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Abstract 
 

The  growing  availability  of massive models  and  the  inability  of  most  existing  
visualization  tools  to  work  with  them  requires efficient  new  methods  for  massive  
mesh  simplification.  In  this paper,  we  present  a  completely  adaptive,  virtual  
memory  based simplification  algorithm  for  large  polygonal  datasets.  The algorithm is 
an enhancement of RSimp [2], enabling out of  core simplification without reducing  the 
output quality of  the original algorithm.   
 
The  primary  improvement  in  our new  algorithm, VMRSimp, builds  and  preserves  
memory  locality  throughout  the simplification process. This is crucial for successful 
simplification of massive meshes. An additional enhancement based on a depthfirst 
simplification  approach  improves  running  time  further  by increasing reuse of the 
resident working set, at the cost of a minor reduction  in  output  quality.  VMRSimp  
performs  completely adaptive  simplification  of  massive  meshes  at  reasonable  rates, 
reducing  for  example  18 million  to  100  thousand  vertices  in  51 minutes. This 
permits simplification to output sizes in the millions without thrashing, improves 
accuracy for all smaller output sizes, and  enables  sensitivity  in  simplification  to mesh  
boundaries  and topological changes. 



CR  Categories  and  Subject  Descriptors:  I.3.5  [Computer Graphics]:  Computational  Geometry   
           and Object  Modeling  – Geometric algorithms.  

 
Additional  Keywords:  model  simplification,  massive  models, quadric error, memory locality,  
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ABSTRACT 
The growing availability of massive models and the inability of 
most existing visualization tools to work with them requires 
efficient new methods for massive mesh simplification. In this 
paper, we present a completely adaptive, virtual memory based 
simplification algorithm for large polygonal datasets. The 
algorithm is an enhancement of RSimp [2], enabling out of core 
simplification without reducing the output quality of the original 
algorithm.  

The primary improvement in our new algorithm, VMRSimp, 
builds and preserves memory locality throughout the 
simplification process. This is crucial for successful simplification 
of massive meshes. An additional enhancement based on a depth-
first simplification approach improves running time further by 
increasing reuse of the resident working set, at the cost of a minor 
reduction in output quality. VMRSimp performs completely 
adaptive simplification of massive meshes at reasonable rates, 
reducing for example 18 million to 100 thousand vertices in 51 
minutes. This permits simplification to output sizes in the millions 
without thrashing, improves accuracy for all smaller output sizes, 
and enables sensitivity in simplification to mesh boundaries and 
topological changes. 

CR Categor ies and Subject Descriptors: I.3.5 [Computer 
Graphics]: Computational Geometry and Object Modeling – 
Geometric algorithms. 

Additional Keywords: model simplification, massive models, 
quadric error, memory locality, out-of-core simplification 

1 INTRODUCTION 
Recent years have seen a rapid increase in the size of polygonal 
datasets [1,8]. Several new technologies are contributing to this 
effect, such as the development of high-resolution 3D scanners. 
The Digital Michelangelo Project [8] at Stanford University has 
produced finely detailed meshes consisting of over 300 million 
triangles. 

The enormity of these models poses a real challenge. Certainly 
such massive models will not be rendered in real time in the near 
future. Model simplification would seem to be an obvious 
solution, but ironically enough, most simplification algorithms are 
not designed to handle datasets at these sizes. Typically these 
algorithms require random access to mesh data, an approach 
completely impractical in out of core settings. There are a few 
algorithms designed to work out of core [9,10,15]. While fast, all 
these algorithms make use of a non-adaptive simplification phase 
that harms output quality. 

In order to work efficiently with massive datasets, algorithms 
must minimize disk access. One way of achieving this goal is to 
ensure that all simplification occurs in core memory. The 

algorithms described by Lindstrom [9], El-Sana and Chiang [4], 
and Shaffer and Garland [15] take this approach, which 
unfortunately limits output accuracy by requiring that the output 
model fit in core memory. In [10], Lindstrom and Silva describe a 
memory-independent algorithm that substitutes disk for core 
memory. However, their simplifications must be non-adaptive to 
avoid thrashing.  

2 CONTRIBUTIONS 
Our approach, an enhancement of RSimp [2], relies on virtual 
memory, building and preserving memory locality to minimize 
page faults. By using this approach, VMRSimp is able to perform 
completely adaptive simplification of massive meshes, from the 
first operation on input until the final operation producing output. 
Despite this, simplifications are performed in reasonable time. The 
benefits of our approach include: 

Improved accuracy: simplified  models produced by VMRSimp 
are more accurate than models output by other algorithms for 
massive meshes. 

Topological and boundary sensitivity: because it uses virtual 
memory, VMRSimp does not require a dereferenced “polygon 
soup”  format, and can retain input topological information. 
With this information, VMRSimp is able to avoid joining 
topologically disjoint model components, and to preserve the 
shape of mesh boundaries. 

Large, adaptively simplified output models: models output by 
the algorithms described in [4,9,15] must fit in core memory, 
limiting output size. VMRSimp does not have this limitation. 
Lindstrom and Silva’s algorithm [10] can output arbitrary 
sizes, but these are non-adaptive and less accurate than 
VMRSimp’ s. 

In the remainder of this paper, we review related work (section 
3), describe the simplification algorithm (section 4), discuss the 
results with examples (section 5) and finally conclude (section 6). 

3 RELATED RESEARCH 
Polygonal simplification has been an area of active research for 
close to a decade. A complete review of the field is beyond the 
scope of this paper – we will restrict our review to only those 
algorithms most relevant in our out of core context. (Good reviews 
of the entire field of model simplification are available at [6] and 
[11]). 

Simplification of massive models requires extreme efficiency. 
For this reason, two algorithms designed for models that fit in core 
memory have been very influential.  The non-adaptive algorithm 
introduced by Rossignac and Borrel [13] runs in linear time on 
input and is extremely fast. When performing adaptive 
simplification, the quadric metric introduced by Ronfard and 
Rossignac [12] and refined by Garland and Heckbert [5] has 
proven to be an extremely compact and efficient method for 
summarizing surface characteristics. 

When models do not fit in core memory, the random memory 
access most simplification algorithms require results in severe 
thrashing, making them nearly impossible to use. To address this 
problem, Hoppe [7] proposed segmenting massive meshes, and 
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simplifying each segment independently in core, with boundary 
edges preserved so that the meshes can be rejoined. However, 
segmented simplification is unlikely to approach globally optimal 
accuracy. Lindstrom [9] developed an out of core algorithm based 
on Rossignac and Borrel’ s linear non-adaptive technique [13]. If 
the input model uses an indexed vertex format, the algorithm 
begins by converting input to a dereferenced “polygon soup”  
format that increases input size and discards topological 
information in order to gain locality of reference. The resulting 
algorithm is extremely fast and can simplify input models with 
more than 300 million triangles. However, non-adaptive 
simplification also results in poor accuracy, especially at smaller 
output sizes. The algorithm also assumes that one has sufficient 
core memory to contain the simplified output model. In [10], 
Lindstrom and Silva describe an approach that improves [9] to 
overcome this output size limitation. 

Shaffer and Garland [15] use a two-pass algorithm and 
achieve better output quality at the expense of more computation 
time. The first, non-adaptive pass applies a version of Lindstrom’s 
algorithm [9]. The output from this pass becomes input to the final 
adaptive pass, which uses a variation of RSimp’ s splitting 
approach, described by Brodsky and Watson in [2]. Vertices are 
clustered using a BSP tree based partitioning scheme. Although 
this algorithm improves accuracy at smaller output sizes, quality 
still suffers from the first non-adaptive pass. Salamon et al. [14] 
characterized memory use in RSimp during simplification of large 
models, and implemented some improvements. 

4 VMRSimp 
In order to describe our new virtual memory version of RSimp 
(VMRSimp), we will provide a brief overview of the RSimp 
algorithm as well as the data structures used in the algorithm. 
Further details of the RSimp algorithm can be found in [2]. 

4.1 RSimp data structures and algorithm 
The principal data structure in this algorithm is the cluster, which 
represents a surface patch on the input model and a single vertex 
in the output model. We label the variation of the face normals in 
the surface patch nv. Clusters are organized into a priority queue 
sorted by nv for greedy, best-first processing. The other important 
data structures are the global face and global vertex lists (gfl and 
gvl respectively). The RSimp algorithm has three stages: 

Initialization: in this stage the global face (gfl) and vertex 
(gvl) lists are created and filled. The simplified model is 
initialized to represent a single cluster, which is immediately 
split into eight smaller clusters. 

Simplification: choose the cluster with the largest nv from the 
priority queue and split the cluster based on the pattern of 
normal variation into at most eight subclusters. Compute nv 
for the new subclusters and place them into the priority queue. 
Iterate until the required output size is reached. While splitting 
ensure that no topologically disjoint components of the model 
are in the same cluster (creating new clusters if necessary). 

Post Processing: for each of the remaining clusters, compute a 
representative output vertex using quadric error optimization 
[5]. Retain in the output model only those input faces with 
vertices in three different output clusters. 

4.2 Modifications to RSimp 
VMRSimp’ s primary enhancement of the RSimp algorithm builds 
and preserves memory locality during simplification. In Rsimp, 
the vertices and faces contained in each cluster were represented 

by two lists of indices into the gvl and gfl. VMRSimp eliminates 
the per cluster lists of indices and replaces them with four array 
indices. These indices represent the ranges owned by the cluster in 
the gvl and gfl. In order to enable this representation, VMRSimp 
must sort the gvl and gfl to correspond to clusters. During 
splitting, the vertices and faces in a cluster’s range of the gvl and 
gfl are sorted into new subranges corresponding to the new 
subclusters. Since the number of new subclusters is constant, this 
sort can be performed in time linearly proportional to the size of 
the original cluster’s ranges in the gvl and gfl. Any splitting 
required to avoid topological joining is performed in a similar 
fashion by sorting disjoint components in the new subclusters into 
separate subranges. 

This enhancement, while simple, proves to be extremely 
powerful. The primary benefit results from the locality of 
reference built by this new sorting scheme: all the data necessary 
for working on a cluster is brought into a continuous memory 
range. This locality is improved as the algorithm progresses and 
clusters become smaller. In addition, by replacing the per-cluster 
lists with just four indices, the memory used per cluster is reduced 
significantly. In RSimp, the memory required to represent clusters 
in the priority queue was proportional to input size. In VMRSimp, 
cluster representation is proportional to output size. 

4.2.1 Depth-first heuristic 

RSimp simplifies until a user chosen output size is reached, 
splitting clusters across the model in a best-first fashion (we call 
this size-based control). To exploit locality further through reuse 
of the current working set, in VMRSimp we have introduced an 
optional depth-first simplification heuristic. By splitting a cluster 
more than once while it is in core memory, this heuristic 
introduces a user-controllable tradeoff between output quality and 
simplification time. 

The heuristic calculates V, the number of vertices that should 
be produced from a new cluster, based on currently available 
information. When V > 1, the new cluster is immediately split 
again, and resulting subclusters receive the same recursive 
treatment. Clusters in which V 

�
 1 are placed back into the priority 

queue. Only when V 
�

 1 in all locally and recursively produced 
clusters does regular greedy, best-first processing resume. The 
heuristic itself takes the form 

V = min(C,(1-M/N)B + (M/N)D) 

where C is the number of input vertices in the cluster, M is the 
targeted number of vertices in the output model, and N the number 
of vertices in the input model. B is a quantity representing the 
number of vertices that should produced from the cluster using 
only best-first criteria. D is a similar quantity representing the 
number of vertices that should be produced according to strict 
depth-first criteria. Thus V represents a compromise between best 
and depth-first guesses at the number of vertices that should be 
produced from a cluster. As targeted output size approaches input 
size, the depth-first guess dominates. The minimum function 
ensures that V will never be larger than the number of input 
vertices actually in the cluster. 

Because it is not best-first, D ignores the differences in normal 
variation between clusters, and is equal to (M/N)C. B is much 
more complex: 

B = K(M-m)D 

where m is the number of clusters existing at the current stage of 
simplification, K is a value in range [0,1] indicating confidence in 
B’ s best first criteria (maximum confidence is 1), and D is the 
normal variation in the current cluster normalized by the summed 
normal variation of all clusters: nv/( � 1 to m nvi). 



4.2.2 Accuracy-based control 

In addition to size-based control, VMRSimp allows accuracy-
based output control. In this case, clusters are split until user-
specified accuracy is reached. Accuracy is calculated using the 
diagonal of the bounding box containing the input vertices in the 
cluster. During post processing, if the output vertex obtained 
through minimization of the cluster’s quadric does not lie in the 
bounding box, the mean of the input vertices is output instead. 
Accuracy-based control not only allows explicit control of 
simplification accuracy, it also makes the decision to split a cluster 
completely local, allowing optimal memory reuse through depth-
first traversal of the simplification tree. The cluster priority queue 
is replaced by an output cluster list, storing clusters represented 
with the required accuracy; and an inaccurate cluster stack, storing 
clusters that require more refinement. While placing new 
subclusters into the priority queue takes log m time, placing them 
into the stack takes constant time. 

4.2.3 Mesh boundary sensitivity 

To make simplification sensitive to mesh boundaries, 
VMRSimp uses a variation of the method described in [5]. Every 
edge on a mesh boundary is paired with a new boundary plane 
perpendicular to the face containing the edge. These planes are 
squared and added to the quadric used to locate output vertices. 
Boundary planes can also influence splitting. In RSimp splitting is 
accomplished by finding the eigenvectors and eigenvalues of the 
quadric matrix defined by faces in the cluster. Two of the 
eigenvectors indicate the directions of maximum and minimum 
normal variation. These directions are used to orient the splitting 
planes. VMRSimp defines an additional boundary quadric matrix 
using only the boundary planes. The boundary quadric only 
improves splitting when change in boundary plane orientation is 
unrelated to change in face plane orientation. This occurs when the 
cluster’s surface patch is roughly planar near the boundary, yet 
despite this the boundary is still curved. In this case change in 
boundary plane orientation is primarily one dimensional, and so 
during splitting, VMRSimp adds the boundary matrix to the face 
matrix only when the eigenvalue corresponding to maximum 
boundary plane orientation change is significantly greater than the 
eigenvalue corresponding to minimum boundary plane orientation 
change. 

5 RESULTS 
Simplification algorithms are usually judged by two criteria: 
simplification quality and simplification time. For out of core 
simplification we add memory efficiency to this list: a good out of 
core algorithm should have as small a memory footprint as 
possible, and exploit locality in its use of that memory. 

In this section, we present simplification times for differently 
sized input models simplified to various output sizes. We then 
examine the quality of these output models, as well as memory 
efficiency during the entire simplification process. Next we study 
the tradeoff between simplification time and quality enabled by 
our depth-first heuristic. Finally we study the performance benefits 
of error-based control of VMRSimp. 

5.1 Simplification time 
We used eight different models in our comparisons. All models 
were simplified on a 1GHz Dell PowerEdge 2400 PC with 1GB 
RAM and gigabytes of swap space, running RH Linux 7.1. 

Figure 1 shows the simplification times of VMRSimp using 
size-based control compared to RSimp [2] and Lindstrom’s 
algorithm [9] when simplifying various input models to 100,000 
output vertices. Lindstrom’s non-adaptive algorithm [9] is linear in 
input and six to seven times faster than VMRSimp. (Note that our 
implementation of Lindstrom’s algorithm is likely not the most 
superbly optimized of codes). Although they theoretically have the 
same complexity (O(N log M), where N is input size and M is 
output size), VMRSimp’ s efficient memory use makes it much 
faster than RSimp. In fact RSimp is unable to simplify models 
larger than 4 million vertices without severe thrashing. Shaffer and 
Garland [15] reported running times 3 to 6 times faster than 
VMRSimp on a slightly lower performance platform. Recall that the 
first pass of Shaffer and Garland’s algorithm is also linear and 
non-adaptive. 

Figure 2 shows how size-based simplification is affected by 
the size of the output model. Here the algorithms were simplifying 
the David model, which contains roughly 4.1 million vertices. 
Rsimp’ s simplification time increases steeply as output model size 
increases. For both VMRSimp and Lindstrom’s algorithm, 
simplification time increases only gradually with larger output 
sizes. The similarity between the VMRSimp and Lindstrom curves 
is striking, considering the differing complexities of these 
algorithms. Apparently the constantly improving locality of 

Figure 1: Simplification times for VMRSimp (size-based 
control), Lindstroms’s algorithm [9] and Rsimp [2]. 
Differently sized models were simplified to 100,000 vertices. 
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Figure 2: Performance time of VMRSimp (size-based control) 
for different output sizes of the David (4.1 million vertices) 
model as compared to Lindstrom’s algorithm [9] and RSimp 



VMRSimp compensates for its disadvantage in complexity, at least 
at these output sizes. Supporting evidence for this explanation 
comes from RSimp’ s performance, which differs from VMRSimp 
primarily in its inefficient use of memory. 

5.2 Paging and memory usage 
We used the unix function getrusage to compare page faulting 
during the entire simplification process in RSimp and VMRSimp 
using size-based control. As foreshadowed by the simplification 
time results, page faulting is dramatically lower in VMRSimp. 
Table 1 summarizes these results. At larger input sizes, faulting is 
reduced by over an order of magnitude in VMRSimp. RSimp is 
unable to simplify models over 4.1 million vertices without severe 
thrashing. 

We measured virtual memory footprints of VMRSimp using the 
unix command vmstat. Table 2 presents these results. Virtual 
memory usage, like simplification time, scales linearly with input 
model size. In our current implementation, memory is used 
primarily to store the input model’s face list (15 bytes per record) 
and vertex list (56 bytes per record). Since simplification time is 
dominated by use of virtual memory, we reduce the memory 
footprint with on the fly computation of the area and normal 
vector of faces. As output sizes grow beyond those presented here, 
representing the output model requires more virtual memory. 
However, since each output vertex (or cluster) requires only 25 
bytes of memory, representation of the input model will always 
the dominant memory cost. 

5.3 Simplification quality 
Simplification quality can be measured both visually and 
quantitatively. For quantitative measurements, Cignoni et al. have 
developed the Metro [3] tool. Unfortunately Metro does not 
function when model sizes exceed roughly 1 million faces. We 
sidestep this problem by comparing smaller output models to 
models simplified to roughly 1 million faces using VMRSimp. 
Table 3 compares the output accuracy of VMRSimp to the 
Lindstrom [9] and the Shaffer and Garland [15] algorithms. Here 
Metro’ s standard is the Lucy model, simplified to roughly 1.2 
million faces using VMRSimp. In general, mean error as a 
percentage of the bounding box diagonal is reduced by 25-40% 
when using VMRSimp rather than Shaffer and Garland’s adaptive 
simplification. The improvement in maximum error is even more 
pronounced, with VMRSimp’ s output containing roughly 2 times 
less error than adaptive simplification. With larger models, 
maximum error in VMRSimp can be up to six times less than error 
with adaptive simplification. 

Admittedly, these quality measures could be biased, because 
the standard model was produced using VMRSimp. However, 
visual quality checks seem to correspond to these quantitative 
measures. Figure 5 shows the Lucy model simplified to three 
output sizes by adaptive simplification, Lindstrom’s algorithm and 
VMRSimp. The models simplified by VMRSimp look much 
smoother, particularly around the wings and the folding dress. 
This is probably due to VMRSimp’ s ability to vary face shape 
according to the local pattern of curvature. Adaptive simplification 
also introduces some extraneous joins between the wing and the 
body of the Lucy model. Similar results can be seen in the 
simplified version of the David model in Figure 6. VMRSimp is 
able to eliminate these joins with its check for topologically 
disjoint components. In Figure 4, the two simplified St. Matthew 

M odel 
Input 
Ver tices 

Output 
Ver tices 

Page Faults 
(VMRSi mp) 

Page Faults 
(Rsi mp) 

Blade 0.9M 100K 36,476 95,186 
St. Matthew Face 3.4M 10K 112,034 249,142 
St. Matthew Face 3.4M 100K 120,947 368,378 
David (small) 4.1M 10K 138,061 1,345,855 
David (small) 4.1M 100K 147,563 3,310,098 
Lucy 14.0M 10K 4,840,122 N/A 
Lucy 14.0M 100K 5,120,327 N/A 
David (big) 28.2M 10K 10,831,349 N/A 

Table 1: Number of page faults for VMRSimp (size-based control) 
and Rsimp for different input and output sizes. 

M odel 
Input 
Ver tices 

Output 
Ver tices 

M emory 
allocated at 
initial ization 

Swap 
space 
used 

David (small) 4.1M 1M 368.6 MB 114 MB 
Lucy 14.0M 10K 1267 MB 613 MB 
Lucy 14.0M 500K 1267 MB 920 MB 
David (big) 28.2M 10K 2416 MB 1960 MB 

Table 2: Virtual memory used by VMRSimp during size-based 
simplification of different models. 

Output 
Size (tr is) L indstrom [9] 

Adaptive 
simplification [15] VMRSi mp 

 mean max mean max mean max 

1K 0.4549 26.10 0.4821 25.91 0.345 14.89 
10K 0.0986 24.35 0.0946 24.43 0.0598 12.8 
100K 0.0266 24.47 0.0164 24.17 0.0119 10.45 

Table 3: Quality of output models of different sizes for the Lucy 
model using VMRSimp with size-based control. Lindstrom’s 
algorithm and adaptive simplification. Mean and maximum error 
are expressed as percentages of the model bounding box. 

Figure 3: Simplification times for VMRSimp using accuracy-based 
control, size-based control with no depth first heuristic, and size-
based control with the heuristic at two confidence levels. Different 
input models were simplified to 100,000 vertices. 
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 mean max mean max mean max 

10K 0.0598 12.8 0.0786 12.95 0.0897 14.41 
100K 0.0119 10.45 0.0146 10.47 0.0162 14.31 

Table 4: Quality of the Lucy model as simplified by size-based 
VMRSimp without the depth-first heuristic, and with two levels of 
confidence in the heuristic. Mean and maximum error are 
expressed as percentages of the model bounding box. 



Face models show the value of VMRSimp’ s sensitivity to mesh 
boundaries. 

5.4 Depth-First Heuristic Performance 
The depth-first heuristic improves simplification time by 10-20%, 
with higher confidence coefficients (K) improving times more 
(Figure 3). This is particularly true at large input sizes, when 
memory required per cluster range in the gvl and gfl grows, 
increasing the benefit from memory reuse. Table 4 indicates the 
reduction in output quality that comes with these improvements in 
simplification time. (Once again, we compare smaller simplified 
results to a simplified version of Lucy at 1.2 million faces). 
Maximum error remains well below Lindstrom’s algorithm and 
adaptive simplification; while mean error rises as the heuristic is 
used more aggressively, eventually matching the mean error levels 
produced by adaptive simplification. 

5.5 Accuracy-Based Simplification 
Accuracy-based output control allows simplification times nearly 
25% lower than purely best-first size-based control, and equal to 
or better than the most aggressive depth-first heuristic control (see 
again Figure 3). Once more, this is particularly true at large input 
sizes. Unlike heuristic control, these improvements in 
simplification time do not come at the price of output quality. 
However, accuracy-based control cannot offer users precise 
selection of output size. 

6 CONCLUSION AND FUTURE WORK 
We have presented VMRSimp, an algorithm for fully adaptive 
simplification of massive meshes. The algorithm makes extensive 
and efficient use of virtual memory, allowing simplification of 
these massive meshes at reasonable speed. Because the 
simplification is fully adaptive, the quality of VMRSimp’ s output is 
better than quality in output from other simplification algorithms 
for massive meshes. Unlike these other algorithms, VMRSimp 
retains the topological information present in its input, allowing it 
to avoid merging topologically disjoint model components and to 
preserve mesh boundaries. Models output by VMRSimp can be 
quite large, and need not fit in core memory. 

We have examined the performance of VMRSimp with models 
that near the limits of virtual address space on 32 bit machines. In 
particular, the larger David model approached this limit, and took 
nearly two hours to simplify using size-based control, one and a 
half hours with accuracy-based control. We plan to examine larger 
models soon on a 64 bit machine with significant swap space, and 
believe based on current trends that we will be able to simplify 
models containing hundreds of millions of faces. 

As Figure 2 makes clear, most of the computation required to 
simplify massive models in VMRSimp is performed at the early 
stages of simplification, which put the model in coarse spatial 
order. If input models already had some rough spatial 
organization, simplification times might drop dramatically, as 
reported in [14]. We have experimented with creating this rough 
order in linear time using a hashing scheme similar to Lindstrom’s 
algorithm [9], but have found that the resulting improvements in 
simplification time were approximately the same as the expended 
hash times. However, it may be that the spatial organization 
achieved in our hashing attempts was too coarse. We plan to 
investigate the possible benefits of using finer resolutions in our 
hashing scheme. 
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Figure 4: Sensitivity to mesh boundaries. On the bottom row, the St. Matthew Face is simplified to roughly 500 vertices by adaptive 
simplification [15] (left) and VMRSimp (right). Some normals were flipped by adaptive simplification – this could easily be remedied in the 
algorithm itself. On the top, the face is simplified to 50,000 vertices, showing a better approximation of the original boundaries. 



 

Figure 5: Lucy model simplified to roughly 500 (first column), 5000 (second column) and 50,000 (third column) vertices. The models in 
the top row were simplified with Shaffer and Garland’s [15] algorithm, the middle row with Lindstrom’s [9] algorithm, and the bottom row 
with VMRSimp. Each row includes a close-up of Lucy’s dress and a different view of her wing. 



 

Figure 6: David model (28 million vertices) simplified to roughly 1000 vertices (left), 5000 vertices (middle) and 50,000 vertices (right), 
using VMRSimp (bottom) and adaptive simplification (top). Note the extraneous joins at the groin and armpits in adaptive simplification. 
Again, the flipped normals in adaptive simplification could easily be fixed. 
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