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ABSTRACT

Relational schema matching is a task of finding correspondences between elements from a

source and a target tabular schema. It helps data scientists integrate data from different sources as

well as explore inter-schema relationships, and it has been widely researched for more than twenty

years. Existing schema matching methods are either schema-based, focusing on element names

and relational structures, or instance-oriented, highlighting the distribution of data values. Their

generalization capability is limited due to their naive assumptions about the linguistic similarity

and instance type. To resolve this issue, we propose the hybrid embedding, an innovative schema

matching strategy integrating both methodologies, and apply a machine learning classifier to deter-

mine a match. Through experiments on both synthetic and real-world datasets, we show that our

approach outperforms existing methods and it is robust to schema variations and limited instance

samples.
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Glossary

BERT Bidirectional Encoder Representations from Transformers.

BiLSTM Bidirectional Long Short Term Memory network.

BLEU Bilingual Evaluation Understudy.

DB Distribution-based model.

EMD Earth Mover’s Distance.

HDX The Humanitarian Data Exchange.

JL Jaccard-Levenshtein model.

lcs longest common substring.

lev Levenshtein distance.

LLM Large Language Model.

lsim linguistic similarity.

SF Similarity Flooding.

ssim structure similarity.
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CHAPTER 1

INTRODUCTION

At the age of data explosion, data-driven techniques are essential for many industries to learn about

market demands and build artificial intelligence applications automating their conventional busi-

nesses. The amount of information collected has never been greater1 [1], emphasizing the massive

effort spent on analytics of data with varying scales and associated fields. An unavoidable task for

most data scientists is to aggregate disparate data sources and explore potential correspondences

between datasets. For instance, a financial analyst wants to conduct an analysis on the annual

financial condition of all US companies, and this requires to aggregate financial attributes from

the 10-K form of each company. These forms are usually not standardized in different databases

and it is laborious to identify attributes, though linguistically different, referring to the same con-

cept (e.g. Earnings per Share (Diluted) vs. Dilute Earns). Schema matching is an approach for

discovering matching pairs of elements or columns from a source and a target schema, which are

spreadsheets or databses with a structured format (relational schema). In addition to its original

use, schema matching helps rank inter-dataset relationships and map customers’ data to the known

industry-specific schema [2] for any further standard analysis.

Existing schema matching methods are either schema-based or instance-based. Schema-based

algorithms apply schema-related information like element’s linguistic similarity and relational

structures to measure the relatedness of any pair of elements, while instance-based methods con-

cern about the distribution of data instances when computing the element similarity. Either of them

is limited due to their naive assumptions. Schema-based methods are highly dependent on the lin-
1https://www.statista.com/statistics/871513/worldwide-data-created/
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guistic similarity, which is the initial stage used to infer structure similarity between schemas. They

may also rely on manual descriptions of elements, and this makes the task resolution not fully au-

tomatic. Instance-based approaches have poor adaptability to instances with different types, and

they assume element characteristics are purely identified by their value distribution. Thus, we pro-

pose a novel machine learning-based approach integrating both schema-based and instance-based

features. This model presents a better schema matching performance on both synthetic and real-

world datasets than most existing schema matching techniques. It is also shown to be robust when

elements are highly varying and their instance samples are limited.

The rest of the paper is structured as follows: Chapter 2 formally defines the problem of schema

matching and then discusses existing methods and our proposed model. There are two areas of

existing approaches: schema-based and instance-based information of any tabular schema. Our

method takes advantages of both features and has two parts, the hybrid embedding and a classi-

fier. Chapter 3 introduces experimental datasets as well as settings for the training and inference

phases of our classifier. Inference results and their performance comparison with other baseline

methods are also presented in this chapter. Chapter 4 summarizes the paper and mentions potential

limitations of our approach with some future insights.
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CHAPTER 2

METHODOLOGY

2.1 Problem Statement

Our discussion about schema matching is under the assumption of any relational schema, which

involves a set of tables and elements whose relations are organized in a structured fashion. Ev-

ery schema consists of multiple entities (also called rows) or elements (also called columns or

attributes), and some examples are Excel spreadsheets or tables in a MySQL database. Assume

we have two schemas, a source schema Ssrc and a target schema Star , and each of them has its set

of schema elements, Esrc and Etar . Schema matching can be defined as a problem building the

function f(Esrc ! Etar), which maps some schema elements in Esrc to their equivalent existences

in Etar , though their names and instances might be different. We transform this function into

f(Esrc,Etar ! {0, 1}), where given a pair of elements from different schemas, compute whether

they can match to each other or not. A 1 means there is a match within the pair while a 0 reflects

no correspondence exists here. The core idea is to calculate a similarity between every candidate

pair of elements, and this metric instructs us to select matched elements. In addition, we only

consider one-to-one schema matching. Every set of matched elements is unique and they can only

be matched to each other.

2.2 Schema-based Matching

As mentioned in Chapter 1, schema matching can be categorized into two aspects: schema-based

and instance-based matching. A schema-based matching employs schema-related information,
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which includes element names, description, relationships, etc, to find out matched pairs within two

different schemas. One early attempt of this methodology is Cupid [3], and it involves a linguistic

matching towards element names as well as a structure matching exploring the hierarchical rela-

tions among different elements. With the reference to a thesaurus, the linguistic matching first

performs tokenization upon the element names and then categorizes them based on their data types

and contents. For schema elements with similar categories, Cupid computes their linguistic simi-

larity coefficients (lsim) via evaluating their sub-strings’ synonymy and hypernymy relationships.

Figure 2.1: Sample tree-like graphs of two schemas [3]

The structure matching transforms the schema relations into tree-like graphs (see Figure 2.1).

Every node refers to a schema element and every directional edge represents a containment re-

lation. A containment means one element consists of a single or multiple sub-elements. For

instance, an Item element has several attributes to describe it, and they are ItemNumber, Quantity

and UnitOfMeasure. In Cupid, a structure similarity (ssim) is computed according to an important

intuition: two elements in different schemas are structurally similar if their vicinities (ancestors or

siblings) or leaf sets are highly similar [3]. For instance, elements POLines and Items in Figure

2.1, though linguistically different, are structurally similar since they both have an Item set with

linguistically similar leaf elements. The final similarity of every element pair is a weighted sum of

lsim and ssim.
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Similarity flooding [4] is another schema-based matching technique applying the graph repre-

sentation of schema relations. It first translates two schemas into directed graphs, where nodes and

edges represent elements and relations respectively. A string matcher is used to find some initial

mappings of elements based on their prefix and suffix overlaps. Starting from these matches, the

similarity flooding algorithm searches for new matched elements in a propagation manner: when-

ever any two elements in different schemas are found to be similar, the similarity of their adjacent

elements increases. This intuition is similar to that of Cupid and the propagation process continues

until a fixed point is reached (an equilibrium state). Both Cupid and similarity flooding are highly

dependent on the linguistic similarity of elements. For elements with the exactly same semantic

representation but different corresponding instances, a high linguistic similarity can mislead the

algorithm to compute the structure similarity or propagate matched pairs. In addition, under the

scenario of relatively simple schemas, the intuitions about structure similarity become less robust.

If their graph representations only have one root and several leaves, all elements are close to each

other and we can only infer matched pairs based on their linguistic similarities.

Unlike Cupid or similarity flooding, COMA [5] proposes a schema matching system to com-

bine multiple schema matchers in a flexible fashion when evaluating the similarity of elements

under different schemas. Every schema is represented by a rooted directed acyclic graph and every

element is shown as its node path from the root. There are multiple schema matchers focusing on

different schema information and previous matching results, while one of them is a user-feedback

matcher that is unaffected by other matchers and serves to improve the schema matching quality.

Different schema matchers offer different computed similarities, and COMA provides different

strategies to aggregate them (e.g. average, max, etc) as well as select matched pairs (e.g. above-

threshold, top-K, etc). Its experimental results show that single schema matchers may be imprecise,

but their combination can effectively improve the matching performance.
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With the advancement of various deep learning techniques, the task of natural language under-

standing can be effectively captured by contextualized word embeddings [6]. To make use of this

strength, some schema matchers first compute the embeddings of schema element names as well

as their textual descriptions and then decide whether these two embeddings are related in a latent

manner or not. For example, SMAT [7] applies a Bidirectional LSTM (BiLSTM) to extract latent

features from two element names with their manual descriptions and then uses multiple softmax

operations to check whether these two elements are matched or not. Zhang et al. [2] proposes a

BERT-based approach to compute the similarity score of two schema elements, which in turn helps

determine a match score through a linear classifier. Figure 2.2 shows the BERT embedding pro-

cess of two schema elements, where as and at refer to the elements in the source and target schema

respectively. Their names are concatenated with their descriptions, and two name-description pairs

are also concatenated with a [SEP] notation. Such a format is similar to that of the next-sentence

prediction (NSP) task in the pre-training phase of BERT [8]. The left-most embedding is input to

a linear layer to obtain a numerical vector indicating a similarity score.

Figure 2.2: BERT embeddings for two schema elements [2]
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Schema embedding resolves the challenge when elements are different but semantically equiv-

alent. It is also robust to the situation that the target schema has much more number of entities

and elements than the source schema [2]. However, these techniques are highly dependent upon

the manual element description, which is labor-intensive and not fully automated. In addition, the

model proposed and datasets experimented in [2] are still not released to the public.

2.3 Instance-based Matching

An instance-based matching is data-oriented, focusing on utilizing statistical measures to explore

relationships between values of different elements. Instance-based schema matchers either apply

statistics from data instances to annotate the schema [9], or directly find correlated schema ele-

ments [3]. A distribution-based schema matcher uses the Earth Mover’s Distance (EMD), which

indicates the minimum amount of work to convert one set of values to another, to evaluate the simi-

larity between different elements [10]. To be specific, the work is related to the rank of values in the

sorted order of the union of two instance sets. The first step is to form distribution clusters of ele-

ments based on pair-wise EMDs. Then, we decompose every cluster into individual matched pairs

via the intersection EMD, a defined metric with two intuitions. The first one is schema elements

with large intersection of values are highly associated and should belong to the same element. For

elements with few or no intersected values, if their values are both largely overlapped with a third

element, they are supposed to be matched.

Another instance-based matching technique is mentioned in Koutras et al. [1]. It directly em-

ploys the Jaccard similarity to measure the relatedness of any element pair, where any two values

are identical if their Levenshtein distance is below a given threshold. Compared to the schema-

based matching, an instance-based matching also displays promising results [1][10]. However, it

is built upon a vital assumption that elements related to each other have some values in common.
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It is always possible that without any common value, two elements can still refer to the same thing.

This assumption may be valid for categorical elements, but it can be substantially less robust for

numerical elements.

2.4 Schema-Instance Matching

Considering the limitations of each schema matching methodology, we propose a novel schema

matching technique that is based on both schema-based and instance-based information from

any pair of schemas. To be specific, for every pair of schema elements, their schema-based

and instance-based features are elegantly combined via a hybrid embedding, and then a classi-

fier takes this hybrid embedding to predict the extent whether these two elements are matched or

not. Though our approach is similar to the pipelines in [2][7], our method is fully automatic and

does not require any manual annotation of the schema. Our extracted schema-based features are

independent of relational structures [3][4][5], so it avoids the misleading similarities brought by

simple schemas. Compared to instance-based matchers purely focusing on numerical statistics

[1][10], our designed embedding involves semantic information of string-type instances obtained

by BERT-based encoders. The integration of schema-based information and data instances is sup-

posed to present a more robust performance upon schema matching than matching techniques with

a single focus.

2.4.1 Hybrid Embedding

Every element ei from either the source or the target element set (Esrc and Etar ) is transformed into

a hybrid embedding ei, which consists of a semantic embedding si (schema-based information) and

an instance embedding vi (instance-based information). To represent the relatedness of any pair of

elements from different schemas (ei , ej where ei 2 Esrc and ej 2 Etar ), we apply their absolute
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difference scaled by their sum and their cosine similarity to compute a semantic similarity lsi,j (see

Eq. 2.1) as well as a similarity embedding li,j (see Eq. 2.2). The circular sign in Eq. 2.2 refers to

the element-wise division between two vectors with the same dimension. A classifier takes li,j as

an input to predict if ei and ej are matched.

lsi,j =


si · sj

ksik ksjk
; BLEU(ei , ej ); lev(ei , ej ); lcs(ei , ej )

�
(2.1)

li,j =


lsi,j;

vi · vj

kvik kvjk
; |vi � vj|↵ (vi + vj + ")

�
(2.2)

The semantic similarity lsi,j between element names is the concatenation of the cosine sim-

ilarity between semantic embeddings, BLEU score, Levenshtein distance (lev) and length of the

longest common substring (lcs). We use a fine-tuned pre-trained BERT-based model, Sentence-

BERT [11], to help build semantic embeddings for the element names. Compared to the original

BERT model, the Sentence-BERT achieves better performance on various sentence-pair regression

tasks, especially semantic textual similarity, and this advantage is consistent with our goal to eval-

uate the similarity between two name embeddings. Its fine-tuning process is shown in Figure 2.3,

where the pooling layer takes average over all output vectors from the BERT and the downstream

task is defined to compute two BERT embeddings’ cosine similarity.

To strengthen the robustness of a semantic embedding via full-filling the content of an element

name, we try to add tags (e.g. attributes, type, function, etc) to depict elements based on their

names and instances. A fine-tuned large language model (LLM) is responsible for generating

element tags, and then they are concatenated with the element name to form a new linguistic

representation. The LLM chosen is the BLOOMZ & mT01, which comes from BLOOM & mT5
1https://huggingface.co/bigscience/bloomz
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Figure 2.3: Sentence-BERT architecture at fine-tuning [11]

pretrained multilingual language models fine-tuned on the crosslingual task mixture [12]. Take the

element funding as an example. Once we input this name as well as its instances into the LLM

with a prompt. The generated tags will be value, total and usd. They will be concatenated with the

name funding and then transformed into a semantic embedding.

The instance embedding involves different type-dependent features like the numeric feature,

character feature, semantic feature, etc. These features are only valid if they are under the right

type of instances; otherwise, they become {-1}-filled vectors to indicate their incompatibility. For

example, an element price should have a valid numeric feature and an element institution name is

supposed to have a valid character and a valid semantic feature. The numeric feature contains a set

of statistical metrics such as the mean, minimum/maximum value, variance, standard deviation and

number of unique instances to show the instance distribution; while the character feature computes

the average ratio of white spaces, punctuation, special characters and numeric characters from

string-type instances of a given element. A semantic feature is the same as the embedding from a

fine-tuned Sentence-BERT. The instance embedding also has type-independent features, including
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the instance type by a one-hot vector and average instance length. All these data-oriented features

help explore an element’s latent meaning from multiple perspectives.

2.4.2 Classifier

To predict a matched pair given a similarity embedding integrating schema-based and instance-

based features, we make use of the XGBoost classifier, a scalable tree boosting system [13] that

delivers impressive performance on many machine learning tasks. Compared to the gradient boost-

ing decision tree, an XGBoost is more regularized due to its in-built L1 and L2 regularization, and

thus it comes with better generalization capabilities. Unlike the linear classifier proposed in Zhang

et al. [2], a tree-based classifier provides much more complex decision boundaries when predicting

the relatedness of two schema elements. Since its output is a match score indicating the probability

that two elements are matched, we enable users to specify thresholds to determine any match. A

default threshold is computed according to our model validation and labeled matched pairs during

the training process.
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CHAPTER 3

EXPERIMENT

3.1 Datasets

The experimental datasets have varying difficulties and they are either widely used in the field of

schema matching or created based on real-world data sources. They are representative enough to

create convincing evaluation for various schema matching techniques.

3.1.1 Synthetic Dataset

Possibly the most challenging issue on evaluating schema matching methods is the lack of openly

available datasets with schema matching ground truth (or labels). To resolve this problem, Koutras

et al. [1] proposes a methodology, Valentine, to create different types of schema matching datasets

from a single schema. Given a tabular schema, we can split it horizontally to create unionable pairs,

vertically to make joinable pairs, or in both ways, following the ideas from [14][15]. To be specific,

we create a unionable dataset by horizontally partitioning the table with varying percentages of row

overlap, and we make a view-unionable dataset by splitting a table both horizontally and vertically

with zero row overlap and varying column overlap. In contrast to a view-unionable dataset, a

pair of joinable tables should have at least one column in common and a large row overlap. The

semantically-joinable dataset is similar to the joinable one, except that their element (column)

names are noisy (semantic variations). In addition, all instances under different types of datasets

are manually made noisy. We use the WikiData1 in Valentine, which contains 4 pairs of schemas
1https://delftdata.github.io/valentine/
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and varies from 13 to 20 columns and 5423 to 10846 rows, to evaluate the inference of our trained

model.

3.1.2 Public Benchmarks

Another method to create schema matching datasets is to build element-wise mappings from two

associated tabular datasets. For example, the MovieLens2 and IMDB3 datasets are commonly used

to create schema pairs since their elements, though linguistically different, refer to the similar

attributes like rating vs. averageRating or title vs. originalTitle. The MovieLens-IMDB dataset

has been widely used in the field of schema matching [2][10], but there is not a standard version

of it. Our MovieLens-IMDB dataset has 2 pairs of schemas and each schema has 1000 rows. Its

column number varies from 4 to 10.

Through the way of element-wise mappings from related datasets, we create the first large-

scale schema matching dataset on the humanitarian data. Individual tabular datasets are collected

from The Humanitarian Data Exchange4 (HDX). The HDX schema matching dataset contains 226

pairs of schemas and ranges from 6 to 41 columns, but for each schema, the row number ranges

from 20 to 100. Compared with the Wikidata and MovieLens-IMDB, the HDX dataset is expected

to be the most challenging dataset since it has the largest scale, the highest tabular variations but

the lowest number of instances.
2https://grouplens.org/datasets/movielens/
3https://www.imdb.com/interfaces/
4https://data.humdata.org/
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3.2 Experimental Settings

3.2.1 Models

For the semantic embedding, we use a pre-trained sentence-BERT model fine-tuned for the task of

semantic similarity from the Hugging Face5. This model maps any piece of text to a 768 dimen-

sional dense vector, and its name is paraphrase-multilingual-mpnet-base-v26. It is

built upon the mpnet-base7 model by Microsoft and fine-tuned on a 1B sentence pairs dataset.

As we have mentioned before, we try to utilize the BLOOMZ & mT0 model to generate tags as-

sociated with the schema name so as to expand its semantic embedding. The model applied here

is mt0-xl8, which has 3.7B parameters and is recommended for the tag prompting in English.

We adopt an XGBoost model to predict the probability that two schema elements encoded in the

similarity embedding are matched, and its objective is to do a binary classification (matched or

not).

We also implement several rule-based schema matchers for the baseline performance evalua-

tion. We use WordNet
9 as thesaurus to calculate the linguistic similarity in Cupid, and apply the

levenshtein distance to build initial element mappers in the similarity flooding method. Other ex-

perimented schema matching techniques are the COMA system, distribution-based method and

Jaccard-Levenshtein method.
5https://huggingface.co/
6https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
7https://huggingface.co/sentence-transformers/all-mpnet-base-v2
8https://huggingface.co/bigscience/mt0-xl
9https://wordnet.princeton.edu/
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3.2.2 Machine Learning Pipeline

We train our classifier on three synthetic datasets, which are the TPC-DI (180 pairs of schemas,

7492-14983 rows, 11-12 columns), Open Data (180 pairs of schemas, 11628-23255 rows, 26-51

columns) and ChEMBL (180 pairs of schemas, 7500-15000 rows, 12-23 columns) from valen-

tine
10. We want our trained model to be aware of different matching logics (e.g. joinable, union-

able, etc) mentioned in [1]. Hyperparameters tuned for our XGBoost classifier involves the learn-

ing rate, maximum tree depth, number of rounds for boosting, etc. The validation and inference

metrics are the macro-recall (mR), macro-precision (mP) and macro-F1 (mF1). Assume for each

schema pair, the resulted recall, precision and F1 are Ri, Pi and F1i and there are n pairs of schemas

in total for the current dataset. The macro-metrics are computed based on Eq. 3.1, 3.2, 3.3.

mP =
1

n

X

i

Pi (3.1)

mR =
1

n

X

i

Ri (3.2)

mF1 =
2 ·mP ·mR

mP+mR
(3.3)

3.3 Results and Analysis

The inference results of our trained hybrid embedding-based model (hybrid model) on three dif-

ferent datasets are presented in Tables 3.1, 3.2 and 3.3. SF, DB and JL refer to the similarity

flooding, distribution-based matcher and Jaccard-Levenshtein model. The domains of these in-
10https://delftdata.github.io/valentine/
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ference datasets are different from the training one, so we can evaluate the cross-domain perfor-

mance of our machine learning-based model. Wikidata provided by valentine has different types

of datasets based on four table-splitting strategies (see Table 3.1). Though the hybrid model’s gen-

eral F1 performance is close to the best one from the JL, its individual evaluation on the joinable

dataset is much worse than JL’s. In a joinable pair of schemas, there is a large overlap of rows.

Since the JL is a naive approach matching elements based on the row-value distribution from each

schema, it is not surprised that given a large number of rows in each schema (more than 5000), this

model can do a perfect schema matching. This observation is also found in the performance com-

parison between schema-based (COMA, Cupid, SF) and instance-based (DB, JL) models, where

data-oriented methods do a better job on the WikiData than the schema-based methods.

Compared to the JL that purely focuses on instances, our hybrid model considers the semantic

variations of element names. As a result, in the sem-joinable dataset, the JL’s F1 score is less than

the hybrid model’s. We also notice that adding generated tags to our hybrid model does not improve

its F1 performance upon the WikiData, and its performance on the sem-joinable dataset is worse

than before. Though generated tags from an LLM are supposed to enrich the semantic contents

of element names, they may weaken the original semantic characteristics of element names if

generated tags are highly close to each other for different elements. For example, the element

funding and capital both have generated tags like value, total and usd. From the perspective of

computational linguistics, a high textual overlap between these elements with their concatenated

tags shows a high semantic similarity. However, they are not supposed to be matched.

MovieLens-IMDB and HDX are more realistic datasets, and compared to valentine, they are

harder for instance-based matchers to handle since every schema has significantly fewer number

of row values. For the MovieLens-IMDB dataset (see Table 3.2), our hybrid model achieves the

best classification performance and the addition of generated tags to it does not worsen the original
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COMA Cupid SF DB JL Hybrid Hybrid+tags
unionable 0.52 0.95 0.92 0.92 0.97 0.97 0.95

view-unionable 0.67 0.46 0.59 0.60 0.80 0.80 0.75
joinable 0.67 0.46 0.59 0.92 1.00 0.78 0.86

sem-joinable 0.71 0.80 0.63 0.67 0.82 0.88 0.80
mean 0.64 0.68 0.68 0.78 0.89 0.86 0.84

Table 3.1: Inference on WikiData (F1-score)

performance. It is not surprising to see a perfect match here because the total number of element

pairs to predict is much fewer than before. In contrast to the Table 3.1, schema-based methods

(COMA, Cupid and SF) all obtain higher F1 scores than the DB, a typical instance-based method,

and Cupid shows exactly the same matching quality as the JL. With fewer number of instances for

references, instance-based methods’ ability to find matched pairs decreases, but is still competitive

in terms of JL’s performance over that of COMA and SF.

COMA Cupid SF DB JL Hybrid Hybrid+tags
macro-recall 0.83 0.83 0.83 0.42 0.83 1.0 1.0

macro-precision 0.71 0.83 0.58 1.00 0.83 1.0 1.0
macro-F1 0.74 0.83 0.69 0.59 0.83 1.0 1.0

Table 3.2: Inference on MovieLens-IMDB

COMA Cupid SF DB JL Hybrid Hybrid+tags
macro-recall 0.49 0.66 0.72 0.22 0.42 0.73 0.74

macro-precision 0.78 0.76 0.69 0.62 0.64 0.79 0.81
macro-F1 0.60 0.71 0.70 0.33 0.51 0.76 0.77

Table 3.3: Inference on HDX

Table 3.3 displays the inference results on the HDX dataset. Compared to the WikiData and

MovieLens-IMDB, the HDX has many fewer instances in each schema. Consequently, the F1

scores of all schema-based models (COMA, Cupid and SF) are higher than those of DB and JL,

which are heavily dependent on the instance samples. Our hybrid model with generated tags
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has the best performance over all schema-matching methods. This result indicates the robustness

of hybrid embeddings when the elements of different schemas have high semantic and amount

variations, and the number of their corresponding instances is limited (less than 100 on average).

The generated tags slightly improves the F1 performance of our hybrid model, and this indicates

the semantic enrichment given by additional attributes for the element names. The HDX has the

highest number of schema pairs and thus the highest number of unique element names among all

experimental datasets. We can thus observe that the effectiveness of the generated tags is somehow

related to the semantic variation in the dataset. These tags are more helpful for the difficult dataset

(HDX) than the easy one (WikiData).

In a nutshell, our hybrid embedding-based model shows no compromised performance under

any specific scenario and its schema matching quality is generally better than existing approaches.

Compared to schema-based methods, our approach is not heavily dependent on the linguistic sim-

ilarity of element names and its semantic embedding, which applies a BERT-based encoder with

an ad hoc fuctionality to compute textual similarity, is built in a fully automatic fashion. Unlike

instance-based approaches, our model involves schema-based information so it’s more successful

on schemas where the number of instances is low. Its core idea of integrating both schema-based

and instance-based features proves to be an effective trade-off between opposite methodologies

(schema-based vs. instance-based).
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Summary

This paper presents a novel relational schema matching method that creates hybrid embeddings

for schema elements and applies XGBoost to compute the match probability. A hybrid embedding

involves both schema-based features of element names, which are contextual embeddings from a

BERT-based model and similarity metrics for strings, and instance-based features dependent on

data types. Our model outperforms previous schema matching methods on different benchmarks,

and it is robust when the schema elements are messy and their instances are limited. The integration

of schema-based and instance-based information is shown to be more powerful than a single feature

source (either schema or instance) for the task of schema matching. Though the improvement from

the LLM-generated tags on elements is slight, its effectiveness is empirically proportional to the

complexity of source and target schemas.

4.2 Future Work

Our model consists of two parts: the hybrid embedding and a classifier. Though we have formed

a mature methodology on the creation of a hybrid embedding, there is still space left for us to

improve the quality of the classifier. The LightGBM classifier proposed in [16] may offer a better

matching efficiency and accuracy than our used one. It applies a histogram-based algorithm to

reduce the time spent on finding the optimal split point of any numeric feature. Another idea

is to replace the tree-based classifier with a neural network. In contrast to our current model,
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whose embedding and classifier are segregated at the training phase, a neural-network classifier

enables us to conduct an end-to-end gradient update on not only the classifier but also the semantic

embedding. This may improve the matching quality, but the training of an additional BERT-based

encoder increases the computation cost.

Privacy is also a necessary concern for the industrial use of the model. In fact, many customers

are reluctant to grant access to individual data records [2], which are data instances in tabular

schemas. A cryptographic strategy to extract instance-based features from databases and build

their hybrid embeddings requires further research effort. At last, some recent deep-learning based

schema matching techniques as well as their used datasets have not been released to the public yet.

We will compare their performance with ours in the future.
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