately, each routine was specifically tuned for a

given task. Worse yet, the routines ran off-board on different machines, causing a number

of problems. These problems inspired the design and initial implementation of Gargoyle.

The robot competition tasks were ported to Gargoyle, and showed that this

14

Figure 1.5: Starry Night, and a partially constructed Image Mosaic built from images of
users interacting with the system.

methodology for computer vision was effective. Not only that, but these experiments showed

that the same tasks could be accomplished with much less processing power, by being more

selective about which routines to devote that power to. Using Gargoyle and integrating

it with Chip’s planning system allowed us to take a number of different special purpose

routines that used to be spread across a number of machines, and have them to coexist on

the same machine. In addition, it led to the development of many of the vision routines

that were later used in the Intelligent Classroom.

Image Mosaics

A further use for Gargoyle was an undergraduate student project that was planned and

implemented in a single quarter using Gargoyle. The idea behind the Image Mosaic project

was to have a system that would create a “copy” of another image by taking images from a

camera, scaling them down, and tiling them together to make a mosaic. A fair amount of

work has been done on generating mosaics from libraries of images, for example Finkelstein

and Range [29]. Probably the first person to do this automatically on a computer was

15

Robert Silvers who used his system to create PhotomosaicsTM1

This system’s information needs, while not of the same magnitude as the robot

or the Classroom, are still significant. It needs to know where to place the new image and

when to take the image, which it should only do when something interesting is happening.

The interesting thing that this project showed was that Gargoyle can be used

to quickly implement a robust visual system to accomplish a specific task. In addition, it

can suggest to the designer of the new system more possible solutions for that system. In

this case, the designers did not know how they were going to determine when a person was

standing in front of the Image Mosaic kiosk. Fortunately, a robust person tracking routine

had already been written for a very similar situation in the Classroom. This allowed them

to very easily reuse this “special purpose” routine which had never had this use in mind

when it was initially written.

Finally, the mere fact of having moved the code base to the different platforms,

and putting it to the different tasks, proves something of the thesis in terms of general

purpose use!

1.5 Our Methodology for Computer Vision

Given the work we have done to build the systems required to meet out goals as set out in

1.4 we were able to make a number of generalization to create a methodology for building

systems like ours. These ideas are drawn from our work on a number of different computer

vision systems [37, 39]. This list can be thought of a high level set of instructions for

constructing a general purpose vision system using our ideas on vision.

Our approach to vision allows us a bit more flexibility in designing our system.
1Photomosaic is a registered trademark of Runaway Technology Inc. and Robert Silvers. For more

information on their methods see US Patent number 6,137,498.

16

In order to make use of this flexibility the system must know about the world in which

it exists. By having the system understand something about the task that it is trying to

accomplish and the environment that it is viewing, it can pick from a number of special

purpose vision routines. By exploring this line of reasoning, and experimenting with building

vision systems, we arrived at the following methodology:

• Use task based special purpose vision routines, as they have been proven many times

in the past as viable, and provide a wealth of existing research which can be used to

expand the system.

• Use a reasoning system to decide which special purpose routine to use when, based

on the current goals of the system. That is, connect it to a “real system”, one with

goals which it uses visual information to achieve.

• Explicitly represent all of the constraints on the different vision routines, so that the

system that is using the vision routines can reason about them.

• Break the vision routines up into atomic units which can be reasoned about and

reused.

We will now briefly look at what each of these instructions means, before going

on to look at the goals of the research that led us to these conclusions.

1.5.1 Use Task Based Special Purpose Routines

The first point tells us to use special purpose vision routines that are tuned to the specific

tasks that will be performed. This will provide routines that work for the specific tasks

that we want our system to be able to accomplish. This point is interesting, because it

initially takes us away from the standard notion of general purpose vision. By using special

17

purpose vision, we are committing ourselves to task specific, or purposive, vision. This rule

is essentially the statement that true general purpose computer vision is intractable and

in some sense undesirable, so we are going to sidestep that problem, and concentrate on

writing special purpose routines that we know how to write. Special purpose vision routines

are discussed at length in Chapter 2.

1.5.2 Reason About Which Routine to Use When

The second point tells us that in order for the visual system to be general purpose it must be

embedded in a reasoning system which decided which special purpose routine to use when.

This tells us how to use our special purpose routines in a general way by making sure that

the correct routine is used in the correct situation. We believe that in order to achieve

general purpose vision, it must be embedded in the task and context in which the system

lives. If it cannot look for everything at once, the system must decide what to look for.

Therefore it must have some sorts of information goals. This implies that general purpose

vision cannot happen outside of a specific task based system.

1.5.3 Explicitly Represent the Vision Routines’ Constraints

The next point tells us to explicitly represent all of the constraints that make the special

purpose vision routine work. Recall that special purpose vision routines rely on a number

of constraints in order to be more effective. In many implementations these constraints

are implicit, because the designers have just assumed certain facts to be true. Our general

purpose system must know what those constraints are if it is to pick which routine to run

when. If the system is going to be able to reason about how to process, all of the implicit

constraints in the special purpose routines must be made explicit. Context and its use for

reasoning are crucial and discussed more in Chapter 3. By understanding the context that

18

the different special purpose vision routines use, we can pick routines based not only on the

information that they get, but how they get it as well. If we want our system to be able to

operate in more than one context (and therefore be more “general purpose”) we must be

explicit about the context in which it operates.

1.5.4 Break Up the Vision Routines into Atomic Units

Finally, we should break up the vision routine into atomic units. This provides two major

benefits. First, it is much easier to reuse the vision code for alternate special purpose

routines. This proves critical because in order to create a general purpose system the

system needs a large number of special purpose routines; at least one for each information

task that it must accomplish. Second, it provides a starting point for representing the

constraints on the entire routine. If the constraints on the atomic units are known, then

the researcher has a starting point for representing the constraints for the entire system.

Additionally, this provides the groundwork for future systems to generate special

purpose vision routines on the fly specifically tailored to the current situation. A system

that could reason about hoe to sense in this manner, and generate new special purpose

routines as needed would be truly general purpose.

1.6 Road map to the dissertation

The rest of this dissertation is divided up into three main parts. The first part gets into

the details of how one uses the methodology given in Section 1.5 which themselves are

simply an expansion of the thesis statement. Chapter 2 provides the details on designing

special purpose vision routines so that they are amenable to being utilized in a general

purpose vision system. Chapter 3 talks about how to reason about the different vision

routines. Chapter 2 provides the background on the constraints that are used for reasoning

19

and should be read before Chapter 3. This part gives the theory of the dissertation. If

you are interested in how to implement our brand of general purpose vision, but not our

actual implementations, then read this part. This part is also helpful for understanding our

implementations.

The next part of the dissertation deals with actual implementation, and follows

the time-line that the research followed. They can be read in any order that the reader

desires, depending on the areas of interest. Chapter 4 talks about Chip, which was our

initial implementation of a vision system. It did not use Gargoyle, but was the basis for

many of the ideas in this dissertation. Chapter 5 gives the details of the Gargoyle system.

It is probably helpful to read this chapter if you are interested in any of the implementation

details of our systems. This chapter can also be read alone to learn about the design of

Gargoyle. Chapter 6 gives the details of the vision routines implemented for the Classroom

as well as the control structure used to control Gargoyle. Finally, Chapter 7 describes the

Image Mosaic student project.

The last part finishes up with a look at related work in Chapter 8, and some

closing thoughts in Chapter 9.

Chapter 2

Special Purpose Vision Routines

Section 1.3 introduced our methodology for building a general purpose computer vision

system. To recap: use special purpose vision routines; decide which routine to use based on

the current constraints; explicitly represent the constraints of the special purpose routines

so they can be reasoned about; and break the routine up into atomic units. The first rule,

use special purpose vision routines, dictates that these heavily constrained routines are the

bulk of our vision system. The goal is to combine these special purpose vision routines

to obtain general purpose vision. Given this, it is crucial to understand how these special

purpose routines work.

There are a number of specific advantages to special purpose routines which

this research leverages in order to achieve its results. For example, understanding why

a specific vision routine works in a given situation allows the system to decide when it

should be used. If the current routine needs to have a stable background, then the system

must pick a different routine when the camera is moving. In addition there are a number

of disadvantages to special purpose vision routines that need to be understood in order to

prevent the complete system from becoming brittle. The example here is the opposite of the

20

21

previous example—besides knowing when a vision routine works, the system must also know

when the vision routine breaks. This allows it to know when not to use a particular routine.

Chapter 1 gave a brief overview of why special purpose vision routines are effective, but in

order to understand how to integrate them into a cohesive system, a deeper understanding

of both why they work, and why they fail, is necessary.

This chapter examines implementations of special purpose vision and examines

the reasons why those techniques are effective. The key is to understand what it is about

the targeted nature of the special purpose routines that make them effective; understanding

the specifics of the particular algorithms is not necessary. By identifying ways of thinking

about special purpose vision routines in general, it becomes easier to design new ones, and

to understand when and how to use existing ones. In order to build a system that reasons

about how it will sense, you first need to understand why the effective sensing techniques

work.

To understand why special purpose routines are necessary, it is helpful to reexamine

why general purpose vision is hard. In order to achieve general purpose vision, the system

would need to be able to generate any information that might be needed in any possible

circumstance. To pick a concrete example, the Intelligent Classroom needs to be able to

know where the lecturer is at any given moment, with different possible lighting conditions.

There are also times when it needs to be able to read what the lecturer has written on the

board. To expect a single algorithm to be able to accomplish all of these tasks, and any

others that we may decide that we need, is extreme. Even in the case of simply tracking

the lecturer, writing a single tracking algorithm that can handle a large number of different

lighting conditions, or other environmental changes, is quite difficult, and in fact can lead

to fragmentation in the routine code as more and more complexity is added.

In order to get around these difficulties computer vision researchers have built

22

vision routines which only work in the specific conditions for which they were built. The

next section looks at the advantages of these techniques.

2.1 Advantages of Special Purpose Vision Routines

One could imagine building a vision system whose sole purpose is to extract as much

information out of a scene as possible [67]. This shotgun approach would ignore the fact

that vision systems generally serve a specific purpose. That is to say, the information that

is being extracted from a scene is going to be used for something, and only a small portion

of that information may be used, or worse, an entirely new piece of information may be

needed. Along similar lines, one could imagine a vision system whose sole purpose is to

improve the extraction of a particular object [93]. This suffers from the same problem of

not realizing that the information that is being extracted is going to be used for a purpose.

Most current vision systems that provide information for use, either for reactive systems in

tight control loops or for human consumption, are very much special purpose vision systems.

Because this describes almost all vision systems currently being built, it is clear the these

systems are effective to some extent. The question becomes why are they effective. The

answer is that they constrain themselves to the problem that they are trying to solve, and

in some cases constrain the problem to make it easier to solve.

Rather than trying to make more and more general systems, researchers have

found that by constraining what the vision routine is able to do, they are able to get much

more accurate results much faster. By looking at the problem, and identifying ways in

which they can define the task more precisely, designing systems to solve that task becomes

much easier. More to the point, there are many problems that cannot be solved in a

general manner, so the researchers are forced to examine the nature of their problem to

find just what they are looking for. Take for example a robot which picks up trash. When

23

looking for garbage to pick up, rather than try to look for garbage anywhere, the robot

can look for small objects on the floor, which are much easier to define, and depending on

the environment, are probably garbage. We call constraints like this, that is constraints

on information the routine can extract from the scene, task constraints. Since the task

that the system is trying to accomplish requires specific information, it can use routines

that specifically extract that information. Task constraints allow the researcher to limit the

capabilities of the routine, and therefore greatly simplify the problem. The small object

finder mentioned above will not be useful for finding garbage everywhere in the scene, but

if our robot can only pick up garbage on the floor, then the routine is completely adequate

to the task. Additionally, by limiting the scope of the routine to just finding small objects

on the floor we are able to write a routine which is much more effective and utilizes fewer

computational resources. In general, task constraints allow the vision routine to limit the

amount of information it needs to extract from the scene.

In addition to constraining the vision routine to only extract information needed

by the system for the current task, the vision routine can be simplified further by making

assumptions about the environment. In the trash collecting example above, the assumption

is made that all small objects on the floor are trash. This environmental constraint must

hold for the information returned by that vision routine to be accurate. If there are small

objects on the floor that are not trash the routine will fail because it will assume they are

all trash. The advantage that is gained by relying on the environmental constraints is that

the vision routines are much simpler, both to write and in computational complexity. It is

critical however to make sure that the vision routines are only used when their constraints

hold.

In addition to simply taking advantage of existing environmental constraints,

researchers often place constraints on the world in which they are working. One possible

trash collecting example would be to color the trash a specific color so that simple color

24

tracking routines could be used to locate the trash. To give an example from the Intelligent

Classroom, when watching a person give a lecture in the front of a classroom, the vision

routine designer could decide to make sure that the background is unchanging. This requires

that there is only one person in the scene, allowing a much simpler background subtraction

based tracking routine to be used. In general environmental constraints allow the vision

routine to be simpler by making assumptions about what it expects to see in the world.

By constraining the systems in these ways they become more effective and useful.

The fact that they are being used to accomplish a task is critical to the design of the

routines. Knowing what information is needed from the routines immediately gives the

task constraints that can be used. Understanding the environment in which the routine is

going to be used provides a starting point for deciding how to simplify the problem.

Effective systems in the past have succeeded by using strong constraints placed

on the world by the tasks and the environments in which they operated. These constraints

are either forced to be true by the nature of the task, or assumed to be true about the

environment.

All special purpose vision routines use constraints that generally fall into one of

these two categories: task constraints and environmental constraints. Task constraints are

determined by what information the system needs to get from the world. Environmental

constraints are determined by the current state of the world.

2.1.1 Task Constraints

Task constraints are inherent to the nature of the task that the system is trying to accomplish.

In order to accomplish certain tasks the system will need certain things to be true about the

information that it is receiving from its sensors. This can vary from getting a specific piece

of information grounded to internal symbols, to needing directional information for tight

25

World

Environmental
Constraints

Reasoning
System

Provides:
Task

Constraints

Vision
Routines

Reasons about:
Environmental

Constraints

Figure 2.1: The constraints that a vision routine relies on come from the world and the
task the system is accomplishing.

control loops, to saving specific images for later use by a human operator. By constraining

the vision system to only get the necessary information when it is needed, the vision routine

designers are able to make very strong assumptions when building their systems.

There are a number of ways that task constraints allow special purpose vision

routines to be effective. First and foremost, they allow the routines to be simple. By keeping

the routine simple, the researcher is more likely to be able to understand the assumptions

that he is making about the world. In addition he is also more likely to be able to understand

the consequences of any changes he may make to the routine. As computer vision routines

become more complex, there tends to be loss of modularity. People have fought against

this for years [87] but even if your system makes only the most generic assumptions there

will be tasks for which those assumptions do not hold. Keeping the routines small and

generating very specific information needed by the system, allows different tasks to be kept

completely separate from each other and it becomes easier for the researcher to determine

26

when a specific routine is failing, and to give a starting point for investigating why it did

not work.

Examining these simple routines it becomes clear that simpler routines, while

providing less information, will be more likely to provide that information accurately, and

in a timely manner. These ideas came initially from robotics research [52, 35, 63] where

there is a strong real time constraint. For example, the robot needs to know what is in front

of it, so that it will not run into anything. This is a strong task constraint which actually

demands simplification of the vision routine. If the routine becomes too complicated, it

will not be able to finish its calculations in time and the robot will run into something and

damage valuable lab equipment. If the routine wastes time calculating extraneous, that will

delay the response time.

The solution to the problem of calculating extraneous information is the final,

and almost definitional advantage of task constraints. In order to accomplish a task, the

system only needs specific information. We already know that you cannot get all the

information all the time, but drowning the reasoning system with excess information is not

only a waste of computational resources, but it is placing addition reasoning demands on

the system trying to accomplish the task. This has been used to simplify the process of

figuring out which part of the scene is represented by which part of the system’s model of

the world, the symbol grounding problem, by allowing the reasoning system to deal with

one object at a time [21, 22, 26]. Rather than having to sort through all of the information

coming from the vision system to determine which data corresponds to which symbol, the

system is able to reason about only the information that it is currently interacting with.

Agree and Chapman first used this activity directed representation in their work on Pengi

[2]. Rather than represent everything in the scene, they only represent the objects with

which the system is interacting. Task constraints allow the vision system to look for only the

information that it needs. In the past this has been called active, task based, or purposive

27

vision.

Thus, task constraints tell the vision routine what the system needs to know

and when it need to know it. This is only half of the problem though. Environmental

constraints tell the vision routine what assumptions it can make to extract the required

information from the world.

2.1.2 Environmental Constraints

Once the task constraints have been defined, the job of the vision routine is made much

easier. However, the vision routine can still be simplified further, by looking at the environment

in which it will be operating. For example, when the Classroom is tracking a lecturer, and

it is known that the background is unchanging, a simple background subtraction tracking

routine can be used. This constraint on the environment, that the background not be

moving, allows a simple algorithm to provide fast and accurate information.

Environmental constraints come into being in two different, but related ways.

The obvious way is that the constraint is fundamental to the environment in a given state,

and can therefore be assumed to hold. In the Classroom example, the wall behind the

lecturer will not change, and since the camera is stable, it is known that the background is

stable, allowing us to use background subtraction. Another way of obtaining environmental

constraints, is to impose the constraint on the environment. For example, if a robot has

the task of picking up trash off the floor, the researcher can constrain all of the trash to be

a specific color, allowing simple color routines to be used instead of more complex shape

based methods [50].

These two methods of obtaining environmental constraints, inherent in the

environment and imposing them on the environment, are related in a crucial way. Both of

them are assumed to be true. Even if a constraint is inherent in the environment at a given

28

moment, it could change and cause that constraint fail at another time. It is critical to

understand what assumptions are being made, to know when to use a specific routine. We

talk about this more in Section 2.2.

In some ways, computer vision can be thought of as a method of figuring out

the current state of the world. Therefore if we are able to make assumptions about part of

the environment, extracting the other parts can be made easier. By utilizing more of these

constraints the vision routines become faster and more accurate, and often much simpler

to create. So once we are given this idea, how does one map from a set of constraints to a

new vision routine?

There are many possible ways in which the environment can affect the vision

processing. In the background subtraction example given above, the assumption of a stable

background actually determines how the vision routine will be designed. In other cases the

environment dictates how the vision routines are parameterized. For example, the robotic

trash collector example requires clean results from an edge detector. If the results of the

edge detector are too noisy, then its parameters will need to be changed, or the trash finder

will fail.

This means that in addition to informing the design of vision routines, environmental

constraints also affect the continued operation of those routines. If we are able to monitor

these constraints, in addition to picking vision routines to use, we can modify them on the

fly. We examine this more in Chapter 3. Next we are going to look at how these constraints

fit into existing systems that use special purpose vision routines.

2.1.3 Successful Systems

Now that we have an idea of what makes special purpose vision routines work, it is helpful

to examine some successful systems in terms of how they utilize task and environmental

29

constraints to make the vision task easier.

Polly: Small Task Needs Use Simple Routines and Constraints

One early successful use for special purpose vision was obstacle avoidance on mobile robot

platforms. For this type of task real time performance for the vision system is the defining

constraint. If the location of an obstacle is not reported in a timely manner the robot will

not be able to avoid it. The first use of computer vision for this task was Ian Horswill’s

Polly system [52]. Polly’s obstacle avoidance vision routine was used in a tight control loop

directly with the robot’s actuators. This meant that the vision system would only return

exactly the information that was needed to determine which direction to go. In order to

accomplish this, the vision routine would look up from the “bottom” edge of the image for

the first edge that it intersects. It then assumed that this edge was an obstacle. By dividing

the space in front of the robot into a few sections, this vision routine provided information

about which direction was blocked and which was free. This information, along with the

goal location, allowed the robot to decide where to go to get where it was going without

hitting anything.

The task constraints are what allow this routine to be so simple. By specifying

the information need to be only where an object is, the problem of constructing this vision

routine becomes much simpler. In Polly’s implementation, the task constraints even provide

the metric that the vision routine must return in order to drive the steering mechanism.

This is an ideal example of figuring out exactly what the problem is that needs to be solved

to take as much work away from the vision system as possible.

Given a simple vision routine like this, understanding the possible environmental

constraints that it relies on becomes much easier. For Polly there are two things which must

be true about the environment for the vision routine to return the correct results. First,

30

the areas where the robot is free to drive must not have any visually sharp edges. This

means that the floor must not be textured or have lines drawn on it. Second, all of the

obstacles in the scene must provide edges that the edge detector can pick up. If this is not

true, the robot will obviously not be able to see the obstacles to avoid them. These are

nice constraints for the researcher, because it is easy to check whether or not they are true.

They also show that it can be easy to think about when simple routines are appropriate

to use. Of course sometimes the information that is needed by the system will be more

complex than this, and not amenable to such drastic simplification.

Pfinder: Larger Information Needs Give More Complex Routine and Constraints

Some problems require more information than can be given by quite so simple a vision

system. The Pfinder system [90, 91] developed at MIT’s Media Lab was just such a system.

Pfinder was the vision system that provided the information for a number of interactive

projects at the Media Lab, including Alive. The Alive system provided a full body

interactive experience. These capabilities required precise positioning information on the

user of the system. In order to achieve these results the Pfinder system used some complex,

yet highly targeted, vision routines. The two main techniques it used were modeling the

person, and modeling the scene. Modeling the scene allowed Pfinder to know which parts

of the image did not belong to a person. It remembered what the image looked like without

the user in the image, thus allowing it to discard those parts of the image when looking for

the person. Modeling the person is interesting because, given the task of finding where the

person is in the scene, they were able to make a number of assumptions. They defined a

person as a number of “blobs” with different color and spatial characteristics.

Pfinder made heavy use of task constraints. Because they were looking for a

person, they knew a lot about the morphology of what they were looking for. They were

31

able to divide the person up into a number of blobs—two leg blobs, two arm blobs, a torso

blob, and a head blob. These blobs had color attributes which were initialized depending on

the user. In addition since the blobs were known to be specific parts of the human shaped

user, they were constrained to be within a range of specific shapes and locations. When

combined with the color information the system could give very accurate results for people

in the scene. It is clear that with this more complex vision routine there are many more

constraints, and figuring out what the environmental constraints are is going to be much

trickier.

The environmental constraints imposed for Pfinder are considerably more numerous

than for the Polly routine, because of the increased complexity of the vision routine. One

constraint on the Pfinder system is that if it is using the model of the scene, the scene

cannot change rapidly. Since it is relying on a relatively stable scene to find the person,

its ability to successfully apply the person model to the scene will degrade if the scene

changes rapidly where the person is not standing. This obviously leads to a large number

of other environmental constraints; for example, the camera cannot move. If the camera

moves, then the scene will change, and a new model will have to be made. There are many

other constraints that need to hold to allow this complex routine to work so well. For

example, once the color histograms for the blobs are learned, they cannot change—that is,

the user cannot take off his coat. The key is that as special purpose routines become more

complex, they rely on more assumptions about the world. When those assumptions hold,

they produce the required information.

2.1.4 Special Purpose Routines Work

There are many more examples of successful systems that utilize special purpose computer

vision routines, some of which are discussed in Chapter 8. It becomes clear that strong

32

constraints about the environment are crucial to effective vision routines. The most effective

systems strongly tie themselves to their environment. Most special purpose vision routines

utilize many environmental constraints. Unfortunately for our purposes, these environmental

constraints are often used implicitly. The more reliance on constraints assumed about the

environment a system has, the more careful the researcher need so be in knowing when to

apply that routine. Heavy reliance on constraints makes these systems robust for exactly

the situations that they were designed for, but they can become brittle, or useless, as the

environment or task changes.

2.2 Problems with Special Purpose Routines

While heavy reliance on constraints makes special purpose vision, and therefore any computer

vision, possible today, it comes with a cost. Oftentimes in the effort to obtain specific

information out of a vision routine, it will become over-constrained to the specific problem.

One cause for this is that the assumptions that the vision routine relies on about the

constraints are implicit. When this happens those vision routines lose their robustness.

This is because if a routine designer has missed a constraint that the routine relies on, then

he does not know to stop using the routine when that constraint fails.

It is important to define what it means to be robust when we are operating in

a world where all the vision routines that are effective rely on strong constraints. Robust

can mean that it operates in a number of different conditions, or fails gracefully. A vision

routine is often described as robust to specific changes in the environment. This is fine, but

what if one of the constraints that is assumed to be true fails? In this case it would be nice

to have the vision routine fail gracefully, that is to acknowledge that it is breaking down

rather than simply respond with incorrect information.

Unfortunately none of these things can happen if the constraints that the vision

33

routines rely upon are implicit. A constraint becomes implicit when the designer has over

fit a solution, a vision routine, to a given problem. This generally happens when a routine

is tested on many positive examples, but few negative examples which cause the routine to

fail. This is a common problem in machine learning. Making sure that this does not happen

is essentially the work of debugging the vision routine by trying it out in as many of the

potential situations it may encounter as possible. By iteratively debugging the routine like

this, it becomes possible to miss a critical constraint that your routine assumes is true, and

then when tried in a new environment the system will fail.

A robust routine is then one where the constraints are well understood, and

is only used when the constraints hold. Thus, a vision routine can still be robust even

if the possible situations that it operates in are limited, as long as its limits are well

understood. So in addition to giving the right information—that is fulfilling the needs of

the task constraint—the vision routine must also be able to operate in the specific situation

in which it is being used.

This may sound redundant, but special purpose vision routines rely on many

different constraints, and oftentimes these constraints are poorly understood. There are

three major issues that come to the fore because of heavy reliance on constraints: the

possibility of constraint failure, concerns about speed, and concerns about reusability of

the vision routines. These problems cause researchers grief when trying to use them in a

general purpose system.

2.2.1 Constraint Failure

Constraint failure is the most obvious problem with special purpose vision routines. If

one of the constraints that is assumed to hold no longer holds, the vision routine will

fail, sometimes dramatically. For example, in the background subtraction tracking vision

34

routine, the main constraint is that the background must remain fairly stable. If the camera

moves for some reason, the background is no longer stable, and the tracking routine will

fail miserably.

Understanding the constraints that the vision routine is relying upon is crucial

for our general purpose vision system. Few special purpose vision routines have clean

failure modes; if the constraints on which they rely no longer hold true, the routines simply

return inaccurate results. Depending on the magnitude of the constraint failure, it might

be difficult to tell that the vision routine is failing.

The main point here is that constraint failure affects all special purpose vision

routines. Knowing when constraint failure occurs is critical if our vision routines are to be

robust. Beyond not having clean failure modes, some vision routines do not even know when

they fail. This does not mean that these algorithms are useless, they just need to be used

in the correct circumstances. How that decision is made is left for the next chapter—what

is important here is that if the constraints are not understood, no decision can be made

about when they no longer hold.

Everyone expects vision routines to be robust. The fact is that vision routines

are designed with specific constraints in mind. The trick it to keep these constraints in mind,

keep them explicit, and make sure that the routine is not used when those constraints do

not hold.

One constraint that deserves a little extra space is the need to have information

at a specific time.

2.2.2 Speed Concerns

If a system needs specific information in a certain amount of time, then the vision routine

has a constraint on it of how long it can take. Given computational constraints, this means

35

that decisions will have to be made about which special purpose vision routines are going

to be run. Basically, a system cannot have all the information at the same time.

We were talking about making decisions about which special purpose vision

routines to run, and only running them when they hold, but we also need to be careful to

not run too many special purpose vision routines at any given moment. How many can

run at once will depend on the complexity of the vision routine needed depending on the

current environmental conditions, and on what type of constraints we can rely.

For example, in the Classroom, if the camera tracking routine is active, it needs

real time information about where the lecturer is, so it can point the camera. If it decides

that it needs to read something off the board, a processor intensive task, a decision needs

to be made, since it cannot accomplish both of those tasks at the same time.

Another example is that of a robot picking up trash. If it needs to look for

a trash can, it had better put itself into a safe state (stopped) before transferring vision

computing power from obstacle avoidance and to finding the trash can.

These thoughts will get you a robust system for one task, or set of tasks, but a

truly general system has one more consideration.

2.2.3 Reuse

With vision routines that have been heavily constrained for specific tasks and do not need

to run in different situations, thoughts of reuse can easily fall to the wayside. We have

already shown many instances where effective vision comes from constraining the routine

in different ways. Re-engineering these routines to be effective under a different set of

constraints can be very difficult. This is not a problem when solving specific tasks, but

when designing a general purpose system the ability to reuse vision routines with relative

ease becomes critical.

36

A general purpose vision system should be relatively easy to extend to solve new

problems, and operate in new situations. We have already decided that our general purpose

system will not be able to operate in any condition, only the ones that it knows how to

operate in, and know when its constraints do not hold, but it should be able to be extended

to new tasks and environments in a straightforward manner. We really want to be able to

take the code that we have for one problem and apply it to another problem, but heavily

constrained vision routines make this task much more difficult.

2.3 Moving On

So it is clear that in order to accomplish vision tasks, it is necessary to use special purpose

vision routines. It is also clear that special purpose vision routines do not lend themselves to

the general case by their very nature. How can we use this information to gain the benefits

of cheap vision techniques, while avoiding the pitfalls of over-constraining the problem?

Chapter 3 examines our solution to this question.

Chapter 3

Reasoning About Computer Vision

Chapter 2 outlined a number of advantages and disadvantages of using special purpose

vision. It was this examination of special purpose vision routines that led to our current

thoughts on how to build a more general purpose vision system. This chapter presents our

ideas on what is required to build a general purpose vision system. We have seen many

advantages of special purpose vision routines, however they have a number of problems as

well. This chapter looks at our ideas on how to overcome these problems by combining

multiple special purpose vision routines into a more general purpose system.

3.1 Our Methodology for Building a Vision System

We begin by examining in a bit more detail the methodology that we gave in the Section 1.3:

use special purpose vision routines, pick the right one for the right conditions, explicitly

represent all of the constraints, and break the vision routines up into atomic units.

37

38

3.1.1 Use Special Purpose Vision Routines

The first and most important conclusion we came to was that in order to have effective

computer vision, we were going to need to use special purpose vision routines. As we have

said, it is impossible to write one big vision routine that will obtain all of the potentially

needed information, so the information gathering task must be broken down into manageable

chunks. Vision research has shown that if computer vision is to work it must be special

purpose vision.

Special purpose routines are easier to write, and understand. In addition they

allow the researcher to understand when it will work. In order to solve its tasks, the system

must be able to pick a special purpose routine appropriate for that task. In order to facilitate

writing multiple vision routines, we built a vision subsystem, Gargoyle, which is described

fully in Chapter 5.

By using special purpose vision routines we get the advantages of using task

and environmental constraints, which allows the task to be possible, but we must be able

to pick which routine to run when to overcome the problems of special purpose routines

mentioned in Section 2.2.

3.1.2 Reason About Vision

In order to be more general purpose we use a library of special purpose routines rather than

a single one. In our systems, Gargoyle provides this library. Different routines are used for

specific tasks, and shut down when not needed. In order to know which routines to run

when and when to stop running them, it is critical to have a reasoning system to make these

decisions about the vision routines. Figure 3.1 shows a representation of a reasoning system

selecting a special purpose routine from a library of routines. Given the disadvantages

of special purpose vision routines, it is clear that if we want to create a general purpose

39

Constraint A

Constraint B

Constraint C

Constraint D

Vision Routine A

Vision Routine C

Vision Routine B

Vision Routine
Library

Possible Constraints

Reasoning
 System

Memory

World

Constraint C

Sensors

Constraint D

Mapping of Vision Routines to Constraints

Figure 3.1: A diagram of a complete vision system built using our methodology.

system from special purpose routines, it is necessary to reason to decide which routines to

run when.

This comes from the observation that the only effective vision routines are

special purpose routines, and in order to have general purpose vision in a world where

only special purpose routines work, the system needs to reason about how you sense. The

system needs to know what to look for and how to look for it. This helps deal with the

problem of constraint failure, both task and environmental. The system keeps track of the

current constraint that hold either from memory, or directly from the world via sensors,

as represented in Figure 3.1. Additionally, by designing routines that fit the specific tasks,

speed concerns are taken into account.

Vision can become expensive if we try to do everything at once, but we do not

need everything at once, we only need what our task calls for. Therefore instead of using

everything in our arsenal of vision routines, the controlling system decides to only get the

40

information that it needs for its task by picking the appropriate special purpose vision

routine. Note that the act of sensing itself has become a task with an information goal that

can be reasoned about.

What form this reasoning system takes depends on the tasks that the designer

is trying to solve with his system. For example, if the system is very complex with a wide

range of information needs and internal goals one could imagine a top down system. This

could take input from the vision subsystem and then reason about what to do next using

traditional planning methodology. On the other hand, consider a robot which needs to get

around the room, and has a small set of vision routines which control its movement directly.

Deciding which routine to use in this case needs to be much more reactive. You cannot sit

and think too hard about what you are going to do next when heading towards a wall. We

use the Classroom’s planning and execution system to reason about which routines Gargoyle

should run. The Classroom implementation is described in Chapter 6, however that is not

the only possible implementation of a control system for Gargoyle. Gargoyle was designed

for a robotic environment and used as part of a class project, described in Chapters 4 and

7 respectively.

In order to support all this reasoning, the vision routine designer needs to be

explicit about the constraints on which the routine relies.

3.1.3 Represent vision Routine Constraints Explicitly

From Section 2.2, the primary problem with special purpose vision routines is that of

constraint failure. When utilizing special purpose routines we must be careful to make

sure that the routine is only being used in the correct situations. Since the general purpose

vision system that the we are designing is going to serve a higher level system, we have a big

advantage in making sure that it is not being used inappropriately. That is, our reasoning

41

system knows something about the world and is in a position to make the decisions about

which routine to run when. In order to be able to do this, the controlling system needs to

know about the constraints that the special purpose routines rely on. Those constraints

must be fed to the system explicitly.

This means that when the researcher is designing a new special purpose vision

routine for the system to use, he must first understand all of the assumptions that the

routine is making. He must then encode those constraints in a way that the system that

will be using these routines can understand. Figure 3.1 shows a number of vision routines

mapped to the constraints on which they rely. Understanding how to use constraints is

examined more in Section 3.2.1.

Once the system understands about the constraints, it must be able to monitor

them. Our special purpose routines need to either know when they fail or have a monitoring

system that knows when they fail so that the controlling system can somehow learn that

one of the constraints has failed. Figure 3.1 shows a reasoning system which finds out which

constraints hold from its own internal memory, and its sensory data from the outside world.

The system then switches to a more appropriate routine. The remaining sections of this

chapter look at the problems of representing the constraints and reasoning about them.

The three “rules” we just looked at deal with some of the problems of special

purpose routines, constraint failure and speed issues, and provide a way to get the constraint

information that the controlling system needs; however, the problem of reuse still remains.

3.1.4 Break Up the Routine

Part of the reuse problem is solved by being explicit about what the constraints on the

vision routine are. This allows the researcher to know when a routine can be safely reused.

It would be nice however, to be able to reuse code at a lower level than that. We find

42

Constraint A

Constraint B

Constraint C

Constraint D

Vision Routine
Library

Possible Constraints

Mapping of Components to Constraints

Component
Library

Component A

Component D

Component C

Component B

Vision Routine A

A B C

Vision Routine B

C D

Vision Routine C

B D

Figure 3.2: A diagram showing a library of vision routine components being used to make
a number of routines.

that by breaking the vision routine up into “atomic units” we are able to very easily reuse

components of vision routines, as shown in Figure 3.2.

Breaking up the special purpose routines into atomic units allows us to reuse

pieces of vision code. In addition, breaking up the routine into atomic units can be aid the

vision researcher in being explicit about the constraints. If constraints on individual units

are known then it is much easier to recognize when a different unit can be helpful in a new

situation. Figure 3.2 follows this notion through and lines each routine component up with

the constraints that that particular part relies on. The complete vision routine then relies

on the constraints that the parts rely on. Sometimes the interaction of the parts of the

routines cause new constraints to be required.

At first glance, breaking up the vision routines appears to be more about good

coding practice than building general purpose vision systems, but it it is critical for two

reasons. First, it makes it possible to more easily extend the library of available vision

43

routines, and for a vision system based on special purpose routines to be general, it must

be extensible. This fact was the inspiration for the modular design of Gargoyle described in

Chapter 5. The second reason, however, is more fundamental. If the pieces of the routines

are designed well enough, the reasoning system which picks which routine to run could also

decide how to build the routine. If the constraints on each unit are well understood, it would

be possible to allow the system to come up with its own special purpose routines tailored to

a new task. None of our current implementations do this, but it is a research direction that

we would like to follow in the future. Gargoyle actually supports this behavior through its

module system described in Section 5.2.4.

The methodology we just looked at makes it clear that the step of explicitly

representing the constraints relied on by the vision routines is crucial. The following section

looks at that issue and talk about how to use constraints to allow the required reasoning to

happen.

3.2 Understanding Constraints

The previous section describes how we came to our decision about how to implement our

vision routines: use special purpose vision routines, pick the most appropriate one for

the given situation, explicitly represent the constraints on the routines, and break up the

routines. This section examines one crucial feature of our method of solving vision problems,

that of explicitly representing and then using constraints. This is critical to the success of

our systems, and is seldom considered when programming vision routines, and thus deserves

a more detailed examination.

In order for a vision system to be more general purpose it must be able to sense

any of the required information under the required conditions. Deciding which routines

to run when comes down to figuring out which constraints currently hold and picking the

44

World

Vision
Framework

Control

Information

Generic
AgentReasoner

Effectors
Motors

Figure 3.3: The component breakdown for a generic system which interacts with the world
using a vision framework for sensing data.

routine that satisfies those constraints. This is because the constraints encode the relevant

information about the routines. This means that it is crucial that those constraints are

encoded explicitly for the controlling system.

3.2.1 Acquiring Constraints

Figure 3.1 shows how a reasoning system can be used to decide which vision routine to

use when from a library of routines. Figure 3.3 shows how an agent designed with that in

mind. The two parts that concern our use of vision are the vision framework which can be

modified at run time, and the reasoning system which chooses which routine to run. The

framework needs to be able to change which special purpose routine is running, while it is

still operating in order to allow the reasoning system to change the routines when it deems

it necessary. In order for the reasoning system to be able to control the vision system, it

will have to somehow understand what the vision system provides for it to manipulate. At

45

a basic level this just means letting the reasoning system know which vision routines are

available to it.

It immediately becomes clear, however, that simply knowing what is available is

not enough. The reasoning system has to have some way of deciding when it is appropriate

to use the different routines. This means that the reasoning system will need to know the

constraints of the different vision routines, that is the conditions under which the different

routines should be used. In order for the reasoning system to use these constraints, they

will have to be explicitly represented somehow in the reasoning system.

The exact way that the constraints are represented depends on the reasoning

system being used, however the need to have them represented remains. This being the

case, the vision routine designer has a new responsibility, which is to clearly understand

and explain the constraints that the vision routine uses. Others have noted the need to

understand the constraints on the vision routines and only use them when appropriate

[51, 89]. It is the additional requirement of articulating those constraints that is new.

Once the constraints are known, they can be integrated into the reasoning

system. The specifics of how they are implemented are entirely dependent on the reasoning

system that is being used. If a traditional planner is being used, they might be propositions

that the planner can reason about. If, on the other hand, some sort of reactive behavioral

system is being used, the encoding will need to be different. The behaviors will include

the vision routines that are appropriate to that behavior. Therefore, the duty of making

sure that the appropriate routine is run will fall to the behavior arbitration scheme. This

is not unnatural as the behaviors themselves have their own constraints about when they

should be run, so adding the vision routine’s constraints is reasonable. It does however put

limitations on the types of constraints that can be used. In a system that interacts with

the world, the reasoning must be able to run very quickly so as to not interfere with the

46

interaction. This means that the reasoning about the constraint, that is checking whether

or not they hold cannot be something that takes a long time. One consequence of this is

that not all of the constraints of the vision routines will be implemented in the complete

system. If computing the validity of a given constraint is so computationally expensive or

resource use intensive that it limits the ability of the system to accomplished its task, then

that constraint will need to be assumed.

Explicitly understanding the constraints is still necessary as they need to hold

for the system to run successfully. The constraints which are not implemented in the

reasoning system are simply not going to be used for decided which routine is used, they

are still being used, just not for reasoning. The key is to remember why we are building this

system. This system will be solving a specific problem. If reasoning about the constraints

gets in the way of solving the problem then we have failed. This implies that only the

constraints specifically needed to provide appropriate vision for the system that is using

it should be encoded into the reasoning system. Before the constraints can be encoded,

however, they must be known. This is what we mean when we say not to let the constraints

on the special purpose routine be implicit. If all of the constraints are known explicitly,

then the appropriate ones can be encoded into the system that will use that routine. If

some constraints are implicit, they will not be encoded, and may affect the performance of

the system. This can be summarized as three rules:

• List all constraints.

• Pick ones needed for picking routines for your problem.

• Implement only required constraints.

It is important to note that the constraints that need to be encoded into the

reasoning system may change over time. As the vision routines are used in more and

47

different environments, implicit constraints that were missed when the routine was written

for a specific environment may become apparent. The reason that a routine does not perform

as expected when used in new environments could be that there was an error in the vision

routine, but it is also possible that the designer simply missed another constraint. This

“new” constraint on the system, can be incorporated with the known constraints, and the

reliability of the whole system will improve. Additionally, this is another constraint that is

being made explicit for the special purpose routine, providing more information about the

routine for the next time it is integrated with a new system.

They key is to keep the constraints explicit so the system designer can decide

which ones need to be encoded for the system to be able to decide about which special

purpose routine to use when. We will now look at what types of constraints there are, to

give an idea of what to look for when describing the constraints on the special purpose

vision routine. We also examine how the different types of constraints are used.

3.3 Types of Constraints

In order to know how to represent and use the constraints it helps to categorize the types

of constraints that you might need to work with. We have identified two main classes of

constraints: task constraints and environmental constraints. These classes of constraints

were introduced in Chapter 2. This section examines how to implement these constraints

and how to utilize them once they are in place.

3.3.1 Task Constraints

Task constraints are fairly easy to understand. If you are picking a tool to accomplish a

job, you need to pick the right tool for the job. Task constraints tell the reasoning system

which tool to pick. They tell what information the special purpose routine is designed to

48

provide. That is to say, the routine is constrained to only give the information specified by

the task for which it was designed.

Encoding this information for use by the reasoning system is straightforward.

Given the system’s current task it will need to get some information out of the world. This

is the system’s information goal. The system can compare the information that it needs

with the information that the different routines provide. It then picks the routine that

provides the required information. This means that representing the task constraints for

the special purpose routines is a simple matter of providing the reasoning system with a

correspondence between the special purpose vision routines and its information goals. The

reasoning system has its information goals based on what it needs to know in order to

accomplish what its current task. This goal task may come from a high level planning

system, or user input.

To take an example from the Classroom, one of the tasks that it does is read an

icon that the speaker wrote on the board. If the speaker draws an icon on the board, the

Classroom needs to know what that icon is in order to use it. In order to read the icon it

needs to know where the icon is. So the Classroom now has two ordered information goals.

First, it uses a routine that tracks the speaker’s hands. This will tell the Classroom where

the icon is, as well as letting the Classroom know when the task of drawing the icon on

the board is finished. Once it knows where the icon was drawn and the speaker has moved

away from the board, it can zoom in on the icon and run a different routine for identifying

icons.

Beyond just saying what information is needed, the task that the system is

performing might constrain how long it can take to get that information. The time constraint

is also a task constraint. This means that in addition to stating which routine matches with

which information goals, the representation must also include a notion of how quickly the

49

World

RAPS

Vision
Routine

Vision
Routine

Skill
System

Vision
Routine

Vision
Routine

Classroom Reasoning
 System

Gargoyle

The Intelligent ClassroomCHIP

Motor
Skills

Motor
Skills

Figure 3.4: Chip merely selected routines to use, whereas the Classroom updates how those
routines run.

information will be returned, if that is required by the task. This way when the reasoning

system is deciding which routine to run, it will only pick the one that gives the correct

information in the correct amount of time.

Implementation Examples

The icon recognition example from above contains a great deal of deliberation about when

to run the routine. As currently implemented in our systems, this decision making process

actually happens at a much lower level. In our robotic experiments, each vision routine

was tied to a specific behavior, or set of skills. In this case the deliberation, which is

done by the RAP system, is merely picking which behavior to run. This means that the

task constraints are encoded by having the RAP system activate a particular routine for a

specific behavior. Figure 3.4 shows that each vision routine is tied with motor skills in a

specific task. Chapter 4 gives a complete description of this system.

50

The Classroom’s architecture, on the other hand, provides a richer method of

deliberating about the vision routines. The Classroom is able to affect the special purpose

vision routines with more precision than simply associating a single routine with a single

behavior, or to use the Classroom’s terminology, process. Figure 3.4 shows the classroom

controlling vision routines in Gargoyle directly, using information passed to it by the

routines. It still has the ability to link motor skills to vision routines, but it has more

leeway in matching them. This implies that the task constraints need to be represented

in a more complex manner. The Classroom does this by treating the vision routines as

another skill. Sets of skills make up a single process, and are chosen depending on the

task. This means that a different set of skills could make up the same, or more precisely,

similar process. The skills have a context which determine which skill set to run for a given

process. This allows the Classroom to then pick the appropriate set of skills based on the

propositions that are in its memory. Chapter 6 describes the reasoning system that the

Classroom employs as well as the skill system in more detail.

Complications With Task Constraints

The examples we just looked at are fairly straightforward, however there are a number of

complications with task constraints that must be mentioned. The first one was hinted at in

the Classroom example—it is the fact that there are instances where more than one vision

routine matches with the given task constraints. If this is true, the tie can be broken best

by examining the environmental constraints that the routine relies on. We will examine

environmental constraints in Section 3.3.2. If these do not break the tie, then alternate

methods of deciding which routine to use are needed. In general, when designing a special

purpose vision routine the researcher will have a specific task in mind. This means that

specific tasks will most likely have preferred vision routines, specifically, the ones which

were built for that task. In the Classroom we represent this with a preferred ordering in

51

the skills that are used to accomplish specific tasks.

Having multiple routines for a single task can be a problem, but sometimes

having one routine for a number of different tasks can also cause problems. Occasionally a

routine may provide a number of pieces of information that are required for a given task.

For example a person tracking routine might return the location of the head, hands and

center of the person. When a task requires more than one piece of information from a given

vision routine, reusing that routine for a different task might mean that useless information

is being handed to the system for the new task. In the person tracking example, the hands

and head locations will be extraneous for a task that only requires the location of the center

of the person. This was one of the problems with general purpose vision that we solve by

using special purpose vision. We use two separate solutions for this problem. First, since

the new task requires less information, the vision routine has a new task constraint that it

can take advantage of. This could be a good opportunity for a new routine or part of a

routine, which is more carefully tailored to the given task. In Chapter 2 we saw that the

more constrained the routine was, the more effective it often turned out to be for that task,

thus the new constraints provided by the new tasks may allow a more specialized routine to

be used. On the other hand, it may sometimes not be possible or desirable to create a new

routine. In this case we simply structure the routine so that it only gives the appropriate

information for the given task. If only some of the information is needed, the routine should

be able to only return the requested information. This allows the routine to be reused in

tasks with slightly different task constraints and information requirements.

One final difficulty is that a given task might require information from multiple

vision routines. In the behavior case this problem is easily solved since the behavior should

encode all of the vision routines that need to run. In a more deliberative system this can

cause problems because it is simply harder to decide which ones to run. The solution that is

implemented in the Classroom is to generate vision routines that combine all of the needed

52

sub routines into one larger routine that returns all of the needed information.

In this section we looked at how task constraints allow us to use task based

vision. With the task constraints represented, the system is able to decide which vision

routine to use to get the information it needs to accomplish a given task. Task constraints

tell us what to look for. Environmental constraints, on the other hand, tell us how to look

for it.

3.3.2 Environmental Constraints

Environmental constraints are constraints on the environment that the vision routine relies

on to operate correctly. In Chapter 2 we saw how special purpose vision routines gain their

utility from restricting the domain in which they operate. The environmental constraints

are the result of that restriction.

With properly represented environmental constraints a system is able to choose

the correct vision routine for the current situation, by knowing whether or not the constraints

that a given routine relies on holds. In addition, the system can tune the parameters of a

vision routine based on the current world state if it has the appropriate information about

how the parameters are constrained by the environment. The question then becomes how

does one represent the constraints that the routine needs.

The key to using environmental constraints to decide how to sense depends on

a number of different factors. First, the implementation of the system making the decision

will be a major factor, just as it is for task constraints. In more deliberative system, the

constraints can be preconditions on the specific vision routine for it to be chosen. In a more

reactive system they will need to be included in the arbitration scheme. Again, this should

not overload the arbitration scheme because the behavior should only be used when the

appropriate constraints hold anyway. The other factor is what the constraint will be used

53

for. We now look at some of the possible uses for constraints and how to implement them.

3.4 Using Constraints

We have seen that task constraints can be used by a system to decide which routine to

run. Environmental constraints can also be used in this way. They can also be used to

change how a routine runs, and both types can be used to know when a routine should stop

running. This section examines the details of implementing a system that exhibits these

behaviors.

3.4.1 Pick a Vision Routine to Run

Similar to how we use task constraints, environmental constraints are used to pick which

vision routine to run. In addition to merely helping pick which routine to run, the environmental

constraints help decide when to run the routine. Unlike with task constraints, where we just

compared the information needs of the system to what the vision routine provides, the actual

state of the world needs to be queried in order to determine which environmental constraints

hold. This is a potentially serious problem. In order to know how to sense, the system will

need to do some sensing. With the experiments we have done in the Classroom we deal

with this problem in a number of ways. We now look at a number of ways of determining

whether a constraint holds, giving examples from the Classroom where appropriate.

The easiest environmental constraints to deal with are those that the system

already knows about. There are a number of reasons that a system could have knowledge

of the world already, but if it has this, then checking the validity of a constraint is trivial.

The Classroom has a model of the world which is updated regularly. This model can be

quickly checked for specific facts. If the Classroom’s memory does not have the required

information, one of the following techniques is used to update the memory so the new

54

routine can be run.

In order to make it more likely that the routine we want will be able to run, we

make as many of the constraints as possible things that the Classroom can enforce on its

own. For example, when using background subtraction to follow the user, the background

must not move. The Classroom enforces this constraint by holding still the camera it is

using to watch the speaker. Since the Classroom controls the environment in which it exists

there are a number of constraints that it can control in this way. Once the effectors have

run to make the specific change, the Classroom’s memory will be updated as appropriate.

Another solution is to have the constraints checked by vision routines which

are currently running. For example, to be able to read an icon off the board, the area in

front of the board must be clear, and the area where the icon was drawn must be known.

Fortunately these can both be known by tracking the user while he draws the icon on the

board. Since this routine needs to already be running to activate the goal of reading the icon

the Classroom simply waits until the appropriate environmental conditions arrive. Once

the correct constraints hold, the Classroom starts the new vision routine.

A third solution is to run a more general version of the routine, which discovers,

as part of its processing, if the required constraint holds. For example, in order to get

good locality on tracking a person, the Classroom uses edge information. This means that

the background must be textureless. The tracking algorithm can be run, however, even

without this information. While running though it can examine its own output to determine

whether or not the edge detector is producing useful information. The Classroom tends not

to use this technique when deciding which new routine to run, but uses similar reasoning

for changing how a currently running routine is operating as discussed in Sections 3.4.2

and 3.4.3.

Finally, the system could run another vision routine to determine whether a

55

given environmental constraint holds. This is an extremely deliberative action and the

Classroom does not exhibit this behavior. The reason we mention this at all is that there

are instances when the system is starting for the first time when one could imagine that

it simply has too little information about the world to know which routines to use. If this

is the case, then it can actively query the world to discover the piece of information that

it is lacking. An example of this would be a robot that used a free space finding routine.

This routine requires that the floor be relatively textureless which is easily determined by

running the free space finding routine. But another constraint is that the textureless area

must not be an object. Once the routine is running this should continue to hold, but when

the system is starting, the robot might be in front of an object. If this constraint was

represented, the robot could use a disparity method to check that it is not right in front of

something, or perhaps it could simply ping its sonar to get the required information.

The last example brings up an important point: the information about the world

does not necessarily need to come from the vision routines. The system that is utilizing

the information from the vision framework may have a number of other methods of finding

things out about the world. The Classroom has information about its internal state, things

like whether or not cameras are moving or which camera is feeding the vision framework,

basic proprioception. If the current state of that Classroom element is not in memory the

Classroom can sense it quickly. Similarly, one could imagine a number of additional sensors

that the Classroom could integrate to provide more information for the vision routine. It has

the ability to listen to what the user is saying, which is particularly useful for initialization.

The robot also had additional sensing modalities. In addition to computer vision and some

proprioception, the robot had sonars and a laser ranging device. This information can be

combined at the skill level to improve the performance of the vision routine, or it could be

accessed when a fact about the world that it provides needs to be known.

It is useful to be able to query the world to figure out what the required

56

information is, but it can be very expensive and in general should be avoided. The cost of

switching vision routines could be large, especially if the routines have some startup cost. It

is much better if the information can be extracted from routines that are already running.

We have already seen that environmental constraints can be used to pick which routine is

to be used, but they can also be used to determine how to parameterize a routine.

3.4.2 Change How a Vision Routine Runs

In order for special purpose routines to achieve their good results they often need to be

parameterized for the specific problem to which they are being put. Instead of just reasoning

about which routine to use, it is also useful to reason about how to parameterize the routine.

For example, the threshold on an edge detector might need to be changed depending on the

lighting conditions. The vision routine may be able to do this adjustment internally, but we

found a number of examples where the constraint on the environment must be represented

at a higher level. The methods of checking whether these constraints are true are the same

as for picking a new routine, with an emphasis on using information to which the system

already has access.

In order to represent these constraints and use them to affect the routine while

it is running, the system must be able to monitor the running of its processes. It can

then be informed of specific events to look for. These events can come from actions that

the system takes. For example if the Classroom starts playing a video on the screen, it

know that the part of the wall that the screen is on will no longer be static. Since the

background subtraction routine requires that the background be static, that routine will

no longer function properly. Since the Classroom knows where its projection screen is, it

can actually change the parameters of the routine so that it only tracks the speaker in the

portion of the room where the background is still stable.

57

Besides having the information come from external sources, a well designed

vision routine will also be somewhat introspective. When the person tracker used by the

Classroom is utilizing edges to more precisely determine the location of the person, it must

have a relatively noiseless edge image. The person tracker does a number of morphological

operations which it uses to know if the image is becoming too noisy. On the other hand if the

edge detector is not sensitive enough, then the edges that represent the different parts of the

person will not come out. If the routine is able to modify itself, it can change the threshold

of the edge detector as needed. In order to maintain a clean separation between atomic

units of the vision routines, the Classroom architecture requires that the person tracker

simply informs the Classroom of the error. This allows the Classroom to take whatever

action it deems appropriate, whether it be modifying the current routine or selecting a new

one to run.

Finally, the system can simply watch the output from the routine and know when

it has stopped making sense. One of the symptoms of a noisy edge image in the person

tracker is having the different body parts that the system is tracking move into impossible

configurations. Some of this problem is alleviated in the routines used by the Classroom

by tracking and filtering the data, but sometimes there is simply too much noise. If this

is the case, the Classroom notices that it is no longer receiving the expected information,

and has the routine stop using the edge data. Beyond picking new routines, and altering

how current routines are running, environmental constraints also allow the system to know

when to stop using a routine.

3.4.3 Stopping a vision Routine

In addition to allowing the special purpose routine to start, the environmental (and task)

constraints must continue to hold as long as the routine is operating. When one of the

58

constraints fails, the routine will cease to operate correctly, and should be modified or

stopped. If the constraints are easy to check, the system can monitor those constraints to

know when the routine is no longer valid. If some of the constraints cease holding, and

the system cannot modify the routine as in the above example, the system must stop that

vision routine. When a vision routine is stopped there are two options available to the

vision system: it can start an alternate vision routine or decide that it cannot obtain the

required information.

When a constraint that a routine relies on fails, there is a good chance that the

routine will quickly fail as well. In order to prevent this from happening, the system must

select a new routine. In the background subtraction tracking example, the user may walk

into a portion of the scene that does not have a stable or known background. This will

prevent the Classroom from tracking the user using this vision routine. In order to continue

tracking the user, the Classroom must switch to a different tracking routine (in our case

color based).

By not only using vision routines built for extracting the specific information

required by the system tailored for the given world state, but also monitoring to make

sure that that world state does not change while running, the system provides more robust

processing. Monitoring the environmental constraints is advantageous to less deliberative

systems as well.

A reactive behavior based system that knows when one of its vision routines

should be swapped out is at an distinct advantage. Since a given behavior will not be able

to operate when the constraints on the vision routine that controls it have failed, it is crucial

that the arbitration scheme understand what those constraints are. These constraints are

then another input to the arbitration scheme, and can cause a behavior change, just like

any other input.

59

One important note here is that in our actual implementations, the realization

of constraint failure happens on the level of internal changes. That is, it is based on things

that it anticipates rather than things that have actually failed. The system does not detect

when the routine is really failing, but rather when the state of the world dictates that the

constraints that the routine relies on no longer hold, and therefore the routine will probably

fail in the near future. This is related to monitoring for failure, but our work does not

currently extend into the area of vision routine monitoring, another major area of research.

However, the fact that our systems do have a set of constraints that they monitor means that

they will fail gracefully. Assuming that the constraint that is failing has been implemented

in the system, it will let the user know that the constraints have failed, if it has no other

routine available to it. This provides a warning that things may begin to break, which is

better than just waiting for it to happen.

3.5 Final Thoughts on Constraints

Given how many possible ways there are of checking whether or not a constraint holds, it is

clear why only the constraints that are actually going to be useful to the system’s reasoning

should be implemented. It cannot be overstated though, that the constraints which are not

implemented for the purposes of reasoning will still need to hold. This is why they must

still be explicit even if they are not implemented in the system’s internal representation.

All special purpose vision systems have constraints, and the vision routines

should only be used in the correct situations. This is also true for a system built using the

methodology provided here. What we are providing is not a general purpose vision system,

but a way of getting to general purpose vision, and having a system that you can use on

the way there. It is not general purpose vision, but provides a way to gracefully expand to

fill the problem space. At any given stage, in order to use it, you must know where it will

60

and will not work. Then if it is needed in a situation where it currently will not work, it is

easily extended to utilize the constraints in that new situation.

The next four chapters describe our implementations of these ideas. Chapter 5

describes a robotic platform which only partially utilized the ideas presented here, but

revealed the need for a new platform for constructing vision routines.

Chapter 4

CHIP

Many of the ideas described in the first three chapters of this dissertation came out of our

experience with a robotic platform, Chip. Chip was a robot built at the University of

Chicago Artificial Intelligence Laboratory. One of the goals of this project was to produce

a robot whose primary sensor modality was computer vision. Because of this, we needed a

very robust set of vision routines to allow the robot to accomplish its tasks. To achieve this,

we used vision routines which were highly constrained to the robot’s tasks. These special

purpose routines were effective at their tasks, but had many of the disadvantages described

in Chapter 2. This led to the idea of reasoning about the constraints on which the special

purpose routines rely.

Chip reasoned about vision in a very simple manner. Specific vision routines

were tied to specific tasks. This meant that it only used the implicit task constraint to

choose the routine to use. It did however point us in the direction of reasoning about

explicit constraints, and the problems with implicit ones.

This chapter examines the work done on Chip as it relates to the ideas of

reasoning about special purpose vision routines. As with all mobile robotics projects

61

62

there were many researchers involved in many different aspects of building the robot, and

programming it to accomplish different tasks. There are a number of papers detailing the

many aspects of building Chip and making him work—those detail can be found elsewhere

[31, 32, 33, 34]. This chapter focuses on the design of the vision subsystems, and those

details of the rest of the system that directly impacted the vision system.

4.1 Background

Chip was a mobile robotics platform, hand-built by researchers at the University of Chicago

in the early 1990’s. There were two main research groups working on Chip at the time: a

planning and robotics group, led by R. James Firby and a vision group, led by Michael Swain.

Both these groups came together to research how reactive planning, execution, and computer

vision could work together on a mobile robot platform. The advantage of a robotic platform

from the perspective of a vision researcher is that there are a large number of visual tasks

that the robot might need to do, so there are many lines of research that can be followed.

From the perspective of the research presented in this paper, obtaining more general purpose

vision, this is an ideal scenario.

Because of the desire to do many different experiments with Chip, it was put

to a number of different tasks, which required different visual data. One of the goals of the

Chip team was to use computer vision as much as possible for sensory input and only rely

on sonar for last second collision avoidance. This means that almost every task that Chip

was put to required computer vision.

The primary task for all mobile robotics is that of navigation. The ability to

move around the room and not hit something is not a given in the world of mobile robotics,

and we used vision as our primary obstacle avoidance sensor. In addition to simply moving

around we wanted the robot to be able to interact with people, so it needed to be able

63

to recognize when a person was in front of it. Finally, it had a manipulator which Chip

could use to find, recognize, and throw away trash. This involved a large number of visual

techniques. We even ended up combining some of these skills, doing things like having the

robot pick up trash that a person pointed to.

Given the breadth of the tasks that needed visual input for Chip, it is clear

that a more general purpose system, able to handle many visual information needs, was

required. This is what Gargoyle was developed for, although it was not fully implemented

until the end of the robot project. Chip used a number of disparate vision routines, one

for each task that it could be put to. As we have seen in the previous chapters, in order

to control these routines Chip needed a reasoning system that determined which special

purpose routine to use when, which inspired the design of the Intelligent Classroom. We

now will briefly look at Chip’s hardware setup followed by the reasoning system and how

it controls the vision subsystems before looking at the special purpose routines themselves.

4.2 Hardware

Chip was a complex, hand-built mobile robot on an RWI base. This section briefly looks

at the subsystems that relate to computer vision. All of the vision processing was off-

board, which was accomplished either through a tether or radio signals. This signal went

though an MV-200 DataCube computer, which could compute standard vision operations

on the full resolution output of Chip’s cameras in real-time [58]. This filtered image was

then distributed to a network of SparcStations which would do additional processing to

complete the vision routines. Each of these Sparcs were used for a specific vision routine

as shown in Figure 4.1. They would in turn hand data off to the robot’s central controlling

Macintosh which would assure that the appropriate skill received the required information

[56]. Many skills resided completely on the robot, but because the vision portion of some

64

RAPs

DataCube

Skills

Sparc B:
Vision

Routine B

Sparc A:
Vision

Routin A

Actuators

Camera

Sonar Ring

Onboard CHIP Hardware

Mac Skills

Figure 4.1: A representation of Chip’s processing spread out over a number of off-board
computers.

skills were all off-board, their information needed to be routed through a central computer.

This Macintosh was also tasked with the main planning duties, as discussed in the next

section.

4.3 Animate Agent Architecture

While the planning and vision research aspects of the robot were under separate groups,

there was a shared common vision about how sensing and acting needed to be tightly

coupled. This coupling of sensing and action was codified into a system called the Animate

Agent Architecture [34, 36]. All of the design goals stated in Chapter 1 were being

formulated at the time we were working on the Architecture, although many of them had not

yet come to fruition. The main point which was used was the most important: use highly

constrained visual routines to provide real-time information for the execution system. In

65

RAP Executor

Action Routines

High-level Tasks
World
Model

RAP
Library

Vison Routines

World

Results
Configuration
Information

Configuration
Information

Figure 4.2: The high level breakdown of the Animate Agent Architecture as implemented
on Chip.

actuality the Architecture was designed for more general use than just computer vision, and

any perceptual input source could be used.

On top of this all was a reactive planning system, the Rap system. In order

to maintain a clean separation between the continuous inputs of the world, and the reasoner,

the Animate Agent Architecture strived to maintain a leveled hierarchy, as shown in Figure 4.2.

This was very similar to the generic architecture seen in Figure 3.3 and followed in the

tradition of three layer architectures described by Gat, Bonasso, Kortenkamp and others

[13, 44].

In the Animate Agent Architecture each perceptual routine (“vision routine”

for this dissertation) was paired in a tight servo loop with action routines to allow Chip to

complete the task at hand. This type of control loop was called a reactive skill. These skills

would then be enabled and disabled by the higher level Rap system. This meant that the

Rap system would then be responsible for deciding which skill to use when, and therefore

66

which special purpose visual routine to use when.

4.3.1 The RAP Execution System

The Rap system, designed by Jim Firby, was the execution system which controled the

Animate Agent Architecture [30, 32, 34]. In the Animate Agent Architecture, the Rap

system made the decision about what to do when. It turned the reactive skills on and off as

needed. The way it decided which skills were needed was through task descriptions called

Reactive Action Plans (Raps).

A Rap can be thought of as a description of a number of possible ways of

accomplishing a given task. Rather than being a single plan, it can be thought of as

a collection of possible plans which are instantiated as needed by the current situation.

When the Rap is invoked, the steps in the plan are chosen from a preexisting library as

needed.

By choosing the steps of the plan when they were needed, rather than planning

the entire chain of events beforehand, the plan was tailored to the current situation, rather

than built on the predicted state of the world. While Chip only used a single vision routine

for each task, it was this ability that allowed our later systems to choose which routine to

use for a given task. By specifying which skill was used at run time rather than preordaining

it at planning time, the skill that is most appropriate to the current context will be run.

Even though the plan was not instantiated until run time, there was still error

from sensor noise and uncertainty, and this could cause inappropriate skills to be chosen, or

even appropriate plans to fail. The Rap system dealt with this by making sure that each

method had achieved its goal. If the goal was not achieved it could choose another method

and try again.

The Rap system was ideal for reasoning about vision as described in this

67

Visual System Skill System

Locate-
Small-
Object

Sensor Values Channels

Sonar responses

Skill Agenda

MoveTo-
Target

Avoid-
Obstacles

Actuators

Figure 4.3: The skill system as implemented on Chip.

dissertation, because it instantiated the vague plans based on the given situation—that

is the current context. In this way the Rap system decided which special purpose vision

routine, in a specific skill, to use for the next step for the current task.

4.3.2 Reactive Skills

The discrete steps that were chosen by the Rap system were called reactive skills [31].

These skills were not simply atomic actions that the system could take; the reactive skills

tied sensing to action directly. A large body of work has shown that effective behaviors can

be constructed in this manner [15, 17, 70, 51]. This tight coupling of sensing and acting was

a central point of the Animate Agent Architecture, and is used in the Classroom work as

well. On the robot, the skills continued to loop in a sense/act loop until the specific action

that that skill was meant to do had been completed. It then signaled the Rap system that

this step of the task was done.

68

The skills themselves were in two parts, an action routine and a vision routine.

When the Rap system activated a skill needed for the current step in a given task, the

vision routine started up, providing the necessary information to the action routine to

move the robot. Figure 4.3 shows how this was accomplished through the use of channels.

The sensory skills set global channels which the effectors then read. This provided a tight

control loop, so the robot could react to any changes in the environment in which it was

acting. Since the skill specifically tied the vision and action routines together, the vision

routine was assured of providing the needed information to the action routine.

By constraining the skills to perform specific tasks, the vision routine which

made up the sensing part of the skill could be easily designed as a task specific special

purpose visual routine. Some of these routines were tied in a tight loop with action routines

in the reactive skills on Chip the real time constraint were critical, and the vision routines

needed to be special purpose and lightweight in order to give the robot both correct and

timely information. Other routines, like recognizing a person pointing, were decoupled from

the system, and the skill had to wait for results to run. When the Rap system decided

which skill to use in a given situation it took all of the given constraints into consideration

to choose the appropriate skill. Thus, task context was included in deciding which vision

routine to use implicitly, since the vision routine was tied directly to the skill being used to

solve the task.

4.3.3 Vision Routines

The vision routines for the reactive skills on Chip were designed to solve specific tasks, in

order to incorporate them into reactive skills. These routines were constructed using many

of the design considerations outlined in Chapter 2. Specifically, they were designed to make

use of the constraints of the environment in which they were to be used. Unfortunately

69

these constraints were not reasoned about by the Rap system when choosing skills.

The visual routines on the robot were also inspired by Ullman’s visual routines

[87], utilizing early maps and visual markers to track objects in the scene. In order to provide

the early maps in real time, the visual processing was spread over a number of off-board

machines. A DataCube MV-200 image processing computer was used to prove real time,

full-scale early maps. These maps were then used as needed on a series of SparcStations

which would compute the needed information—for example the updated location of a visual

marker—to pass on to the action routines.

These visual routines were designed to be as reusable as possible; however, in

use a number of problems became apparent.

4.3.4 Problems

While the vision routines were designed to be reusable, the fact of the matter was that

for every task a specific new routine tailored to the specific task was needed. As more

skills were developed for Chip to run, more SparcStations were added, one for each vision

routine. The vision routine was implemented as a program which would constantly run

on its own processor, waiting for the command to run from the Rap system, and all were

constantly receiving image information from the DataCube in the form of early maps. Even

though there was a common communication language for the vision routines and a common

interface to the early maps, there was no common architecture for actually building the

vision routines. This led to the conclusion that vision routines should be broken up into

atomic units which could be more easily integrated and reused. In addition this led to us

building Gargoyle, a general architecture for building the vision routines, which is described

fully in Chapter 5.

In addition, since the special purpose routine and the action routine were tied

70

into a skill, it was difficult to modify the operation of that routine. Chapter 3 showed that

for more general purpose vision, the reasoning system would need a good deal of control

over the operation of the vision routines. Unfortunately, the Rap system lacked a good

deal of knowledge about how the vision routines operated. It also lacked a coherent method

for altering how the routine was running. The Rap system picked a skill to use based on

the task it was currently completing, therefore only task context was used to make that

decision. This meant that picking which vision routine to use was trivial, however it meant

that the vision routine would only be useful for that specific problem.

In spite of these problems, Chip successfully used computer vision to accomplish

a number of difficult tasks. It also gave us the knowledge to go ahead with the design and

implementation of Gargoyle, as well as providing the basis for the methodology to reason

about computer vision used in the Intelligent Classroom.

4.4 Vision on CHIP

One of the goals of the Animate Agent Architecture was to provide a framework in which

it would be easy to quickly expand the capabilities of the robot to new tasks. This section

investigates the vision routines used in those tasks. Some examples of tasks that the robot

was put to are described in Section 4.3. Since a goal of the Animate Agent group was to

move toward using vision for all sensing tasks, and rely on sonar only for redundant safety,

the first tasks that were needed were navigational and tracking tasks.

4.4.1 Obstacle Avoidance and Tracking

We used visual navigation to move around the room while not bumping into objects—

obstacle avoidance—and we used tracking to follow or approach something. The first set of

skills that were produced on the robot allowed it to move around a room without bumping

71

into things, or to follow a specific color, say, a person’s shirt. Obstacle avoidance was

provided by a variant of the Polly algorithm developed by Ian Horswill [51]. A number

of tracking tasks were provided by Peter Prokopowicz, Michael Swain, and Roger Kahn:

watch, approach, and pursue. Since only one tracking skill could run at a time, features

appropriate to the target’s characteristics needed to be tracked. Simple tracking features

included motion, color, and work was begun on using disparity. A complete description of

the tracking system can be found in [75]. Choosing the correct tracking routine for the given

task was crucial. However, the Rap system’s understanding of what the vision routines were

doing was extremely limited. This meant that the specific routine would need to be chosen

and parameterized ahead of time by the user of the system. With a limited set of tasks

this was fine, but the set of tasks that the robot was being put to quickly extended beyond

following a color around a room.

4.4.2 Object Identification and Tracking

The next major task that the robot was put to was the 1995 AAAI robot competition trash

cleanup task. This task required a larger set of skills, and therefore more vision routines.

We used vision to locate and identify the garbage in the room and then to locate trash cans

in which to drop the garbage. Once the objects were identified, the robot would need to

align with the object it wanted to pick up. This was a tight loop, and the vision routine used

environmental constraints to target the object and track it quickly enough for the skill to

move the robot. It is important to note that the environmental constraints for that routine

were encoded in the vision routine, not at a higher level. This meant that the routine

needed to parameterize itself as the constraint changed, and there were no alternatives for

when the constraints failed. Our solution to this task is described in [33, 37].

This task was what really highlighted the need for a new vision system for us.

72

The trash collecting task took a number of steps: look for trash, pick up the trash, look for

a trashcan, and thrown the trash away. Each of these steps required a unique vision routine,

even though the actual work that they did was very similar. The trash identification step

was fairly expensive, but was a combination of many standard vision operators, some of

which were used in the next step. Tracking the selected piece of garbage to servo toward it

required a very fast sensing loop, so only a small portion of the scene could be sensed. This

meant that a new routine was needed, even though much of the vision work had been done

in the previous routine. This was because we were unable to extract specific pieces easily

from other routines, and image location context was not saved externally. The trashcan

finding routine suffered from this same fate. Looking for the trash can also used the location

constraint to figure out where to do the expensive Hausdorff matching, but again that was

encoded into a complex two step visual routine.

4.4.3 Person Tracking

At the same time the robot was picking up garbage, other researchers were working on

making it be able to see people. Since we wanted our robot to interact with people, it

was critical that it had vision routines to track people and locate what they were pointing

at. This culminated in the Perseus system designed by Roger Kahn [57]. This was a

very complex multi-tiered system that tracked a number of different features and actually

contained its own memory for tracking and determining when certain states in the image

had been reached. This allowed it to recognize when the person made certain gestures [55].

For example, one of the tasks it could accomplish was to wait for a person to point to a

can. It would then extend a cone out from where the person was pointing, to determine if

a can was present where the person was pointing. It would then attach a visual marker to

that can, and report its location to the Rap system. A complete description of the Perseus

system can be found in [59].

73

Perseus was extremely effective at what it did, but it was not amenable to

reuse. The next section looks at a task where we used Perseus as a sub-step in another

task. Unfortunately it really lived in its own world. Once it started running, the rest of the

robotic systems needed to wait for it to report back before doing anything. It took control

of all of the vision routines it contained, but then didn’t provide a strong connection to the

system that it was being used for. This was another lesson learned for Gargoyle: leave as

much reasoning as possible to the higher lever reasoning system.

4.4.4 Robotic Waiter

Both Perseus and the robot trash cleanup tasks were completed at about the same time.

This led to a class project which combined these into a novel task: getting soda for people.

In order to do this, the class simply combined the vision routines which had already been

built for the other tasks. It would track the user until he had pointed at a can. Once the

user selected a soda by pointing at it, the robot would move to that can and pick it up

using the same routine from the trash cleanup task. Finally, it would approach the known

location of the user to offer the can to him. A complete description of this project can be

found in [43].

This new combination of vision routines appears at first glance as if it should

be simple. Unfortunately due to the nature of the vision routines used for the other tasks,

this took the entire class a number of months and a good deal of new vision code to glue

all of the parts together. This work, done by Shannon Bradshaw, David Franklin, Mazin

As-Sanie, Mark Langston, Jiayu Li, Alain Roy, and myself, produce an interesting new

behavior, although the work involved for such a relatively simple adaptation of preexisting

code was large. Chapter 7 shows another student project which utilized existing vision code

in a much more straightforward manner thanks to improvement made from our experience

74

with the Waiter project.

4.5 Obituary

The robot provided a vibrant platform for vision research, and started much of the work

found in this dissertation. Unfortunately, once the Intelligent Classroom project was under

way, we moved to Northwestern and Chip did not follow us. The first task to which

Gargoyle was put was a reimplementation of the Perseus vision routines. This proved to

be quite successful, and led to further research on Gargoyle. Due to Gargoyle’s portable

nature and more efficient use of resources it could also be run on a laptop, allowing the

computer vision to be moved on-board the robot. This solved a large number of problems

for Chip, and proved the efficacy of Gargoyle. In fact, many of the Gargoyle routines built

for the robot are still used in the Classroom. So, while Chip does not live on as a research

platform, the research started there lives on in the Intelligent Classroom, through both the

Animate Agent Architecture, and for providing the initial development on Gargoyle. The

next chapter explores our current implementation of Gargoyle.

Chapter 5

Gargoyle

The Animate Agent Architecture dictated a clean separation between the low level sensing

and motor details from the high level reasoning system. As the vision routines became more

complex, this separation became extreme. The robot would request that a vision routine

run, for example to watch for a person pointing, and the vision routine gave back what the

person was pointing at. This structure allowed the routines to be effective; however, they

ended up not being generally useful.

The routines were special purpose and the reasoning system did decide which

routine to run when, but they lacked a number of other properties which would allow us

to implement our methodology for general purpose vision. First, it was extremely difficult

to reuse the vision routines. They were heavily paramaterized to the tasks for which they

were built. Building new routines from the old ones required pulling out parts of complete

programs, and figuring out how the parameters interacted with the new routines. Second,

the static routines which the robot used were actually separated too much from the reasoning

system. In order for the routines to serve in a more general purpose manner, the reasoning

system must be able to alter how the vision routine is running at a high level. Unfortunately

75

76

on the robot, the only access that the reasoner had to the operation of the routines was to

turn them on or off.

These concerns led to the design of Gargoyle. Gargoyle was designed to provide a

unified structure in which to perform active vision. The Gargoyle framework was developed

as a system that provides a framework for achieving the general purpose vision as described

in Chapters 2 and 3.

In terms of our methodology, Gargoyle provides the following capabilities. It

allows researchers to easily build and test special purpose vision routines by providing a set

of reusable vision components and a framework in which to build them. It also provides an

environment in which the vision routines can be dynamically reconfigured for the changing

contexts. This allows a reasoning system to connect to Gargoyle and change which vision

routines are running and how they are running as needed. Since Gargoyle does not provide

any reasoning capability of its own it also does not provide a method for representing the

constraints on the routines—this is left to the reasoning system. This chapter examines

Gargoyle’s design and its operation. Implementation details of specific routines are given in

Chapter 6 for the Intelligent Classroom and in Chapter 7 for the Interactive Image Mosaic.

5.1 Design

Section 4.3.4 discussed a number of problems with the vision system utilized by the robot.

Gargoyle was created to overcome these problems, and led to the following design requirements:

• Enable the dynamic creation and reconfiguration of vision routines specialized to the

current context.

• Enable code reuse and reduce debugging time.

• Foster sharing between researchers.

77

By providing the capability to dynamically create and reconfigure vision routines,

Gargoyle enables reasoning about vision routines. It does this by providing a runtime

environment in which the vision routines operate. In order to allow it to be used by different

reasoning systems it exposes a number of control mechanisms which can be used by those

systems. These mechanisms allow the reasoning system to tie its internal constraints with

specific vision routines. This way, each vision routine can have its constraints explicitly

represented.

Since the vision routines all operate in the same environment, they have many

similar properties. Gargoyle takes advantage of this and also provides a development

framework which allows the code from different vision routines to be easily reused in new

routines. This simplifies the sharing of vision routines among researchers using the same

framework, since the the researcher is able to use the parts of the routine that are relevant

to his research. This is accomplished by following our rule: break up the vision routine.

So Gargoyle is a framework that allows researchers to implement vision routines

which can then be reasoned about. Before getting into the details of how Gargoyle works

it is helpful to look at two specific features Gargoyle must provide: the ability to break the

vision task up, and control mechanisms to connect it to a reasoning system.

5.1.1 Breaking Up the Vision Routine

Our previous experience with Chip showed that large monolithic programs are generally

difficult to test and debug. When writing large vision routines, elementary processes are

often embedded deeply in the code making them difficult to use and reuse. In addition, there

may be interactions between the different parts which become difficult to understand. Thus,

pieces of code are repeatedly rebuilt for use in other routines when similar vision techniques

already exist. In order to help ameliorate this situation, vision routines in Gargoyle are

78

broken up into logical elements, called modules, which can be exchanged at runtime. These

modules are combined into a pipeline to form a vision routine. Breaking up the routine in

this manner provides a number of advantages.

First, by allowing the pieces of the vision routine to be dynamically changed,

Gargoyle provides a mechanism which allows the controlling system to change which routine

is running when

Second, breaking up the vision routine into basic modules, not only encourages

code reuse, but also provides a simple mechanism for the sharing of algorithms between

researchers. The modules are designed to be incorporated into new vision routines, so they

are easily incorporated into the work of other projects, as well as for new routines in the

same project. Another advantage this provides is that it allows the researcher to take only

the parts of the routine that he wishes to use, rather than taking the entire routine.

Also, breaking up the vision routine makes it easier to explicitly represent the

constraints for the vision routine. This is because each of the modules will have constraints

that it relies on in order to operate. Representing the constraints of the modules rather

than the entire routine is a much easier task and provides a stepping stone for representing

constraints for the entire routine. Since a vision routine is just a pipeline of vision modules,

it will rely on the constraints of all the modules. There will be additional constraints due

to interactions between the modules, but this provides an excellent starting point.

Many of the constraints on the modules are exposed through parameters. This

allows a reasoning system to change how the routine is operating, as discussed in Section 3.4.2.

In addition to these simple changes, the use of module pipelines in Gargoyle allows a vision

routine to be dynamically modified in non-trivial ways. The operation of the modules of a

pipeline may be modified while they run, or the actual pipelines themselves can be changed

by swapping out one module and swapping in another. This means that if one of the

79

modules begins to fail, the inadequate module can be swapped out and replaced by another

one. Gargoyle also allows the parameters of the different modules to be changed during

operation. This allows the higher level system to fine tune the functioning of the modules

to specific environments.

5.1.2 Providing Control Mechanisms

While Gargoyle provides many of the elements required for reasoning about computer vision,

it does not provide the reasoning system itself. This was done intentionally in order to

allow Gargoyle to provide more general purpose use. Reasoning systems are often tailored

to the specific tasks that they accomplish. If Gargoyle implemented its own reasoning

system, it would necessarily limit the range of systems it could be used in. This is because

many systems which require vision use their own method of reasoning. Forcing Gargoyle’s

reasoning system on every system that wanted to use it would greatly reduce its usability.

The lack of a system internal to Gargoyle to reason about vision in Gargoyle is critical also

because utilizing the constraints to reason about vision requires a good deal of knowledge

about the world. An internal reasoning system would necessarily be unable to access all

the other information sources available to the complete system which would lead to much

more complex interactions between the high level reasoning system and Gargoyle.

Because of these issues, Gargoyle provides mechanisms which allow it to be

controlled by an external system as shown in Figure 5.1. Combined with a reasoning

system Gargoyle provides a complete vision system.

5.2 Implementation

Gargoyle is an active vision system that is runtime configurable, designed to meet all of the

goals laid out in Section 5.1. This section describes how Gargoyle was implemented and

80

World

Gargoyle

Client
(Reasoner or GUI)

Control

Information

Vision
System

Figure 5.1: Gargoyle when used as part of a complete vision system.

how this implementation meets those goals.

5.2.1 Overview

Gargoyle accepts commands from a remote client, which could be the reasoning element of

an agent or a manual client run by the user, as seen in Figure 5.1. The client constructs

pipelines and manipulates them by sending messages to Gargoyle. The reasoner controls

the sensors (like the cameras), manipulates the pipelines, and interacts with the world.

For example, as a speaker moves across the room while being filmed, the client uses the

information that Gargoyle passes to it to have the camera follow him. Gargoyle returns

requested information continuously to facilitate tight control loops.

The Gargoyle system meets its design goals by delivering an integrated framework

for designing and using modules. An example of a module might be an edge detector or a

color histogram back-projector, as in Figure 5.2. The client requests specific vision routines

81

 Gargoyle

Pipeline B
 Module Connections

Input
Module

Edge
Detector

Freespace

Background
Subtraction

Combiner
Module

Person
Tracker

Client
Pipeline
Request

 Pipeline Library Pipeline A

Pipeline B Pipeline C

Figure 5.2: A client requesting a specific pipeline from Gargoyle’s vision routine library.
The pipeline is made up of connected modules.

in the form of a pipeline from the Gargoyle server. Separating these elements into Gargoyle

modules allows them to be easily combined to create new vision routines. It also simplifies

runtime modification of the routines, as well as encouraging code reuse.

Once the routines have been requested, Gargoyle spawns vision routines as

pipelines. It then passes the client a direct communication channel to the pipeline which

the client uses to modify the pipelines as required and run them, receiving the resulting

data from the pipeline directly. Figure 5.3 outlines this process. We now examine each of

these components individually.

5.2.2 Server

The server is a common contact point for all of the clients and pipelines. When a client

requests a new pipeline, the server creates a parser thread to interpret the client’s requests.

This allows the client to communicate directly with the vision routine. The client can

then request changes in specific modules in the pipeline directly. The parser interprets the

commands and the server constructs each module in its own thread. This multi-threaded

82

Gargoyle

Client

Server

Pipeline
(Parser)

Module A

Activation
Request

Module DModule CModule B

Activation

Module Library

Module A
Module B

Module C
Module D

Figure 5.3: The flow of information and control in Gargoyle as it communicates with the
client.

mode of operation allows pipelines to interact efficiently through shared memory without

the high overhead of inter-process communication.

Setting up the different pipelines as threads also allows Gargoyle to implement

efficient tracking. The client can build a tracking routine, and then let it run in a loop.

For tracking to work properly, it must be fast and continuous. Since Gargoyle is multi-

threaded, the client can allow the tracking pipeline to run continuously while building a

pipeline for some other task. By using lightweight processes Gargoyle is able to start and

stop vision routines with very little overheard, removing them from memory as necessary.

This high degree of control allows very complex tasks which require many vision routines

to be supported by a single Gargoyle server.

83

5.2.3 Pipelines

Pipelines are not actual threads of operation but rather a number of modules working in

concert to perform some vision operation as shown in Figures 5.2 and 5.4. They are simply

vision routines made up of a series of modules. The notion of pipelines is important, because

a single client might have multiple vision routines running at the same time. For instance,

when a tracking pipeline has been created, it needs to continue operating in order to not

lose the location of the object being tracked. Since the pipelines are independent, the client

can construct a new pipeline without stopping the tracking pipeline. This ability is crucial

for our notion of general purpose vision. Pipelines allow the required vision tasks to be

broken up into special purpose routines which can be turned on and off as needed. One of

the advantages of special purpose routines that we rely on is that they can control motor

skills directly. By allowing each of the routines to exist in its own space with its own

communication channel to the client, one pipeline can be left on all the time while another

routine is modified for a new task. The pipeline architecture allows this to happen.

A pipeline is made up of a sequence of modules. One of the pipeline’s jobs

is to maintain its modules. If the client needs a change in one of the modules, it sends

that request to the pipeline which will make the change in the specified module as shown

in Figure 5.3. A pipeline is also responsible for constructing and removing modules from

itself. It does this by making requests to the server for new modules to be instantiated, and

removes unused modules directly. One final task that it is responsible for is handing the

results of the vision routine back to the client. Many modules may have results, but the

pipeline allows the client to only have to deal with results at the level of vision routines.

84

5.2.4 Modules

Modules are the basic operating units of the pipelines. They pass information to each other

through the pipeline in the way the client has connected them. Each module starts by

reading some information, its input. Then, using that information, the module does some

computation. Once the computation has been finished, the results, or outputs, can be set,

which can then be used as inputs by another module. This flow of data is summarized in

Figure 5.4.

Module to Module Communication

Outputs from modules are connected to the inputs of others to create pipelines. A module

will run as soon as all of its inputs are filled. For an input to be filled, the output it

comes from must have been set. Different modules may need different numbers of inputs

depending on their functions. For instance, an edge detector would need a gray scale image

as input while an object identification module might need an edge image, a color image,

and a region of interest in which to search for objects. The data passed between modules

is usually image data, or image based data, such as regions of interest.

All of the inputs and outputs of the modules are typed to prevent operations

being done on the wrong type of data—for example, color operations being done to grayscale

images. If the inputs of a module are not all connected then it will not run. Some modules—

start modules—have no inputs. All of the start modules in a pipeline will run when the

client tells the pipeline to run. Figure 5.4 illustrates the flow of image data through a

completed pipeline.

The data is passed from one module to the next through shared memory for both

speed and memory concerns. Since a single output can be connected to multiple inputs, this

means that care must be taken to not overwrite an input image if the pipeline splits and

85

 Person Tracking
 Pipeline

Input
Module

Edge
Detector

Freespace

Background
Subtraction

Combiner
Module

Person
Tracker

Client
Continuous

Data

Signals

Figure 5.4: A representation of data flowing through a person tracking pipeline from one
module’s output to the next module’s input. Control comes from the client and results are
continuously returned.

uses the input image elsewhere. Because of this modules will often produce their output in

a new image rather than directly overwrite the input image. However, if speed is the sole

concern for a pipeline, all the vision operations can be done in place on the same image as

it is passed through the pipeline. Many modules are parameterized to allow the data to be

copied only if it is needed for the specific pipeline.

Finally, it is worth noting that some modules have multiple inputs or outputs,

depending on what type of information they produce. For example, many modules take

a region of interest as input in addition to an image. This way the module can limit the

amount of processing it has to do by concentrating on a single region of interest. In terms

of output, a color histogram module might create a binary image with the areas of correct

color marked and a region of interest around the peaks of the color. Trackers might create

the location of objects through regions of interest for a verifier further down the pipeline.

86

Module to Client Communication

Of course, many modules will also need to relay information back to the client. This is done

through the pipeline’s communication connection with the client. Since the module designer

only cares about the vision routines and not the details of communicating to the client this

has been made as transparent as possible—a single function call allows the pipeline to take

care of all the communication. In general, module designers should be careful about how

much information is sent back to the client. Ideally the module will be parameterized in

such a way that only the required information will be sent back. The client may request

information through the parameters, including requesting that no results be sent from the

entire module.

Results can give the client information about the world for the client to react

to, e.g. the results of a tracking pipeline might be used in a tight loop with an effector

skill to produce some behavior. They can also give information about the functioning

of the pipeline so that the client may reconfigure the pipeline to better accommodate a

changed context. These are actually two distinct modes of communication from the client’s

perspective as shown in Figure 5.4. One is a regular mode of communication, which returns

the results of the pipeline each time it is run, and the other is a signal indicating something

is wrong. Often the client reasoning system only cares about the signal, leaving the regular

communication to the task it is controlling.

In the Intelligent Classroom, the regular messages are passed directly to other

skills. In order to facilitate this better, we are looking to expand Gargoyle to have an

additional output module type. This module would send regular data through the pipeline

to be used as needed. Then the direct communication would only be used to raise signals

of abnormal behavior. The reasoning system uses these signals to either switch pipelines,

or change how the pipeline is operating.

87

Client to Module Communication

In order to change how the pipeline is parameterized, the client affects the modules through

the pipeline. Each module exposes some parameters for the clients to modify. These

parameters are often tied to specific constraints so that the client can reason about what

they should be set to. This allows the way in which individual modules behave to be altered

at runtime. For example, if too much noise is being returned by an edge detector, the client

could raise the threshold. This is how the client passes the context information onto the

pipeline.

Parameters have default values and once set, they do not change until they are

set again. Thus the client only needs to consider the parameters that directly concern the

problem at hand. Any context that the module might receive from the client must be

available through its parameters, or the configuration of the pipeline that the client set.

We have found that there are occasionally instances where the client needs to

continuously update a parameter. This is very similar to the module sending data back to

the client on every iteration. In the future the client will also be able to pass continuous

information via input modules. Then parameters can be reserved for changing how the

module operates rather than for continuously updated information. We have found that

constantly updated information is generally positional information which is very amenable

to use as an input.

Module Design

Modules are the key components of Gargoyle—they are where all of the vision happens.

When a vision researcher programs a new module, much thought must be put into exactly

what will happen inside it. Reusability is an important factor. In order to be reusable, the

module should provide an amount of functionality that could be usefully reconfigured in a

88

pipeline. A module can be thought of as a single action on an image. The larger and more

complex the action is, the less the client can do to manipulate the pipeline. For instance, a

module that tracks and identifies a specific object would not allow the client to define how

the object is being tracked, or when to identify it. Instead, vision routines should be broken

up into smaller units which can be used in different ways, and even in different pipelines. In

general, the fewer complex actions a single module makes the better, because these smaller

modules are more likely to be reused, or swapped out of a pipeline for some other module

which is better suited to the current context.

5.2.5 Libraries

Modules are extremely useful in terms of breaking down vision routines, and quickly developing

new ones. They do have some disadvantages however, in particular the fact that they

are limited in their interaction. Since the data flows in a single direction, upstream

communication is difficult. Loops can be made for tracking purposes, but sometimes more

complete control of a module is needed. Because of this we have provided a number of

modules as libraries as well. The modules are then just simple implementations of these

libraries, but if a more complex vision routine requires complete control of that processing

unit, the library version can be incorporated directly into the module.

5.3 Gargoyle in use

Since Gargoyle is not particularly useful without a client, it is worth taking a brief look at

the clients we have connected to Gargoyle.

In order to make designing vision routines easier we built a simple graphical user

interface client which the designer can use to construct and try out vision routines on the

fly without needing to implement a reasoning system. A picture of this GUI in action is

89

Figure 5.5: A graphical user interface gargoyle client which allows a user to easily build and
configure pipelines.

shown in Figure 5.5 with a pipeline running, and some debugging output displayed. This

helps the designer to test the routine and figure out what the constraints that the routine

relies on are. It allows the designer to do any manipulation to Gargoyle that a client system

could—build new pipelines, configure them, run them, and view the results of the pipelines

running. We have found this to be an invaluable tool in designing vision routines.

Once the routines were developed, we used Gargoyle as the vision input for a

number of different clients. Each of these clients are described in detail elsewhere in this

dissertation; this is just to give an overview of where Gargoyle was used as an argument

for its effectiveness at fulfilling both its design goals as well as the needs of a more general

purpose vision system.

90

5.3.1 CHIP

While Gargoyle was developed for Chip, it was never fully integrated with the robot. Initial

experiments were done on Chip by implementing Perseus as a Gargoyle pipeline. This

proved to be successful, and the functionality of Perseus was implemented in Gargoyle [38],

however as seen in Section 4.4.3, the integration between Raps and Perseus was not tight.

Thus, none of the constraints on the Perseus routine were ever implemented in Raps, and

therefore none of Gargoyle’s more interesting capabilities were used.

5.3.2 Intelligent Classroom

The Intelligent Classroom was the first complete implementation of a vision system using

Gargoyle. Chapter 6 discusses how the Classroom uses Gargoyle as well as the pipelines that

were developed for the Classroom’s tasks in detail. The Classroom uses pipelines of skills

in its reasoning system, and meshes quite nicely with the Gargoyle way of doing things;

it simply treats modules as skills. The Classroom connects them into Gargoyle pipelines

which in turn are part of Classroom skill pipelines. To do this the Classroom passes all

of the results of the vision routine directly on to the next skill in the Classroom pipeline.

Finally, Classroom skills signal abnormal behavior similarly to how Gargoyle modules do,

allowing the Classroom to use its reasoner for dealing with skills to deal with Gargoyle

pipelines and modules.

5.3.3 Interactive Image Mosaic

One more use to which Gargoyle was put showed that it could easily be reused in other

projects. A group of students built an Interactive Image Mosaic. In order to operate it

needed to be able to track people, in addition to actually generating the Image Mosaic.

The client they designed was a simple state machine, and used extremely little context.

91

However, they were able to quickly generate results by taking Gargoyle and using modules

from pipelines built for the Classroom, adapting them for their new context. The Image

Mosaic and the pipelines that it used are described in Chapter 7.

Gargoyle has been used by a number of clients to provide context-based, real-

time information for specific goal-oriented tasks. The project that most completely implemented

our methodology for computer vision using Gargoyle was the Intelligent Classroom. The

next chapter looks at the Intelligent Classroom.

Chapter 6

The Intelligent Classroom

With the advent of Gargoyle and more robust vision routines, our research group began

looking at ways to improve human computer interaction through computer vision and plan

recognition [39, 40]. We began this line of research on Chip with the robotic waiter task

discussed in section 4.4.4. We obtained encouraging results using the robot; however, the

interaction required a large amount of cooperation on the part of the user. By forcing the

user to make up for the robot’s failings, the interaction became quite unnatural. It became

clear that more complex modes of interaction were beyond the capabilities of our robot.

This led us to look for new interaction tasks, and then to the Intelligent Classroom.

The Intelligent Classroom overcomes many of the disadvantages of the robotic

environment while maintaining the key elements that this research requires. The Intelligent

Classroom senses the world with cameras and microphones, similarly to how a mobile robot

would, but does not need to worry about bumping into walls, since it is the walls. Being

able to sense allows the Classroom to interact with the user in novel ways. Rather than

having the user deal with operating VCRs and projectors, the Classroom can take care of

those things for him. The very nature of being a classroom provides the Classroom with a

92

93

number of interesting ways to interact with the physical world and the user.

This chapter looks at the design of the Intelligent Classroom in terms of its entire

research project, and then focuses on the specifics of its computer vision implementation.

The Classroom is critical to our study of computer vision because it was the first complete

implementation of Gargoyle with an autonomous controlling client, demonstrating the

viability of the techniques for computer vision that we put forward. In addition to demonstrating

our computer vision techniques, we have used the Classroom to demonstrate a number of

interesting modes of human computer interaction, with the end goal of having the computer

cooperate with the user in complex and interesting ways.

This chapter begins by describing the Classroom and its capabilities. Section

6.1 also examines the goals of the Classroom project. Section 6.2 takes a brief look at the

hardware requirements for the Classroom. Section 6.3 looks at the planning and execution

system that runs the Classroom, specifically the interaction between the high level reasoning

and the vision framework—Gargoyle. Finally, Section 6.4 describes the tasks the classroom

performs and Section 6.5 describes the different vision routines implemented for those tasks.

6.1 Overview

The Intelligent Classroom is a lecture hall environment with audio-visual enhancements for

a professor instructing a class or an invited speaker delivering a lecture. Oftentimes when a

lecturer is faced with an array of audio-visual tools he can be overwhelmed by the complexity

involved in figuring out how to change modalities for different parts of the lecture. If an

audio-visual technician is available, then the set up and operation of the equipment can be

taken out of the hands to the lecturer. The Intelligent Classroom is like that technician in

that it takes the responsibility for operating the equipment in the room out of the hands of

the lecturer and operates it itself.

94

When developing the Classroom, the key feature that we wanted it to have was

the ability to assist a speaker delivering a lecture in the room. More than simply being

a new set of buttons that the lecturer must learn how to use, the goal of the Classroom

is to allow the speaker to go about his lecture as if there were a competent audio-visual

assistant in the room controlling all of the auxiliary equipment for him. In order to assist

the speaker the Classroom needs to be able to obtain certain information from the world.

Specifically, the Intelligent Classroom has cameras to watch what the speaker is doing and

a radio microphone set to listen to what he is saying. In this way it has sensors that

obtain information from the real world, much like a robot. An assistant is not particularly

helpful, however, if all it can do is watch. In addition to the ability to watch and listen to

the lecture the Classroom controls its embedded audio-visual features, allowing it to play

videos, change slides, turn different elements of the room on or off, and use a camera to

intelligently film the lecture.

The key difference between the Intelligent Classroom and a normal audio-visual

lecture hall is not in these things, however, but in the ability to help the lecturer without

him having to ask for it. In addition to merely interacting with the world, the Classroom

environment was designed to cooperate with the user. A competent audio-visual technician

does not need to be told when to move the camera to point to a different part of the room,

and can often follow along with a slide presentation without necessarily having to be told

when to switch slides. In order to be able to exhibit this behavior the Classroom needs to

know something about the task in which the user is engaged. Additionally, it must be able

to tell where the user is in that task. In order to zoom in on the board where the lecturer

has written so that the viewers of the film can read what is there, the Classroom needs to

know that if the lecturer walks to the board and picks up some chalk he is probably about

to write on the board.

In many ways the Intelligent Classroom in immersed in the real world, and

95

Process Manager

Skill System

World

Results
(as Events)

Configuration
Information

Gargoyle Speech
Recognizer

mic

actuators

Sobel Edge
Detector

Body-part
Tracker

Input

Background
Subtraction

Leg Finder

Morphological
Segmenter

Detect Walking
Events

Camera
Controller

Figure 6.1: The system architecture diagram for the Classroom.

therefore has to deal with many of the same problems that a mobile robot would have. Since

we had developed the Animate Agent Architecture, described in Section 4.3, to manage

many of these problems, it was a clear choice for use in the Classroom. The high level

system was redesigned to better support the plan recognition required by the Classroom to

cooperate with the lecturer, and the low level vision systems were replaced with Gargoyle.

The clean separation between high level reasoning and low level action and sensing skills

remains, however, and provides the Classroom the ability to deal with the inherently noisy

physical world.

The high level system is called the process manager and is equivalent to the

Rap system in Chip. This controls all of the planning and plan recognition. In addition, it

configures all of the processes in the Classroom, and configures skills with Gargoyle pipelines

to get data from and affect the world as shown in Figure 6.1. The reasoning system and

slide changing system, Jabberwocky, are David Franklin’s work and described in [41].

96

Figure 6.2: The Intelligent Classroom hardware stack.

6.2 Hardware

In order to accomplish all of these tasks the Classroom needs to have physical methods of

interacting with the world. This section looks at the physical design of the Classroom. Of

particular interest is the fact that these complex behaviors are accomplished with relatively

inexpensive hardware. The lack of space and power constraints in the Classroom, as opposed

to a robot, allowed us to use off-the-shelf hardware.

The Classroom has two main modes of sensory input, voice and vision. The

Classroom currently uses three cameras to view the room. A cheap fixed black and white

camera is used for some tracking tasks. In addition, we use two Sony D-25 pan tilt zoom

color cameras for color video input. These cameras are used for making a film of the lecture

and some active vision tasks. For voice input we use a radio microphone which the lecturer

must wear, which connects to a standard PC running IBM’s Via Voice, a speech recognition

application.

Beyond just sensing the world, the Classroom interacts with the world through

number of different devices. We have two VCR’s that the Classroom controls, the filming

97

camera mentioned above, a projector, and a video crosspoint switch. The Classroom also

has the ability to be easily extended to control any additional elements for which have

appropriate control mechanisms.

Coordinating all of these devices is done through ethernet and serial connections.

The computer vision and voice recognition skills each have a dedicated PC accepting their

respective input and processing it for the process manager. These machines coordinate with

the process manager through a local network. The process manager runs on a Macintosh

along with the skill manager. The skill system can then control vision and speech recognition

routines through the network and all the other devices via serial connections. Most of

the serial connections are coordinated through a single AMX communications hub which

parses commands for the respective devices and sends the appropriate commands. This

provides good abstraction for adding more devices for the classroom to control. The AMX

device contains a number of additional control outputs which the Classroom can utilize

including infrared, serial, AMX control, and a number of analog controls as well. The

physical Classroom layout is shown in Figure 6.3. The heart of this control mechanism is

the process and skill managers.

6.3 Process and Skill Managers

The Classroom’s reasoning system is itself an experiment. One of the goals of the Intelligent

Classroom project is to develop a reasoning system that can interact with people in a natural

manner. In order do this, the Classroom needs to be able to know what the user is doing.

This means that in addition to planning for itself and executing those plans, the reasoning

system must also be able to recognize the plans of the user. The systems used to accomplish

these goals were a process manager and a skill manager developed by David Franklin.

Since we are dealing with the physical world we felt that using many of the

98

Projector
VCR

Mac

AMX Hub

Video
Switcher

Vision PC

Network

Speech PC

Archive
VCR

Wireless Mic
Receiver

Marker BoardDisplay Screen

Figure 6.3: The connections between the different Classroom physical components.

techniques developed for the Animate Agent Architecture would prove helpful. Specifically,

separating the low level systems which interact directly with the continuous world from the

reasoning systems which operate in a much more discrete world. This separation can be

seen in the system diagram in Figure 6.1.

In order to maintain this layer of abstraction, the Classroom’s reasoning is

divided into two separate segments. First the process manager, which is similar to the

Rap system in Animate Agent Architecture, deals with planning, process recognition, and

process monitoring. The process manager controls the skill manager, which handles the

details of interacting with the physical world, and setting up all of the required communications

channels. A complete description of these pieces of the Classroom can be found in [41]. Some

understanding of these systems is required, however, because of the nature of the interaction

between high and low level systems for the computer vision being discussed here.

99

6.3.1 The Process Manager

The discussion in Chapters 2 and 3 points out that the control mechanism for a computer

vision system built using our methodology must be able to reason about the different

constraints and be task based. In the Intelligent Classroom that control mechanism is

the process manager.

In many ways the process manager is like the Rap system in the Animate Agent

Architecture. It reasons about the goals that it is given and decides on the sequence of

actions that it needs to do in order to accomplish those goals. This sequence of actions

is called a process in the Classroom. By this definition a process is just a plan, but the

distinction between them is important.

When designing the process manager for the Classroom, it was clear that it

would need to have a plan recognition component in order to cooperate with the lecturer.

Unfortunately the tasks that a lecturer might do in the Classroom proved to be similar, given

few observed steps from which to reason, and standard plan recognition was insufficient.

A process is different from a plan in that it is merely a set of steps, without an inferred

goal. By using processes instead of plans the Classroom is able to simply observe what the

lecturer is doing at any given moment, rather than constantly needing to update a complete

notion of what goal state the lecturer has.

The process manager maintains processes for itself, i.e. tasks that the Classroom

is engaged in, and processes for the lecturer, i.e. tasks that it believes the lecturer is engaged

in. In order to have the ability to update its knowledge of external processes, as well as the

progress of its own processes, the process manager is able to monitor all of the processes

that it maintains. The Classroom can update what it believes the lecturer is doing by way

of explanation. That is, the Classroom looks at the actions that the lecturer is making and

picks a set of possible explanation processes from those actions. As time goes on and the

100

signal: (_track :failed)
result: go to step 1

Event

prop: (person-moving speaker)
result: go to step 3

Event

prop: (person-at-board speaker)
result: :done

Event

Process

. . .

Active Processes

3

21

:done

:done

steps:

waiting for:

Event #1

Event #2

Event #3

Process #1

Process #2

Process #n

Figure 6.4: The process manager with active processes waiting for specific events.

lecturer does steps not in some of the explanations, the Classroom can eliminate incorrect

explanations. Another way the Classroom eliminates processes is because they have not

progressed properly.

A process contains a bit more information than just the steps that need to be

accomplished. It also contains information on how that process is supposed to progress.

This information includes things like ordering of steps, or lack thereof, and constraints

on the tasks. One example of constraints that can be encoded into a process are time

constraints, stating that a task should only take a specific amount of time, or should take

at least a certain amount of time. Other constraints could include things like the location

of the actors in the process, or some state.

Since the process manager uses the same representation for observing the lecturer,

or more generally other agents, and for planning its own execution, it can also monitor how

its own processes are progressing. For its own processes it executes the actions, for observed

processes it observes the actions, but in both cases the Classroom monitors the progress of

the processes.

This ability to monitor the process is critical for implementing our vision methodology.

101

The process manager monitors the progress of a vision routine that it instantiated via the

skill manager, and makes sure that its constraints continue to hold. The process manager

monitors the progress of a process two ways. First, it can receive a signal from subprocesses.

In the case of a vision routine, the vision routine can signal the process manager with

important information about the state of the world. Second, the process manager keeps

important information in memory. Changes in memory can also signal constraint changes in

the world from other sources which impact the running of vision routines. If the constraints

that a vision routine relies on fail, the process manager makes appropriate changes to the

vision routine.

It is important to note that while the process manager reasons about the sensing,

and the constraints that it relies on, it does not in fact deal with the physical world directly.

The process manager only deals with a clean abstraction of the real world. This means

that there is an inherent difference between internal processes and the low level skills that

interact with the world. We learned from the Animate Agent Architecture that this is a

critical distinction. In order to keep this distinction clean, the process manager does not

activate skills directly, but reasons about them and then communicates with a skill manager

to take care of the skills.

6.3.2 The Skill Manager

In order to interact with the world in real-time, it is often necessary to set up tight sensing-

acting control loops. These loops need to sense the world and then act on that data in order

to accomplish some task. The skill system in the Classroom is very similar to that of the

Animate Agent Architecture described in Chapter 4. This section looks at some differences

in both the skill manager, and the way the skills it manages are used.

One major difference between the Animate Agent’s skill system and the Classroom’s

102

Body Part
Tracker

Camera
Controller

Detect
Walking
Events

Input

Sobel Edge
Detector Background

Subtraction

Freespace

Connected
Components

Person
Tracker Classroom

Skill Manager
Gargoyle

Figure 6.5: A complete skill pipeline spanning the Classroom’s skill manager and Gargoyle.

is that the skills do not address global memory channels. Since the Classroom needs to

maintain multiple external processes to reason about the speaker, this would be unmanageable.

Instead, the Classroom’s skills contain inputs and outputs which allow the skills to be hooked

up in ordered sets to complete some computation. These skills can be parameterized, just

like Gargoyle modules. In fact Gargoyle modules are treated exactly the same way as skills

in the skill manager. This allows the process manager to reason about the vision at the

module level if needed.

Much like Gargoyle modules, a set of Classroom skills linked together by inputs

and outputs is called a pipeline. In fact, Gargoyle pipelines are often a part of Classroom

pipelines. These skill pipelines can become large and heavily parameterized. In the Classroom,

these pipelines are often reused with the same parameters, and sometimes by more than

one process.

The other major difference between skills in the Animate Agent Architecture

and the Classroom is that it provides a transparent communications mechanism between

103

different skills. On Chip the vision routines and the skill system were two completely

separate entities. This made communications between skills simple since the off-board vision

routines were not skills and all the skills resided on the same machine. In the Classroom,

vision routines are treated as skills, but Gargoyle, where the vision routines run, is on a

completely separate machine from the rest of the skills. To overcome this problem, the skill

manager maintains communications channels between the skills no matter which machine

they are on. It also decides which machine a skill should be run on when the process

manager requests a new skill to start. Figure 6.5 shows a complete pipeline with some skills

running as Gargoyle modules. The results from the Gargoyle modules are transmitted to

the Classroom skills which in turn update the Classroom memory and take any required

actions.

As one might expect, many of the skill pipelines that the Classroom uses involve

a vision component for data input. Next we look at the tasks the Classroom does. In

particular we look at the constraints the different tasks provide for the process manager

to reason about. The rest of this chapter examines in detail the operation of the different

vision routines that the Classroom uses.

6.4 Tasks

When a speaker is giving a talk in the Classroom, the tasks that the Classroom will do

depend on which audio-visual elements the speaker chooses to use. The speaker can also

easily opt out of using the audio-visual elements of the Classroom. The Classroom will not

interfere with this and simply bottom out in its root skill which films the lecture. On the

other hand if the speaker wishes to utilize some of the other features of the Classroom it

will hierarchically engage more skills. The key is that any of these tasks can be utilized or

not, as the speaker wishes. The Classroom exists to assist the speaker transparently, not to

104

Film the Speaker
Entire room framing none
Speaker moving framing Centroid of the speaker

Rapid updating
Speaker standing framing Location speaker is standing

Moving state of the speaker
Head shot Location speaker is standing

Moving state of the speaker
Wether the speaker is gesticulating
Rapid updating
Possibly the location of a podium

Speaker writing framing Location of the speaker
(from centroid and height)
Location of speaker’s hands
Location of the board

Video and Slide feed How long to show the alternate feed

Figure 6.6: Summary of filming tasks, showing the information required to accomplish the
given task.

get in the way of the speaker. With this in mind, we now examine some of the tasks which

we have implemented in the Classroom.

6.4.1 Film The Speaker

One of the Classroom’s primary tasks is to film the presentation that is being given. This

film can then be archived for later use, sent off-site for remote presentations, or transmitted

in real-time for distance learning. Producing a reasonable video of a lecture involves more

than simply sticking a camera in the back of the room and hitting record. Unfortunately, this

is what often happens due to the cost of employing a camera operator for every presentation

that is recorded. The Classroom provides a superior recording of the presentation, compared

to a static camera, with no work on the part of the speaker. The Classroom films the

presentation using a pan-tilt-zoom camera unit as well as a video switch so it can record

alternate video feeds as needed. The Classroom has a number of options of what to put on

105

Figure 6.7: A number of alternate framings for filming the speaker, clockwise from top left:
generic, walking, writing, and gesturing.

the recording of the lecture.

With all of these methods available to the Classroom, it is possible that it

will go overboard and produce a less useful video. We prevent this from happening by

having a hierarchy of filming techniques, where the default is simply filming the entire

room with a steady camera. This hierarchy is shown in Figure 6.6. In this way if all of

the Classrooms sensors fail, and it is completely unable to understand what the speaker

is doing, a reasonable, though poor quality, video is still produced. This is as opposed to

trying to frame the scene in some inappropriate manner using noisy data. Examples of the

different framing techniques that the Classroom uses are shown in Figure 6.7.

The next more specific framing technique follows the speaker with a slightly

tighter shot. This technique involves simply placing the center of the speaker in the center

of the frame, and following him as he moves. Since the Classroom knows where the speaker

is and follows him with the camera, it can provide a tighter shot which allows the viewer to

106

see the speaker in more detail. In order to use this framing technique, the Classroom only

needs to know where the speaker is. Therefore any of the person tracking techniques from

Section 6.5 will provide the appropriate information. In fact, the amount of information

required by this task is very small, it only requires the two dimensional location of the

centroid of the speaker in image coordinates. In addition, there is a small time constraint

on the results. If the speaker is moving quickly and the tracking algorithm is not fast

enough, the Classroom may not be able to keep the speaker in the scene. If this happens,

the Classroom can fall out to the default framing until the speaker slows down. Alternatively

it can switch to a tracking technique with a higher frame rate.

This filming technique has proven to be quite robust, and produces a video of

higher quality than a static camera. However, since the Classroom knows more about the

its environment, it can provide a number of more specific framing techniques.

If the general technique follows the speaker as he moves about the space, an

obvious additional filming technique is to change the framing when the speaker stops

moving. When someone is talking while not moving, subtle body language is often important,

be they facial expressions or arm gestures. The Classroom provides these better on the

recording by framing the speaker much closer. Since the speaker has stopped moving there

is a much smaller chance that he will suddenly move out of the frame. The Classroom relies

on this to provide a tighter shot. This technique again relies on knowing where the speaker

is in the image frame, so simple tracking techniques will work for this framing technique as

well. Since this shot is too tight for following a moving person, if the speaker starts moving,

the Classroom will revert to the less specific following shot framing.

Finally, the most specific speaker shot is a tight head shot. These are often used

in television news casts when someone is delivering a report for a steady camera, and is

very still. This behavior is sometimes seen in a lecture hall setting if the speaker is using

107

a podium. If the Intelligent Classroom has a podium, it can use this more precise framing

when the speaker goes to the podium and stands still while lecturing. Determining when to

use a head shot is very similar to determining when to use the previous framing technique.

There are a few complications from a visual standpoint however. In order to do a head

shot, the Classroom requires not merely the location of the speaker, but also the location

of his head. Additionally, the previous framing technique includes the torso of the speaker

which records the speakers gestures as well as his face. This is potentially important to

have in a video of a talk, especially with more animated speakers. Therefore this technique

should only be used if the speaker is not gesticulating. This means the Classroom requires

the location of the hands of the speaker as well and provides another task constraint on

the vision routine. With this additional information the Classroom reverts to a wider shot

when the speaker starts moving his hands regularly, which the Classroom assumes should

be in the video. These additional task constraints require that the Classroom change to the

background subtraction tracking routine if it is not already using it. If the other constraints

for that routine do not hold, then this framing technique is not available to the Classroom.

These framing techniques are used by the Classroom to produce a video which

captures a much higher quality video than simply placing a camera in the back of the room.

There is more to producing a quality video of a lecture, though, than simply focusing on

the speaker at all times.

6.4.2 More Filming Possibilities

From a vision standpoint, filming the speaker is exciting because it utilizes many different

vision routines. Of course, there can be times in a presentation when the focus of attention

is not on the speaker. For example, if the speaker is using a video in his presentation, the

Classroom will put that video feed directly into the recording of the presentation. In this

108

way the person viewing the presentation on tape will be able to see what the video is.

Similarly, since the Classroom knows when slides are being changed in a slide

show, it can show the slide in the video feed, depending on how much text the particular slide

has. The Classroom could also use tracking information about the speaker to know when

watching the speaker is important. For example, if the speaker is particularly animated, it

might want to hold off on showing the slide, or switch back to showing the speaker from

showing the slide or video. Again, this is a hierarchical process where the basic action that

the Classroom provides, showing videos and briefly flashing slides, produces a quite usable

recording of the presentation. So far, all of the filming techniques shown are completely

automated and require no extra work on the part of the speaker.

The Classroom also zooms in on things that the speaker has written on the

board. If the Classroom knows where the board is, it can then zoom in on portions of

the board that the speaker has written on so that it can be read in the video. This task

requires much more information from the vision system than the previous tasks. In addition

to knowing where the speaker is in two dimensions, it must also know if he is near the board,

and then where he is writing on the board. The framing technique used makes sure that

both the speaker and the board are in the scene while the speaker is writing. While this is

going on, the Classroom tracks the speakers hand to see where he is writing. The filming

camera is then directed to zoom in on the board where the lecturer is writing.

The more the Classroom knows about the lecture the better it performs, so the

user can provide a script of the presentation to improve his results. If the Classroom knows

that the speaker is going to be working at the board for a while, and then showing some

slides, the recognition of those events becomes much easier.

Beyond simple scripting, additional knowledge could be used to generate new

framing techniques. For example, if the speaker is presenting on anatomy, you could imagine

109

Operate Slides and Videos
Use audio commands Speaker must be using microphone headset.
Use Jabberwocky Speaker must be using microphone headset

Contents of slides must be known
Use virtual buttons Location of the speaker

(from centroid and height)
Location of speaker’s hands
Location of the board

Figure 6.8: Summary of audio video controlling tasks, showing the task constraints.

him frequently referring to a skeleton. If this is the case, he may very well want the

Classroom to zoom in on the specific anatomical element he is pointing at. All of the

required vision and framing techniques already exist for this skill to be implemented. By

simply giving the Classroom a small additional piece of knowledge it can accomplish wildly

different tasks.

6.4.3 Operate Videos and Slides

In addition to simply filming the lecture, the Classroom controls all of its presentation

components. Most of these are controlled through verbal commands. For example, the

speaker can tell the classroom to play a video, or start a slide show and it will do so,

starting VCRs and projectors as needed. This will also change the active filming technique.

These tasks are are outlines in Figure 6.8. The important feature of these Classroom abilities

from a vision perspective is that the Classroom knows about changes in the environment

before they happen. It knows that part of the background is going to change, and that the

lighting may change, and can take appropriate action for the vision routines.

In addition to controlling the Classroom through verbal commands we provide

a number of nontraditional control techniques. For switching slides during a slide show the

speaker may use the obvious “next slide” and “previous slide” commands, but he can also

have the Classroom follow along with the talk and change slides as needed. The Classroom

110

reads the slides in the presentation and represents each of the slides based on the words it

contains. It can then pick the slide that is most like what the speaker is currently talking

about. By assuming that the speaker will go linearly through the talk, it can greatly improve

its performance. But the speaker can also skip around in the talk by telling the Classroom

to “skip to the slide that talks about. . . ”. We find this behavior interesting because it is

something that a human operator would not be able to easily do. This was implemented

by David Franklin and described more fully in [42].

Another alternate control mechanism the Classroom has is “virtual buttons”.

Since the Classroom has the ability to track what the speaker is pointing at and whether

or not he is close to the wall, it can watch the user touch part of the wall that has been

designated a control button. In this way the speaker can use non verbal commands to

control the presentation. The first task constraint for this behavior is knowing where the

user is pointing, which is very similar to filming him write on the board. Additionally the

Classroom must know which section of the wall is a “button”. More accurately, it must

agree with the user on which part of the wall is which button. The Classroom has two

techniques for sharing this information.

First, it can inform the user by projecting a button onto the video screen using

its projector. We have actually used this functionality to create an entire menu system for

turning on different Classroom behaviors as shown in Figure 6.9. This technique requires

that the projector be on, and that the Classroom have the ability to draw onto the screen.

This is not possible if there is a video playing through the projector, so we came up with

an alternate way of sharing the information of where it button is.

Instead of having the Classroom always dictate where the button is, the user

can actually tell the Classroom where the button is by drawing it on the board. In order for

this to work, the Classroom needs two pieces of information. First, it needs to know where

111

Figure 6.9: Classroom generated and user generated virtual buttons in use.

the button is being drawn. It can gain this information with a tracking routine that follows

the speaker’s hands, just like when framing the recording for when the speaker writes on

the board. Then once the icon has been drawn, and the speaker steps away from the board,

it needs to read the icon off the board. There are a number of icon recognition routines that

the Classroom has at its disposal to read the icon. Matching is a computationally expensive

task, and this is only done when other tasks are not needed, normally in an initialization

phase.

Finally, once the user and the Classroom have agreed on the location of the

buttons, the Classroom needs to know whether or not the speaker is touching the wall at

one of those locations. In order to do this, the Classroom must know the location of the

user, whether or not he is at the wall, and where his hands are. This are the same task

constraints as for finding the spot where the user is writing an icon on the board, and

therefore uses the same vision pipeline.

112

6.4.4 Handle Initialization

As we saw in the “virtual button” task, a number of the Classroom’s tasks require knowing

specifics about the space in which it exists. In a set environment these locations can be

assumed, and if the boards and projectors are bolted down, they will not change. In order

to make the Classroom a more general system, we have also provided it with some tasks

which allow it to initialize itself. Some of these tasks are very computationally expensive. In

order to allow the Classroom to accomplish them without impeding other tasks which have

time constraints, the Classroom uses an initialization phase. Depending on the information

needed by the Classroom, it requests that the user point to them. For example, if it does

not know where the white board is, it asks the user to point to the four corners of the white

board. Similarly, anything else that the Classroom does know have a given location for, it

can request that the user point it out.

This start up time is also the ideal time for the Classroom to acquire any

additional information that it may need for some of its vision routines or other tasks.

In the virtual button example given in the last section, we saw that the Classroom needs

to know where the buttons are. The matching pipeline is very expensive, and can interfere

with the filming task if run at the same time. So the user should draw the icon before the

start of the lecture if he does not want it to interfere with the recording. Of course if he does

draw it during the lecture, the Classroom can realize that the time task constraint will not

hold when it is reading the icon, and use the most general filming technique. This would

remove the time constraint and allow it to either stop the tracking pipeline altogether, or

simply run both pipelines. There are many other pieces of information that the Classroom

can obtain for the vision routines: color histograms of the user, height information on the

user, or any other required information. In our Classroom most of the information that it

needs is stored to simplify the startup process, and is stable because many of the room’s

113

elements do not move.

We now look in detail at the vision routines we developed to accomplish these

tasks. They were all implemented as Gargoyle pipelines which the Classroom uses to

accomplish these tasks.

6.5 Vision Routines

The Classroom’s vision routines are the first complete implementation of a vision system

using Gargoyle. Each of the vision routines is a Gargoyle pipeline, designed for specific tasks

in the Classroom. The Gargoyle architecture provides a framework in which we are able to

rapidly develop those pipelines and expand our library as needed. We also found that many

of the pipelines can be easily reused for a number of the Classroom’s tasks. Looking at the

list of tasks given in Section 6.4 we can see that many of the Classroom’s tasks share task

constraints. Since we thought about these ahead of time, we found our ability to reuse the

pipelines was much improved over our experience with the robot.

We now examine each of the vision routines in detail, specifically noting the

constraints that the routine relies on, the operation of the routine, and some examples of

how the Classroom makes decisions about how to use the routine. The detail of how the

different modules run are not particularly novel, however they are necessary to understand

how the Classroom is able to turn this collection of routines into a useful vision system.

Specifically, by understanding how the modules work, we can see how the Classroom is

sometimes able to obtain the required information about the current context from the

modules themselves.

Tracking the speaker in the Classroom is such a fundamental vision task for

the Classroom that we developed two different routines for tracking people: background

subtraction based and color based. The color based tracker is more efficient than the

114

 Module Connections

Person
Tracking
Pipeline

Input
Module

Edge
Detector

Freespace

Background
Subtraction

Combiner
Module

Person
Tracker

Task Constraints

Centroid Location
Person Height
Hand Location

Environment Constraints

Background must be stable.
Edge image must be clean.

Only one person allowed in scene.
Head must be within view.

Connected
Components

Figure 6.10: The background subtraction tracking pipeline and constraints.

background subtraction based tracker, and relies on fewer constraints. The background

subtraction technique, on the other hand, provides more information about the location of

the person being tracked.

6.5.1 Background Subtraction Tracking

The background subtraction person tracking pipeline is built up of a number of modules

in Gargoyle. First it grabs grayscale images from the camera using a standard input

module. This in turn hands the image off to the background subtraction module. This

determines where the motion is in the scene, which is assumed to be the person being

tracked, and is handed off to the person tracker module. The person tracking module

does some morphological analysis of the person region and some rudimentary tracking to

determine the most likely location for the features being tracked which it reports back to

the client via Gargoyle. We now examine the operation of each of the modules.

115

Input Module

The input module takes images from the camera and converts them into a standard Gargoyle

image on which the other modules can operate. This module is very straightforward, but

has some complexities that are worth discussion since it is used by all of the pipelines. They

all come from the fact that Gargoyle is meant to be portable, but grabbing frames for a

video input source is inherently platform specific. Gargoyle gets around this problem by

abstracting the frame grabbing away from the input module. This means that the same

pipelines can be used with different equipment setups, although there is a danger of losing

capabilities of the native frame grabbers with this abstraction. To get around this, the

input module is configurable in a number of ways, which the frame grabber may or may or

may not implement in hardware.

The first way in which the input module gives information to the frame grabber is

by actually providing the client different input modules to pick from. This allows different

input modules to be used to produce different types of images (e.g. color or grayscale).

Some frame grabbers produce grayscale directly into memory while others need to have

the data converted. By picking the needed input module, the frame grabber will utilize

the appropriate hardware advantages where possible. Beyond simply choosing different

modules, the modules themselves are also parameterized.

The input modules are parameterized on scale, size, and location. These parameters

can sometimes be implemented in hardware as well, and when possible they are. Sometimes

pipelines need information from only a subsection of the scene. Parameterizing the input

module with that information will save internal memory, and potentially give some speed

up to the digitization process. Additionally, different pipelines may require a specifically

sized image in order to operate properly. If this is the case, then the input module can be

parameterized to produce images of that size. In the other hand, if the other modules in

116

the pipeline are written in a more general manner then the imaged can be sized based on

other concerns. For example, if the current hardware setup prefers specific sizes and scales,

those can be chosen for performance improvements. Similarly, most pipelines are sped up

with smaller images. If the smaller image contains enough information for the pipeline to

provide the information required of it, speed improvements can be gained by using smaller

images.

In the Classroom we use quite small images, only 160 × 120. This may seem

small, but for the task constraints that the pipeline has been given by the Classroom, this

resolution provides ample information. However, the rest of the modules in the background

subtraction person tracking pipeline were written in a general manner with respect to image

size and scale. This means that if more precision were needed for, say, tracking the hands

more accurately, higher resolution images could always be used, at a cost to speed. So for

this pipeline, the grayscale input module produces images as requested by the Classroom

and hands them off to the background subtraction module.

Background Subtraction Module

The background subtraction module does the initial localization of where a person could

be in a scene. This module was inspired by the Perseus implementation on the robot [57].

This module operates like a motion detector with localization improvement. Instead of

simply differencing consecutive frames to find motion in the scene, it actually builds up a

representation of the background in the scene. By assuming that the background of the scene

is relatively stable, this module is able to compare a given image against the background

representation to determine which parts of the scene are foreground. Any portions of the

scene which do not fit into the background representation are assumed to be foreground.

The Classroom makes the constraint that there be only one person in the scene, so with

117

Figure 6.11: The functioning output of the background module and a person “burning”
into the background on the right.

some exceptions this foreground will be the speaker. It should be noted that the one person

constraint is a constraint on the pipeline, but not on this module. The major environmental

constraint that this module relies on is a stable background. We will now look at how the

module builds and uses its representation of the background, followed by some of the ways

the Classroom deals with constraint failure on this module.

The background of the scene is represented in a retinotopic manner, that is each

pixel of the image plane I(x, y) maps to a single point in the background representation

B(x, y). Each of the pixels is then represented by a histogram of the values at that location

over time. The resolution of the histograms is the same for all of the pixels in the image,

but can be set depending on the needs of the pipeline, by a given bin width w. So this

histogram H(x, y) = (b1, . . . , bn) where n = maxval/w. The width of the bin determines

the sensitivity of the background subtraction module to change in the image. In our case,

maxval = 256, and we tend to use a bin width of 16, so w = 16 → n = 16. So each pixel

has a histogram with sixteen bins.

In order to obtain the histograms, this module watches images over time. Each

time the module receives a new image, it updates the histogram for each pixel with their

118

respective values.

∀n 6= I(x, y, t)
w

,Hn(x, y, t) = Hn(x, y, t− 1)

H I(x,y,t)
w

(x, y, t) = Hn(x, y, t− 1) + 1

This allows the histograms to build up a representation of the history of what

the background has looked like over time. If the scene is relatively stable, this will allow the

histogram to build up a peak which represents a range w of the most likely values of the

background at that point. The rest of the histogram also gives the system information about

what other values could be likely in the case of an oscillating background. We discuss these

features later when talking about using the background representation to find foreground.

Before we can leave the construction of the background representation, there are

two additional problems that must be discussed. First, the above algorithm resists change

over time. That is to say, as t grows, with a stable I(x, y), if some change happens it

becomes harder for that change to affect the system. In fact, if we are using the maximum

bin as the background, in the worst case, where the new background value has never been

seen before, the time until that value is the new background will be ∆t = maxHn(x, y, t),

that is, the largest value currently in the histogram. We have found that even a stable

background will change over time for a number of reasons. These include people leaving or

entering the room, changing the amount of light reflected into the background. Additionally

as the speaker moves around the scene blocking different portions of the background the

background will change from the camera adapting to the new white balance environment.

In order to overcome this problem, we add an additional step to the algorithm for updating

the background.

119

If H I(x,y,t)
w

(x, y, t) > bmax

then ∀n,Hn(x, y, t) =
Hn(x, y, t)

2

Basically if the value of the just-incremented bin exceeds a maximum value,

bmax, then we halve the value of all the bins. This allows the histograms to still represent

the relative value of the values’ histories, but still maintain a maximum time to change. In

this case ∆t = bmax. This means that the parameter associated with bmax is simply the

longest amount of time that should pass before a change in the background becomes the

new dominant background value. This leads to the second problem, which is the fact that

if the foreground stops changing, it becomes background.

This feature is actually generally desired. In the Classroom, if a speaker brings

an object into the scene and places it in the image, then it will become become the

background over time. If the object does not ever move, this makes sense in terms of

the vision task. Unfortunately, if the goal is to track the person, as it is in the Classroom,

this can be detrimental if the person stands in one place for an extended period of time.

In this case, the person will become part of the background. In order to prevent this

from happening, the background subtraction module can be parameterized to not update

the background representation. If the person stands in one place for an amount of time

approaching bmax, the Classroom turns off the background subtraction.

One item of note here is the fact that the background subtraction module is

not able to turn off the background updating on its own. It has no understanding of

what its retinotopic output is being used for, and thus does not know when the person is

standing still. Only the Classroom’s reasoning system has this information, derived from

later modules in the pipeline.

Stopping the background representation from updating prevents the person from

120

being “burnt into” the background, but it does mean that the background can not change

any more. Since the background does change over time, for time of day and other lighting

effects, this module can not be used for extended periods without the background being

updated.

Now that we have examined the representation of the background, we need

to look at how that representation is used to determine where the foreground is. The

first concern is how the foreground will be represented for use by other modules. The

representation used in the Classroom is a retinotopic map with a binary value at each

image point, either foreground or background. An alternate representation is to give a

value at each image point representing the probability that that point is foreground. We

now look at three methods of obtaining these representations.

First we use a simple comparison. For every pixel we take the value with the

largest bin from its respective histogram,

∀n∃nmax,Hnmax(x, y, t) = maxHn(x, y, t)

If the value of the pixel for the current image falls into the bin with the largest

value for that histogram, then that pixel is background. That is, I(x, y, t) is foreground,

iff nmax 6= I(x,y,t)
w . This method is nice because it is extremely fast to compute, but it has

some disadvantages. If the background is slowly changing and is at a boundary (i.e. it has

just changed) noise will cause the value of that pixel to vacillate over the bin boundary.

This can cause a background pixel to become foreground, even though both of the bins that

it vacillates between have a high count.

Another discrimination method gets around this problem by allowing more that

one bin value to be the background. It does this by assigning a percentage p of the current

maximum bin value to be the cutoff for a bin to be background. In this case, I(x, y, t) is

121

foreground, iff H I(x,y,t)
w

(x, y, t) < Hnmax(x, y, t) × p It is important to note that this value

must be proportionate to the current maximum, not the global maximum bmax. By dividing

the histogram as the background settles, the actual value of the maximum bin goes up and

down, but the proportions of all the bins relative to each other remains correct. This allows

us to use the above equation to achieve a gentle transition from one background to another.

Finally, if the pipeline requires more detailed information about the foreground,

rather than just a simple threshold, the background subtraction module can return an image

with a percentage at every pixel representing the likelihood of that pixel being background:

P (I(x, y, t)) =
H I(x,y,t)

w

(x, y, t)∑
n Hn(x, y, t)

This information can be combined with input from other modules and then run

through a threshold module to make a more complex determination of where the foreground

is. In the actual implementation of the Classroom, we stick to the simplest pipeline that

meets all of the constraints to give the information in the fastest possible manner. Once

this representation of foreground has been made, it is passed on to a connected component

module.

Connected Component Module

Once the foreground has been extracted from the scene, the pipeline performs a connected

component analysis on it. This aids in determining which parts of the foreground are

actually the person. By examining the different connected pieces of the scene, the person

tracker is better able to deal with noise.

The operation of the connected component module is itself fairly straightforward.

It is a simple blob coloring algorithm. We scan the input in left to right, top to bottom

order. The required input for this module is a binary image. The value 1 is colored, and

122

the value 0 is not. The output of this module is the input with each connected region, or

“blob”, is assigned a unique number. While doing this, this module also accumulated a

number of statistics about the different regions, such as its size.

The coloring algorithm works in the following manner. The current color c is set

to one, and the colored images is cleared, ∀x, y, C(x, y) = 0. Using appropriate boundary

conditions, the following algorithm is used. If the current pixel is not foreground, that

is if I(x, y) = 0 then go on to the next pixel. On the other hand if the current pixel is

foreground, I(x, y) 6= 0, then we use the following set of equations to determine what the

blob’s color is.

I(x, y − 1) = 0 & I(x− 1, y) 6= 0 → C(x, y) = C(x− 1, y)

I(x, y − 1) 6= 0 & I(x− 1, y) = 0 → C(x, y) = C(x, y − 1)

I(x, y − 1) = I(x− 1, y) = 0 → C(x, y) = c & c = c + 1

I(x, y − 1) = I(x− 1, y) = 1 → C(x, y) = min C(x− 1, y), C(x, y − 1)

In the final case, where both pixels have a color, then additional work needs to

be done. Both C(x − 1, y) and C(x, y − 1) are the same color now. We keep track of this

information in a vector of all the colors. Once the above step is done, then this vector must

be updated, RC(x−1,y) = RC(x,y−1) = C(x, y). Once the algorithm is complete, the vector

R is updated iteratively ∀c,Rc = RRc until each Rc has its “canonical” value.

Once this coloring algorithm has run, there will actually be more colors than

regions. In order to solve this problem, we run through the image a second time, using the

color vector to look up the true color of that region. While C(x, y) 6= RC(x,y) update the

color so that C(x, y) = RC(x,y).

If the performance of this module degrades, there are a number of options

123

available to the Classroom. First, the background could have just changed on a large

scale, rendering the background subtraction tracker useless. This tends to happen when

a person walks into the scene for the first time causing a global white balance change in

our Sony cameras. Another possibility is that a shade was opened changing the nature of

the lighting in the room. Both of these are relatively small changes in background and will

quickly be compensated for. However, the Classroom must know for how long the data

quality will be poor. This module provides that information by informing the Classroom

of the largest region size. The Classroom then ignores the tracking information until the

size is reasonable for a person. It can speed the recovery process by having the background

subtraction module run as quickly as possible, thus updating the background representation

without bothering to send data to the rest of the pipeline. If, on the other hand, the data

is not noisy and the Classroom requires faster tracking, the background representation can

be sent directly to the person tracking module. This has the disadvantage of not localizing

the large person regions, so the location information returned by the pipeline will become

much more susceptible to noise.

One final way in which the Classroom can control the connected component

module is to actually have it perform a first pass filter on the data. There will often be

small foreground noise regions in the image. Since this module calculates the size of the

region when recoloring, it can be parameterized to eliminate regions below a certain size.

This will occasionally make the head disappear, so if a stable head location is needed, the

full version must be used, or it must be told the location to not filter.

Finally, a retinotopic map representing the uniquely colored regions is handed

to the person tracker module.

124

Person Tracking Module

Once the foreground regions have been labeled and the noise removed, it is up to the person

tracking module to determine which blobs are part of the person, and where the hands and

head are. This module actually uses a representation of what it expects a person to look

like in order to make this determination. All of the components of what exactly a person is

are parameterizable, however since they are all percentages based on the size of the person,

they are fairly generic. In fact we have been able to use the same parameters on completely

different scale images.

In order to find the person it must first determine which foreground region is

the main part of the person. The first thing it does is throw away regions that are too

large or small to be a person. It then uses the environmental constraint that people stand

on the floor to begin searching for the person region. If it has been running for a while,

it will already have an estimated location for the person region from tracking the previous

locations of the user. Assuming that it has the tracking information, it chooses the region

closest to the estimated person location. Otherwise it will simply choose the largest person-

sized region in the scene, on the assumption that there is only one person-sized foreground

object in the scene. Once it has done this it uses its person representation to determine if

any other regions belong to the person.

The person representation relies on a number of constraints. First, the person

must be standing on the ground. This means that the head is on top of the body, and the

arms are at the side of the body. The specific regions in which the person tracking module

searches for the head and hands are determined by the location of the central region, and

percentages of its height. The head is the top most point of the region within the head

search range. This prevents noise from above the person from causing too much disturbance

in the head location. Once the head location has been found, a more accurate person height

125

is obtained and appropriate locations to search for the hands are generated. The hands in

turn are understood to be the end of extremities from the body. Therefore if the person

is blocking his writing with his body, the Classroom will not be able to see it. This is an

acceptable constraint since the Classroom only wants to know when the person is writing

where it can zoom in for filming skills, or when he is pointing at a location on the wall

for virtual button skills. Other skills, pointing at classroom elements for example, would

require different modules since the arm might not be away from the body from the camera’s

perspective.

Once the person tracking module has acquired the person, it improves its performance

by tracking the person to estimate where he will be in the next frame. Our tracking

technique is another example of needing to understand the constraints on the system in

order to produce effective results. We have found that when the speaker is delivering a

lecture his motion can be quite erratic. Because of this, unless he is standing in one place

the prediction would never work for more than a few consecutive frames. In particular, the

hand locations were almost impossible to track. With a frame rate less than ten frames a

second, the user’s hand could move from one end of the search region to the other. In the

end, we decided to use a very simple prediction algorithm which was extremely cheap to

predict the general location of the person since further processing is done—we concentrate

on tracking the centroid of the person, since that will give the search locations for the head

and hands.

The tracking mechanism this module uses looks at only the two previous locations

of the person to determine the probable next location. It uses a simple linear assumption,

∆P = P (t) − P (t − 1) and the estimated next location is P (t + 1) = P (t) + ∆P . This

ridiculously simple tracking method works because of two assumptions. First, the person is

most likely to do in the next moment what he was just doing in the previous moment. Any

more complexity will be finding patterns where there are none. Second, when the person

126

is moving around the room, his motion tends to be extremely regular until he stops. One

special case is when the speaker is standing still. Random noise can move the centroid of

the speaker around to a small degree (standard Gaussian noise). In order to prevent these

small aberrations from sending the tracker off in an incorrect direction, the successive deltas

can be run through a simple low pass filter. We are looking at using Kalman filters [47]

to reduce the noise further. Our current method prevents small amounts of high frequency

noise from affecting the tracking when the user is standing still. One last point about the

simplicity of the tracking algorithm is that is it only used to reduce the search time for

finding the person region. Even if the tracker fails the module will still function, albeit a bit

slower, by iteratively expanding the search area. This module shows that a simple speedup

can often be the most effective.

Once the locations of the head, hands, and centroid have been obtained, they

are sent through Gargoyle to the Skill Manager to be used by the next skill in the pipeline.

Alternate Modules

Examining the background subtraction tracking pipeline, it is clear that the Classroom has

many options for updating how the pipeline is running. From changing parameters, as in

the maximum bin height for the pixel histograms, to changing how a routine operates, like

when it turns off the background updating. It also can make structural changes to the

pipeline, like removing the connected component module for a speed increase. We have

found this pipeline to be so fundamental to the functioning of the Classroom that we have

developed a number of other variants on this pipeline.

We can add an edge detector module to increase the localization accuracy of

the person. One problem we have is that the person can cast shadows on the wall which

throw off the tracking. Since the back wall of the Classroom is textureless and the person’s

127

shadows tend to be soft, the output from this module is combined with the output from

the background subtraction module, and a new person location image is created with only

regions that are both not background and have edges handed to the person tracking module.

This provides much better localization on the hands and legs, but is more computationally

expensive.

Another problem we have found is that if one of the fluorescent ceiling lights

happens to be in the scene, it will flicker causing the background subtraction routine to

think that the light is foreground. In order to solve this, we combine the output from the

background subtraction module with a simple threshold module. The light clips at the

white end, and is easily filtered out.

Finally, if noise needs to be filtered out, but the connected component module

is too expensive, it is replaced with a simple morphological erode module.

These alternate formulations of the person tracking routine are simple alterations

that change how the routine operates without changing the information that the routine

returns. That is, the alternate modules use different environmental constraints, but still

use the same task constraints. Currently the Classroom only uses these alternate modules

when specifically instructed to do so. We want to have it alter the vision routines by its

own constraints in the future. Another formulation of the tracking routine which does alter

the task constraint is color tracking of the person.

6.5.2 Color Tracking

The background subtraction pipeline just described provides accurate data about the location

of the hands and head and centroid of the speaker. It is able to do this by using a very

strong environmental constraint: the background must be relatively stable. The Classroom

has a number of modifications it can make at its disposal in order to account for small

128

Color
Tracking
Pipeline

Task Constraints

Centroid Location

Environment Constraints

User histogram must be known.
User color must be identifying in scene.

 Module Connections

Input
Module

Color
Histogram

Color Histogram
Backsubtraction

Person
Tracker

Threshold
Module

Connected
Components

Figure 6.12: The color tracking pipeline and constraints.

changes in the background; however, there are times when that constraint does not hold.

The most obvious example of this is when the camera is moving. In our setup, the vision

camera seldom needs to move, since we have a second camera for filming; however, if the

user walks out of the view of the stationary camera, a movable camera will obviously need

to be used to track the user. Additionally, there are instances when the background is

constantly changing because of lighting conditions outside the control of the Classroom,

such as light from a window on a windy day. Clouds passing in front of the sun can make

regular changes in the background. For all of these reasons, we built an alternate tracking

pipeline, this one based on color.

In addition to using different environmental constraints, the color tracking routine

operates on a different set of task constraints. Due to the imprecise nature of the color

tracking, exact location for different body parts are harder to achieve, although it does

provide good localization of the centroid. We now examine how this routine operates in

detail, again with an eye toward understanding the constraints on which the pipeline relies.

Many of the modules are the same module used in the background subtraction pipeline. In

129

this case we only look at how they interact in this pipeline and refer to Section 6.5.1 for

details on the operation of that module. This pipeline consists of six modules, a color input

module, a color histogram matching module, a threshold module, possibly a connected

component module, and finally a person tracking module.

Color Input Module

The color input module is parameterizable in the same way as the gray scale input module.

Since color matching is a local operation, and we have already seen that none of the other

modules in this pipeline rely on a specific scale or size, specific regions of the scene can be

used, and smaller scales can be used in order to speed up the processing. Once the color

image has been obtained it is passed to the color histogram matching module.

Color Histogram Matching Module

Using color for tracking requires that two constraints hold. First, the model of the object

to be tracked, that is its color histogram, must already be known. Second, those colors

must be relatively unique in the scene, that is color must be a good discriminant if you are

going to use color to track the object. The first constraint is interesting because that is

entirely dependent on the system using the pipeline. Basically this pipeline can not be used

unless the histogram of the object to be tracked has already been obtained. The Classroom

must therefore have a color histogram of the speaker before utilizing this pipeline. This is

a crucial point, but in order to describe the operation of this module we will assume that

the Classroom already has that model of the speaker. The Classroom monitors the second

constraint in much the same way that it monitors the stable background constraint, by

observing the output of the pipeline. We will examine both of these constraints more later,

first we examine the operation of this module.

130

This module utilizes a model of the object to be tracked based on its color

histogram. The histogram is a three dimensional space, with each dimension divided into

n bins giving n3 total bins in the histogram. Each possible color maps into these bins in

the usual manner by taking the value of each axis of the color space and determining which

bin it goes into for the corresponding axis of the histogram.

Cr,g,b → HCr/n,Cg/n,Cb/n

The value at each position in H represents the percentage of the object that contains

that color. Color histograms have been used for object recognition and localization before,

initially by Swain and Ballard [85], and a number of techniques for using this color histogram

model of the object were available to us. We implemented two methods, a simple percentage

threshold method, and a slightly more general color histogram backprojection method.

The threshold method is extremely cheap computationally, requiring only one

pass through the image. At each pixel in the image, the value of that color is looked up in the

histogram. Then the corresponding location in a single band image is set to be the value

retrieved from the histogram. This new image contains the relative likelihood that each

point is part of the tracked object. This simple algorithm works better when the tracked

object has only a few colors. If this is true, then simply thresholding these percentages will

give the location of the object. This is fast and effective in the Classroom if the speaker

is wearing a solid-colored shirt. If this is the case, the centroid of the shirt, and thus the

speaker’s torso, is easily found. Unfortunately it leaves smaller sections of the histogram,

say the hands and head of the speaker, as much less likely to be the foreground, as seen in

Figure 6.13. One possible solution is to find different histograms for different body parts,

though this increases complexity. Another solution for more accurate color tracking is to

use color histogram backprojection.

Color histogram backprojection, developed by Mike Swain [84], provides more

131

Figure 6.13: Results from the color histogram backprojection module.

detailed tracking of the object in the scene. Rather than simply looking at the histogram of

the object being tracked, it also compares it to the histogram of the given image. This takes

into account all of the colors of the tracked object rather than just the dominant ones. In

order to do this, a new histogram is made, the ratio histogram. The model histogram M is

divided by the histogram of the current image I(t) to generate the current ratio histogram,

∀i, j, k,

(
Ri,j,k(t) =

Mi,j,k

Ii,j,k(t)

)

This histogram is then backprojected into the image in the same way that model

histogram was in the threshold variant. In this case, if the likelihood of a pixel being chosen

as part of the foreground depends on not just how much color is in the model, but also how

much is in the image. If they both have the same amount, then the likelihood that it is

the object being tracked is much higher. While this allows more precision in the tracking

of parts of the person, it also means that it is more susceptible to small noise that may

correspond to a color that is only somewhat represented in the model. Fortunately the rest

of the pipeline cleans up most of that noise, since this probability image is going to be fed

to the person tracker module.

Now that we have examined how the histograms are used, we must ask how the

histograms are generated. The simplest method is to have a pregenerated histogram for the

132

speaker. If this is not available, the system must generate the histogram from the image

somehow. In order to generate the histogram, the system is fed color pixels known to be of

the object to be tracked. For the Classroom this means that the speaker must somehow be

segmented. If this is not available, the classroom can automatically generate the histogram

during the initialization phase by requesting that the user stand in a specific location in the

initialization phase so his color can be extracted. A less intrusive method uses the fairly

precise results of the background subtraction module to segment the person and then feed

those to a histogram generator as described in Section 6.5.3. Once the histogram has been

made for a specific run, it generally does not need to be rebuilt for the rest of the lecture.

Once the probabilities that each pixel are the person have been found, that

probability image is passed on to the threshold module.

Threshold Module

Since the color histogram module returns a probability image and the person tracking

routines need binary images, the image is run through a simple thresholder. This routine

must be parameterized by the classroom based on the nature of the histogram if the simple

histogram matching routine is used. This is because the more colors the object has, the

weaker the strong probabilities will be. Deciding how the threshold must be tuned can be

done by examining how noisy the output of the connected component module is.

Connected Component Module

Just like in the background subtraction pipeline, this module is used to help localize the

person. Generally in the Classroom the speaker is such a different color from the rest

of the room that this step can actually be done away with. This is partly because of

the uniformity in the colors in the Classroom, but also because of the poor nature of the

133

information being given by the color tracker. If the task constraints call for precise hand

and head locality information, the backprojection method suffices, but a better tracking

pipeline would be preferred. Figure 6.13 shows the poor color results for arm and head

tracking of the histogram threshold method. The connected component module passes its

labeled image on to the person tracking module.

Person Tracking Module

This person tracking module works in many ways like that in the background subtraction

module, however it must be parameterized slightly differently for use in the color tracking

module. First, since the color tracking is generally only useful for the person’s centroid,

the additional body part searches (hands, head, and feet) can be turned off. Second, if the

connected component module is not used, the person tracker simply returns the centroid

of the color regions. Finally, if it is being used on a moving camera, the person location

will only be given in image coordinates, and if absolute coordinates are needed, additional

processing will be needed (which will require the camera’s physical parameters). Since the

goal of centroid tracking is to just keep the camera on the person anyway, we have found

that a simple relative orientation skill loop works quite well.

6.5.3 Automatic Color Histogram Generation

In order to use the color based person tracking pipeline, the system must have acquired a

color histogram of the user. In our experiments we have used pre-built histograms, however

we have also experimented with a number of alternatives, which would allow the Classroom

to build one as needed. Having the Classroom automatically generate the user’s histogram

allows less configuration time as well as dealing with unexpected changes in the histogram,

for instance, if the user removes a jacket part way through a talk.

134

 Module Connections

Color
Histogram
Generation

Pipeline

Input
Module

Color
Histogram

Color Histogram
Generation

Task Constraints

User's Color Histogram

Environment Constraints

Background must be stable.
Only one person allowed in scene.

Connected
Components

Background
Subtraction

Figure 6.14: The pipeline and constraints for the pipeline that uses background subtraction
to automatically generate a color histogram of the user.

Color Input Module

The color input module generates images that are passed to two modules, the background

subtraction module, and the color histogram generation module. Since the background

subtraction module requires grayscale input, that branch of the pipeline is run through a

color to grayscale converting module.

Background Subtraction Module

If the background subtraction tracking routine is already running, it uses the previously

generated background eliminating the usual startup time. Other than that, this module

is identical to the one used by the background subtraction person tracking pipeline. The

output of the background subtraction module may have some noise as usual, however for

this purpose, obtaining the complete extent of the person is less important that making

sure that all the pixels designated foreground are part of the user. In order to aid in this,

135

the background subtraction module output is passed to a connected component module.

Connected Components Module

The connected components module is the same one used with the background subtraction

person tracking pipeline. In order to lessen the effects of false positives in the color

histogram, the connected components module is parameterized to ignore all but the largest

region. This can eliminate some poorly connected foreground components, like the arms or

legs, however the color tracking pipeline only provides centroid information. This means

that a histogram covering the bulk of the user’s colors, not necessarily including all the

colors is sufficient.

Color Histogram Generation Module

The color histogram generation module takes a color image, reduced color space used by

the color histogram back projection module, and the region of interest to histogram. In this

case, the region of interest is the foreground region recovered from background subtraction

and cleaned up by the connected components module. In order to generate a complete

histogram, it needs to obtain a minimum number of pixels from the color images. This is

done very quickly by allowing the pipeline to run for a few consecutive frames. We have

found that as few as two to three frames are required to generate a new object histogram

that will give good results (about a tenth to a fifth of a second). Once the histogram is

built, it can be saved to disk for later use.

When the camera in the Classroom is pointing straight forward in the Classroom,

we have found that the majority of the pixels are the white color of the back wall. An

alternate method of building a color histogram uses this constraint to build a histogram by

adding all of the colors that are not white. This assumes that the person is the only non

136

 Module Connections

Motion
Tracking
Pipeline

Input
Module

Motion Frame
Differencing

Module

Person
Tracker

Task Constraints

General Person Location

Environment Constraints

Camera motion must be known.
Alternately camera must be stable.

Person must be continuously moving.
Only one person allowed in scene.

Morphology
Module

Threshold
Module

Figure 6.15: The pipeline and constraints for the motion tracking pipeline.

white object in the scene. This alternate version of this pipeline proved useful for the Image

Mosaic project described in Chapter 7.

6.5.4 Motion Detection

The color tracking pipeline is very effective for finding the centroid of the person, when

two constraints hold: the speaker is wearing colors that are fairly unique in the scene,

and the Classroom has segmented the color histogram for the user ahead of time. There

are times when these constraints do not hold, but the centroid of the person still needs

to be known. We have developed yet another vision pipeline for tracking the person, this

one based on motion. The motion pipeline is very similar to the color tracking pipeline.

The key difference is that instead of using color histograms, motion is used. The obvious

constraint on using this pipeline to track people is that the person must be continuously

moving for this routine to work. Since motion in the scene is ephemeral, this can not be

used for complete person tracking. In fact the only information it returns is the centroid of

137

motion, which may very well not be the center of the person.

The motion detection module operates with a simple frame difference,

M(x, y, t) = |I(x, y, t)− I(x, y, t− 1)|

This provides an estimate of locations in the image where there is motion from

a stable camera. This algorithm is very susceptible to noise. An alternate method would be

to use motion fields which could be correlated to camera motion to improve the localization

of the speaker.

6.5.5 Template Matching

The final Classroom pipelines we discuss in this dissertation are inherently different from the

others. The other pipelines all have the capability of controlling some process. This means

that they must adhere to the real-time constraint. We use template matching to identify

icons that the speaker has drawn on the board, as well as to initialize the location of white

board if it is not already known. Since both these tasks return a single piece of information

that the Classroom then enters into its memory (unless the speaker draws on that portion of

the board again) it can be somewhat more computationally expensive without hurting the

overall performance of the Classroom. This is good due to the expensive nature of template

matching.

The Classroom has two main options for template matching pipelines, Hausdorff

matching and the Hough transform. These are both well understood techniques [53, 9]. An

optimized version of the Hough transform is used to find the board and squares surrounding

the icons, which the Hausdorff technique is used to identify the icon, once it has been

localized by the Hough transform.

138

 Module Connections

Icon
Recognition

Pipeline

Input
Module

Template

Task Constraints

Precise icon location
Icon type

Environment Constraints

Icon templates must be known.
General icon location must be known.

Pan-tilt-zoom camera must be available.
There must be no time constraint.

Hausdorff
Matcher

Icon Finder
Template Voronoi

Surface
Generator

Voronoi
Surface

Generator

Figure 6.16: The pipeline and constraints for the Hausdorff matching icon finding pipeline.

Hough Transform

The Hough transform module takes the binary output from an edge detection module. This

is the scanned for squares by finding vertical and horizontal lines. The parameter space is

simply the x location of vertical lines and the y location of horizontal lines. The parameter

vectors are then generated as follows:

∀x,Xx =
∑
y

I(x, y) and ∀y,Yy =
∑
x

I(x, y)

Then the parameter vectors X and Y are used to determine where the vertical

and horizontal lines in the scene are. This is actually fast enough that it can be used to

visually servo the camera over the icon for recognition by the Hausdorff matcher since at

the low resolution of a wide angle shot, the icon is unrecognizable.

139

Hausdorff Matching

Once the icon has been localized, Hausdorff matching is much cheaper because the scale

and orientation are known. To match the saved template, the Hausdorff matching module

has two options. It can use a single template for the icon and attempt to match the entire

thing, or it can use multiple icon elements, such as corners, to find a range of icons. The

matching process works as follows.

Every point in the image I covered by the template T at a given translation

t. The points covered by the template in the image are I(T ⊕ t). For each point in the

template, find the closest point in the image then calculate the Euclidean distance between

them. The largest of these is the directed Hausdorff distance from the template to the

image, and a measure of how well the template matches the image:

h(T, I(T ⊕ t)) = max
a∈T

min
b∈I(T⊕t)

|a− b|

Total Hausdorff distance is the maximum of the directed Hausdorff distance

from the template to the image, and vice versa:

H(T, I(T ⊕ t)) = max (h(T, I(T ⊕ t)), h(I(T ⊕ t), T))

Both the input image and the template are inputs to this module. In order to

speed up this calculation we use a Voronoi surface which is precomputed for the templates.

We use a small set of pregenerated templates, however ”learning” new templates is simply a

matter of drawing the new icon on a blank board. This module returns an image which holds

the Hausdorff distance at each point. The two different formulations of this module either

use this directly to determine the type of the icon, or combine the output from a number

of Hausdorff modules to determine the locations of features of the icons to allow for more

variation in the shape. Since the number of icons that we recognize is low, discriminating

between them using a straight matcher is effective.

140

6.6 Final Thoughts on the Classroom

Intelligent environments has been an area of very active research in the last decade. From

television studios [74] to playrooms [12] many researchers have looked at putting more

smarts into the world around them. Most of these systems utilize vision in one manner

or another. They all rely on constraints in their environment to be able to have effective

vision. What sets our system apart is that it actually has an understanding of what those

constraints are, and how to change its sensing when those constraints fail. We feel that

this methodology provides numerous advantages in terms of expandability of these systems.

Intelligent environments are the ideal location for reasoning about the constraints used by

the vision system, because of the very nature of the environments: they are engineered and

can be well understood. These are great advantages for our methodology and allow it to

succeed.

The Classroom has proven itself to be an excellent environment for both plan

recognition and vision research. The routines written for the Classroom have been used

many times and even in different locations. We have taken the Classroom hardware

to conferences and demonstrated it in different situations and configurations. In one

situation the side of the environment was open to viewers, changing the vision environment

considerably. However, the fundamental tasks have remained the same. In an effort to

expand the test of our vision system, we built another vision system which required similar

information, but for very different tasks—the Interactive Image Mosaic.

Chapter 7

The Interactive Image Mosaic

The Interactive Image Mosaic is an electronic art installation built by undergraduates at

Northwestern University using Gargoyle. They built is using many existing modules and

one module built specifically for this project. The system constructs an image mosaic which

is an image made up of many smaller images which, when viewed from a distance, resembles

another image. In this way it is similar to grade school students pulling apart magazines

to find the right picture to paste into a mosaic. It constructs this mosaic by using a piece

of art as the base image that it is trying to duplicate in the mosaic. It then takes images

from a camera and compiles those images into a mosaic that resembles the original work of

art, as shown in Figure 7.1.

The students provided a mechanism that allows the viewers to interact with the

artwork and feel like they are a part of it. In order to make the interaction more interesting

than simply making the viewers image part of the mosaic, they allow the viewers to record

their thoughts. Then when the new viewer’s image replaces an old one, the system plays

back the previous viewer’s recording, allowing the new viewer to respond if he wishes. To

make the interaction as natural as possible they decided to use computer vision to control the

141

142

Camera

Artwork Mosaic

Figure 7.1: A diagram of the eventual installation, as it should appear in a museum, with
a user interacting with a partial mosaic by way of a camera positioned to film a person
viewing the artwork.

interaction. Building the required routines would have been a difficult and time consuming

task, well outside the scope of an undergraduate project. However, by using the Gargoyle

framework they were able to make use of a number of modules built for the Intelligent

Classroom.

7.1 Background

While the desired interaction with the system is fairly straightforward, it still requires a

good deal of vision processing. The Gargoyle pipelines which we had designed for the

Intelligent Classroom were able to be quickly reconfigured with this new set of tasks, and

integrated into the new system. By combining modules built for the Intelligent Classroom

and an additional image mosaic module built for this task into routines tailored to their

tasks, we were able to quickly construct a set of special purpose routines suited for the

143

new tasks and constraints. Using these routines and constraints, the students were able to

combine them into a sophisticated system which easily allows users to interact with it.

The interaction begins when the viewer steps in front of the installation as

diagrammed in Figure 7.1. The viewer is presented with an artwork and a computer

generated mosaic of the artwork made up of previous viewers. Once the system has noticed

that the user has stepped into the scene, it takes a picture and decides where to place it in

the mosaic. When one viewer replaces another, it plays the recording made by the previous

person if available. It then records any response that the current viewer may have. We will

look at the vision routines required by this system in a moment, but first it is worthwhile

to look at the reasoning required by this system. As it turns out, very little reasoning

is required at all. This reasoning is easily represented by a simple state machine, which

determines which action to take next.

The class designed and implemented the complete system, although it was never

shown in a museum environment. They concentrated on the video and reasoning aspects

of the project, and simply used Gargoyle as a part of their system. A quick glance at the

system diagram in Figure 7.2 shows how this was used to make a complete vision system

using Gargoyle for a completely new task.

7.2 Execution System

The tasks required by the Image Mosaic system are quite linear in nature, and don’t require

a powerful reasoning system to change routines on a moments notice. The system layout

for the Interactive Image Mosaic project is shown in Figure 7.2. The students were also

interested in using speech recognition for selecting videos to play back, so the reasoner

starts that system when requested. Instead of building a complex reasoning system to

decide which actions to take next based on the current state of the world, the students built

144

Gargoyle

Reasoner
 (FSM)

Vision
System

Photomosaic
Generator

Person Tracker Viewer Identification
Camera

Microphone

Video Reasoner

Figure 7.2: The system architecture for the Interactive Image Mosaic project.

a simple state machine, shown in Figure 7.3. The machine waits for specific events to send

it to the next state. When it switches to the new state, the actions that the old state was

taking are stopped, and the actions specified in the new state are started.

For example, suppose the system is waiting for a user to enter the scene in the

start state. It waits until the viewer identification routine (described later in Section 7.3.1)

signals that a person has entered the field of view. It then stops the viewer identification

routine, and starts the picture placement routine. All of the states and their respective

vision routines, along with the possible transitions are shown in Figure 7.3. Note that once

a person has entered the scene the system watches for the person to leave the scene in

parallel with whatever else it is doing, so it can abort operating and return to the waiting

state as soon as the person leaves.

This simple state based execution system only uses task constraints to decide

which special purpose routine to run. However, even though the environmental constraints

145

Wait for user to enter
the scene.

(Viewer Identification)

Photograph user
and select location

in the mosaic.
(Image Mosaic)

Make recording
of the user.

(Person Tracker)Wait for user to
leave the scene.

(Person Tracker)

Playback appro-
priate video.

(None)

Figure 7.3: A simple state machine for controlling the Interactive Image Mosaic, showing
which routine is used for each state.

are not represented in the state machine, they are still used by the system. Since the exact

structure of the state machine depends on the installation, which routines go with which

state will also depend on the constraints inherent in the installation. The installation is

very constrained in terms of lighting and the location of people relative to the camera.

This means that many of the constraints are enforced by the structure of the world rather

than reasoned about. For example, in some installations a colored background is used.

If this is the case, a color-based viewer identification routine is used, because the stable

background color constraint will hold. However if this is not the case, the less accurate

motion based viewer identification routine used in the Classroom can be used instead.

Thus the constraints of the vision routines are still used, just not encoded in a reasoning

system; rather, they are encoded by the person doing the installation when it is being put

together. Even very simple planning mechanisms can still provide good vision, as long as

you are careful with the constraints.

146

The next section looks at the vision routines used by the Interactive Image

Mosaic project.

7.3 Tasks and Vision Routines

Once the state machine was built, it was a simple matter of connecting it to the Gargoyle

server to use the special purpose vision routines for the different tasks. Many of the

tasks require routines which were easily constructed out of existing modules built for the

Intelligent Classroom. This section examines those routines and how they were designed

using the known constraints on existing routines and pipelines. The execution system uses

the results from these pipelines to switch states or to control physical elements of the

installation. Figure 7.3 shows which pipeline is used for each step in the state machine.

Information on the Person Tracking pipeline can be found in Section 6.5.1.

7.3.1 Viewer Identification

Before the system can start interacting with a user, it needs to know if there is a user in the

scene. Since the space where the viewer can interact with the system is limited, and has

a set background, there are two simple routines which it uses to recognize that a person is

standing in front of it: motion detection and background color subtraction.

If the background color of the image is known, then the color histogram background

subtraction module can be used to determine when a person enters the scene. The pipeline

that is built to utilize this module needs to be slightly different from the color tracking

pipeline in the Classroom. Rather than using the centroid of a positive threshold based on

the known histogram, a negative threshold is used, and the region that is not the known

color is where the person is. Figure 7.4 shows the alternate color tracking pipeline. When a

set amount of the known color background changes to a new color, then the pipeline informs

147

 Color Based
 Motion Detection
 Pipeline

 Module
 Connections

Color Image
Capture

Color Histogram
Backprojection

Threshold
and Filter

Color
Background

Task Constraints

Large change in background
color indicates a person has

entered the scene.

Environment Constraints

Background color must be known.
Only users must enter the scene.

Users must not be identical color to
the background.

Figure 7.4: An alternate implementation of the color tracking pipeline built to determine
when someone has walked in front of the camera.

the state machine, and it enters the new state. The amount of different color is computed

by the “Threshold and Filter” module which thresholds the color (doing some morphology

to eliminate noise) and sends the message to the state machine when it determines that a

person has entered the scene.

Depending on the installation, the background color may not be known. In this

case the motion tracking pipeline from the Intelligent Classroom, as seen in Section 6.5.4 is

used instead. That pipeline is altered slightly with the addition of the Threshold and Filter

module where the Person Tracking module would otherwise be. With motion tracking it is

more difficult to know when a person has left the scene and a new one entered, but it is

still sufficient for informing the state machine to begin the process of adding a new viewer

to the mosaic.

Once the system knows that there is a person standing in front of it, it takes a

picture and integrates it with the mosaic.

148

 Mosaic Image
 Integration
 Pipeline

 Module
 Connections

Color Image
Capture

Sub-image
Placement
Module

Optional
Display
Module

Load Saved
Color Image

Task Constraints

Best sub-image location for
the camera current view.
Location of sub-image

saved to disk.

Environment Constraints

Mosaic sub image size.
Only users must enter the scene.
Varied input images for mosaic.

Known values for extant subimages.

Zoom
Module Save Image

Figure 7.5: A pipeline for figuring out the best location for an image in a mosaic representing
another image.

7.3.2 Mosaic Image Integration

The image integration step is actually quite expensive, and while there was not a pipeline

already built for this step, many of the modules built for other routines were able to be

reused. In fact the only module that needed to be written for this routine was the image

mosaic image location selection module. The rest of the modules shown in Figure 7.5 were

already built, and combined to form this pipeline.

This pipeline works by loading the artwork from disk, and taking a picture of

the viewer. The zoom module scales the image of the viewer to be the correct size for the

image location module. That is, the scaled image must be the same comparative size as

it will be in the final mosaic. This allows the mosaic construction module to compare the

captured image directly to the different possible placement locations on the stored artwork.

A number of different methods for constructing image mosaics have been developed

using different image matching algorithms. One popular method is using wavelet based

image matching as described by Jacobs [54]. Other methods are suggested by Finkelstein

149

and Range [29], Hausner [49], Kim and Pellacini [61], and the patented techniques by

Silvers [82, 81]. The module built for this pipeline uses a much simpler color and shape

matching technique inspired by the non-wavelet based method used in the Metapixel system

by Mark Probst.1 We experimented with the wavelet comparison method as well as the

above method, however similar results were achieved with both methods in terms of visual

appearance. The comparison metric was implemented as a library making it easy to

exchange comparison functions if the wavelet method is desired.

By comparing the current image, I with the artwork, A, at every possible offset,

t, the image mosaic module picks the best possible location for the image in the mosaic.

Each possible mosaic image location is given a value, Vt(I), depending on the current image.

In our system the offset is constrained to be an integral of the image we are placing:

t = (n× (Ixmax mod Axmax), n× (Iymax mod Aymax))

The image is zoomed to be smaller than the artwork by an integral factor,

making this work evenly. The simple comparison that we use is:

Vt(I) =
Ixmax∑
x=0

Iymax∑
y=0

|[A⊕ t](x, y)− I(x, y)|

The location with the smallest Vt(I) is then chosen. Optionally, if the new score

is higher than the previous score, the next best location can be chosen. This method is less

than optimal, however the images that are used to generate the mosaic are not known a

priori so the optimal solutions are not possible our this case.

Since most of the images coming into the system are of people standing in front

of the camera, the system may not have a sufficiently varied set of images to generate a

good mosaic. This is especially true as the mosaic is being filled the first time. One solution
1http://www.complang.tuwien.ac.at/∼schani/metapixel/

150

Figure 7.6: The progress of building an image mosaic, some images are replaced, and some
new ones are added.

is to look for subimages from the camera rather than using the entire image. Figure 7.6

shows that as a mosaic is made, some images may be replaced rather than unused locations

being filled. Forcing the routine to fill the image first works, but may result in poor quality

mosaics. The solution the class uses is to alter the mosaic generation slightly. Rather than

use the current image directly, they filter the image for the background color (if it is known).

This color is then filtered out, and just the person is superimposed onto the image location

to make the mosaic. This enhances the viewer’s ability to control where his image is placed

by moving his body into different positions in the scene.

Finally, the system may use an external display, in which case it will use the

sub-image locations returned by the pipeline to build the mosaic on its own. On the other

hand, an optional display module can be used instead to allow Gargoyle to display the

mosaic.

151

7.3.3 Filming the Viewer

While the system is deciding where to place the image it captured of the user, it also makes a

video recording of the viewer giving his thoughts on the piece. Depending on the installation

the filming may be as simple as starting a recording process, or it could need to determine

where the user is, and then point the camera at the appropriate location. Filming is a task

which we already implemented with a slightly different set of constraints in the Intelligent

Classroom using the person tracking algorithm described in Section 6.5.1. By figuring out

when the different constraints hold in this new system, we were able to make use of the

same routines. With a fixed camera, however, no vision routine is needed. This part of the

project is mostly devoted to speech recognition, to determine which other recordings are

most related to the viewer’s, so the vision routines have not yet been integrated.

7.4 Conclusions

This project has gone through a number of different phases. It started as something fun

to do with Gargoyle and was installed at the front door of the InfoLab. It then became

a quarter project for the undergraduate students, John Didion, Ken Suh, Muon Van who

turned it into a real system. It was later revived as a project looking into using voice

recognition to get the context of video clips with Jon Card, Jason Friedlander, Shovahn

Rincon, Adam Tarkowski, Angelo Gonsalez, and David Smock. I want to thank all of the

undergraduates for their work. It was very exciting to see different people use Gargoyle as

part of their project, and to consider the possibilities of what they could use it for. It was

especially exciting to see someone use it as a tool to accomplish their goals, since that is

what it was designed for.

One direction we would like to take this work, is to make the image mosaic

152

pipeline more active. Rather than simply taking the picture that is in front of it, have it

search the room for colors and other features that it knows it needs. This could be a very

interesting use of Gargoyle, allowing it to heavily modify that pipeline as it runs.

The work done so far shows that by thinking about the constraints on vision

routines and pieces of vision routines it is easy to reuse them. The vision system that we

designed for the Classroom was easily reused in a different environment in a simple and

straightforward manner. This was due to the fact that the constraints were understood,

and the routines were broken up in such a way that they could be reconfigured for different

environments.

Chapter 8

Related Work

The computer vision methods used in this dissertation cover a wide range of research topics,

from robotics to intelligent environments to computerized art. In addition, the thesis: that

computer vision can be made more successful by reasoning about explicitly represented

constraints to decide which special purpose vision routines to use when, covers the entire

range of computer vision research. Many other researchers have used special purpose vision

routines to achieve their goals. Indeed, we rely on this research to provide routines which

utilize different constraints in order to cover as many situations as possible. It is this very

breadth of special purpose routines which allow our methods to be viable.

Because of this there is a good deal of work from many areas of computer science

which relates to our methodology, from work on new computer vision routines, to work on

new reasoning systems. This chapter examines some work in both of these research areas.

In particular we examine vision systems which utilize vision to solve specific high level tasks.

We also look at classes of reasoning systems used in real world architectures and how suited

they are to reasoning about vision. Finally, we examine a number of other computer vision

frameworks which have been developed and compare them to Gargoyle.

153

154

All of the vision systems that we examine in this chapter use constraint-based,

special purpose routines. The reasons for this are discussed in Chapter 2. Robotics and

intelligent environments are two areas that use special purpose vision to achieve their goals.

In robotics, there are many different tasks that the system is trying to achieve, so they will

often use multiple special purpose routines to accomplish their goals. Looking at the field of

intelligent environments, this seems to be less true. Rather than solve a number of different

vision tasks, they seem to stick to tracking people. This means that while the range of

vision tasks they accomplish is smaller, the complexity of the routines and constraints that

they rely on is higher.

8.1 Automated Control

The following systems use some sort of reasoning system, be it learning or planning, to

decide which routines are most appropriate for the given situation. Different systems place

different emphasis on reasoning about how to sense, or controlling the context in which the

routines are operating. In every case however the systems switch which routine they are

using for given tasks, with more or less reasoning.

8.1.1 University of Rochester: Driving System

Gabris Salgian at the University of Rochester has recently built an autonomous driving

system which controls a photorealistic virtual reality driving simulator [79]. Driving is an

interesting domain in which to reason about how to sense because there are many sensing

tasks that one may need to accomplish while driving. Specifically, their system detected a

number of features important to driving such as traffic lights and stop signs. In addition,

they also detect looming objects, such as other cars or pedestrians. Each of these tasks was

accomplished with a dedicated vision routine, or set of routines.

155

Their system operates in four cleanly separated layers. They use basic features

which in turn are fed into the different visual routines. The visual routines in turn drive

the behaviors which are selected by a high level scheduler. The high level scheduler decides

which behaviors to give more time to, depending on what the state of the world is.

The routines in this scenario are all tied to specific behaviors. This means

that visual routines are activated and deactivated by the routine scheduler. Many of the

visual routine results are utilized by multiple behaviors allowing for some simplification.

This system is an interesting example of special purpose vision routines being used to

accomplish specific tasks, however, unlike the Intelligent Classroom they are for the most

part constrained to using all of the routines at all time instances in their current system.

As they expand the set of behaviors they have implemented, the timeslices available for the

scheduler will diminish. This is as opposed to our system which modifies the operation of

the actual visual routines based on the environment in addition to the task.

8.1.2 MIT: Kidsroom, Smart Studio

A large amount of work in computer vision has been coming out of MIT relating to

constrained environments. These systems have shown effective use of special purpose vision

in constrained domains. Each of them shows an interesting use of constraints. This section

briefly looks at each of these systems.

Kidsroom

The Kidsroom is an interactive environment in which children are engaged in a participative

storytelling activity [12]. The room interacts with the children through a number of well

placed cameras and screens on the walls of the “bedroom”. This interaction is led by the

system which has a story that it runs the children through. It engages the children by

156

having them play out certain rolls in the story. The children do not, however, lead the

story.

This is a very interesting tactic, in terms of constraints in the environment. It

allows the system to control the context in which it is operating. When it tells the children

to perform a specific action, it only needs to be able to respond to that action, or a lack

thereof. This is also used to aid the computer vision used to interact with the children.

This has some of the same requirements that we do. For example, if they know

to look for specific actions on the part of the children, they can match the motion to

specific motion templates [27]. However, all of the context is used in expectation. If the

story requires that the children stand at a specific point and jump, the system knows that

it needs to look in that point using a jump action template. By telling the children where

to go and what to do, the problems of reasoning about how to sense, becomes simply using

the correct routine for the requested situation.

Smart Studio

Some earlier work by Bobick and Pinhanez used the same idea of controlling the action, but

instead of having the computer control the action, it is run by a human in in the loop. The

Smart Studio system aimed at generating television quality film of a cooking show [74]. The

cooking show provides a well constrained environment in terms of computer vision. Each

of the cameras was well placed for each of the required shots, as is usual for a television

studio. The computer vision task is then reduced to looking for specific motions at specific

points, and panning and zooming as appropriate.

With a number of cameras, the reasoning of what to look at is a nontrivial

problem. The Smart Studio approach to this problem is to put a director in the loop.

Rather than having the system decide what to look at, it offloads that computation to the

157

person in the loop. The director issues directions to the system which it can then implement.

For example, by telling a specific camera to zoom in on a requested area, the vision system

only needs to deal with looking for that area from the requested camera. They also rely

heavily on the fact that specific items will always be in specific locations from a given view.

This allows high quality films to be made with few operators.

The notion of using a human to provide direction is very exciting, and could

clearly be used in the Classroom. Some unpublished work is currently being begun by

Tsotsos at York University along these lines. By having the human being filmed be able to

attract the “attention” of the system, they hope to improve the automatic filming task.

8.1.3 RECIPE

Arbuckle and Beetz developed this system which is the closest to Gargoyle [5, 11]. RECIPIE

and Gargoyle share many features, including modularity in the vision routines and run-time

reconfigurability among others. It’s internal communication system is not particularly rich,

however, and the ease of reuse is not necessarily there. The system is available as a C++

class library, with each module being a class. In order to create a new routine, each required

class must be instantiated, and messages queued up for the appropriate classes. This system

allows the modules to be abstracted away from the hardware drivers, however control of

individual routines become more difficult.

8.2 Automatically Building Routines

One of the directions we were initially looking at with Gargoyle modules was the ability

to automatically generate routines for the specific task and environment. We ended up

not following that route, however some researchers have built systems which use machine

learning techniques to generate special purpose routines for specific tasks. While these

158

systems do not switch routines based on the context, they do build routines for that context

ahead of time.

8.2.1 Colorado State: ADORE

Draper, Bins, and Baek have developed the ADORE system to allow for easy creation of

new vision routines for specific tasks [28]. They felt that while there were many frameworks

which allowed new routines to be constructed, there were none that helped the vision routine

designer pick which operators were appropriate for their new routine. Their complaint was

that the construction of new routines was quite ad-hoc. The goal of their system is to

provide a theoretically sound method of generating new vision routines.

In order to accomplish this goal, they needed a system which would adapt to the

current situation. Their system models the object recognition problem as a Markov Decision

Process. It then uses this with a set of labeled samples to learn the optimal strategies for

the given recognition problem.

While learning the optimal recognition strategies beforehand has advantages in

terms of accuracy, this system not intended to be used outside of the object recognition

task. This is due to the cost of learning the new routines. It also requires a good training

sample. Both of these make it not amenable to real time vision tasks.

8.2.2 Carnegie Mellon University: Learning Routines

Martin Martin and Moravec at Carnegie Mellon University used genetic algorithms to evolve

new visual routines [69]. This system was genetic algorithm based and did not use explicit

constraints to reason about how to build the constraints. It broke the vision routines up

into atomic units which it would then use as the operations with which to drive the genetic

algorithms. This is an interesting problem area because it it possible for this system to

159

develop routines which adhere to constraints on an entirely new environment. Unfortunately

their experiments have shown that it is not an appropriate technique for online learning.

The routines must be learned offline with a large data-set of positive and negative results.

8.3 Combined Estimation

Beyond selecting specific routines to use, some systems rely on a multiplicity of routines

running at the same time to produce effective results. Figuring out how to combine these

routines often leads to an interesting vision problem.

8.3.1 MIT: Lightweight Robotic Navigation

The earliest work in computer vision which provides direct information for a system embedded

in the real world was in navigation for autonomous agents. These systems were required

to rely on strong constraints about the world. Ian Horswill’s Polly [51] system was one of

the first systems to use explicit constraints. This system was described in Section 2.1.3.

This system would engage many different navigational behaviors, however, it only used a

single vision technique for navigation. More interesting was the fact that when it engaged in

non navigational tasks, like accepting commands from people, it would use different vision

techniques thus allowing task constraints to control which routine was running.

Liana Lorigo extended this work to utilize a number of different lightweight

routines for the same task [64]. These routines were combined in such a way as to provide

accurate obstacle avoidance. Patterns are matched to find the first obstacle, which are

each returned as an array of safe distances. These arrays are then combined to determine

which direction is the best. This differs from our method since it does not deal with the

case where one of the routines fails because its constraints fail. In this case, if the routine

hallucinates an obstacle, it will still be combined with the output of the other routines,

160

potentially leading to false readings.

8.3.2 MIT: Pfinder

MIT Produced a number of systems that heavily rely on explicit constraints to produce fast

accurate results. In particular Christopher Wren’s work on the Dyna system and the very

prolific Pfinder person tracking system which that work came from [25, 24, 90, 91, 92, 89].

These systems provide very precise person tracking routines. In order to do this they rely

on many strong constraints. Specifically they create models of the people they are tracking

and use a number of vision techniques to follow the model. The data from these routines are

then combined using condensation estimation techniques to determine the location of the

person and the parameters for the model. This creates a very precise measure of where the

person is how his body is oriented. This system uses constraints to improve the results of

their vision processing, however rather than reasoning about the constraints, they explicitly

encode the physical constraints into their condensation estimation techniques.

8.3.3 University of Massachusetts Amherst: Adaptive Systems

Zhu, Karuppiah and others have examined using software mode changes to improve continuous

motion tracking [60]. They have developed a platform for building systems which modify

how they operate while they are running called the University of Massachusetts Self-

Adaptive Software (SAS) platform. They use multiple sensors to overcome the problems

with one or the other. By having this redundancy they are able to achieve effective person

tracking in their environment. Their system does not stop at sensor fusion, however. They

are also interesting in determining when specific sensors are failing which can allow for the

information to be aggregated more appropriately.

161

8.4 Vision Routine Studies

In order to build systems that reason about when to use vision techniques, it is important

to have a good understanding of what techniques exist for a given set of tasks and how they

operate. Fortunately some tasks in computer vision are growing quickly enough that there

has been interest in studying them and defining the space of constraints that they use.

One of the most important vision routines for all of our systems is person

tracking. By knowing where the user is and what he is doing, whole new modes of interaction

are open to computer systems. Because of this much work has been done on tracking humans

as they move about in a scene. J.K. Aggarwal from the University of Texas at Austin

explores the complete space of these systems in his excellent review of the field [1]. He

divides the problem space into tracking human motion, and recognizing human activity, in

which the body parts of humans are tracked. While both forms of tracking use constraints,

the latter uses explicit constraints about the possible orientations of the different body

parts to inform the vision how to operate. Another survey of motion analysis by G.M.

Gavrila from Damier-Benz breaks human motion analysis down by three-dimensional and

two-dimensional, with or without models [45]. Some of the three-dimensional techniques

are an attempt to get back to complete reconstruction, however, in order to achieve good

results these model based techniques often end up relying on very strong constraints.

Finally, T. Moeslund gives a very complete survey of computer vision based

human motion capture [71]. The level of precision required in human motion capture means

that many techniques are used to further constrain the problem. Of particular interest is

his list of assumptions that these systems make, or for our purposes, constraints that the

system’s vision routines rely on. He groups them into three main categories: movement

assumptions, environment assumptions, and subject assumptions. Examples of movement

assumptions include, one person in the scene, no camera motion, constant camera motion,

162

etc. Environment assumptions include things like static background and known camera

parameters. And finally subject assumptions include things like known start position and

special colored clothing.

This catalogue of assumptions is very exciting for us because it implies that it

may be possible to enumerate constraints for a given task.

8.5 Reasoning and Execution Techniques

Throughout this dissertation we have stressed the need for a reasoning system to control the

vision. Since our vision systems interact with the world, classical planners which are unable

to deal with changes in the world (see, for example, Nilsson’s seminal work on Shakey [73])

are unsuitable to our vision methodology. Fortunately much work in the field of autonomous

robotics in the past decade has developed a range of more reactive reasoning architectures

as discussed by Arkin and Maes in their overview books [6, 66].

8.5.1 Subsumption Networks

Early work by Brooks, which took a dramatic step away from static plans, rejected planning

entirely [15, 18]. The subsumption networks proposed by Brooks have been implemented in

many different systems, from insect like robots like Ghengis and Atilla [16] to more complex

humanoid robots, like Cog [19]. These systems operate by directly attaching sensing to

action and using input from the different sensors to control how the actuators run. In this

way any vision routines written for a subsumption architecture are necessarily going to be

special purpose. However they are going to be strongly tied to the specific behavior that

they are designed for, and the process of rewiring the network so the same routine can be

used for another behavior proves difficult. Nonetheless, vision has been used successfully to

control subsumption networks [80, 51]. While this bottom up approach provides a wealth

163

of useful skills, it does not provide the necessary cognitive control for our general purpose

system. Perhaps the most important contribution of this work to our own is the notion

that powerful behaviors can be built by relying on string task constraints.

8.5.2 Action Selection

Along a similar line of research, Pattie Maes considers action selection [65] as an alternative

to subsumption networks. Her action selection mechanism allows the system to have goals,

and decide which behavior to use when. Rather than simply activating a behavior based on

the current input, their activation is also influenced by the current goal of the system. This

allows the system to have much more direct control over the task context, and therefore

a good basis for accomplishing our goal of more general purpose vision. In fact, the finite

state machine used in the Interactive Photomosaic project, resembles an action selection

network.

Rosenblatt and Thorpe from CMU implemented another method of action selection

by allowing the different low-level behaviors to vote for which higher level tasks to do, the

Distributed Architecture for Mobile Navigation [78, 77]. This is really a cross between action

selection and subsumption, but still lacks the high level understanding for more complex

tasks.

8.5.3 Three Layer Architectures

The work that most closely resembles ours, however is the work that has been done on so

called “Three Layer Architectures”. Bonnasso, Firby, Gat, Kortenkamp, Miller, and Slack

wrote an analysis of three tiered architectures [14]. Their system includes a set of reactive

skills, a sequencer that activates skills to create a network of skills that accomplish specific

tasks, and a deliberative planner. Deliberation gives partial task ordering. Sequencer gives

164

instantiated tasks. Skills give sensor readings and actuator commands. This one is critical.

The Classroom’s skill system is directly derivative of RAPs [32], as described in

Chapter 6.

8.6 Computer Vision Frameworks

A large portion of this work was the design and development of Gargoyle. Since one of the

main goals of this research is to make a system that is easily reusable and applicable to

more contexts, it is important to have a framework that allows the routines to be reused

and support the ability to change how they are operating at run-time. When we started

this project, we found no frameworks that supported this behavior. More recently though,

a number of frameworks have appeared which are worth examining.

Some of the oldest computer vision frameworks are designed to simplify the

creation of vision routines. These functioned by allowing the user to connect prebuilt pieces

of code in a visual manner to generate novel vision routines. The following frameworks

provide a “high level programming language” for visual routines, but do not provide methods

of controlling routine structure once they are constructed.

8.6.1 Khoros

Khoros was one of the the first graphic user interfaces for creating vision routines [76]. This

system breaks routines up into “glyphs” which are instantiated in C libraries. This allows

Khoros to be used to rapidly prototype the vision routines. Once they function properly,

the routines can be compiled into C code which is then used in the overall system. The

advantage of this technique is the speed of the resulting system and ease of constructing

new vision routines. The notion of modules in Gargoyle was heavily influenced by our

165

experimentation with Khoros. This visual nature of the glyphs also influenced the design

of the GUI Gargoyle client. Unfortunately it was not amenable to being reconfigurable, a

primary concern for Gargoyle. It also lacked the ability to run in tight control loops, being

designed more for single image use, rather than real time computer vision.

8.6.2 CVIPtools

CVIPtools, which stands for Computer Vision Image Processing tools, is another library

for constructing new vision routines much like Khoros [88]. Developed at the University of

Southern Illinois, CVIPtools differs from Khoros in that it comes with a number of utilities

which allow direct manipulation of images using the available vision operators. This system

provides an excellent learning environment, and a good environment for using trial and

error methodology to creating new routines. It also allows the constructed routines to be

exported for use by other programs.

8.6.3 IUE

Image Understanding Environment was developed by Arpa in order to provide a common

development environment for image understanding work [62]. It is mostly a cross-platform

library of vision operators, however it also incorporates a number of interesting reasoning

operators as well, mostly focused on three dimensional reconstruction.

Chapter 9

Conclusions

Many vision researchers have built successful systems by relying on constraints in the

world in order to narrow the space in which their routines need to operate. These special

purpose routines are more efficient and more reliable in the context in which they operate

by sacrificing generality. This dissertation argues that operating within a given context

does not necessarily need to imply a loss of generality. In order to utilize the context in the

first place, it must be understood. We believe that by leveraging that understanding, more

general purpose vision can be obtained. If a system understands when to use which special

purpose routine, it is a general purpose system.

With this goal in mind, this dissertation presents our work on three different

systems which successfully accomplish a range of tasks in the physical world: Chip, the

Intelligent Classroom and the Interactive Image Mosaic. These systems owe much of their

success to the vision routines which they utilize. These routines have all been tailored to

solve their specific tasks in the environments in which the tasks are to be accomplished.

However, we are able to use them in this larger range of tasks and environments by

having the system understand the constraints on which the routines rely and then choose

166

167

appropriate routines as required for the task the system is attempting to solve.

In addition, we believe that understanding the constraints and reasoning about

them provides a method of utilizing existing work in computer vision to build more robust

vision systems for specific tasks. As computer vision is more and more widely used in real-

world tasks it becomes important to be able to use the vision systems built for specific tasks

more broadly. Many researchers now take advantage of the structure of the world around

them to provide simplifying assumptions for their vision routines. These constraints allow

their systems to function and we feel provide hooks to expanding their usefulness to less

well constrained environments.

By following the Methodology given in Section 1.5 we have built a number of

systems which are able to successfully use computer vision to solve specific tasks. Understanding

the constraints on the vision routines has allowed us to reuse vision routines in novel

environments with a small adaption time. Starting with Chip, then using those routines

in the Intelligent Classroom we have shown this methodology to be effective. Moving them

to the Interactive Image Mosaic we have maintained the same base of routines in widely

varying environments showing generality. We are encouraged that this type of system can

be used to create quite generally useful vision systems.

9.1 Building Useful Systems Incrementally

One of the most interesting features of this line of thinking, and indeed our implementations,

is that when developing more robust systems, they continue to be functional at each stage of

development. By understanding the constraints of each added vision routine, the researcher

is able to expand the world in which the system as a whole can operate. Since those routines

are built to solve specific problems, each additional problem or environment is tackled, one

routine at a time. This allows a system that reasons about when to use which routine to

168

expand the set of tasks or environments in which it can operate.

The improvements provided by reasoning about how to use the routines do not

allow our systems to cover the entire constraints space, even in their respective controlled

domains. That is, we have not achieved a complete general purpose solution, but we have

made progress in that direction and built useful systems. This research does not explain

how to do general purpose computer vision. What it does is give a path that we can follow

toward general purpose vision while continuously providing a useful set of tools.

In order to be a useful tool our vision system must take advantage of the

structure that the world gives us. Others have argued for the need to study the environment

in which our systems will operate; we argue for the need to embed those routines in a system

which understands that environment. We need to pay attention to that structure so that

we can continue to use the work we already have. Chapter 8 shows that many researchers

rely on the constraints inherent in the world. These routines are effective in their specific

domains, however they will fail when the context changes, and are difficult to expand to

other domains. By making these constraints explicit and reasoning about when to use

the different special purpose routines, we are able to add more routines to our system as

required by an ever-expanding task and environment set.

9.2 The Future of This Work

The work presented in this dissertation has given us a number of encouraging results.

However, the ideas of generality presented here require ongoing refinement and experimentation.

This section examines some future directions and open questions, for both the vision

techniques presented here in general as well as the Classroom in particular.

169

9.2.1 More Vision Routines

The obvious extension is to expand the set of vision routines that the Classroom uses, to

accomplish more tasks or cover a wider range of environments. Since the classroom is an

interactive environment, we are particularly interested in routines which would enhance it’s

interactive nature. Most human visual interaction is with faces, so it would be nice if the

classroom could interact with faces.

Eye and face tracking is currently quite an active field. Combining those techniques

into the Classroom would allow a number of interesting filming techniques. For one, it would

allow the Classroom to follow faces when it was doing a close up, rather than simply waiting

at the top of the body. Following the theory of extracting only the needed information for

a specific task, doing a head shot only requires knowing where the face is, not where the

entire body is. Face recognition would also be useful for identifying users, and allowing the

system to maintain preference profiles and have more information about what that specific

user might need. When used in conjunction with schedules and connected class material,

this could become quite powerful.

9.2.2 Constraint Representation

One of the key aspects of our system is that the constraints that the system uses need to

be explicitly represented in order to be reasoned about. Unfortunately, it can be difficult

to determine in advance the range of constraints that a given routine uses. This leads to

an underspecification of the constraints on which a system relies.

Some subfields of computer vision are rich with systems providing a fertile

resource for studying the range of possible constraints. This could potentially lead to a

better understanding of the types of constraints that vision routines rely on. This, in turn,

could help vision researchers avoid the problems of underspecifying the constraints that

170

the routines rely on. A number of groups have made some analysis along these lines as

discussed in Chapter 8. However, there is currently no uniform method of describing those

constraints.

One possible solution to this problem would be to define a language for expressing

the constraints on a vision routine, independent of the explicit internal representation. This

language could then be used to describe when and where the particular vision routines

should be used. The constraint descriptions would then be distributed with the vision

routines. Integration with a complete system would simply involve selecting and implementing

the constraints useful to the given task. It would also help define the constraints which must

be enforced.

It is worth noting that while this constraint description language could be the

explicit representations, different systems will have different methods of representing their

constraints. Therefore it is important to keep the description at a high level if the routines

are to be reused.

Once the range of constraints is well understood, it would be interesting to study

how to obtain information about that state. In the Classroom all of the constraints that we

use are able to be extracted directly from the routines themselves or the internal state of

the Classroom. There are many constraints however, whose state is nontrivial to ascertain.

Knowing the range of useful constraints may lead to discovering the set of routines which

contain information about those constraints. This would be extremely helpful in designing

new systems.

9.3 Vision and the InfoLab

The mantra of Northwestern University’s Intelligent Information Laboratory (the InfoLab),

where this work was done, is “frictionless access to information”. Mainstream InfoLab

171

projects like Watson and XLibris [20, 23] use the context in which people are operating to

give them the information they need when they need it without them having to ask for it.

These systems do this by operating in an information environment, be it web pages that a

person is surfing, a book they are checking out from the library, or a paper they are writing.

The Classroom uses the context of a lecture to help the lecturer without having

to be explicitly asked to do so. Instead of existing in electronic form, it exists in the real

world, but the notion of allowing computers to take actions for you still exists. In an

electronic task, such as writing a paper or surfing the web, it is not easy to get appropriate

information for the user without understanding what it is that that user is doing. However

by using the context in which the user is operating the InfoLab has shown that computer

systems are able to provide useful information with a minimal amount of “smarts”.

We believe that this is even more important in the world of computer vision.

The InfoLab has shown that computers can be proactively useful in everyday tasks for

which people use computers. XLibris begins moving that proactivity away from a computer

environment and into the real world. Computer vision techniques are a clear next step in

that direction, allowing the computer to be proactive in determining the needs of the user

given the context in which he is operating.

As computer and camera systems become more ubiquitous and people become

more connected, this line of research should prove quite exciting. Combining multiple

sources of information will provide more information about the context the user is living in,

which makes the job of the computer vision easier, and in turn allows us to provide more

timely and useful information to the user.

172

9.4 Final Thoughts

Computer vision is being used more and more in the real world, from surgical assistants

to automated vehicles driving on our highways to face recognition systems monitoring

our security. It is quickly becoming a part of the mainstream consciousness. As vision

researchers, we need to be honest in describing the capabilities of our system. When a

system which is described as a solution for a given problem fails because one of its required

constraints fails, the response is to say that the system is useless rather than that it was

applied inappropriately. Until we reach the point when computer vision based systems

know that they are failing and can report that rather than simply failing, it is incumbent

on vision researchers to understand which constraints our systems rely on and advertise

them.

Computer vision is a useful tool. However, it is a picky tool that defies generality.

By carefully studying how to use that tool in different situations, we hope to make the tool

more useful by both making it more robust for the task for which it was built, and easier

to reuse.

Humans use vision to solve almost any task. As the set of vision routines that are

available to the community expands, more and more tasks will be solvable using computer

vision. In order to be truly successful, the people implementing these systems will need

to understand the limitations of the computer vision they are using. It is our hope that

this ever expanding set of vision routines will be easily applied to these new situations. By

utilizing them in systems that have an understanding of the world, knowing where and when

different routines should be used, we believe that these routines will more easily accomplish

interesting tasks than were possible before.

We see a bright future for computer vision in solving tasks that were not

considered before. Before this is possible, we need a set of vision tools which can be easily

173

and robustly applied to these problems. It is our hope that this dissertation presents a

direction to follow in providing those tools.

Bibliography

[1] J. K. Aggarwal and Q. Cai, Human motion analysis: A review, Computer Vision and
Image Understanding: CVIU 73 (1999), no. 3, 428–440.

[2] Phillip Agre and David Chapman, Pengi: An implementation of a theory of activity,
Proceedings of the National Conference on Artificial Intelligence (AAAI-87), American
Association for Artificial Intelligence, AAAI Press / The MIT Press, July 1987.

[3] Yiannis Aloimonos, Purposive and qualitative active vision, Proceedings of the 10th
International Conference on Pattern Recognition (Atlantic City, NJ), June 1990,
pp. 346–360.

[4] , What i have learned, CVGIP: Image Understanding 60 (1994), no. 1, 74–85.

[5] Tom Arbuckle and Michael Beetz, Recipe - a system for building extensible, run-time
configurable, image processing systems, CVPR, 1998.

[6] Ronald C. Arkin, Behavior-based robotics, The MIT Press, 1998.

[7] Ruzena Bajcsy, Active perception, Proceedings of the IEEE 76 (1988), no. 8, 996–1004.

[8] Ruzena Bajcsy and K. Goldberg, Active touch and robot perception, Cognition and
Brain Theory 7 (1984), no. 2, 199–216.

[9] Dana H. Ballard, Generalizing the Hough transform to detect arbitrary shapes, Pattern
Analysis 13 (1981), 111–122.

[10] , Animate vision, Artificial Intelligence 48 (1991), 57–86.

[11] Michael Beetz, Tom Arbuckle, Armin B. Cremers, and M. Mann, Transparent, flexible,
and resource-adaptive image processing for autonomous service robots, European
Conference on Artificial Intelligence, 1998, pp. 632–636.

[12] Aaron Bobick, Stephen Intille, Jim Davis, Freedom Baird, Claudio Pinhanez,
Lee Campbell, Yuri Ivanov, Arjan Schutte, and Andrew Wilson, The kidsroom:
A perceptually-based interactive and immersive story environment, Presence:
Teleoperators and Virtual Environments 8 (1999), no. 4, 367–391.

174

175

[13] R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp, David P. Miller, and
Marc G. Slack, Experiences with an architecture for intelligent, reactive agents, Journal
of Experimental & Theoretical Artificial Intelligence 9 (1997), no. 2/3, 237–256.

[14] R. Peter Bonasso, R. James Firby, Erann Gatt, David Kortenkamp, David P. Miller,
and Mark G. Slack, Experiences with an architecture for intelligent reactive agents,
Proc. of the Int. Joint Conf. on Artificial Intelligence, 1995.

[15] Rodney A. Brooks, A hardware retargetable distributed layered architecture for mobile
robot control, Proceedings of the IEEE conference on Robotics and Automation, IEEE
Press, 1987, pp. 106–110.

[16] , Robots that walk, Proceedings of the IEEE International Conference on
Robotics and Automation, April 1989.

[17] , Elephants don’t play chess, Designing Autonomous Agents: Theory and
Practice from Biology to Engineering and Back (P. Maes, ed.), MIT Press, 1990, pp. 3–
15.

[18] , Intelligence without reason, A.I. Memo 1293, MIT AI Laboratory, April 1991.

[19] , Building brains for bodies, Autonomous Robots 1 (1994), no. 1, 7–25.

[20] Jay Budzik, Kristian Hammond, and Larry Birnbaum, Information access in context,
Knowledge Based Systems 14 (2001), no. 1–2, 37–53.

[21] David Chapman, Vision, instruction, and action, MIT Press, 1991.

[22] Silvia Coradeschi and Alessandro Saffiotti, Anchoring symbolic object descriptions
to sensor data. problem statement, Linküping electronic articles in computer and
information science 4 (1999), no. 9, 1–5.

[23] Andrew Crossen, Jay Budzik, Mason Warner, Larry Birnbaum, and Kristian
Hammond, XLibris: An automated library research assistant, Proceedings of the
Conference on Intelligent User Interfaces (IUI-2001), ACM Press, 2001.

[24] Trever Darrell, Pattie Maes, Bruce Blumberg, and Alexander Pentland, A novel
environment for situated vision and behavior, Workshop On Visual Behaviors:
Computer Vision and Pattern Recognition (1994), 68–72.

[25] Trever Darrell and Alexander Pentland, Space-time gestures, Computer Vision and
Pattern Recognition (1993).

[26] P. Davidson, Toward a general solution to the symbol grounding problem: Combining
machine learning and computer vision, AAAI Fall Symposium Series, Machine Learning
in Computer Vision: What, Why, and How?, AAAI Press / The MIT Press, 1993,
pp. 191–202.

176

[27] James W. Davis and Aaron F. Bobick, The representation and recognition of
action using temporal templates, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’97), The Institute of Electrical and Electronics Engineers, 1997.

[28] Bruce A. Draper, Jose Bins, and Kyungim Baek, ADORE: Adaptive object recognition,
ICVS, 1999, pp. 522–537.

[29] Adam Finkelstein and Marisa Range, Image mosaics, Proceedings of the EP 98 and
RIDT 98 Conferences, Electronic Publishing, Artistic Imaging and Digital Typography,
March 1998.

[30] R. James Firby, Adaptive execution in complex dynamic worlds, Ph.D. thesis, Yale,
1989.

[31] , The crl manual, Animate Agent Project Working Note 3, University of
Chicago, February 1995.

[32] , The rap language manual, Animate Agent Project Working Note 6, University
of Chicago, March 1995.

[33] R. James Firby, Roger E. Kahn, P. N. Prokopowicz, and Michael J. Swain, Collecting
trash: A test of purposive vision, Workshop on Vision for Robots, August 1995.

[34] R. James Firby, Roger E. Kahn, Peter N. Prokopowicz, and Michael J. Swain,
An architecture for vision and action, International Joint Conference on Artificial
Intelligence, August 1995.

[35] , Collecting trash: A test of purposive vision, Workshop on Vision for Robots,
August 1995.

[36] R. James Firby, Peter N. Prokopowicz, and Michael Swain, Ai-based mobile robots,
AI-based Mobile Robots (David Kortenkamp R. Peter Bonasso and Robin Murphy,
eds.), MIT/AAAI Press, 1997.

[37] R. James Firby, Peter N. Prokopowicz, Michael J. Swain, Roger E. Kahn, and David
Franklin, Programming chip for the ijcai-95 robot competition, AI Magazine 17 (1996),
no. 1, 71–81.

[38] Joshua D. Flachsbart, Gargoyle: Vision in the intelligent classroom, Master’s thesis,
University of Chicago, 1997.

[39] Joshua D. Flachsbart, David Franklin, and Kris J. Hammond, Improving human
computer interaction in a classroom environment using computer vision, Proceedings
of the Conference on Intelligent User Interfaces (IUI-2000), 2000.

[40] David Franklin, Cooperating with people: The intelligent classroom, Proceedings of
the Fifteenth National Conference on Artificial Intelligence (AAAI-98), American
Association for Artificial Intelligence, AAAI Press / The MIT Press, 1998.

177

[41] , The intelligent classroom: Competent assistance in the physical world, Ph.D.
thesis, Northwestern University, 2001.

[42] David Franklin, Shannon Bradshaw, and Kristian J. Hammond, Beyond “next slide,
please”: The use of content and speech in multi-modal control, Working Notes of
the AAAI-99 Workshop on Intelligent Information Systems, American Association for
Artificial Intelligence, AAAI Press / The MIT Press, 1999.

[43] David Franklin, Roger E. Kahn, Joshua D. Flachsbart, Michael J. Swain, and R. James
Firby, Happy patrons make better tippers: Creating a robot waiter using perseus and the
animate agent architecture, International Conference on Automatic Face and Gesture
Recognition, 1996.

[44] Erann Gat, Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots, Proceedings of the National
Conference on Artificial Intelligence (AAAI-92), American Association for Artificial
Intelligence, AAAI Press / The MIT Press, 1992.

[45] D. M. Gavrila, The visual analysis of human movement: A survey, Computer Vision
and Image Understanding: CVIU 73 (1999), no. 1, 82–98.

[46] James Jerome Gibson, Perception of the visual world, Houghton Mifflin, 1950.

[47] Mohinder S. Grewal and Angus P. Andrews, Kalman filtering theory and practice,
Prentice Hall, 1993.

[48] A. Hanson and E. Riseman, Visions: A computer system for interpreting scenes,
Computer Vision Systems (A. Hanson and E. Riseman, eds.), Academic Press, New
York, NY, 1978, pp. 303–334.

[49] A. Hausner, Simulating decorative mosaics, Proceedings of ACM SIGGRAPH 2001
(New York, NY) (E. Fiume, ed.), ACM, ACM Press / ACM SIGGRAPH, 2001,
pp. 573–580.

[50] David Hinkle, David Kortenkamp, and David Miller, The 1995 robot competition and
exhibition, AI Magazine 17 (1996), no. 1, 38–45.

[51] Ian Horswill, Polly: A vision-based artificial agent, Proceedings of the Eleventh
National Conference on Artificial Intelligence (AAAI-93), American Association for
Artificial Intelligence, AAAI Press / The MIT Press, July 11–15 1993.

[52] , Specialization of perceptual processes, Ph.D. thesis, Massachusetts Institute of
Technology, 1993.

[53] Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge, Comparing
images using the hausdorff distance, IEEE Transactions on Pattern Analysis and
Machine Intelligence 15 (1993), no. 9, 850–863.

178

[54] Charles E. Jacobs, Adam Finkelstein, and David H. Salesin, Fast multiresolution image
querying, Computer Graphics 29 (1995), 277–286.

[55] Roger E. Kahn, Perseus: An extensible vision system for human-machine interaction.,
Ph.D. thesis, The University of Chicago, August 1996.

[56] Roger E. Kahn, R. James Firby, and Michael J. Swain, The message hub, Animate
Agent Project Working Note 4, University of Chicago, April 1994.

[57] Roger E. Kahn and Michael J. Swain, Understanding people pointing: The perseus
system, International Symposium on Computer Vision (1995), 569–574.

[58] Roger E. Kahn, Michael J. Swain, and R. James Firby, The datacube server, Animate
Agent Project Working Note 2, University of Chicago, November 1993.

[59] Roger E. Kahn, Michael J. Swain, P. N. Prokopowicz, and R. James Firby, Gesture
recognition using the perseus architecture, Computer Vision and Pattern Recognition,
June 1996.

[60] Deepak Karuppiah, Patrick Deegan, Elizeth Araujo, Yunlei Yang, Gary Holness,
Zhigang Zhu, Barbara Lerner, Roderic Grupen, and Edward Riseman, Software mode
changes for continuous motion tracking, Proceedings of the International Workshop on
Self Adaptive Software, 2000.

[61] J. Kim and F. Pellacini, Jigsaw image mosaics, Proceedings of ACM SIGGRAPH 2002
(New York, NY), ACM, ACM Press / ACM SIGGRAPH, 2002.

[62] Charles Kohl and Joe Mundy, The development of the image understanding
environment, Proceedings of Computer Science and Pattern Recognition (CVPR94),
IEEE Computer Society Press, 1994.

[63] David Kortenkamp, Peter Bonasso, and Robin Murphy, Artificial intelligence and
mobile robots, MIT Press, 1998.

[64] L. Lorigo, R. Brooks, and W. Grimson, Visuallyguided obstacle avoidance in
unstructured environments, Proceedings on Intelligent Robots and Systems, 1997.

[65] Pattie Maes, Situated agents can have goals, Robotics and Autonomous Systems 6
(1990), 49–70.

[66] Pattie Maes (ed.), Designing autonomous agents, The MIT Press, 1991.

[67] David Marr, Vision, W. H. Freeman and Company, San Francisco California, 1982.

[68] David Marr and H. K. Nishihara, Representation and recognition of the spatial
organization of three dimensional shapes, Proceedings of the Royal Society London
B (1978), no. 100, 269–294.

179

[69] Martin C. Martin, The simulated evolution of robot perception, Ph.D. thesis, Carnegie
Mellon University, 2001.

[70] Maya M. Mataric, Behavior-based control: Main properties and implications,
Proceedings of the Workshop on Intelligent Control Systems, May 1992.

[71] T. Moeslund and E. Granum, A survey of computer vision-based human motion capture,
Computer Vision and Image Understanding: CVIU 75 (2001).

[72] Vishvjit Nalwa, A guided tour of computer vision, Addison Wesley Publishing
Company, 1993.

[73] N. Nilsson, Shakey the robot, Tech. report, Artificial Intelligence Center, SRI
International, Menlo Park, CA, 1984.

[74] Claudio Pinhanez and Aaron F. Bobick, Intelligent studios: Using computer vision to
control tv cameras, Proceedings of the Workshop on Entertainment and AI/Alife, 1995.

[75] Peter N. Prokopowicz, Michael J. Swain, and Roger E. Kahn, Task and environment-
sensitive tracking, Workshop On Visual Behaviors: Computer Vision and Pattern
Recognition (1994), 73–78.

[76] J. Rasure and S. Kubica, The KHOROS application development environment,
Experimental Environments for Computer Vision (Ney Jersey), World Scientific, 1994.

[77] Julio A. Rosenblatt, Damn: A distributed architecture for mobile navigation, Ph.D.
thesis, The Robotics Institute, CMU, 1995.

[78] Julio A. Rosenblatt and Charles E. Thorpe, Combining multiple goals in a behavior-
based architecture, proceedings 1995 IEEE/RSJ International Conference on Intelligent
Robots and Systems (Los Alamitos, CA), vol. 1, IEEE Press, August 1995, Human
Robot Interaction and Cooperative Robots, pp. 136–141.

[79] Garbis Salgian, Tactical driving using visual routines, Ph.D. thesis, University of
Rochester, 1998.

[80] K. Sarachick, Characterizing and indoor environment with a mobile robot and
uncalibrated stereo, Proceedings of the IEEE International Conference on Robotics
and Automation (Scottsdale, AZ), 1989.

[81] Robert S. Silvers, United states patent number 6,137,498, October 1997.

[82] Robert S. Silvers and M. Hawley, Photomosaics, Henry Holt and Co., 1997.

[83] Thomas M. Strat, Natural object recognition, Springer-Verlag, 1992.

[84] Michael J. Swain, Color indexing, Ph.D. thesis, University of Rochester, 1990.

180

[85] Michael J. Swain and Dana H. Ballard, Color indexing, International Journal of
Computer Vision 7 (1991), 11–32.

[86] Michael J. Tarr and Michael J. Black, A computational and evolutionary perspective
on the role of representation in vision, CVGIP: Image Understanding 60 (1994), no. 1,
65–73.

[87] Shimon Ullman, Visual routines, Cognition 18 (1984), 97–159.

[88] S. Umbaugh, Computer vision and image processing: A practical approach using
CVIPtools, Prentice Hall, New Jersey, 1998.

[89] Christopher Wren, Understanding expressive action, Ph.D. thesis, Massachusetts
Institute of Technology, 2000.

[90] Christopher Wren, Ali Azarbayejani, Trevor Darrell, and Alexander Pentland, Pfinder:
Real-time tracking of the human body, Media Laboratory Perceptual Computing Section
353, Massachusetts Institute of Technology, 1995.

[91] , Pfinder: Real-time tracking of the human body, IEEE Transactions on Pattern
Analysis and Machine Intelligence 19 (1997), no. 7, 780–785.

[92] Christopher Wren and Alex P. Pentland, Understanding purposeful human vision,
Proceedings of the IEEE International Conference on Computer Vision, 1999.

[93] Shujun Zhang, Geoff D. Sullivan, and Keith D. Baker, The automatic construction of
a view-independent relational model for 3-d object recognition, IEEE Transactions on
Pattern Analysis and Machine Intelligence 15 (1993), no. 6, 531–543.

