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Abstract

The packet pair mechanism has been shown to be a
reliable method to measure the bottleneck link capacity
and available bandwidth on a network path, and has been
widely deployed in tools such as nettimer, IGI, and PTR.
However, the available bandwidth is different from the TCP
throughput that an application can achieve and the differ-
ence can be huge. TCP throughput benchmarking tech-
niques are widely used to probe the TCP throughput for
applications, for example in the Network Weather Ser-
vice (NWS). Unfortunately recent research shows that these
techniques often cannot predict TCP throughput well for
large transfers. This paper addresses this issue. We begin
by statistically characterizing the TCP throughput on the
Internet, exploring the strong correlation between TCP flow
size and throughput, and the transient end-to-end through-
put distribution. We then analyze why benchmarking fails to
predict large transfers, and propose a novel yet simple pre-
diction model based on our observations. Our prototype,
dualPats, is an application level TCP throughput prediction
framework that combines our model with simple time series
models and a dynamic probing rate adjustment algorithm
that relates intrusiveness to path dynamics. Our analysis
and evaluation is based on large scale Internet-based mea-
surements and experiments involving many sites distributed
all over the world.

1 Introduction

The concept of available bandwidth has been of central
importance throughout the history of packet networks, and
researchers have been trying to create end-to-end measure-
ment algorithms for a long time. From Keshav’s packet
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pair [16], to Crovella’s cprobe [6], and the latest work, such
as IGI [12], the purpose is to measure the end-to-end avail-
able bandwidth accurately, quickly, and non-intrusively. To-
day’s definition of available bandwidth is “the maximum
rate that the path can provide to a flow, without reducing
the rate of the rest of the traffic.” [12, 13]. Other tools to
measure either the bottleneck link capacity or the available
bandwidth include nettimer [17], pathchar and pchar [11],
pathload [13, 14], NCS and pipechar [15], pathrate [10],
spruce [26] and pathchirp [24], and Remos [18]. Most of
such tools used the packet pair or packet train techniques to
conduct the measurements.

The available bandwidth is different from the TCP
throughput that an application can achieve, and that dif-
ference can be huge. Lai’s Nettimer paper [17] showed
many cases where the TCP throughput is much lower than
the available bandwidth, while Jain’s pathload paper [13]
showed the bulk transfer capacity [19] of a path could even
be higher than the measured available bandwidth. Addition-
ally, most of these tools take a long time to run, which make
them unsuitable to be used in real time for applications and
services.

The most widely used TCP throughput prediction tool is
Network Weather Service [31] (NWS). NWS applies bench-
marking techniques and time series models to measure TCP
throughput and provide predictions to applications in real
time. NWS has been broadly applied. Allen, et al [3] ap-
plied NWS to address the so called Livny and Plank-Beck
problems. Swany, et al [28] applied NWS in the Grid infor-
mation service.

Unfortunately, recent work [30, 29] has argued that
NWS, and by implication, TCP benchmarking techniques
in general, are not good at predicting large file transfers on
the high speed Internet. Sudharshan, et al [30] proposed
and implemented predicting large file transfers from a log
of previous transfers and showed that it can produce reason-
able results. However, a pure log-based predictor is updated
at application-chosen times and thus neglects the dynamic
nature of the Internet. Hence, when a path changes dramati-
cally, the predictor will be unaware of it until after the appli-
cation begins to use the path. To take the dynamic changes
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of Internet into consideration, Sudharshan, et al [29] and
Swany, et al [27] separately proposed regression and CDF
techniques to combine the log-based predictor with small
NWS probes, using the probes to estimate the current load
on the path and adjust the log-based predictor. These tech-
niques enhanced the accuracy of log based predictors.

These combined techniques are limited to those host
pairs that have logs of past transfers between them, and due
to the dynamic nature of Internet, which only shows certain
statistical stabilities, the logs can become invalid after some
time. Furthermore, due to the strong correlation between
TCP flow size and throughput [35], logs for certain ranges
of TCP flow (file) size are not useful for the prediction of
different TCP flow sizes.

The questions we address here are:
� How can we explain the strong correlation between

TCP flow size and throughput, and what are its im-
plications for predicting TCP throughput?

� How can we characterize the statistical stability of the
Internet and TCP throughput, and what are its implica-
tions for predicting TCP throughput?

� How can we predict the TCP throughput with different
TCP flow sizes without being intrusive?

The main contributions of this paper are:
� We explored reasons for the observed strong correla-

tion between TCP flow size and throughput [36].

� We characterized end-to-end TCP throughput stability
and distribution.

� We proposed a novel yet simple TCP benchmark
mechanism.

� We proposed a dynamic sampling rate adjustment al-
gorithm to lower active probing overhead.

� We described and evaluated dualPats, a TCP through-
put prediction service based on the preceding contri-
butions.

We define TCP throughput as
�

� where
�

is the TCP
flow size and � is the TCP flow duration, which starts at
TCP connection initialization and ends when data transfer
finishes. In some of our experiments using GridFTP [2] and
scp [33], we treat

�
as equivalent to file size, neglecting the

small messages exchanged for authentication. � is equiv-
alent to file transfer time in our experiments with GridFTP
and scp. TCP throughput is directly experienced by appli-
cations and thus accurate predictions are very important for
the design and implementation of distributed applications.

We begin by describing our experimental setup and mea-
surements (Section 2). In Section 3, we use our measure-
ments to address the strong correlation between TCP flow

size and throughput, explaining the phenomenon and how
it can cause benchmarking to err, and develop a new pre-
dictive model that incorporates it. Next, we consider the
statistical stability of the Internet and how it affects the life-
time of measurements and predictions (Section 4). Finally,
we incorporate our results into dualPats and evaluate its per-
formance (Section 5).

2 Experiments

Our experimental testbed includes PlanetLab and several
additional machines located at Northwestern and Argonne
National Laboratories (ANL). PlanetLab [1] is an open plat-
form for developing, deploying, and accessing planetary-
scale services. It currently consists of 359 computers lo-
cated at 147 sites around the world.

We conducted S1 and S2 mainly to characterize the TCP
throughput on the Internet in which we implemented a sim-
ple C client-server program. S2 was also used to verify the
new TCP benchmarking mechanism we proposed. We con-
ducted S3 using GridFTP and scp to strengthen S1 and S2
with big TCP flows and with applications that require au-
thentication before transferring effective data. S3 was also
used to further verify the benchmarking mechanis. S4 was
conducted to evaluate dualPats, our TCP throughput predic-
tion framework.

Our experiments are summarized in Figure 1.

3 The strong correlation between TCP flow
size and throughput

A surprising finding in recent TCP connection charac-
terization is that TCP flow size and throughput are strongly
correlated. This section explains the phenomenon, provides
new additional explanations for it, explains why it can lead
to inaccurate TCP throughput predictions, and outlines a
new prediction approach.

3.1 Phenomenon

Yin Zhang, et al [35] analyzed the correlations between
the TCP flow characteristics of interest, including flow du-
ration and throughput, flow duration and size, and flow size
and throughput. They pointed out that these correlations are
fairly consistent across all their traces, and show a slight
negative correlation between duration and throughput, a
slight positive correlation between size and duration, and a
strong correlation between throughput and flow size. They
pointed out that the strong correlation between flow size and
throughput is the most interesting one and explained it in
two ways:
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Name Statistics Main Purpose Hosts, Paths, Repetitions Messages, Software, procedure

S1 1,620,000
TCP transfers

To evaluate TCP through-
put stability and transient
distributions

40 PlanetLab nodes in
North America, Europe,
Asia, and Australia. Re-
peat random pairing 3
times, 60 distinctive paths
total

Client/Server: 100 KB, 200 KB, 400
KB , 600 KB, 800 KB, 1 MB, 2
MB, 4 MB, 10 MB. Server sends a
file with specific size to client con-
tinuously for 3,000 times and then
start to send a another file of differ-
ent size.

S2
2,430,000
TCP transfers;
270,000 runs

To study correlation be-
tween TCP throughput and
flow size, and evaluate
proposed TCP benchmark
mechanism.

40 PlanetLab nodes in
North America, Europe,
Asia, and Australia. Re-
peat random pairing 3
times, 60 distinctive paths
total

Client/Server: 100 KB, 200 KB, 400
KB , 600 KB, 800 KB, 1 MB, 2 MB,
4 MB, 10 MB. Server sends a se-
quence of files with increasing sizes
in order, start over after each run.

S3
4,800 TCP
transfers; 300
runs

To test proposed TCP
throughput benchmark
mechanism; To strengthen
S1 and S2 with large TCP
flow sizes and different
applications

20 PlanetLab nodes in
North America, Europe,
Asia, and Australia, one
node at Northwestern, one
node at ANL, 30 distinc-
tive paths total

GridFTP, scp: 5 KB to 1GB. Server
sends a sequence of files with in-
creasing sizes in order, start over af-
ter each run.

S4 2400 test
cases

To evaluate the dualPats
TCP throughput prediction
service.

20 PlanetLab nodes in
North America, Europe,
Asia, and Australia, one
node at Northwestern, one
node at ANL, 20 distinc-
tive paths total

GridFTP, scp: randomly send a file
of size 40 MB or 160 MB. About 48
hours long

Figure 1. Summary of experiments. We define a run in S2 and S3 as a procedure conducting a
sequence of TCP transfers with increasing flow sizes between two hosts.

� Slow start: TCP slow start could cause some corre-
lation between flow size and flow rate [35]. Hari
Balakrishnan, et al [4] showed that 85% of the web-
related TCP packets were transfered during slow start.
This implies that most web-related flows ended in slow
start, before TCP had fully opened its congestion win-
dow, leading to throughput much lower than would be
possible with a fully open window.

However, after eliminating the first one second of all
the flows, they found that the strong correlation be-
tween flow size and throughput remained strong.

� User effect: The users are estimating the underlying
bandwidth, and thus transferring big files only when
the estimated estimated bandwidth is correspondingly
large.

These are two valid reasons, but they may be insufficient.
We claim that most users do not estimate the available band-
width before transferring data. Furthermore, that the corre-
lation persists even when initial slow start is removed sug-
gests that there must be some other mechanisms at work.

Let’s consider the correlation between flow size and
throughput in our experiments. Figure 2 gives the cumu-
lative distribution functions (CDFs) of the correlation co-
efficient (Pearson’s � )1, where each individual � value is
calculated from one run of S2 or S3. It is clear from the
graph that for the simple C server results in S2, over 80%
of all runs demonstrate strong or medium � s between flow
sizes and flow rates. Further, 64% of all runs have ������� � .
The correlation is much stronger for the GridFTP and scp
results in S3: �	��
 % of the runs shows strong correlation,
���� % show ������� 
 .

3.2 Explanations

Now we consider additional explanations for the surpris-
ing correlation between flow size and transfer time.

1Both Pearson’s Correlation Coefficient � and Coefficient of Determi-
nation ��� are used in the analysis of the paper. ��� represents the percent
of the variation that can be explained by the regression equation, therefore
we use it to show how good a curve fitting is. � is widely used to mea-
sure the strength of a (linear) relationship, therefore we use � to show how
strong two random variables are linearly correlated.
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Figure 3. TCP throughput versus flow size
(file size) with GridFTP. Transfers are be-
tween Northwestern University and Argonne
National Lab. Single TCP flow with TCP buffer
set.

Non-negligable startup overheads

Most applications have an initial message exchange. For
example, GridFTP and scp require certificate or public key
authentication before starting to send or receive data.

Figure 3 shows the TCP throughput as a function of TCP
flow size, for transfers using GridFTP between Northwest-
ern university and ANL. The dotted line is the asymptotic
TCP throughput. We tried linear, logarithmic, order 2 poly-
nomial, power, and exponential curve fitting, but none of
them fit well.

We next considered the relationship between TCP flow
duration (transfer time) and flow size (file size). Figure 4
shows that this relationship can be well modeled with a sim-

y = 9E-05x + 0.7246

R2 = 0.9992
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Figure 4. Transfer time versus TCP flow size
with GridFTP. Transfers are between North-
western University and Argonne National
Lab. Single TCP flow with TCP buffer set.

ple linear model with ��� close to 1. The majority of the
data-points missed by the linear model are located at the
very beginning of the curve, which we refer to as the noise
area in the figure. The noise area is due to startup costs and
the residual slow start effect, described below.

A closer look at Figure 4 shows that the total TCP flow
duration or file transfer time can be divided into two parts:
the startup overhead and the effective data transfer time. In
this case, the startup overhead is about 0.72 seconds. We
represent this as

��� �����
	�� (1)

where � is the TCP flow duration, including both startup
overhead and data transfer time,

�
is the TCP flow size or

file size, and
�

is the startup overhead, which includes au-
thentication time and the residual slow start effect as de-
scribed below. � equals Steady State TCP throughput,
which is the asymptotic TCP throughput as shown in Fig-
ure 3.

Given Equation 1, we can easily deduce the expression
for the TCP throughput in Figure 3 as

�����
�

� �
�

������	�� (2)

where ��� is the TCP throughput, and
�

,
�

,
�

are the same
as in Equation 1.

Residual slow start effect

Mathis, et al [20] pointed out that it takes TCP some time
before its throughput reaches equilibrium. Assuming se-
lective acknowledgments (SACK), TCP will send roughly
� ������� � ��� � packets in the unstable phase, where � is the

loss rate and  is a constant !
" #
� . This number can be

significant given a low loss rate � . This happens because
with SACK, slow start will overshoot and drive up the loss
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�

, the startup overhead.
Even for the simple client/server there is
startup overhead likely caused by the resid-
ual slow start effect. The startup overheads
of scp and GridFTP are much larger.

rate or run out of receiver window. Zhang, et al [36] showed
that the mean loss rate in their traces is between 0.006 and
0.0087. Assuming the loss rate is 0.006, and each packet
is 1.5 KB, roughly 800KB data has to be sent before TCP
throughput reaches equilibrium.

We examined hundreds of Linux machines on the North-
western University campus and on PlanetLab and found that
all of them were using SACK. Therefore, it is likely that
most TCP connections experience this slow start overshoot
effect, and because TCP in slow start doesn’t use bandwidth
well, this residual slow start effect can be treated as another
kind of startup overhead, incorporated in

�
as above. This

can also explain why in Figure 2 the � s for the scp and
GridFTP traces are much stronger than that of the simple
program.

To verify that this is the case in general for the simple
applications without other startup overheads, we used the
data collected in experiment S2. We did least square linear
curve fitting and calculated

�
for each set of data. Figure 5

shows the CDF for these
�

s. The effect of residual slow
start is obvious in the CDF, where we see over 50% sim-
ple TCP transfers has a

�
value equal or larger than 0.1.

For comparison purpose, we also plot the CDF of
�

for
applications that require authentication in the same Figure,
namely GridFTP and SCP. As the CDF indicates, a typical�

for such applications is much larger than that of the sim-
ple application.

Why simple TCP benchmarking fails

Now we can explain why current TCP benchmarking ap-
proaches, such as implemented in NWS, have difficulty pre-
dicting the performance of large transfers such as GridFTP
tests [29]:

� The default probe used by NWS is too small. It will
likely end up in the noise area as shown in Figure 4.

� The TCP throughput that the probe measures is only
useful to TCP flows of similar size because of the
strong correlation between throughput and flow size.

Given Equation 2, it is clear that � ��������� is the TCP
throughput for the file size 2000KB, � ������	
� is the TCP
throughput for the file size 30000KB and � �������� is the
steady state TCP throughput. As file size increases

�
decreases, and when the file size is approaching infin-
ity, the throughput will approach � ��������� .

� The TCP buffer is not set for NWS probes while the
GridFTP tests were done with adjusted TCP buffer
size.

� The usage of parallel TCP flows in GridFTP increased
its aggregated throughput.

To verify that the linear model is true for most Internet
paths, Figure 6 shows the ��� of the linear curve fitting for
the data in experiment S2 and S3. It is clear the model holds
for both our simple client and server, and applications such
as scp and GridFTP that require authentication.

3.3 A new TCP throughput benchmark mecha-
nism and its verification

Based on the above observations, we developed a new
simple TCP benchmark mechanism. Instead of using
probes with the same size, we use two probes with different
sizes, chosen to be beyond the noise area. We then fit a line
between the two measurements, as shown in figure 4. Using
Equation 1 and 2, we can then calculate the TCP throughput
for other flow sizes (file sizes).

To verify that the new TCP benchmark works, we used
the trace data in experiment S2. We chose a small probe
with size 400KB and a bigger probe with size 800KB, and
predicted the throughput of the other TCP transfers in the
trace. Figure 7 shows the CDF of relative prediction error
for our results by flow size. � 
 � % of the prediction errors
are below 20%.

The CDFs look normal, so we used quantile-quantile
plots to test this. Figure 8 shows an example plot. In al-
most all cases, we can fit a straight line to these plots with
� � !�� , which tells us that our relative error is almost al-
ways normal. Normality of prediction errors here is both
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surprising and extremely useful. In particular, we can sim-
ply estimate the variance of the relative prediction error
as we measure and predict, and then use this information
straightforwardly to create confidence intervals for our pre-
dictions. Being able to compute accurate confidence inter-
vals is vital to using predictions in practice [9].

There are other techniques that we can apply to enhance
the prediction accuracy, which we will cover in later sec-
tions.

In practice, we don’t have to send two probes. Instead,
we can send the larger one of the two probes, record its
starting time, the time when as much data as the size of the
small probe was sent and full probe’s finishing time. We
call such a probe a probe pair.

Figure 9 shows the CDFs of standard deviation of trans-
fer time on all paths in experiment S2. Each CDF curve
corresponds to a particular flow size. For most paths, the
larger the flow size is, the bigger the standard deviation of
the transfer time. However, in Figure 10, where we show the
CDFs of the coefficient of variation (COV) of transfer time,
the conclusion is the reverse: for most paths, the bigger the
file is, the less the COV of the transfer time. This essentially
means that in relative terms, the variance of transfer time of
flows with larger sizes are actually smaller. The bigger the
flow, the better.

As explained in Section 3.2 and 3.3, we need two probes
with different sizes to determine the steady state TCP
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looks almost identical to this figure.

throughput. Inevitably, fluctuations of flow transfer time
happen on the dynamic Internet, and have shown them-
selves in the standard deviation and COV we have just seen.
These fluctuations are the main cause of the estimation er-
ror of steady state TCP throughput. Since flows with larger
sizes actually have less variance in relative terms, estimat-
ing steady state throughput using larger flows will certainly
be more accurate. On the other hand, probes with larger
flows are more expensive. This leads us to the selection of
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two probe sizes of 400 KBytes and 800 KBytes as default
probes, which we feel is a reasonable tradeoff between esti-
mation accuracy and probing cost.

4 Statistical stability of the Internet

Statistical stability or consistency is one of the most im-
portant characteristics of the Internet and is the basis that
makes it possible to predict TCP throughput on the wide
area network. A good understanding of stability will also

help us to make decisions about prediction strategies, such
as the frequency of active probing, and therefore to lower
the intrusiveness of the predictors.

Routing stability: Paxson [23, 22] proposed two met-
rics for route stability, prevalence and persistency. Preva-
lence, which is of particular interest to us here, is the prob-
ability of observing a given route over time. If a route is
prevalent, than the observation of it allows us to predict that
it will be used again. Persistency is the frequency of route
changes. The two metrics are not closely correlated. Pax-
son’s conclusions are that Internet paths are heavily domi-
nated by a single route, but that the time periods over which
routes persist show wide variation, ranging from seconds
to days. However, 2/3 of the Internet paths Paxson studied
had routes that persisted for days to weeks. Chinoy found
that route changes tend to concentrate at the edges of the
network, not in its “backbone” [7].

Spatial locality and temporal locality: Balakrishnan,
et al analyzed statistical models for the observed end-to-end
network performance based on extensive packet-level traces
collected from the primary web site for the Atlanta Sum-
mer Olympic Games in 1996. They concluded that nearby
Internet hosts often have almost identical distributions of
observed throughput. Although the size of the clusters for
which the performance is identical varies as a function of
their location on the Internet, cluster sizes in the range of 2
to 4 hops work well for many regions. They also found that
end-to-end throughput to hosts often varied by less than a
factor of two over timescales on the order of many tens of
minutes, and that the throughput was piecewise stationary
over timescales of similar magnitude [5]. Myers, et al ex-
amined performance from a wide range of clients to a wide
range of servers and found that bandwidth to the servers and
server rankings from the point of view of a client were re-
markably stable over time [21]. Seshan, et al applied these
findings in the development of the Shared Passive Network
Performance Discovery (SPAND) system [25], which col-
lected server performance information from the point of
view of a pool of clients and used that history to predict
the performance of new requests.

Zhang, et al [36] experimented by sending 1 MB files
every minute between pairs of hosts, and proposed an ef-
fective way to evaluate the temporal locality of end-to-end
TCP throughput of those flows. He looks at the length of
the period where the ratio between the maximum and mini-
mum observed TCP throughput is less than a constant factor
� . This is referred to as an Operational Constancy Region
(OCR). Instead of using OCR, we define a Statistically Sta-
ble Region (SSR) as the length of the period where the ratio
between the maximum and minimum estimated steady state
TCP throughput is less than a constant factor � . The differ-
ence between OCR and SSR is important because OCR is
only characterizing the throughput for flows with a specific
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Figure 11. CDF of statistically stable region
(SSR) for steady-state TCP throughput with
different � .

size, while SSR characterizes the steady state throughput
for all flows with different sizes. We used traces from ex-
periment S2 to characterize the SSR with steady-state TCP
throughput. That is, instead of looking at the TCP through-
put of a specific flow size, we applied least square linear
fitting to get Equation 1, and therefore the estimated steady-
state TCP throughput of the path.

Figure 11 gives the CDF of length of all SSRs modeled
by steady-state TCP throughput from experiment S2. Each
curve in the plot corresponds to a particular value of the
constant factor � . Under all different values of � , some de-
gree of temporal locality is exhibited. Moreover, the larger
� is, the longer the SSRs tend to be.

For comparison purposes, we also calculated the CDF
of OCR with data from S1. The comparison between ours
and Zhang’s results [36] suggests that the temporal local-
ity in our test environment is much weaker. For instance,
Zhang found that ! � � % of OCRs are longer than 1 hour
when � ��� and � 
�� % of all OCRs exceed 3 hours when
� � � � . In our results, the two corresponding numbers
drop to 2% and 10% respectively. TCP throughput in our
testbed appears to be less stable. We suspect that this differ-
ence may largely due to the fact that Planetlab nodes often
become CPU or bandwidth saturated, causing great fluctu-
ations of TCP throughput. It is challenging to predict TCP
throughput under a highly dynamic environment.

End-to-end TCP Throughput Distribution: An im-
portant question an application often poses is how the TCP
throughput varies, and, beyond that, whether an analytical
distribution model can be applied to characterize its distri-
bution. Balakrishman, et al [5] studied aggregated TCP

throughput distribution across all different flow sizes be-
tween each pair of Internet hosts. Their statistical analysis
suggests that end-to-end TCP throughput can be well mod-
eled as a log-normal distribution.

Since we have already seen earlier that there exists strong
correlation between TCP throughput and flow size, we are
therefore more interested in studying the TCP throughput
distribution of a particular flow size than in getting an aggre-
gated throughput distribution across all different flow sizes.
The data from experiment S1 lets us do this analysis.

Recall that in S1, for each client/server pair, we re-
peated the transfer of each file 3,000 times. We histogramed
throughput data for each flow size/path tuple. Almost in ev-
ery case, the throughput histrogram demonstrates a multi-
modal distribution. This suggests that it is probably not fea-
sible to model TCP throughput using simple distributions.

Because the collection of data for each client/server pair
lasted several hours or even longer, we suspect that the mul-
timodal feature may be partially due to the change in net-
work conditions during the measurement period. To ver-
ify this hypothesis, we try to study throughput distribu-
tion using subsets of each dataset. A subset contains much
less data and covers shorter measurement length. In other
words, we hoped to find “subregions” in each dataset in
which the network conditions are relatively stable and the
throughput data can be better modelled unimodally.

It is very hard to predefine an optimal length or data size
for such “subregions” in the throughput data; in fact, the ap-
propriate length may vary from time to time. Therefore, we
believe it is necessary to adaptively change the subregion
length over time as we acquire data (or walk the dataset of-
fline). The purpose is to segment the whole dataset into
multiple subregions (or identify segement boundaries on-
line). For each segment, we fit the data with several analyt-
ical distributions, and evaluate the goodness of fit using the
values of � � .

Our offline distribution fitting algorithm for TCP
throughput has the following steps:

1. Select a trace of TCP throughput (sequence of mea-
surements for a particular flow size on a particular In-
ternet path).

2. Initialize the subregion length, and set the start and end
point of the subregion to 1 and 100, respectively.

3. Fit the subregion data with an analytical distribution,
and calculate the value of ��� .

4. Increase the subregion length by 100, that is, keep the
start point as from the previous step, but increase the
end point by 100. For this new subregion, fit the data
with the analytical distribution model again, get a new
value of � � . Note that the granularity here, 100, can
also be changed.
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Figure 12. CDF of � � for five common distri-
butions for TCP throughput characterization
on segmented traces. The size of the file is
10 MBytes. Other flow sizes show similar re-
sults.

5. Compare the new ��� with the previous one. If the new
one is larger, repeat step 4, otherwise, we have found
that previous subregion has the optimal length.

6. Log the start point, end point, and value of � � from
previous subregion. Reset the subregion length to be
100, and set the start point of the subregion to be one
larger than the end point of the previous subregion.

7. Go to step 3 and repeat above procedure, until all data
points in the datasets are examined.

We segmented and model-fitted each path/flow size trace in
S1 using this algorithm. We then considered the � � distri-
bution for each of flow size and analytical distribution. The
CDFs of the values of � � for each flow size and analytical
distribution are shown in Figure 12.

It is clear from Figure 12 that for the five distributions we
compared, the normal distribution best fits the TCP through-
put data. For example, of all subregions, �  � % have
� ������� 
 with the normal distribution, but for the lognor-
mal distribution, the percentage drops to ! � � � %. For the
uniform, exponential, and Pareto distributions, the percent-
ages are 42%, 2.7%, and 0.0%, respectively.

This result firmly shows that for a particular flow size,
its throughput is best characterized by a simple normal dis-
tribution. However, throughput is nonstationary, so a given
normal distribution holds for only a period of time before it
changes to another one. This nonstationary behavior is re-
markably similar to the “epochal behavior” pattern of load
on hosts that we observed in earlier work [8].

On the other hand, none of analytic distributions are
overwhelmingly successful. Even for the normal distribu-
tion, � ������� 
 half of the time.

5 dualPats: predicting TCP throughput on
the wide area network

Based on our study and previous research, we have de-
veloped and evaluated dualPats, a prototype TCP through-
put prediction service for distributed applications. dualPats
actively sends out probe pairs to benchmark a path. It au-
tomatically adjusts its rate to minimize intrusiveness. The
benchmarking technique is described in Section 3.

5.1 System architecture

dualPats consists of two components, a network sensor
and a TCP throughput predictor. Figure 13 illustrates the
two components and their relationship with applications and
the underlying operating system. The whole system works
at application level.

The network sensor sends out probe pairs at a self-
adjusting rate as described in Section 5.2. It records the
sizes and transfer times of each probe pair. When moni-
toring � different TCP connections, � series of probe pair
records is maintained.

The TCP throughput predictor interfaces with both the
network sensor and applications. Whenever an application
needs a prediction, it sends a query to the TCP throughput
predictor, and the predictor execute the following:

1. Parse the query from the application and get parame-
ters including the destination and file size.

2. Fetch the probe pair data series for the destination from
underlying network sensor. If no series exists, an error
is returned and a probing process for the destination is
started.

3. Apply a prediction model, such as moving average or
EWMA, to predict the current transfer times of each of
the messages in the probe pair from the series of pairs.

4. Fit a linear curve as described in Equation 1 and cal-
culate the TCP throughput for the given file size and
using equation 2. (Optionally, compute a confidence
interval using normality assumptions).

5. Return the estimated TCP throughput for transfer time
to the application.

We tested several prediction models in step 3, includ-
ing moving average, exponential weighted moving average

9



Applications

TCP throughput predictor

Network Sensor

OS kernel NIC

Figure 13. System architecture of dualPats.

(EWMA) and simply using the last value. A moving aver-
age with window size 20 works best on average in our ex-
periments. We speculate that this is so because during each
SSR, the end-to-end TCP throughput is best modeled with
normal distribution. For a normal distribution with no serial
correlation, the mean is the best predictor possible, and the
windowed mean estimates this.

5.2 Dynamic sampling rate adjustment algorithm

There are two ways to decrease the overhead caused by
the probe pairs of dualPats: decrease the size of the probe
pair or decrease the sampling rate.

As we discussed in Section 4, each Internet path shows
statistical stability in TCP throughput. However, each path
is different in the length of its SSR. Therefore, we designed
a simple algorithm to dynamically adjust the sampling rate
to the path’s SSR. The algorithm is as follows:

1. Set an upper bound � and a lower bound � for the
sampling interval. They were set as 20 and 1200 sec-
onds in our tests.

2. Set another two relative changing bounds,
� � , � � , in

units of percentage. After sending each probe pair, es-
timate the current steady-state TCP throughput. If it
has changed less than

� � , increases the sampling in-
terval by a step of � seconds; if it changes between

� �
and

�
� , keep the current interval; otherwise decrease

the interval. In experiment S4,
� � , � � were set to be

5% and 15%.

3. The interval must be between � and � .

We also want to minimize the size of probe pairs on the
condition that none of them will fall into the noise area as
shown in Figure 4. However, the noise area is different for
each Internet path, as discussed in Section 3. It is a func-
tion of loss rate and underlying bandwidth. We need an

algorithm that can detect it automatically. For now, the al-
gorithm uses feedback from application about its prediction
error.

1. We set a default value or staring value for the probe
pairs. In experiment S4, we used 400KB and 800KB.
Also set a upperbound ��� for the probe pair.

2. If � continuous prediction errors are bigger than a
threshold ��� , and with the same sign, we increase the
probe pair by 200KB each.

3. The probe pair can’t exceed ��� .

5.3 Evaluation

We evaluated dualPats using the data from experiment
S4, which we described in detail in Section 2. The primary
metric used was the relative prediction error:

�
	�	 � �
	��
 ��� ��� ��� � � � � ��� ��� �

� � � � ��� ��� � (3)

dualPats ran ! ��� � � predictions on the 20 paths 48 hours
long S4 experiments. Test cases are randomly chosen
40MB or 160MB files.

The prediction results are shown in Figure 14. Mean
error is calculated by averaging all of the relative errors.
For an unbiased predictor, this value should be close to zero
given enough test cases. We can see that in our evaluation it
is quite small in most cases, and we see an equal proportion
of positive and negative mean errors.

The mean absolute error is the average of the absolute
value of all of the relative errors. We consider it the most
important metric in evaluating the predictions. Figure 14
shows that all 20 paths have a mean absolute error � ��� %,
17 out of 20 paths are � � � %, and 13 out 20 paths are
� �  %. As we commented in Section 4, PlanetLab is much
more heavily loaded and dynamic than the current Internet,
thus it is likely to be much harder to predict than on the
current Internet.

We studied the correlation between the error and sev-
eral known attributes. The results are shown in Figure 15.
Clearly, the mean error is not related to any of the attributes,
which further suggests that the predictions given by dual-
Pats are unbiased. However, if the path is very dynamic
it is hard to predict. Figure 15 shows that the � between
the mean absolute error and the sampling interval length
(and, indirectly, the SSR) is negative and pretty strong. This
implies that our algorithm captured the path dynamics and
tried to adjust to its changes.

Our conclusion is that dualPats does a effective job of
predicting TCP throughput.
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Path Router Hops Mean RTT Mean err % Mean stderr Mean abs(err)% Mean abs(stderr) Mean Interval

1 20 55 -0.0073 0.11 0.069 0.13 641.97
2 18 60 0.10 0.17 0.17 0.18 29.44
3 17 33 -0.21 0.23 0.25 0.51 132.2
4 11 27.5 -0.03 0.19 0.13 0.25 71.56
5 13 31 -0.04 0.20 0.16 0.28 48.76
6 16 138 -0.079 0.19 0.14 0.29 58.18
7 16 120 0.048 0.355 0.28 0.42 21.87
8 14 51 0.021 0.12 0.095 0.168 512.64
9 18 207 -0.14 0.17 0.18 0.36 51.50

10 14 29 -0.11 0.19 0.14 0.31 180.17
11 19 110 -0.036 0.18 0.11 0.24 28.57
12 15 36 -0.038 0.14 0.078 0.18 258.16
13 17 59 0.035 0.208 0.16 0.24 32.23
14 12 23.5 -0.012 0.060 0.042 0.082 320.97
15 13 28 -0.095 0.186 0.14 0.31 511.33
16 18 100 -0.028 0.16 0.11 0.21 543.75
17 19 70 -0.083 0.030 0.083 0.17 543.63
18 14 81 -0.076 0.025 0.076 0.154 522.20
19 19 72 0.21 0.38 0.29 0.39 48.39
20 17 50 0.11 0.12 0.14 0.12 97.25

Figure 14. Prediction error statistics for experiment S4. RTT is the round trip time between the two
sites in miliseconds, and Mean Interval is the average interval time between probe pairs in seconds.
Mean err is the average relative error while mean abs(err) is the average of the absolute relative
errors.

Router Hops Mean RTT Mean Interval
Mean abs(err) 0.112 0.257 -0.62

Mean err 0.076 0.13 -0.13

Figure 15. Correlation coefficient � between
prediction error and known attributes.

6 Conclusions and future work

We have characterized the behavior of TCP throughput
in the wide area environment, providing additional expla-
nations for the correlation of throughput and flow size and
demonstrating how this correlation causes erroneous pre-
dictions to be made when using simple TCP benchmarking
to characterize a path. In response, we proposed and evalu-
ated a new benchmarking approach, probe pair, from which
TCP throughput for different messages sizes can be derived.
We described and evaluated the performance of a new pre-
dictor, dualPats, implements this approach.

In this work, we do not consider parallel TCP flows,
which is a current subject for us. We also acknowledge
that, like all benchmarking-based systems, our approach has
scalability problems. We have addressed this to some ex-
tent with our dynamic sample rate adjustment algorithm.
However, we are also considering whether our ideas can

work within a passive measurement model such as that in
Wren [34], and the use of hierarchical decomposition as in
Remos [18] and NWS Clique [32]. We have assumed that
the network path is the bottleneck for file transfer. In some
cases, especially in high speed optical networks, this may
not be true, and transfer time prediction would also have
to take into account processor and memory system perfor-
mance.
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