

Computer Science Department

Technical Report
NWU-CS-02-09
March 29, 2002

Completely Adaptive Simplification of Massive Meshes

Prasun Choudhury Benjamin Watson

Abstract

The growing availability of massive models and the inability of most existing
visualization tools to work with them requires efficient new methods for massive
mesh simplification. In this paper, we present a completely adaptive, virtual
memory based simplification algorithm for large polygonal datasets. The algorithm is
an enhancement of RSimp [2], enabling out of core simplification without reducing the
output quality of the original algorithm.

The primary improvement in our new algorithm, VMRSimp, builds and preserves
memory locality throughout the simplification process. This is crucial for successful
simplification of massive meshes. An additional enhancement based on a depthfirst
simplification approach improves running time further by increasing reuse of the
resident working set, at the cost of a minor reduction in output quality. VMRSimp
performs completely adaptive simplification of massive meshes at reasonable rates,
reducing for example 18 million to 100 thousand vertices in 51 minutes. This
permits simplification to output sizes in the millions without thrashing, improves
accuracy for all smaller output sizes, and enables sensitivity in simplification to mesh
boundaries and topological changes.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry
 and Object Modeling – Geometric algorithms.

Additional Keywords: model simplification, massive models, quadric error, memory locality,

 out-of-core simplification

Completely Adaptive Simplification of Massive Meshes

Prasun Choudhury*
Northwestern University

Benjamin Watson†
Northwestern University

ABSTRACT
The growing availability of massive models and the inability of
most existing visualization tools to work with them requires
efficient new methods for massive mesh simplification. In this
paper, we present a completely adaptive, virtual memory based
simplification algorithm for large polygonal datasets. The
algorithm is an enhancement of RSimp [2], enabling out of core
simplification without reducing the output quality of the original
algorithm.

The primary improvement in our new algorithm, VMRSimp,
builds and preserves memory locality throughout the
simplification process. This is crucial for successful simplification
of massive meshes. An additional enhancement based on a depth-
first simplification approach improves running time further by
increasing reuse of the resident working set, at the cost of a minor
reduction in output quality. VMRSimp performs completely
adaptive simplification of massive meshes at reasonable rates,
reducing for example 18 million to 100 thousand vertices in 51
minutes. This permits simplification to output sizes in the millions
without thrashing, improves accuracy for all smaller output sizes,
and enables sensitivity in simplification to mesh boundaries and
topological changes.

CR Categor ies and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling –
Geometric algorithms.

Additional Keywords: model simplification, massive models,
quadric error, memory locality, out-of-core simplification

1 INTRODUCTION
Recent years have seen a rapid increase in the size of polygonal
datasets [1,8]. Several new technologies are contributing to this
effect, such as the development of high-resolution 3D scanners.
The Digital Michelangelo Project [8] at Stanford University has
produced finely detailed meshes consisting of over 300 million
triangles.

The enormity of these models poses a real challenge. Certainly
such massive models will not be rendered in real time in the near
future. Model simplification would seem to be an obvious
solution, but ironically enough, most simplification algorithms are
not designed to handle datasets at these sizes. Typically these
algorithms require random access to mesh data, an approach
completely impractical in out of core settings. There are a few
algorithms designed to work out of core [9,10,15]. While fast, all
these algorithms make use of a non-adaptive simplification phase
that harms output quality.

In order to work efficiently with massive datasets, algorithms
must minimize disk access. One way of achieving this goal is to
ensure that all simplification occurs in core memory. The

algorithms described by Lindstrom [9], El-Sana and Chiang [4],
and Shaffer and Garland [15] take this approach, which
unfortunately limits output accuracy by requiring that the output
model fit in core memory. In [10], Lindstrom and Silva describe a
memory-independent algorithm that substitutes disk for core
memory. However, their simplifications must be non-adaptive to
avoid thrashing.

2 CONTRIBUTIONS
Our approach, an enhancement of RSimp [2], relies on virtual
memory, building and preserving memory locality to minimize
page faults. By using this approach, VMRSimp is able to perform
completely adaptive simplification of massive meshes, from the
first operation on input until the final operation producing output.
Despite this, simplifications are performed in reasonable time. The
benefits of our approach include:

Improved accuracy: simplified models produced by VMRSimp
are more accurate than models output by other algorithms for
massive meshes.

Topological and boundary sensitivity: because it uses virtual
memory, VMRSimp does not require a dereferenced “polygon
soup” format, and can retain input topological information.
With this information, VMRSimp is able to avoid joining
topologically disjoint model components, and to preserve the
shape of mesh boundaries.

Large, adaptively simplified output models: models output by
the algorithms described in [4,9,15] must fit in core memory,
limiting output size. VMRSimp does not have this limitation.
Lindstrom and Silva’s algorithm [10] can output arbitrary
sizes, but these are non-adaptive and less accurate than
VMRSimp’ s.

In the remainder of this paper, we review related work (section
3), describe the simplification algorithm (section 4), discuss the
results with examples (section 5) and finally conclude (section 6).

3 RELATED RESEARCH
Polygonal simplification has been an area of active research for
close to a decade. A complete review of the field is beyond the
scope of this paper – we will restrict our review to only those
algorithms most relevant in our out of core context. (Good reviews
of the entire field of model simplification are available at [6] and
[11]).

Simplification of massive models requires extreme efficiency.
For this reason, two algorithms designed for models that fit in core
memory have been very influential. The non-adaptive algorithm
introduced by Rossignac and Borrel [13] runs in linear time on
input and is extremely fast. When performing adaptive
simplification, the quadric metric introduced by Ronfard and
Rossignac [12] and refined by Garland and Heckbert [5] has
proven to be an extremely compact and efficient method for
summarizing surface characteristics.

When models do not fit in core memory, the random memory
access most simplification algorithms require results in severe
thrashing, making them nearly impossible to use. To address this
problem, Hoppe [7] proposed segmenting massive meshes, and

*Dept. Mechanical Engineering, 2145 Sheridan Ave., Evanston, IL 60208
USA. p-choudhury@northwestern.edu

†Dept. Computer Science, 1890 Maple Ave., Evanston, IL 60201 USA.
watson@northwestern.edu

simplifying each segment independently in core, with boundary
edges preserved so that the meshes can be rejoined. However,
segmented simplification is unlikely to approach globally optimal
accuracy. Lindstrom [9] developed an out of core algorithm based
on Rossignac and Borrel’ s linear non-adaptive technique [13]. If
the input model uses an indexed vertex format, the algorithm
begins by converting input to a dereferenced “polygon soup”
format that increases input size and discards topological
information in order to gain locality of reference. The resulting
algorithm is extremely fast and can simplify input models with
more than 300 million triangles. However, non-adaptive
simplification also results in poor accuracy, especially at smaller
output sizes. The algorithm also assumes that one has sufficient
core memory to contain the simplified output model. In [10],
Lindstrom and Silva describe an approach that improves [9] to
overcome this output size limitation.

Shaffer and Garland [15] use a two-pass algorithm and
achieve better output quality at the expense of more computation
time. The first, non-adaptive pass applies a version of Lindstrom’s
algorithm [9]. The output from this pass becomes input to the final
adaptive pass, which uses a variation of RSimp’ s splitting
approach, described by Brodsky and Watson in [2]. Vertices are
clustered using a BSP tree based partitioning scheme. Although
this algorithm improves accuracy at smaller output sizes, quality
still suffers from the first non-adaptive pass. Salamon et al. [14]
characterized memory use in RSimp during simplification of large
models, and implemented some improvements.

4 VMRSimp
In order to describe our new virtual memory version of RSimp
(VMRSimp), we will provide a brief overview of the RSimp
algorithm as well as the data structures used in the algorithm.
Further details of the RSimp algorithm can be found in [2].

4.1 RSimp data structures and algorithm
The principal data structure in this algorithm is the cluster, which
represents a surface patch on the input model and a single vertex
in the output model. We label the variation of the face normals in
the surface patch nv. Clusters are organized into a priority queue
sorted by nv for greedy, best-first processing. The other important
data structures are the global face and global vertex lists (gfl and
gvl respectively). The RSimp algorithm has three stages:

Initialization: in this stage the global face (gfl) and vertex
(gvl) lists are created and filled. The simplified model is
initialized to represent a single cluster, which is immediately
split into eight smaller clusters.

Simplification: choose the cluster with the largest nv from the
priority queue and split the cluster based on the pattern of
normal variation into at most eight subclusters. Compute nv
for the new subclusters and place them into the priority queue.
Iterate until the required output size is reached. While splitting
ensure that no topologically disjoint components of the model
are in the same cluster (creating new clusters if necessary).

Post Processing: for each of the remaining clusters, compute a
representative output vertex using quadric error optimization
[5]. Retain in the output model only those input faces with
vertices in three different output clusters.

4.2 Modifications to RSimp
VMRSimp’ s primary enhancement of the RSimp algorithm builds
and preserves memory locality during simplification. In Rsimp,
the vertices and faces contained in each cluster were represented

by two lists of indices into the gvl and gfl. VMRSimp eliminates
the per cluster lists of indices and replaces them with four array
indices. These indices represent the ranges owned by the cluster in
the gvl and gfl. In order to enable this representation, VMRSimp
must sort the gvl and gfl to correspond to clusters. During
splitting, the vertices and faces in a cluster’s range of the gvl and
gfl are sorted into new subranges corresponding to the new
subclusters. Since the number of new subclusters is constant, this
sort can be performed in time linearly proportional to the size of
the original cluster’s ranges in the gvl and gfl. Any splitting
required to avoid topological joining is performed in a similar
fashion by sorting disjoint components in the new subclusters into
separate subranges.

This enhancement, while simple, proves to be extremely
powerful. The primary benefit results from the locality of
reference built by this new sorting scheme: all the data necessary
for working on a cluster is brought into a continuous memory
range. This locality is improved as the algorithm progresses and
clusters become smaller. In addition, by replacing the per-cluster
lists with just four indices, the memory used per cluster is reduced
significantly. In RSimp, the memory required to represent clusters
in the priority queue was proportional to input size. In VMRSimp,
cluster representation is proportional to output size.

4.2.1 Depth-first heuristic

RSimp simplifies until a user chosen output size is reached,
splitting clusters across the model in a best-first fashion (we call
this size-based control). To exploit locality further through reuse
of the current working set, in VMRSimp we have introduced an
optional depth-first simplification heuristic. By splitting a cluster
more than once while it is in core memory, this heuristic
introduces a user-controllable tradeoff between output quality and
simplification time.

The heuristic calculates V, the number of vertices that should
be produced from a new cluster, based on currently available
information. When V > 1, the new cluster is immediately split
again, and resulting subclusters receive the same recursive
treatment. Clusters in which V

�
 1 are placed back into the priority

queue. Only when V
�

 1 in all locally and recursively produced
clusters does regular greedy, best-first processing resume. The
heuristic itself takes the form

V = min(C,(1-M/N)B + (M/N)D)

where C is the number of input vertices in the cluster, M is the
targeted number of vertices in the output model, and N the number
of vertices in the input model. B is a quantity representing the
number of vertices that should produced from the cluster using
only best-first criteria. D is a similar quantity representing the
number of vertices that should be produced according to strict
depth-first criteria. Thus V represents a compromise between best
and depth-first guesses at the number of vertices that should be
produced from a cluster. As targeted output size approaches input
size, the depth-first guess dominates. The minimum function
ensures that V will never be larger than the number of input
vertices actually in the cluster.

Because it is not best-first, D ignores the differences in normal
variation between clusters, and is equal to (M/N)C. B is much
more complex:

B = K(M-m)D

where m is the number of clusters existing at the current stage of
simplification, K is a value in range [0,1] indicating confidence in
B’ s best first criteria (maximum confidence is 1), and D is the
normal variation in the current cluster normalized by the summed
normal variation of all clusters: nv/(� 1 to m nvi).

4.2.2 Accuracy-based control

In addition to size-based control, VMRSimp allows accuracy-
based output control. In this case, clusters are split until user-
specified accuracy is reached. Accuracy is calculated using the
diagonal of the bounding box containing the input vertices in the
cluster. During post processing, if the output vertex obtained
through minimization of the cluster’s quadric does not lie in the
bounding box, the mean of the input vertices is output instead.
Accuracy-based control not only allows explicit control of
simplification accuracy, it also makes the decision to split a cluster
completely local, allowing optimal memory reuse through depth-
first traversal of the simplification tree. The cluster priority queue
is replaced by an output cluster list, storing clusters represented
with the required accuracy; and an inaccurate cluster stack, storing
clusters that require more refinement. While placing new
subclusters into the priority queue takes log m time, placing them
into the stack takes constant time.

4.2.3 Mesh boundary sensitivity

To make simplification sensitive to mesh boundaries,
VMRSimp uses a variation of the method described in [5]. Every
edge on a mesh boundary is paired with a new boundary plane
perpendicular to the face containing the edge. These planes are
squared and added to the quadric used to locate output vertices.
Boundary planes can also influence splitting. In RSimp splitting is
accomplished by finding the eigenvectors and eigenvalues of the
quadric matrix defined by faces in the cluster. Two of the
eigenvectors indicate the directions of maximum and minimum
normal variation. These directions are used to orient the splitting
planes. VMRSimp defines an additional boundary quadric matrix
using only the boundary planes. The boundary quadric only
improves splitting when change in boundary plane orientation is
unrelated to change in face plane orientation. This occurs when the
cluster’s surface patch is roughly planar near the boundary, yet
despite this the boundary is still curved. In this case change in
boundary plane orientation is primarily one dimensional, and so
during splitting, VMRSimp adds the boundary matrix to the face
matrix only when the eigenvalue corresponding to maximum
boundary plane orientation change is significantly greater than the
eigenvalue corresponding to minimum boundary plane orientation
change.

5 RESULTS
Simplification algorithms are usually judged by two criteria:
simplification quality and simplification time. For out of core
simplification we add memory efficiency to this list: a good out of
core algorithm should have as small a memory footprint as
possible, and exploit locality in its use of that memory.

In this section, we present simplification times for differently
sized input models simplified to various output sizes. We then
examine the quality of these output models, as well as memory
efficiency during the entire simplification process. Next we study
the tradeoff between simplification time and quality enabled by
our depth-first heuristic. Finally we study the performance benefits
of error-based control of VMRSimp.

5.1 Simplification time
We used eight different models in our comparisons. All models
were simplified on a 1GHz Dell PowerEdge 2400 PC with 1GB
RAM and gigabytes of swap space, running RH Linux 7.1.

Figure 1 shows the simplification times of VMRSimp using
size-based control compared to RSimp [2] and Lindstrom’s
algorithm [9] when simplifying various input models to 100,000
output vertices. Lindstrom’s non-adaptive algorithm [9] is linear in
input and six to seven times faster than VMRSimp. (Note that our
implementation of Lindstrom’s algorithm is likely not the most
superbly optimized of codes). Although they theoretically have the
same complexity (O(N log M), where N is input size and M is
output size), VMRSimp’ s efficient memory use makes it much
faster than RSimp. In fact RSimp is unable to simplify models
larger than 4 million vertices without severe thrashing. Shaffer and
Garland [15] reported running times 3 to 6 times faster than
VMRSimp on a slightly lower performance platform. Recall that the
first pass of Shaffer and Garland’s algorithm is also linear and
non-adaptive.

Figure 2 shows how size-based simplification is affected by
the size of the output model. Here the algorithms were simplifying
the David model, which contains roughly 4.1 million vertices.
Rsimp’ s simplification time increases steeply as output model size
increases. For both VMRSimp and Lindstrom’s algorithm,
simplification time increases only gradually with larger output
sizes. The similarity between the VMRSimp and Lindstrom curves
is striking, considering the differing complexities of these
algorithms. Apparently the constantly improving locality of

Figure 1: Simplification times for VMRSimp (size-based
control), Lindstroms’s algorithm [9] and Rsimp [2].
Differently sized models were simplified to 100,000 vertices.

0

20

40

60

80

100

120

0 5 10 15 20 25 30

Input Size (millions of vertices)

Si
m

pl
if

ic
at

io
n

T
im

e
(m

in
s)

VM RSimp

RSimp

Lindstrom

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

Output Size (thousands of vert ices)

Si
m

pl
if

ic
at

io
n

T
im

e
(m

in
s)

VM Rsimp

RSimp

Lindstrom

Figure 2: Performance time of VMRSimp (size-based control)
for different output sizes of the David (4.1 million vertices)
model as compared to Lindstrom’s algorithm [9] and RSimp

VMRSimp compensates for its disadvantage in complexity, at least
at these output sizes. Supporting evidence for this explanation
comes from RSimp’ s performance, which differs from VMRSimp
primarily in its inefficient use of memory.

5.2 Paging and memory usage
We used the unix function getrusage to compare page faulting
during the entire simplification process in RSimp and VMRSimp
using size-based control. As foreshadowed by the simplification
time results, page faulting is dramatically lower in VMRSimp.
Table 1 summarizes these results. At larger input sizes, faulting is
reduced by over an order of magnitude in VMRSimp. RSimp is
unable to simplify models over 4.1 million vertices without severe
thrashing.

We measured virtual memory footprints of VMRSimp using the
unix command vmstat. Table 2 presents these results. Virtual
memory usage, like simplification time, scales linearly with input
model size. In our current implementation, memory is used
primarily to store the input model’s face list (15 bytes per record)
and vertex list (56 bytes per record). Since simplification time is
dominated by use of virtual memory, we reduce the memory
footprint with on the fly computation of the area and normal
vector of faces. As output sizes grow beyond those presented here,
representing the output model requires more virtual memory.
However, since each output vertex (or cluster) requires only 25
bytes of memory, representation of the input model will always
the dominant memory cost.

5.3 Simplification quality
Simplification quality can be measured both visually and
quantitatively. For quantitative measurements, Cignoni et al. have
developed the Metro [3] tool. Unfortunately Metro does not
function when model sizes exceed roughly 1 million faces. We
sidestep this problem by comparing smaller output models to
models simplified to roughly 1 million faces using VMRSimp.
Table 3 compares the output accuracy of VMRSimp to the
Lindstrom [9] and the Shaffer and Garland [15] algorithms. Here
Metro’ s standard is the Lucy model, simplified to roughly 1.2
million faces using VMRSimp. In general, mean error as a
percentage of the bounding box diagonal is reduced by 25-40%
when using VMRSimp rather than Shaffer and Garland’s adaptive
simplification. The improvement in maximum error is even more
pronounced, with VMRSimp’ s output containing roughly 2 times
less error than adaptive simplification. With larger models,
maximum error in VMRSimp can be up to six times less than error
with adaptive simplification.

Admittedly, these quality measures could be biased, because
the standard model was produced using VMRSimp. However,
visual quality checks seem to correspond to these quantitative
measures. Figure 5 shows the Lucy model simplified to three
output sizes by adaptive simplification, Lindstrom’s algorithm and
VMRSimp. The models simplified by VMRSimp look much
smoother, particularly around the wings and the folding dress.
This is probably due to VMRSimp’ s ability to vary face shape
according to the local pattern of curvature. Adaptive simplification
also introduces some extraneous joins between the wing and the
body of the Lucy model. Similar results can be seen in the
simplified version of the David model in Figure 6. VMRSimp is
able to eliminate these joins with its check for topologically
disjoint components. In Figure 4, the two simplified St. Matthew

M odel
Input
Ver tices

Output
Ver tices

Page Faults
(VMRSi mp)

Page Faults
(Rsi mp)

Blade 0.9M 100K 36,476 95,186
St. Matthew Face 3.4M 10K 112,034 249,142
St. Matthew Face 3.4M 100K 120,947 368,378
David (small) 4.1M 10K 138,061 1,345,855
David (small) 4.1M 100K 147,563 3,310,098
Lucy 14.0M 10K 4,840,122 N/A
Lucy 14.0M 100K 5,120,327 N/A
David (big) 28.2M 10K 10,831,349 N/A

Table 1: Number of page faults for VMRSimp (size-based control)
and Rsimp for different input and output sizes.

M odel
Input
Ver tices

Output
Ver tices

M emory
allocated at
initial ization

Swap
space
used

David (small) 4.1M 1M 368.6 MB 114 MB
Lucy 14.0M 10K 1267 MB 613 MB
Lucy 14.0M 500K 1267 MB 920 MB
David (big) 28.2M 10K 2416 MB 1960 MB

Table 2: Virtual memory used by VMRSimp during size-based
simplification of different models.

Output
Size (tr is) L indstrom [9]

Adaptive
simplification [15] VMRSi mp

 mean max mean max mean max

1K 0.4549 26.10 0.4821 25.91 0.345 14.89
10K 0.0986 24.35 0.0946 24.43 0.0598 12.8
100K 0.0266 24.47 0.0164 24.17 0.0119 10.45

Table 3: Quality of output models of different sizes for the Lucy
model using VMRSimp with size-based control. Lindstrom’s
algorithm and adaptive simplification. Mean and maximum error
are expressed as percentages of the model bounding box.

Figure 3: Simplification times for VMRSimp using accuracy-based
control, size-based control with no depth first heuristic, and size-
based control with the heuristic at two confidence levels. Different
input models were simplified to 100,000 vertices.

0

20

40

60

80

100

120

0 5 10 15 20 25 30

Input Size (millions of vertices)

Si
m

pl
if

ic
at

io
n

T
im

e
(m

in
s)

size control
size control (dfirst K = .4)
size control (dfirst K = .8)
accuracy control

Output
Size (tr is)

Best-First
(no heur istic)

Depth-First
K=0.4

Depth-First
K=0.8

 mean max mean max mean max

10K 0.0598 12.8 0.0786 12.95 0.0897 14.41
100K 0.0119 10.45 0.0146 10.47 0.0162 14.31

Table 4: Quality of the Lucy model as simplified by size-based
VMRSimp without the depth-first heuristic, and with two levels of
confidence in the heuristic. Mean and maximum error are
expressed as percentages of the model bounding box.

Face models show the value of VMRSimp’ s sensitivity to mesh
boundaries.

5.4 Depth-First Heuristic Performance
The depth-first heuristic improves simplification time by 10-20%,
with higher confidence coefficients (K) improving times more
(Figure 3). This is particularly true at large input sizes, when
memory required per cluster range in the gvl and gfl grows,
increasing the benefit from memory reuse. Table 4 indicates the
reduction in output quality that comes with these improvements in
simplification time. (Once again, we compare smaller simplified
results to a simplified version of Lucy at 1.2 million faces).
Maximum error remains well below Lindstrom’s algorithm and
adaptive simplification; while mean error rises as the heuristic is
used more aggressively, eventually matching the mean error levels
produced by adaptive simplification.

5.5 Accuracy-Based Simplification
Accuracy-based output control allows simplification times nearly
25% lower than purely best-first size-based control, and equal to
or better than the most aggressive depth-first heuristic control (see
again Figure 3). Once more, this is particularly true at large input
sizes. Unlike heuristic control, these improvements in
simplification time do not come at the price of output quality.
However, accuracy-based control cannot offer users precise
selection of output size.

6 CONCLUSION AND FUTURE WORK
We have presented VMRSimp, an algorithm for fully adaptive
simplification of massive meshes. The algorithm makes extensive
and efficient use of virtual memory, allowing simplification of
these massive meshes at reasonable speed. Because the
simplification is fully adaptive, the quality of VMRSimp’ s output is
better than quality in output from other simplification algorithms
for massive meshes. Unlike these other algorithms, VMRSimp
retains the topological information present in its input, allowing it
to avoid merging topologically disjoint model components and to
preserve mesh boundaries. Models output by VMRSimp can be
quite large, and need not fit in core memory.

We have examined the performance of VMRSimp with models
that near the limits of virtual address space on 32 bit machines. In
particular, the larger David model approached this limit, and took
nearly two hours to simplify using size-based control, one and a
half hours with accuracy-based control. We plan to examine larger
models soon on a 64 bit machine with significant swap space, and
believe based on current trends that we will be able to simplify
models containing hundreds of millions of faces.

As Figure 2 makes clear, most of the computation required to
simplify massive models in VMRSimp is performed at the early
stages of simplification, which put the model in coarse spatial
order. If input models already had some rough spatial
organization, simplification times might drop dramatically, as
reported in [14]. We have experimented with creating this rough
order in linear time using a hashing scheme similar to Lindstrom’s
algorithm [9], but have found that the resulting improvements in
simplification time were approximately the same as the expended
hash times. However, it may be that the spatial organization
achieved in our hashing attempts was too coarse. We plan to
investigate the possible benefits of using finer resolutions in our
hashing scheme.

7 ACKNOWLEDGMENTS
Our thanks to Eric Shaffer and Michael Garland for providing
simplification results with their algorithm and Andrew Raij for his
work on accuracy-based simplification. The Lucy, Dragon and
Happy-Buddha models were obtained courtesy of the Stanford
Scanning Repository, while the David and the St-Matthew models
were acquired with the permission of the Stanford Digital
Michelangelo Project. The Blade model is distributed with
Kitware’s VTK package.

8 REFERENCES
[1] F. Bernardini, I. Martin, J. Mittleman, H. Rushmeier and G.

Taubin. Building a digital model of Michelangelo’s
Florentine Pieta. IEEE Computer Graphics and Applications,
vol. 22(1): 59-67, Jan. - Feb. 2002.

[2] D. Brodsky and B. Watson. Model simplification through
refinement. In Proceedings of Graphics Interface 2000, pages
221-228, May 2000.

[3] P. Cignoni, C. Rocchini and R. Scopigno. Metro: Measuring
error on simplified surfaces. Computer Graphics Forum, vol.
17(2): 167-174, 1997. http://vcg.iei.pi.cnr.it/metro.html.

[4] J. El-Sana and Y-J. Chiang. External memory view-
dependent simplification. Computer Graphics Forum, vol.
19(3): 139-150, August 2000.

[5] M. Garland and P. Heckbert. Surface simplification using
quadric error metrics. In Turner Whitted, editor, SIGGRAPH
97 Conference Proceedings, Annual Conference Series,
pages 209-216. ACM SIGGRAPH, Addison Wesley, August
1997. ISBN 0-201-32230-7.

[6] M. Garland. Multi-resolution modeling: Survey and future
opportunities. In State of the Art Report, Eurographics, pages
111-131, 1999.

[7] H. Hoppe. Smooth view-dependent level-of-detail control

and its application to terrain rendering. Proceedings IEEE
Visualization, pages 35-42, IEEE October 1998.

[8] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,

L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J.
Shade and D. Fulk. The Digital Michelangelo Project: 3D
scanning of large statues. In Kurt Akeley, editor, SIGGRAPH
2000 Conference Proceedings, Annual Conference Series,
pages 131-144. ACM SIGGRAPH, Addison Wesley, July
2000. ISBN 0-201-48564-8.

[9] P. Lindstrom. Out-of-Core simplification of large polygonal

models. In Kurt Akeley, editor, SIGGRAPH 2000 Conference
Proceedings, Annual Conference Series, pages 259-262,
ACM SIGGRAPH, Addison Wesley, July 2000. ISBN 0-201-
48564-8.

[10] P. Lindstrom and C. Silva. A memory insensitive technique
for large model simplification. In T. Ertl, K. Joy and A.
Varshney, editors, Proceedings IEEE Visualization, pages
121-126, IEEE, October 2001.

[11] D. Luebke. A developer’s survey of polygonal simplification

algorithms. IEEE Computer Graphics and Applications, vol.
21(3): 24-35, May – June 2001.

[12] R. Ronfard, and J Rossignac. Full-range Approximation of
Triangulated Polyhedra. Computer Graphics Forum. vol.
15(3): 67-76 and 462, 1996.

[13] J. Rossaignac and P. Borrel. Multi-resolution 3D

approximation for rendering complex scenes. Modeling in
Computer Graphics, pages 455-465, 1993.

[14] V. Salamon, P. Lu, B. Watson, D. Brodsky and D. Gomboc.
A case study in improving memory locality in model
simplification: metrics and performance. In B. Monien, V.K.
Prasanna and S. Vajpeyam editors, High Performance
Computing Conference Proceedings, pages 137-148,
Springer Verlag, December 2001. ISBN 3-540-43009-1.

[15] E. Shaffer and M. Garland. Efficient adaptive simplification

of massive meshes. In T. Ertl, K. Joy and A. Varshney,
editors, Proceedings IEEE Visualization, IEEE October
2001.

Figure 4: Sensitivity to mesh boundaries. On the bottom row, the St. Matthew Face is simplified to roughly 500 vertices by adaptive
simplification [15] (left) and VMRSimp (right). Some normals were flipped by adaptive simplification – this could easily be remedied in the
algorithm itself. On the top, the face is simplified to 50,000 vertices, showing a better approximation of the original boundaries.

Figure 5: Lucy model simplified to roughly 500 (first column), 5000 (second column) and 50,000 (third column) vertices. The models in
the top row were simplified with Shaffer and Garland’s [15] algorithm, the middle row with Lindstrom’s [9] algorithm, and the bottom row
with VMRSimp. Each row includes a close-up of Lucy’s dress and a different view of her wing.

Figure 6: David model (28 million vertices) simplified to roughly 1000 vertices (left), 5000 vertices (middle) and 50,000 vertices (right),
using VMRSimp (bottom) and adaptive simplification (top). Note the extraneous joins at the groin and armpits in adaptive simplification.
Again, the flipped normals in adaptive simplification could easily be fixed.

	coverpage-cs-02-09.pdf
	Technical Report �NWU-CS-02-09
	March 29, 2002
	Prasun Choudhury Benjamin Watson
	
	Abstract

