

Computer Science Department

Technical Report
NWU-CS-02-8
January, 2002

The Minet TCP/IP Stack

Peter A. Dinda

Abstract

The Minet TCP/IP stack is designed to support undergraduate and graduate courses in computer
networking. The stack runs entirely at user level and can interoperate with kernel and user level
stacks running on other machines. Minet consists of a collection of modules that run as separate
sequential processes that communicate using well-defined interfaces. Student projects typically
consist of writing modules (TCP, IP, etc) that fit into the stack. They are assisted by a collection of
C++ classes that handle the details of manipulating packet headers and other mundane things. This
document describes how Minet works, its classes and modules, the API for writing new modules,
and how to build, configure, and run Minet.

 Page 1 of 20

The Minet TCP/IP Stack
Peter A. Dinda*

Department of Computer Science
Northwestern University

Abstract
The Minet TCP/IP stack is designed to support undergraduate and
graduate courses in computer networking. The stack runs entirely at
user level and can interoperate with kernel and user level stacks running
on other machines. Minet consists of a collection of modules that run as
separate sequential processes that communicate using well-defined
interfaces. Student projects typically consist of writing modules (TCP,
IP, etc) that fit into the stack. They are assisted by a collection of C++
classes that handle the details of manipulating packet headers and other
mundane things. This document describes how Minet works, its classes
and modules, the API for writing new modules, and how to build,
configure, and run Minet.

Introduction
The Minet TCP/IP Stack is intended to support undergraduate and graduate courses in
computer networking that are based on a “students learn by building something real”
pedagogical model. The specific goals of Minet are the following:

• Minet enables students to implement a compatible TCP/IP stack that directly
controls the Ethernet device.

• Minet lets the instructor control the degree of access students have to the Ethernet
device

• Minet enables students to write low-level networking code while still working at
the user level with a familiar development environment.

• Minet does not require students to possess knowledge of process or thread control
or synchronization.

• Minet works on Linux and should be easily portable to other Unix-like operating
systems.

• Minet lets the instructor control the difficulty of an assignment by selective
release of C++ classes and Minet modules.

The Minet stack consists of a collection of modules that communicate with each other
using, for the most part, fifos or named pipes. The exact mechanism is hidden below the
Minet API. Two special modules, which are run as root through the Unix suid
mechanism, implement the injection and extraction of raw Ethernet packets. The
instructor can modify these modules as necessary to control the packets that students can

* Dinda is supported by the National Science Foundation under Grants ANI-0093221, ACI-0112891, and
EIA-0130869.

 Page 2 of 20

see. In addition, it is a good idea to use a switched Ethernet network to minimize
resource conflicts. The primary developer of Minet is Peter A. Dinda at Northwestern
University. In addition, the following people have made substantial contributions to
Minet: Jason Skicewicz (TCP module), Ricky Chen (ICMP), David Zhao (Java GUI),
Kevin Dill (Socket module), Budyanto Himawan (Initial work on IP routing support),
Jason Moy (Initial work on TCP-based API and multicast reader/writer), and Matt Lineen
(TCP-based API, multicast reader/writer, and Windows port).

Currently, Minet is not publicly released, but a snapshot is available from Peter A. Dinda.
Contact pdinda@cs.northwestern.edu.

Minet Hardware and Software Requirements
The following hardware is needed to use Minet:

• Intel PC capable of running Linux (ideally at least two such PCs)
• Ethernet card supported by Linux
• Hub or switch (for more than one machine)

The following software is needed to use Minet. Other versions may work as well.
• Red Hat Linux 6.2 (The default kernel will work. If you build your own, be sure

to include packet sockets and Berkeley packet filters)
• GCC 2.95.2 19991024 release including STL
• Gnu Make 3.78.1
• libpcap 0.4-19
• libnet 1.0.1-b

Minet includes a optional java-based gui, which requires a recent Java2 SDK to compile.

Minet Extensions
We continue to expand Minet in different ways. Soon we will include a version of the
“Virtual Ethernet Device” (described below) which operates on top of an IP multicast
channel instead of on top of an actual raw Ethernet device. This will permit Minet to be
run without any special permissions. We will also soon include support to run Minet on
top of cygwin on Microsoft Windows platforms. Finally, the GUI is being improved.

 Page 3 of 20

reader writerwriter

device_driver
ethernet

ethernet_mux

ip_modulearp_module

ip_mux

other_module

tcp_moduleudp_module

sock_module

SIGUSR1

Socketpair (AF_UNIX)

Signal

libpcap libnet

Fifo Pair

R
aw

Et
he

rn
et

Pa
ck

et
Pa

ck
et

ARPRequestResponse

So
ck

R
eq

ue
st

R
es

po
ns

e

ipother_mod

libminet_socket
application

So
ck

Li
bR

eq
ue

st
R

es
po

se

Ethernet Device

icmp_module

monitor

java_gui

 Page 4 of 20

Description of the Minet Stack
The preceding page illustrates the standard Minet configuration as of the date of this
writing. Minet consists of modules (the labeled boxes), which are separate executables.
These modules communicate using paired fifos (heavy bi-directional arrows). A future
version may communicate using other mechanisms. The details of inter-module
communication are hidden under a special API. The parts of the figure that are in gray
are modules that have not yet been completed and are not necessary for basic TCP/IP
functionality. A dashed line within a module represents a division between a library and
user code. This description is divided into four pieces. First, we describe the data types
that Minet provides. Second, we’ll describe the Minet API. Third, we describe the
modules, which are implemented using these data types and the API. Finally, we
describe the interfaces between these modules, including the monitoring functionality.

Data Types
Minet provides a number of data types to simplify development. This section describes
the most significant and often used of these. Generally, Minet data types are
“serializable” – they support the methods Serialize and Unserialize, which simplify
writing them onto a file descriptor or reading them from a file descriptor.

Buffer and TaggedBuffer<T>
The Buffer class provides the basic data buffering mechanism. A TaggedBuffer is simply
a Buffer with an associated tag of type T. A buffer is based on an STL crope, which is a
string class that is optimized for rapid and easy editing.

EthernetConfig
An EthernetConfig is used to initialize the virtual Ethernet device. It consists of a device
number, flags, and a pointer to the interrupt service routine that the virtual device will
trap to.

EthernetAddr
This provides a convenient representation of and tools for manipulating 6 byte Ethernet
addresses.

RawEthernetPacket
The RawEthernetPacket class is the basic message type for the lower levels of the stack.
As the name indicates, it represents a raw Ethernet packet. Like the other message
classes in Minet, it provides serialization methods to make instances easy to
communicate. RawEthernetPacket::Serialize(const int fd) const writes the packet to a file
descriptor, while RawEthernetPacket::Unserialize(const int fd) reads the packet from a
file descriptor.

RawEthernetPacketBuffer
This class implements a buffer (or queue) of RawEthernetPackets. This is deprecated.

 Page 5 of 20

Header and Trailer
These classes implement packet headers and trailers. They are TaggedBuffers, where the
tag represents the type of the header or trailer. Header types include: EthernetHeader,
ARPHeader, IPHeader, UDPHeader, and TCPHeader. The only Trailer type is
EthernetTrailer. Header and Trailer and their subclasses are carefully designed so that a
general Header can be downcast to specific form of header. For example, a Header can
be cast to an IPHeader. The representation of IPHeader (a TaggedBuffer) is identical to
that of a Header, but it provides tools for conveniently manipulating the raw data of the
header.

EthernetHeader and EthernetTrailer
These classes are convenient tools for manipulating Ethernet headers and trailers.

Packet
The Packet class is used to represent all packets except RawEthernetPackets. A Packet
consists of a list of packet Headers, a Buffer that represents the payload of the packet, and
a list of packet Trailers. The Packet class includes methods for extracting portions of the
payload to create new headers and trailers. Packets can easily be constructed from
RawEthernetPackets, but the converse is not the case since a Packet may be much larger
than a RawEthernetPacket. However, it is possible to extract raw data from the headers,
payload, and trailers of a Packet.

PacketQueue
This class implements a queue of Packets. This is deprecated.

ARPPacket
The ARPPacket is a subclass of Packet that interprets the payload as an ARP packet. It
provides an example of how to build functionality on top of Packet through subclassing.
It is important to note, however, that extend functionality in this manner. Code may also
operate on Packets directly, interpreting them based on what headers and trailers are
available, cast as appropriate.

ARPRequestResponse
This class represents the request or response for a mapping of IP address to Ethernet
address. Generally, these are exchanged only between ip_module and arp_module.

ARPCache
This class maps from Ethernet addresses to IP addresses.b

IPAddress
The IPAddress class is a wrapper around a 32 bit Ipv4 address that provides convenient
functionality.

IPOptions
The IPOptions class wraps the raw data of the options that may appear in an Ipv4 Header

 Page 6 of 20

IPHeader
An IPHeader provides convenient access to the fields of an IPv4 header, doing the
necessary bit-twiddling behind the scenes. Checksums are automatically recomputed as
fields change.

ICMPHeader
An ICMPHeader wraps the raw data of an ICMP header in a convenient abstraction.

ICMPPacket
This is basically a packet that has been specialized for the ICMP case. It provides a very
convenient way to create an ICMP packet anywhere in Minet, to respond to an error
condition, for example.

UDPHeader
A UDPHeader wraps the raw data of a UDP header in a convenient abstraction. It deals
with the bit twiddling necessary to play with the fields of a UDPHeader.

TCPOption
This class contains the options fields of a TCP header.

TCPHeader
This class wraps the raw data of a TCP header in a convenient abstraction, making it easy
to manipulate the fields of the header.

Connection
A Connection is a 5-tuple consisting of the source host and port, the destination host and
port, and a protocol. The Sock module uses Connections to identify particular flows of
data to lower level modules. Connections are used for this purpose even for connection-
less protocols such as UDP.

SockRequestResponse
This class represents requests and responses that flow both ways between sock_module
and the modules immediately below it

SockLibRequestResponse
This class is used for communicating between sock_module and the libminet_socket.a
stubs that the application uses. For example, when the application makes a minet_read
call, libminet_socket.a translates this into a SockLibRequestResponse and sends it to
sock_module.

Minet API
Each Minet module uses the Minet API to identify itself, connect to other modules, and
to run. Once a module is running, it is a simple sequential event loop.

 Page 7 of 20

MinetModule
This is a enum of the different kinds of Minet modules that are possible. Only one
instance of each type of module is allowed in the run-time configuration.

MinetHandle
This is a handle to a communication channel to another module. MINET_NOHANDLE
is a special handle that indicates the non-existent channel.

MinetDataType
This is an enum of the different kinds of messages modules can send and receive.

MinetEvent
This class is for the events that the Minet API delivers to a module. An event consists of
a type (DataFlow, Exception, Timeout, and Error), a direction (IN, OUT, INOUT,
NONE) for a DataFlow event, a MinetHandle to a communication channel, an error code
for Exceptions, and the seconds over the time in the event of a TimeOut.

MinetException
Generic C++ exception class for throwing Minet errors. Printable.

MinetOpType
Enum of the different MinetAPI calls.

MinetMonitoringEventDescription
Describes a monitoring event: timestamp, source/destination modules, sending module,
type of data, and operation type.

MinetMonitoringEvent
Generic string-based monitoring event, mostly for programmer use.

int MinetInit(const MinetModule &)
This Initializes Minet and identifies what kind of module this is.

int MinetDeinit()
This shuts down the module.

bool MinetIsModuleInConfig(const MinetModule &mod)
This checks to see if the specified module is a part of the run-time config.

bool MinetIsModuleMonitored(const MinetModule &mod)
This checks to see if the specified module will be monitored.

MinetHandle MinetConnect(const MinetModule &mod)
Ths connects this module to the specificed module.

 Page 8 of 20

MinetHandle MinetAccept(const MinetModule &mod)
This accepts a connection from the specified module.

int MinetClose(const MinetHandle &mh)
This closes the specified handle and its connection.

int MinetGetNextEvent(MinetEvent &event, double timeout=-1)
This returns the next available event, or, if timeout is specified and no events occur
before the timeout, it returns a timeout event.

int MinetSend(const MinetHandle &handle, const T &object)
This sends the specified object via the specified connection.

int MinetReceive(const MinetHandle &handle, T &object);
This receives an object via the specified connection.

MinetMonitorSend()/MinetMonitorReceive()
These are internal calls that inform the monitor that a send or receive has taken place.

MinetSendToMonitor(const MinetMonitoringEvent &e)

MinetSendToMonitor(const MinetMonitoringEventDescription &desc,
 const MinetMonitoringEvent &object
 =MinetMonitoringEvent(“no further data”))
These two calls allow the module to explicitly send monitoring events to the monitor.

Modules
Minet consists of a collection of modules that rendezvous with each other and
communicate at run time. Modules are typically implemented using the facilities
provided by the data types described above

Startup-time configuration
A Minet module should begin by calling MinetInit() with its module type. A side effect
of this will be to connect it to the monitor, if the run-time configuration says that it should
be monitored. Next, for each for each module below it in the figure, from left to right,
that it connects to, the module should check to see if the lower module is in the run-time
configuration by using MinetIsModuleInConfig(). If it is in the configuration, it should
issue a MinetConnect() for that module. Next, it should do the same for each module
above it in the figure, from left to right, except it should accept connections using
MinetAccept(). ip_module should treat arp_module as being above it. The order in
which the MinetConnect()s and MinetAccept()s are issued is important for preventing
deadlock at startup time.

Each individual connection between modules supports messages of only one type.
Currently, the following types are available: RawEthernetPacket, Packet,

 Page 9 of 20

ARPRequestResponse, SockRequestResponse, and SockLibRequestResponse. Each
message type supports serialization methods (Serialize/Unserialize) to make it easy to
transfer instances as messages. A previous section described these types in more detail
along with other significant data types.

Run-time Event Loop
Once the module is connected to all its appropriate partners, it should move into an event
loop, repeatedly calling MinetGetNextEvent() and processing the MinetEvents that it
returns. The most common events are Dataflow events, which indicate that a
MinetReceive or MinetSend can be safely issued, and Timeout events, which indicate
that a specified amount of time has passed.

Monitoring
Calls to most Minet API functions send a MinetMonitoringEvent to the special monitor
module. The monitor can use this information to present the collective state of the Minet
stack.

Typical Structure of a Module
Minet does not constrain the implementation of a module – as long as an implementation
meets its interface requirements, it is a valid implementation. Nonetheless, the
expectation is that most modules will be implemented as sequential (single thread) C++
programs. This approach has two advantages. First, sequential modules are far easier to
debug with standard tools such as gdb. Second, the approach requires only a minimal
grasp of operating system concepts. The following pseudocode provides a framework for
writing a sequential, event-loop module based on the MinetAPI.

MinetInit(type_of_module)
MinetConnect to lower-level modules, left to right, if in config

as determined by MinetIsInConfig()
MinetAccept from higher-level module, left to right, if in

config as determined by MinetIsInConfig
MinetEvent event;
while (MinetGetNextEvent(event,timeout) {

HandleEvent(event);
// HandleEvent may call MinetSend/MinetReceive
// to move data from module to module
// or MinetSendToMonitor to send explicit
// monitoring information to the monitor

}

A module may assume that when a DataFlow event indicates that a handle is readable, an
entire data type may be MinetReceive()ed without blocking. In addition, a module may
assume that MinetSend()ing a data type will not block. That is, serialization is all-or-
nothing. If you can serialize, you can serialize the whole data type.

udp_module is a good module to look at to understand how a module is typically written.

 Page 10 of 20

Virtual Ethernet Device: reader, writer, and the Ethernet Library
The reader and writer modules extract and inject Ethernet packets from and to the
network, respectively, and interface to the device_driver module using
RawEthernetPackets. The reader and writer modules are special in that they must run as
root. The typical way to do this is to provide binaries to the students that have their
setuid bit set so that they are run as root regardless of who executes them.

The Ethernet library spawns reader and writer. Unlike the remainder of the modules,
reader, writer, and the Ethernet library communicate using Unix domain socket pairs and
signals. The three components form a “virtual Ethernet device”. The virtual Ethernet
device operates as a generic DMA block device. It generates virtual interrupts when
DMA operations complete and when new packets arrive. These virtual interrupts are
derived from signals that reader and writer send to the Ethernet library when new packets
arrive or when packets have been sent. The mapping between signals and virtual
interrupts is not one-to-one. The Ethernet library assures that one virtual interrupt is
delivered for each packet arrival or departure.

device_driver
The device driver module builds a clean interface on top of the virtual Ethernet device.
The abstraction is an input queue of RawEthernetPackets that eventually are sent to
writer to be injected into the network, and an output queue of RawEthernetPackets that is
fed by new packets arriving from reader and which empties into a higher level layer.

ethernet_mux
The Ethernet multiplexor sends incoming RawEthernetPackets to the next appropriate
module based on their Ethernet type field. Currently, only two types are recognized:
ARP and IP. All other packets are forwarded to other_module, which discards them.
The Ethernet multiplexor also accepts outgoing RawEthernetPackets from the ARP, IP
and other modules, and forwards them to the device driver for transmission. The figure
shows where other modules could be attached for, e.g., IPX or NetBEUI.

other_module
This module handles all RawEthernetPackets that are not ARP or IP Packets. Currently,
it just discards them.

arp_module
The ARP module services requests for IP address to Ethernet address mappings, both
from the network and from the IP module. It maintains a cache of such mappings. It will
only answer requests for its own IP address from the network, but will answer requests
for any IP address from the IP module. If the IP module requests an address that is not in
the cache, the ARP module will inject an appropriate ARP request into the network.

ip_module
The IP module implements IPv4 functionality. In communicating with the Ethernet
multiplexor, it uses RawEthernetPackets. When communicating with higher-level

 Page 11 of 20

modules, it uses Packets. In such Packets, the IP header has been stripped from the
payload and added to the headers section of the Packet. At this point, a Packet will have
an Ethernet header, an IP header, payload, and (possibly) an Ethernet trailer.

ip_mux
The IP multiplexor forwards (IP) Packets according to the IP packet type. Currently,
only ICMP, UDP, TCP are recognized. Packets of other types are sent to ipother_module
which currently drops them. The figure shows where modules for other types of packets
(IGMP, etc) would be inserted.

icmp_module
The ICMP module responds to most ICMP messages. In addition, the ICMPPacket class
can be used to generate and send an ICMP packet in almost any module.

udp_module
The UDP module implements UDP communication, matching (IP) Packets from the IP
multiplexor with SockRequestResponse messages from sock_module. The details of this
interface are complex and are described below in the Interfaces section.

tcp_module
The TCP module implements TCP communication, matching (IP) Packets from the IP
multiplexor with SockRequestResponse messages from sock_module. This interface is
complex and described below in the Interfaces section.

ipother_module
IP packets other than ICMP, UDP, or TCP are sent here and dropped.

sock_module
The Sock module interfaces applications to the modules, such as ICMP, UDP ,and TCP
that are immediately below the Sock module. The interface to applications is through a
connection (usually fifos) to the libminet_socket.a library that is linked to the application.
This is a complex interface and is described below. At this point in time, the Sock
module supports a single application at a time.

libminet_socket.a
This is a library of stubs that provides the Minet socket interface (separate handout) to
user applications. Each stub communicates the call to the Sock module which does the
actual work. In addition to Minet, the library can also be initialized to act as a simple
wrapper to the kernel socket interface, bypassing the Minet stack. This is convenient for
debugging purposes and for use in a networking class that takes a top down approach.

Interfaces
Currently, Minet modules communicate using pairs of fifos, although this may change.
The protocol by which a module rendezvous with its neighbors on a fifo pair was

 Page 12 of 20

described earlier. Modules written to the Minet API will continue to work if and when
the underlying communication mechanism changes.

In this section, we will assume that the modules have already connected. The interfaces
between modules can then be described in terms of the data types that are exchanged and
under what conditions they are exchanged. Each connection between two modules
carries only a single data type, which simplifies the interfaces considerably.
Implementations are simplified by allowing them to assume that serialization or
unserialization of a data type will not block if MinetGetNextEvent indicates that the
connection is ready.

Most of the interfaces are quite simple, consisting merely of Packets or
RawEthernetPackets. The more complex interfaces are those between the Sock module
and its neighbors. This is because the sock module is responsible for matching
application requests and the flow of network data.

Ethernet Library and reader
The Ethernet library spawns reader and communicates with it using a Unix domain
socket pair. Reader opens the Ethernet device in promiscuous mode, reads Ethernet
packets, filters out packets not bound for this machine (other filters can be added), and
Serializes the remaining packets to the Ethernet Library as RawEthernetPackets. After
each packet is sent, reader raises SIGUSR1 on the Ethernet Library’s process.

Ethernet Library and writer
The Ethernet library spawns writer and communicates with it using a Unix domain socket
pair. The Ethernet library sends a packet by serializing a RawEthernetPacket to writer.
Writer receives the packet and, at some point in the future, writes it to the network. It
then serializes an error code back to the Ethernet Library and raises SIGUSR1 on the
Ethernet Library’s process.

device_driver and Ethernet Library
The device driver initializes the virtual Ethernet device by calling EthernetStartup with an
appropriate EthernetConfig. The EthernetConfig contains the device number to be used
and a pointer to the device driver’s interrupt service routine (ISR). Once the device is
successfully initialized, it will begin calling the ISR when packets arrive or when
outgoing packets have been sent. These calls are derived from the SIGUSR1s that reader
and writer send to the Ethernet Library. However, they are appropriately massaged so
that exactly one call arrives for each received packet or sent packet. There is no telling
when these virtual interrupts will occur, so device driver must be very carefully written.

The ISR will be called with a device number and a service type. The service type is
either a new packet arrival, which can be read using the EthernetGetNextPacket()
function, a DMA completion for an outgoing packet, a DMA failure for an outgoing
packet, or an output buffer full failure. The device driver can initiate a DMA to send a
packet by calling the EthernetInitiateSend() function.

 Page 13 of 20

device_driver and ethernet_mux
The device driver sends newly arrived RawEthernetPackets to the Ethernet multiplexor.
Similarly, the Ethernet multiplexor sends outgoing RawEthernetPackets down to the
device driver.

ethernet_mux and arp_module, ip_module, other_module, etc.
The Ethernet multiplexor examines incoming RawEthernetPackets from the device driver
and routes them to higher level modules based on their Ethernet type field. It forwards
RawEthernetPackets arriving from higher-level modules to the device driver. The ARP
module responds to ARP requests for the interface’s IP address with responses containing
the interface’s Ethernet address. These addresses are specified through environment
variables, which we explain later.

arp_module and ip_module
The ARP and IP modules communicate using ARPRequestResponse objects. When the
IP module needs to map an IP address to an Ethernet address, it sends an
ARPRequestResponse with the IP address filled in and the REQUEST flag set to the
ARP module. If the ARP module finds the mapping in its cache, it fills in the Ethernet
address, sets the flag to RESPONSE_OK and sends it back to the IP module. If the
mapping is not in the cache, it sets the flag to RESPONSE_UNKNOWN, sends the
ARPRequestResponse back to the IP module. As a side effect, it also generates a
RawEthernetPacket containing an ARP request for the IP address and sends it to the
Ethernet multiplexor.

ip_module and ip_mux
The IP module communicates with the IP multiplexor using Packets that have an
EthernetHeader and an IPHeader. Outgoing Packets arriving from the multiplexor are
converted into one or more RawEthernetPackets and forwarded to the Ethernet
multiplexor.

ip_mux and udp_module, tcp_module, icmp_module,
ipother_module, etc
When the IP multiplexor receives a Packet from the ip_module, it routes it to a higher-
level module based on its IP type field. Packets received from a higher level module are
forwarded to the ip_module.

udp_module, tcp_module, icmp_module, ipother_module, etc. and
sock_module
Communication between the SOCK module and lower-level modules is done using
SockRequestResponses, which have serialization features. The model is asynchronous
request/response. The sending module sends a SockRequestResponse that encodes its
request to the receiving module. In response, the receiving module sends back a
SockRequestResponse that encodes the status of the last action. A SockRequestResponse
contains a request type, a Connection , a Buffer containing data, a byte count, and an
error code.

 Page 14 of 20

Request/Response Ordering
Note that it is possible for both modules to send a request first. This is not a race
condition - in principle, a module should be able to handle responses asynchronously as
they arrive provided that the responses are returned in the same order that their requests
are made. In other words, there must be a total order on requests and a total order on
responses, but there may be only a partial order on requests and responses together. This
means that responses do not need (and do not have) any field to indicate which request
they match to.

Connection Matching
A fundamental abstraction is that of a Connection, which is used even for connection-less
protocols such as UDP. The Connection structure encodes the endpoints of the
communication (ipaddresses and ports) as well as its protocol. One of the endpoints may
be unbound if it will be supplied later (for example, a passive TCP open). The Sock
module and lower-level modules identify particular flows of data by using a Connection.
For example, the Sock module presents sockets to the application as integer file
descriptors. Internally, it maintains a file descriptor to Connection mapping. When the
Sock forwards, for example, an ACCEPT request, to the TCP module, it uses a
Connection to identify the connection to the TCP module. The TCP module maps the
Connection to its internal representation as appropriate.

sock_module to udp_module
Here are the meanings of the different types of SockRequestResponses that can be sent
from Sock module to the UDP module:

• CONNECT: active open to remote. The UDP module ignores this. A STATUS
with the same connection, 0 bytes, and an error is returned. The Sock module
must manage connect requests to UDP addresses.

• ACCEPT: passive open from remote. The UDP module ignores this. The same
behavior as CONNECT is required.

• WRITE: send UDP packet. Connection source is the local host and port, the
connection destination is the remote host and port, and the protocol is UDP. The
data Buffer contains data to be sent (if data is larger than the maximum size UDP
packet that the UDP module can sent, then only the first maximum size bytes are
sent. The byte count and error code are ignored. The response is a STATUS
with the same connection, no data, the number of bytes actually sent, and the error
code. One WRITE generates one UDP packet.

• FORWARD: forward matching packets. The connection represents the
connection to match on. The local and remote addresses may be wildcards
(IPADDR_ANY, PORT_ANY). Received matching packets will be forwarded to
the Sock module as WRITEs. The response is a STATUS with the same
connection, no data, zero bytes, and an error code.

• CLOSE: close connection. Connection represents the connection to match on. If
there is a matching FORWARD request, this will remove it. Otherwise it is an
error. A STATUS with the same connection, zero bytes, and the error is returned.

 Page 15 of 20

• STATUS: status update. This should be sent in response to UDP WRITEs. The
connection should match that in the WRITE. The error code is required but
ignored. The byte count is the number of bytes that were actually received.

Udp_module to sock_module
Here are the meanings of the different types of SockRequestResponses that can be sent
from the UDP module to the Sock module:

• WRITE: new data is available. The connection is fully bound, giving both
endpoints and the protocol, the data Buffer contains the data in the packet, and the
byte count and the error code are undefined. In response, the Sock module should
send a STATUS stating how many bytes were read. Note that UDP will not
buffer data.

• STATUS: status update. This is sent in response to Sock module requests as
noted above.

sock_module to tcp_module
Here are the meanings of the different types of SockRequestResponses that can be sent
from Sock module to the TCP module:

• CONNECT: active open to remote. The connection should be fully bound. The
data, byte count, and error code fields are ignored. The TCP module will begin
the active open and immediately return a STATUS with the same connection, no
data, no byte count and the error code. After the connection has been fully
established or has failed, it will return a WRITE with zero bytes. If the
connection could not be established, the error code will be non-zero. The Sock
module must manage binding on CONNECT requests.

• ACCEPT: passive open from remote. The connection should be fully bound on
the local side and unbound on the remote side. The data, bytes count, and error
fields are ignored. The TCP module will do the passive open and immediately
return a STATUS with only the error code set. Whenever a connection arrives,
the TCP module will accept it and send a zero byte WRITE with the fully bound
connection.

• WRITE: send TCP data. The connection source is the local host and port, the
connection destination is the remote host and port, and the protocol is TCP. The
connection must refer to the result of a previously successful ACCEPT or
CONNECT request. The data Buffer contains the data to be sent, while the byte
count and error fields are ignored. The response is a STATUS with the same
connection, no data, the number of bytes actually queued by the TCP module,
and the error code. One WRITE may generate multiple TCP segments. It is the
responsibility of the Sock module or of the application to deal with WRITEs that
actually write fewer than the required number of bytes.

• FORWARD: forward matching packets. The TCP module ignores this message.
A zero error STATUS will be returned.

• CLOSE: close connection. The connection represents the connection to match on
and all other fields are ignored. If there is a matching connection, this will close

 Page 16 of 20

it. Otherwise it is an error. A STATUS with the same connection and an error
code will be returned.

• STATUS: status update. This should be sent in response to TCP WRITEs. The
connection should match that in the WRITE. It is important that the byte count
actually reflects the number of bytes read from the WRITE. The TCP module
will resend the remaining bytes at some point in the future.

tcp_module to sock_module
Here are the meanings of the different types of SockRequestResponses that can be sent
from the TCP module to the Sock module:

• WRITE: new data on a connection. The connection will be fully bound, the data
buffer will contain the data, and the other fields should be ignored. In response,
the Sock module should send a STATUS with the same connection and the
number of bytes it actually accepted. The TCP module will resend data that has
not yet been accepted.

• CLOSE: close connection. Only the connection field is used. If there is a
matching connection, this denotes that the remote partner has initiated the close.

• STATUS: status update. This is sent in response to various connection requests
as described above.

sock_module to icmp_module
This interface is currently not well defined.

icmp_module to sock_module
This interface is currently not well defined.

libminet_socket.a to sock_module
Each minet_ call the application makes translates directly to a SockLibRequestResponse
object that is sent to the sock module. The object contains the type of the request, the
socket number, a buffer of data and size (if applicable), and fd_sets for Minet select() and
poll() calls.

sock_module to libminet_socket.a
sock_module responds to each SockLibRequestResponse that libminet_socket.a sends to
it with a SockLibRequestResponse. The response contains the type of the call, the
Connection, the socket number, a buffer of data and size (if applicable), and return
fd_sets for the Minet select and poll calls.

Setup and Configuration
Minet is supplied with a Makefile and various scripts to simplify building and using it.

Building Minet
You must have the software environment described on the first page. This is the only
environment on which Minet has been built and tested. To build Minet do the following:

 Page 17 of 20

1. Unpack the Minet tar file
2. cd minet
3. touch .dependencies
4. make depend clean all

You should now have the following items:

• libminet.a – general library of Minet data types
• libminet_socket.a – stub library for Minet applications
• modules: reader, writer, device_driver, ethernet_mux, arp_module, ip_module,

other_module, ip_mux, icmp_module, udp_module, tcp_module, ipother_module,
sock_module. (Note: you may have a different list of modules depending on
your instructor. Furthermore, some modules, such as reader and writer, may be
supplied to you in binary form only.)

• app, udp_client, udp_server, tcp_client, tcp_server, icmp_app – sample
applications

• Assorted tests and other things.

If you are building reader and writer, you must set their permissions appropriately. The
script fixup.sh, WHEN RUN AS ROOT, will set the permissions correctly.

All Minet compile-time configuration options live in the file config.h. Because most
options are run-time, you will probably not have to ever change this file.

Configuring Minet
To configure Minet, edit the file setup.sh and then source it. If you use a csh-type shell,
source setup.csh instead. It is important that you SOURCE the script and not simply run
it because it sets a number of environment variables. If you run it, these variables will be
set only in the child shell and not your shell, and thus will not be inherited by other
programs you run. In addition to setting up your environment, setup.sh will also create
fifos (in the directory ./fifos) for you if they are needed. Depending on your instructor, it
may also set up reader and writer binaries.

The following describes the environment variables that setup.sh sets:

• MINET_IPADDR – the IP address assigned to the virtual Ethernet device.
• MINET_ETHERNETDEVICE – the physical Ethernet device that will be used by

Minet. This is typically “eth0”
• MINET_ETHERNETADDR – the Ethernet address of the actual Ethernet card.

You can run /sbin/ifconfig to find out what this should be
• MINET_READER – the path of the reader binary that will be used
• MINET_WRITER – the path of the writer binary that will be used
• MINET_READERBUFFER – the size of the input buffer on the virtual Ethernet

device. Deprecated.
• MINET_WRITERBUFFER – the size of the output buffer on the virtual Ethernet

device. Deprecated.

 Page 18 of 20

• MINET_DEBUGLEVEL – the debug level for debugging printfs. Zero denotes
no debugging output. Higher debug levels result in more debugging output

• MINET_DISPLAY – how Minet should display output when run. “xterm” means
each module (except for reader and writer) runs in its own xterm window. This is
the usual mode of operation. “xterm_pause” means that the xterm will not
immediately disappear once the module terminated. “gdb” means that each
module is run in a separate xterm under the gdb debugger. “log” means that each
module is run in the background with its output going to log files. For example,
ip_module would produce ip_module.stdout.log and ip_module.stderr.log.
“none” indicates that there will be no display. Note that the monitor is always
displayed.

• MINET_MODULES – this is a whitespace-delimited list of the modules that
should be run.

• MINET_MONITOR – this is a whitespace-delimited list of the modules that
should report to the Minet monitor.

• MINET_MONITORTYPE – this is either “text”, which will run the simple, fast
monitor which merely prints each monitoring event, or it is “javagui”, which will
run the Java-based GUI, which is very informative, but much slower.

• MINET_MSS – TCP maximum segment size
• MINET_MIP – Maximum IP packet size
• MINET_MTU – Maximum Transmissible Unit of Ethernet device
• MINET_FRAGMENTATION – enables IP fragmentation support if defined
• MINET_CONGESTION – enables TCP congestion control if defined
• MINET_ROUTING – enables IP module routing if defined

This list will very likely change as Minet becomes more robust.

Note that each Minet module is started by a shell script. You can create a module-
specific set of environment variables by editing the script. For example, you might set
tcp_module.sh to start tcp_module in gdb for debugging.

Running Minet
Make sure that you have SOURCED setup.sh. The following assumes further that
MINET_DISPLAY=”xterm”. To start Minet, run “go.sh”. You should very quickly
have at least 10 xterms on your display, each running a module. If some of the xterms
immediately disappear, make sure that the device_driver xterm is not showing an error.
It is essential that device_driver be able to spawn reader and writer successfully. Check
that the environment variables described above are set reasonably.

What is displayed in the xterms depends on network traffic and what the application is
trying to do. The default application does nothing but sit and print “la la la”.

To stop Minet, run “stop.sh”. The xterms should all disappear.

 Page 19 of 20

Security Concerns
Minet encapsulates access to the network in the reader and writer modules. It is critical
that reader and writer binaries have appropriate protections. We strongly recommend
that they be supplied only in binary form, be owned by root, have root-only execute
permissions, and have their setuid bits set so that ordinary users can run them.

Both reader and writer are quite simple and offer significant opportunity for filtering.
Reader filtering is particularly simple because it already supplies a Berkeley packet filter
program to libpcap.

We also recommend that student traffic be constrained to the 10.0.0.0 subnet so that it
doesn’t leak to the outside world. It is also a good idea to have the students work on a
switched Ethernet network to minimize resource conflicts.

Displays Examples

MINET_DISPLAY=xterm, MINET_MONITORTYPE=text

 Page 20 of 20

MINET_DISPLAY=xterm, MINET_MONITORTYPE=javagui

	cover page cs-02-08.pdf
	Technical Report �NWU-CS-02-8
	January 2002
	The Minet TCP/IP Stack
	Peter A. Dinda
	
	Abstract

