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Abstract—Ubiquitous sensing in human spaces is rapidly
becoming a fact of life. Large collections of IoT devices
feed a vast sensing infrastructure that records and analyzes
personal and private information. Maintaining privacy in
the future without hamstringing the utility of IoT-derived
data is a key practical and research challenge. In contrast
to one-size-fits-all legal privacy frameworks like GDPR
and CCPA, we envision a new legal-technical framework
called the Privacy Backplane that enables individuals to
specify and control the policies governing how information
gathered about them is accessed, used, and stored. The legal
framework mandates that IoT environments negotiate clear
policies with individuals about the how data collected by
IoT devices about them can be used, and then enforces
those policies. The technical framework implements such
negotiation and enforcement, and certifies that the policies
are followed. In effect, this can be viewed as the inverse
of classic DRM: individuals are the content producers,
and have knowledge of and control over the policies
applied to their information. This paper makes the case
for the Privacy Backplane and argues that it can be
implemented on the substrate of modern, hardware-based
trusted computing platforms, using a full-stack approach
that spans from sensors to overlay networks. We describe
the challenges of designing and implementing such a
system. These include defining relevant threat models, near-
sensor/on-sensor inference, trust bootstrapping, designing
useful and implementable policy models, providing operat-
ing systems support, overlay networking, query mapping
and scheduling, and supporting real-time applications. We
also comment on our first steps in designing and evaluating
the Privacy Backplane.

Index Terms—privacy, sensors, embedded systems, IoT

I. Introduction
The right to privacy and control over one’s personal
information is a central issue of our time. Increasingly
cheap, powerful, and long-lived sensors are being in-
troduced everywhere, and sensor fusion and machine
learning are extracting ever-more actionable information
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from them. At the same time, legal protections and
government-enforced regulations are emerging in the
form of the EU’s GDPR [1] and California’s CCPA [2],
along with growing calls for more government interven-
tion. However, the ultimate effectiveness of such laws
depends on the existence of infrastructure that makes
adhering to them and enforcing them practical. Given
current regulatory and technological trends, many are
worried that we are heading toward either the death
of privacy or a top-down notion of privacy that is
disconnected from the realities of the current technical
landscape. We instead argue for a future where individual
control over personal data privacy is ensured by a legal
framework that is able to leverage technological capabil-
ities inside computing infrastructures to guarantee reg-
ulatory compliance. More specifically, we claim that it
is feasible and practical to enable individual privacy and
personalized control over data collected by a distributed
sensing infrastructure in a physical environment.

Instrumented environments are becoming increasingly
prevalent and will likely be ubiquitous, as our physical
infrastructure further integrates computing and sensing
capabilities and IoT technologies. In particular, we focus
on future environments, such as retail contexts, health-
care facilities, and even public spaces, where the data
collection and privacy interests of different actors may
come into conflict. In these environments, private com-
panies and public institutions will have vested interests in
collecting sensed data inside the physical environments
they manage to optimize space use and inform business
decisions. On the other side are the individuals whose
data will be collected, and who will have personal
preferences or requirements regarding which data are
collected and how they are used.

Central to our vision is an intelligent system-level
infrastructure that negotiates data collection and access
policies on behalf of users and the operators of the



physical environment. This infrastructure will negotiate,
compile, and deploy policies that control data collection
and use. It will be pervasive and incorporate infras-
tructural control capabilities to manage actual sensor
nodes, interfaces to enable policy specification, external
interfaces for data queries and analysis that honor policy
constraints, and finally a data management infrastructure
to persistently associate policies with data and derivative
information. The infrastructure and the concepts embed-
ded in it have the goal of enforcing user requirements
for privacy and data access within a large-scale sensing
environment in a secure and trusted way that ensures
policy and functionality requirements are met. We claim
that such an infrastructure can be implemented on the
substrate of modern, hardware-based trusted computing
platforms, using a full-stack approach that spans from
sensors to overlay networks. We are now working to
design and implement a proof-of-concept, the Privacy
Backplane.

The regulatory element of our model is the legal
requirement that a system like the Privacy Backplane be
ubiquitous in systems that sense data about individual
users, e.g., IoT devices, and everywhere that data and
derived information from such devices flows. That is, the
regulations require the Privacy Backplane or something
offering similar privacy protections be used, and the
Privacy Backplane operates on behalf of both users and
operators to negotiate shared privacy policies and then
enforce them across all uses of the data collected by the
sensors. The regulatory element also imposes liability
when devices falsely claim compliance, or when specific
pieces of software (like query language operators) falsely
claim to have certain privacy properties. In effect, our
model can be viewed as the inverse of classic digital
rights management (DRM): individuals are the content
producers, and have knowledge of and control over the
policies applied to their information. On the other hand,
operators can use of this information within the limits
of user policies. Similar to classic DRM, hardware and
software are expected to obey negotiated policies. The
most straightforward way to achieve both the users’ and
the operators’ goals is to join the Privacy Backplane, or
a system like it.

We are designing and implementing the Privacy Back-
plane as a distributed trusted execution environment
enabling the secure storage of private user data and
enforcing policy-based access controls provided by indi-
vidual or collective stakeholders. The Privacy Backplane
will serve as a nexus of control that enables distributed
policy enforcement over collected (sensed) data, while
also serving as an integration hub for users, the sensing
infrastructure, and data accessors. The Privacy Back-
plane will leverage recent advances in trusted hardware
capabilities that allow secure deployment of sensitive

data access operations to hardware managed by untrusted
3rd parties. In our emerging system, each hardware
component and device used for sensor-based data col-
lection will be required (possibly by a regulatory body)
to support some form of TEE capabilities. It will be
the responsibility of the Privacy Backplane to configure
and coordinate these devices based on collected policy
requirements. It must be extensible, allowing dynami-
cally changing queries and query operators. It must also
operate in real time, as users navigate around a space in
a natural, unencumbered manner, and as operators query
data about users.

The overall goal of Privacy Backplane effort is to
determine whether the technical model described above
is feasible and secure at the kinds of scales needed to
be useful. We argue in this paper that this is likely,
and describe our initial results in creating a Privacy
Backplane system. Our contributions follow.

• We introduce and motivate a joint regulatory and
technical model, instantiated in Privacy Backplane,
that can provide for individual privacy policies and
control over personal data in the IoT and similar
distributed environments.
• We give a specification of privacy policy and data

processing within the Privacy Backplane.
• We show an architecture for implementing the

specification as a distributed system of
hardware-based trusted execution environments.
• We lay out challenges and opportunities in such a

system that we have encountered thus far in our
implementation effort.

Related work: Developing effective mechanisms to
protect personal privacy has become a priority in many
societies with multiple approaches under exploration.

Regulatory-based approaches The most prominent
efforts to provide privacy protections have taken the
form of legal and regulatory frameworks that seek to
limit both the collection and use of personal data.
The best known example is the European GDPR [1]
regulation, which places restrictions on how personal
data are collected, used, and transferred. Similarly in
the U.S., California has begun enforcing the CCPA [2],
which seeks to provide transparency and control to
individuals over the collection and use of personal data.
In addition, Texas and Illinois have imposed regulatory
frameworks covering the collection and use of biometric
data [3], with Texas having significant restrictions on
facial recognition [4]. While these regulations enshrine
privacy protections into law, there are questions as to
their effectiveness and enforceability [5]. The fundamen-
tal limitation is that these approaches do not provide
physical, technological protections that make compliance
straight-forward and instead rely heavily on self-reported



compliance documentation and the threat of investigatory
actions.

Technical approaches The research community has
seen a number of proposals that seek to provide privacy
protections in IoT environments [6]–[11]. Of note is TIP-
PERS [12]–[15], which focuses on privacy management
in IoT spaces through a wide range of approaches. There
has not yet been a holistically designed approach that en-
sures trusted operation at each layer of the system stack,
all the way down to data capture by embedded sensors:
this is our goal. Creating a fully trusted system that is
performant and scales by leveraging recent advances in
trusted hardware platforms presents a number of novel
and unique architectural challenges that impact the over-
all design of the system. Our vision is to use regulation
to support a technical system capable of negotiating and
enforcing policies acceptable to operators and users, as
opposed to specific policies.

II. Model
To make implementing Privacy Backplane tractable, we
propose formal models of policy specification, reconcil-
iation, and data transformation. This section describes
our current models. The models need to provide repre-
sentational power for both individual users and venues,
and enable processing of sensor data within the Privacy
Backplane. These models must be realizable in an online,
scalable, distributed system, with responsiveness appro-
priate for mobile users. Figure 1 shows the big picture
of our initial model.

A. Policy representation
Attributes: An attribute is a string chosen by conven-
tion (perhaps in a marketplace) that captures a human-
understood and human-audited privacy property.
User scope: The starting point of the individual user’s
privacy interests is modeled as a volume in space. We
assume effective and efficient localization (we will later
explain why this will be practical for our application). Ui

is the scope of the ith user, i.e., the scope within which
sensor data about the user is subject to the user’s privacy
policy. If a sensor can detect anything within the user’s
scope, its outputs are subject to the user’s policy. Scope
may or may not be tied to user identity. The specific
volume allowed depends on the law, but will generally
be the user’s immediate vicinity. User scopes move with
users in real time.
User policy: A user policy is three sets of attributes: R,
the “Require Set”, is the set of attributes that must hold
for the policy to be in force. F , the “Forbid Set”, is the
set of attributes that must not hold for the policy to be
in force. D, the “Don’t Care Set”, is the set of attributes
that may or may not hold. These may be implicit. A
user policy is evaluated in the context of a user scope.

Li = (Ri, Fi, Di) is the user policy associated with the
ith user scope, Ui. User policies will change, e.g., when
user preferences change or upon entering new venues.
Sensor scope: A sensor has a special status in our model;
it is associated with a volume in space over which it
meaningfully collects data. “Meaningfully” is ultimately
defined by law, but the typical superlinear dropoff of
signal amplitude with distance provides a natural range
threshold. The scope of the jth sensor is Sj . Sensor
scope can change in real time.

B. Data processing / Query model
Sensor data enters Privacy Backplane immediately after
capture. The backplane allows for data processing across
all sensors and users, but no result based on information
from a given user scope is allowed to leave the backplane
unless the processing that produced it complies with
the matching user policies. Data processing takes the
form of queries that can occur at any time, although our
expectation is that these are likely to be rather static,
though their results may change.
Directed acyclic graph (DAG): To make this goal
tractable at scale and in the presence of change, we
restrict the query data processing model. A key re-
search challenge is determining the right balance be-
tween model expressiveness and ease of implementa-
tion. Tentatively, a query is a DAG in which there
are three kinds of nodes: sensor nodes, which only
produce outputs; transform nodes, which accept inputs
and produce outputs; and exit nodes, which have a
single input and represent movement of data out of
Privacy Backplane. Edges represent data transfers. Mul-
tiple DAGs may exist simultaneously. Conceptually, each
DAG represents computation over privacy-sensitive user
information, captured by sensors, that an operator would
like to perform. However, a DAG may also represent a
much larger-scale computation over a wide area.

The graphs are acyclic: user information captured
by sensors flows from sensor nodes to exit nodes.
Computation on the DAG itself is not Turing-complete,
although transform nodes may be (but time-limited).
This facilitates reasoning about the privacy aspects of the
computation. User scope information flows through the
DAG alongside raw and transformed sensor data. Each
sensor coveys its user visibility set into the system. We
can thus determine which user scopes contributed to each
output.
Transform properties: A transform node may have sev-
eral privacy-relevant properties: A segregating transform
partitions data by user scope. For example, detecting
users loitering around an exit. An aggregating transform
fuses data by user scope. For example, combining video
and audio data for each user. The output of an aggre-
gating transform may also compute higher-level prop-
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Fig. 1: Privacy Backplane’s current policy representation, reconciliation, and data processing model.

erties, such as emotional state or anomalous behavior.
An anonymizing transform removes user scopes. For
example, counting the number of individuals near the
exit with anomalous behavior.
Redaction feedback: A node in the graph may also
provide feedback to an earlier node with the primary
purpose of assisting resource-limited nodes in determin-
ing which information should be locally redacted. This
capability must be used with care if used to inform
sensors with such limited hardware capabilities they
cannot fully join the privacy backplane; it risks revealing
information about the contents of a particular privacy
policy to the sensor, although that information would
only be associated with a volume, not a particular user.
Venue scope and halo: Each DAG has an associated
volume in space. This scope is the union of the sen-
sor scopes. The venue halo extends beyond the venue
scope and represents the liminal space in which policy
reconciliation occurs before the venue is entered.
Query scope: Conceptually, a DAG is a streaming query
with agreement among all participants. While all data
meeting policy constraints may flow from the exit node,
venues will generally be interested in only a tiny subset.
Query scope captures this concept. When a query asserts
a condition, e.g., “crime occurred near redacted image”,
to enable unredaction, the signature will entered in a
global log that can be maintained using one of several
existing technologies such as Blockchain.
Attribute transform: Node outputs have the following
sets of attributes: C is the “Consume Set”: the attributes
that will no longer be true at the output. P is the
“Produce Set”: the attributes that will be true at the
output. Node k’s lth output has attribute transform Tk,l =
(Ck,i, Pk,l), which captures how the data transformation
of the node manipulates privacy attributes.
Attribute transform closure: Note that closures can be
computed by starting at any exit node k and working

recursively through the DAG until reaching the sensor
nodes. T?k = (C?k, P?k) is such a closure.
DAG forest: To facilitate policy negotiation, multiple
DAGs may be associated with a venue scope and volume,
with each DAG rooted in the same sensor nodes. Each
DAG may have a different attribute transform closure,
and thus a different balance between privacy policy
compatibility for users and information extraction value
for operators. The DAGs may be given priorities, so that
user negotiations can progressively move from more to
less revealing versions of a query.
Node variants: A DAG node might have several vari-
ants, each with different C and P sets. Node variants
have a priority order, so a venue can negotiate starting
from the most revealing version of the node.
Backplane storage: Data may persist in the backplane.
Storage facilities are provided, but all data have time-to-
live values determined by policy reconciliation.

C. Policy negotiation and processing
The user and the venue both advertise their scopes. Since
these are spatial volumes, no use of identity is needed.
Negotiation begins upon entering a venue halo.
Fast check: Negotiation compares the attribute trans-
form closure T?k = (C?k, P?k) of an exit node with
the user’s policy Li = (Ri, Fi, Di). The negotiation
succeeds if Ri ∩ C?k = ∅ and Fi ∩ P?k = ∅ and
Di ⊇ (P ?k −Ri). The first clause assures that no
attribute required by the policy is consumed by the DAG.
The second assures that the DAG produces no forbidden
attribute. The third assures that all attributes produced
by the DAG are explicitly allowed by user policies.
Back-off model: The fast check is applied to the DAGs
in descending order of priority, resulting in an agree-
ment on the highest priority DAG for which the check
succeeds. This balances the needs of the user (encoded



in the policy) and the venue (encoded in the priorities).
DAG transformation: If no DAG succeeds, we re-iterate
through DAGs in priority order. This time, we traverse
the DAG from the exit node to find the nodes that result
in fast check failure. For example, if C?k contains some
attribute from Ri, we isolate the nodes that consume that
attribute. We then consider node alternates, in descend-
ing order of priority, seeking one without conflict.
Negotiation failure: If negotiation does not succeed by
the time the user scope intersects the venue scope, the
user is warned. This implies the user agrees to the default
policy or is trespassing.
Negotiation success, normal operation, teardown: If
negotiation succeeds by the time the user scope intersects
the venue scope, Privacy Backplane assigns a one-time
key to the user scope. This represents a successful con-
nection to the backplane, and will be used to associate
information about the user scope throughout the system.
When the user scope leaves the venue scope, the key
is destroyed. In any case, if the user scope reenters the
venue scope, from the user’s perspective, the negotiation
process occurs again.

III. Architecture
The architecture of Privacy Backplane is that of a
distributed trusted execution environment (Distributed
TEE, or DTEE) that extends from IoT sensors and
the edge to processing and storage infrastructure in
the cloud. Each DTEE component includes hardware
and software TEE features to handle information and
code locally in a secure manner. The DTEE components
then interoperate as a distributed system that ensures
that data and information privacy, security, and integrity
are maintained from the time information is captured
to when it either leaves the DTEE with all negotiated
policies having been applied, or until deletion from the
DTEE. Conceptually, the DTEE includes a distributed
policy engine that performs policy negotiation between
users and venues as described in §II, as well as a
distributed query engine responsible for executing the
DAGs described in that section. The distributed query
engine controls the flow of sensed information, and its
derivatives, based on the negotiated policy. The DTEE
includes a join/leave protocol for hardware (sensors,
servers, etc), users, and queries. Finally, the DTEE
runs additional distributed processes that continuously
measure and verify each system component in order
to maintain trust of the entire system and ensure that
policies are honored as long as the relevant data and
information persist.

Figure 2 illustrates the architecture at a high-level. A
fundamental building block of our system is an element,
the Privacy Backplane Daemon (PBD), that is engineered
to be portable to a broad range of heterogeneous CPU
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Fig. 2: Privacy Backplane architecture

and platform architectures, from the sensors on up.
Every node runs a PBD. The PBDs integrate through
a common protocol that routes across a dynamically
constructed trusted overlay network (the PBTON). To
the greatest extent possible there is a separation of
concerns in the design of the PBD and PBTON, the
various engines they host, and the specific mechanisms
used to establish trustworthiness, but these are generally
built on top of hardware-based trusted execution and
remote attestation. In order to maintain the trust of the
full PB distributed system, any PBD must be able to
verify the trustworthiness of any other PBD through
a distributed attestation mechanism that provides both
direct and transitive attestation as well as preemptive
invalidation.1

To ensure end–to–end privacy guarantees, each sensor
is ideally paired directly to a PBD running on a trusted
platform. The goal is to ensure that all collected data
are directly routed into the DTEE and are inaccessible
from untrusted code, even if it is running on the sensor
platform itself. Each sensor executes a local policy
engine enabling direct control over sensor operation by
the PBD. This allows the Privacy Backplane to exploit
compute capabilities at the point of data collection
to honor policies with minimal opportunities for data
leakage.

A. Node-level
The Privacy Backplane is designed around the pervasive
use of hardware TEEs on each node in the infras-
tructure. TEEs provide secure computational and data
access capabilities on untrusted platforms through the
use of special instruction set architecture extensions that
enable verifiably secure execution environments. TEEs
allow the deployment of trusted software components
on systems managed by untrusted 3rd parties and allow
the execution of that software to be verified through
attestation mechanisms. TEE capabilities have become
commonplace and are now available on a wide range of

1While the user’s device runs a PBD, as shown, this is configured to
only provide basic, user-centric operation: user volume/location/policy
association, halo determination, policy negotiation, etc. No other code
runs in the user’s device, and no user identity leaks from it.



system platforms from server-based systems to edge de-
vices [16] and sensor platforms [17], [18]. TEEs provide
three features required to provide a secure distributed
architecture: (1) Isolated Execution of the runtime from
untrusted components including the OS and external
devices, (2) Sealed Storage to securely persist secrets
onto local disk in a manner that is not accessible outside
the protected runtime executing on the particular CPU,
and (3) Remote Attestation to validate the identity of a re-
mote trusted runtime and its underlying platform. These
components provide a solid foundation for developing
tamper-resistant, non-bypassable, and verifiable trusted
monitors.

We intend to leverage the full range of hardware-
specific TEE capabilities across different platforms and
architectures, to provide the PBD with a common ab-
straction it can build on in a portable way. Note that
the PBD itself needs to be able to run specialized code
in order to implement DAG operators (the transform
nodes of §II). Here we plan to use a lightweight Web
Assembly (WASM) [19] runtime environment in the
PBD to provide such code with a common service-
based framework that can in turn be used by the DTEE’s
distributed query engine’s planner to map a query DAG
onto PBDs running on disparate hardware.2

Supporting a constantly available PBD on each node
is a requirement. While some TEE architectures are
amenable to this use case, others will require either
modifications or workarounds. Modern TEE architec-
tures cover a broad range of execution models from
self-contained application libraries (e.g., Intel SGX) to
full-system software stacks containing both an OS and
userspace environment (e.g., ARM TrustZone). While
we separate concerns in our design to support mul-
tiple architectures, we expect that each will provide
specialized features that map better to certain uses. For
instance, we expect SGX server nodes to handle much
of the backend processing while ARM TrustZone based
platforms will make up the edge nodes that interface
directly with the sensors due to their ability to sup-
port trusted partitioning of I/O devices as well as full
trusted OS environments complete with device drivers.
Therefore, while PBDs will be deployable throughout
the infrastructure with a shared abstraction, each specific
node will offer additional capabilities for the PBD to
leverage. In the case of ARM, this will entail a fully
custom system software stack complete with trusted

2It is important to understand that WASM is a fully-supported
target architecture for the widely-used LLVM compiler framework.
Consequently, it is thus possible to incorporate arbitrary code, which
a PBD will nonetheless be able to run in a sandboxed environment. In
our model, a transform node (DAG operator) must provide an attribute
transform. This is bound with the code by the code provider, and thus
if the asserted attribute transform is incorrect, there is a legal recourse
against the code provider.

device drivers and I/O channels that enable the backplane
to extend the trust boundary directly into the sensors
themselves. This system software stack will be based on
a lightweight kernel [20] architecture due to its ability
to provide a mostly compatible Linux ABI with a small
TCB.

B. Distributed

The DTEE is based on the trusted overlay network (the
PBTON) dynamically established between individual
node-local TEEs to manage the system. The PBTON
supports encrypted and trusted communication channels
between local TEEs via TEE attestation. Because each
node executes a common runtime environment (the
PBD), links in the overlay communicate using a common
protocol. This allows any node to establish a trusted
overlay connection to any other node, be it a local sensor
node or a cloud-based server. The PBTON topology
thus encodes the current state of the web of trust and
provides persistent trust across the distributed system.
The fundamental responsibility of the DTEE is managing
the PBTON topology to ensure the trustworthiness of
the environment while also supporting the processing
and communication requirements of the distributed pol-
icy engine, distributed query engine, and other DTEE
elements. This coordination requires both the ability
to dynamically establish trust between any two nodes
(PBDs) as well as a mechanism for quickly invalidating
node trust across the overlay network. Furthermore, it
must accomplish this efficiently enough to meet real-
time constraints imposed by sensor data rates, policy
negotiations, and query execution.

In addition to providing real-time privacy controls, the
Privacy Backplane must also maintain policy restrictions
for the full duration of the data and derivative informa-
tion lifecycle. After collection, data may persist inside
the DTEE for future use, with its lifetime dependent on
negotiated policies and system requirements. As a result,
policies must be permanently associated with data as
long as they persist. Persistent data will be stored inside
a sealed environment provided by a TEE, either at the
edge or in the cloud. Whenever it returns to motion, the
policy will once again apply.

Accessing and exporting data can only occur via a
query DAG initiated on a trusted gateway interface and
executed by the distributed query engine, which will
apply the negotiated policy as described in §II. On
entering a venue, the user’s device will negotiate a policy
given the current query DAGs. Any new query DAGs
during the user’s dwell time in the venue, or executed
later on stored information, must conform to the same
policy.



C. Threat model
Our primary security objective is to ensure that all data
collection and access operations take place within the
boundaries set by stakeholders’ specified and deployed
policies. We assume an adversary that has complete
access to the sensing and data processing/storage in-
frastructure, including OS and hypervisor components.
The attacker may also tamper with, delete, reorder, or
replay network traffic that flows between components of
the system. In our case, this attacker may be the space
(venue) owner, cloud service providers used by the space
owner, or individuals within the space. To achieve our
goals, we focus on ensuring the integrity of individuals’
policies, the correctness of bindings between policies and
individuals’ sensed data, and the confidentiality of sensed
data. Attacks on availability are not considered.

We assume that TEE hardware and support code is
correctly implemented, and free of any security-relevant
vulnerabilities. In addition, we assume that the TEE
attestation, sealing, and memory protection features of
all hardware components function according to their
specifications (i.e., Intel SGX or ARM TrustZone). We
do not explicitly consider side-channel attacks or im-
plementation flaws [21]–[23]; addressing these issues is
orthogonal to our core problem of enforcing policy-based
controls throughout the data lifecycle, and is an active
area of research within the community [24], [25].

IV. Challenges and early results
A. Transducer leakage
Sensors are ultimately based on transducers, and trans-
ducers will generally not support TEEs, but rather
present an electrical interface that, after digitization,
ties to a device driver. Hijacking the electrical interface
would impose a similar cost on attackers to deploying
their own sensors. Therefore, attackers would benefit
only when the electrical signals or derived information
escape the physical vicinities of sensors. As a result,
the only requirement for near-edge sensing and analysis
systems integrated into Privacy Backplane is that they
do not leak sensed or derived information from the local
environment, although it may be transmitted to a TEE’s
device driver.

This requirement allows for electrical connections
between sensors and TEE-enabled processors, given
precautions against side channel attacks, e.g., moni-
toring electromagnetic radiation from communication
lines. It also admits (transitive) connections to hardware
accelerators and processors that do not support TEEs,
provided that they are capable of communicating only
among themselves and TEE-enabled processors. This
implies that near-sensor analysis hardware can be easily
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Fig. 3: Memory-bound performance of ARM TrustZone.

integrated, perhaps with some communication channels
disabled. For example, a non-TEE chip with built-in
wireless BTLE connectivity might have that connectivity
disabled in favor of a wired SPI interface to the proces-
sor.

B. TEE overheads and early redaction
If hardware TEEs impose a large computational over-
head, this may limit their use. We measured the per-
formance of ARM TrustZone using the OP-TEE [26]
environment on the RPI 3 and the Pine64 platforms.
Figure 3 shows the overhead compared to native perfor-
mance of two microbenchmarks (STREAM, RandomAc-
cess) on Pine64. As the figure shows, by this measure
the overhead is negligible. These are memory-focused
benchmarks and TrustZone does not include memory
encryption, unlike SGX. We have also measured the
overhead, on RPI 3, of training and inference by fully
connected neural networks of different sizes running
in TrustZone under OP-TEE. This is a computationally
intensive benchmark, and we found an overhead of 10%-
15% provided the model fits into the OP-TEE trusted
environment. We further on define “fits” in the next
section.

These results are particularly important for sen-
sor/edge nodes, which may well be less computationally
capable to begin with, and to which we would like to
push policy-based redaction (redaction feedback in §II),
if possible. More generally, a good system design will
handle policy enforcement as close to the sensors as
possible to minimize the effects of downstream problems
on privacy.

The overhead of inference required to associate sensed
data with user policies might potentially be high if a
naı̈ve implementation were used. However, our model’s
use of spatial volumes to indicate policy domains, helps
make it tractable. Users will generally use personal
devices such as smartphones to interact with Privacy
Backplane, e.g., as their representative, to learn about
policy conflicts, and/or change their policies. These
devices will be capable of providing locations associ-
ated with policies to Privacy Backplane. Consider video
analysis: an application with potentially high overhead
for associating data with policies. For this application, a
static (and computationally inexpensive) mapping from



spatial regions to camera pixels is sufficient for redac-
tion. Even mobile cameras can use a similar, geometric,
approach provided that they measure changes to cam-
era orientation and position. In our experience, inertial
measurement units can do this at high speed, low cost,
and low computational overhead. Accumulated error can
be remedied with (infrequent) automated camera-based
calibration. Similarly, in audio sensing applications, lo-
cation (distance) and noise floor aware methods may be
used to associate data with policies. Given policy volume
locations, efficient methods of associating volumes with
gathered data exist for most sensing modes.

These above methods of associating data with policies
may be somewhat imprecise, e.g., due to imperfect
localization. There may therefore be benefits to using
inference on the captured data for redaction. This could
either be done near the sensor, requiring for exam-
ple near-sensor face recognition, or deeper into the
cloud, with communication of redaction regions back
to sensing devices. Even if initial associations between
visible objects and user policies require cloud analysis,
resource-constrained edge devices might subsequently
use (hardware-accelerated) object tracking to continue
local tracking, policy assignment, and redaction. Al-
though such analysis-intensive methods would not gen-
erally be required to support Privacy Backplane, they
might improve precision and their computational costs
would be similar to, and likely able to reuse computation
from, the applications already running on system, e.g.,
video analysis. Recent innovations in algorithmic effi-
ciency [27] and hardware efficiency [28] that can often
reduce inference overhead by an order of magnitude
with little impact on accuracy may support near-edge
inference for policy assignment and data redaction.

C. Limitations of TEE OSes
Memory: Current TEE OSes appear to place significant
limits on the amount of memory accessible within the
trusted environment, even when there is no hardware
limitation. For example, in OP-TEE on TrustZone, the
default available memory is 32 MB with only 30 MB
available for use by trusted applications (TAs) [29],
likely due to the TLB-level implementation. This im-
poses design constraints on memory intensive applica-
tions, such as neural networks. Using object detection as
an example, YOLO, YOLOv2, and TinyYOLO require
753 MB, 193 MB, 60.5 MB. Existing responses include
incrementally loading neural network parameters from
encrypted store on the untrusted side [30], restructuring
the neural network to match the constraints [31], or mak-
ing the neural network more parsimonious for specific
domains [27].
RPC: Extant TEE OSes heavily revolve around an RPC
model between the trusted and untrusted “sides”. The

trusted side itself has minimal services. Most designers
assume that only a small amount of functionality is in
the trusted side, and thus there is minimal support for
long-running, resource rich, and service rich applications
there. But that is precisely what a PBD requires.
Devices: Current TEE OS designs delegate interaction
with devices, such as sensors, to the untrusted side, and
make it difficult to write device drivers on the trusted
side, especially for device-mapped memory and MMIO.
However, TrustZone relies on the system MMU to en-
force the boundary between secure and insecure memory,
meaning it is possible to directly and exclusively assign
devices to trusted applications.
Our response: Given these limitations, a natural ques-
tion to ask is whether we can simply design and imple-
ment a TEE OS that is geared specifically to Privacy
Backplane and has no artificial memory limitations,
supports long running code, such as a PBD, on the
trusted side without RPC, and facilitates the development
of device drivers for the trusted side alone. That is
what we are now doing, building on top of lightweight
kernels, as described earlier. One advantage we have is
that for many nodes, the Privacy Backplane needs only
the trusted side.

D. Attestation and overlay communication
Ensuring trust in a large-scale distributed system presents
a number of challenges beyond traditional distributed
systems. Because all communication is bootstrapped
using attestation mechanisms, a common root of trust
must provide attestation between any pair of nodes, and
these processes must support a large-scale, dynamic, het-
erogeneous distributed environment. This requires that
attestation processes be scalable, lightweight enough to
support computationally and energy constrained devices,
and responsive to invalidation events when trust in
nodes is lost. The attestation mechanisms must also be
resilient to node failures that result in overlay network
partitions, because all inter-node communication relies
on attestation.

Addressing these challenges requires an intelligent
attestation framework that dynamically modifies the web
of trust in the backplane’s DTEE. We envision a col-
lection of attestation mechanisms that is selectively de-
ployed based on the state of the backplane’s overlay and
the profiles of nodes. For instance, mutual trust between
nodes enables a transitive trust model: if two nodes have
established mutual trust with a 3rd node, then the 3rd
node may provide indirect attestation for the pair. We
will employ internal centralized and external attestation
mechanisms to support a variety of environments.

The overlay network should also provide mechanisms
for fault containment and isolation. If a node’s trust
is lost (e.g., a TEE attack vector is identified), the



node must be isolated from the rest of the backplane.
This requires rapid dissemination of trust invalidation
signals and poisoned overlay links, and requires rapid
establishment of new overlay routes around the untrusted
node.

E. Policy negotiation and enforcement
We are co-designing our policy negotiation and enforce-
ment model alongside our architecture (§III), starting
with the model described in §II. The overall goal is
to develop a formal model that is capable of capturing
real user privacy concepts, avoids the notion of identity,
and yet is realizable in a scalable system providing
acceptable responsiveness for the users. A number of
challenges specific to policy arise.
Balancing expressiveness and tractability: Our cur-
rent model intentionally simplifies user policies to three
sets of attributes. This design makes policy negotiation
tractable on any machine in the Privacy Backplane that
has access to the DAGs and their attribute transform
closures. In effect, this is a distributed directory service,
but with the need to perform lookup on the timescale of
human mobility. In other words, the current model errs
on the side of being tractable in a system.

Is this model sufficient to capture the kinds of privacy
policies that users may want to express? We have found
that there is surprisingly little literature in which the
language for privacy policy expression is formal, and
hence amenable to analysis. Focusing on expressiveness
makes it extremely easy to produce a Turing complete
language, likely making implementation in a distributed
system with time constraints infeasible. We argue for us-
ing the simplest adequately expressive, computationally
tractable language. We are in early stages of designing
and implementing a user study to capture policy concepts
from participants via free association as they shop in
a venue. We hope that this study will provide a data
pool of privacy terms, as understood by ordinary users,
as well as logical constructs derived from the informal
vernacular they will use. The privacy terms will form
the attribute lexicon of our system, while the logical
constructs will be used to determine what specific forms
of logic, hopefully a limited set, must be added to our
initial design.
Localization: A key aspect of our current model is the
idea of a user, sensor, and venue being defined as a scope
within the physical world, namely a spatial volume with
a location. The ability to determine the locations associ-
ated with visual, audio, and other sensor data provides a
foundation for the volume-based specification of privacy
policies. Recall that all policies are (perhaps indirectly)
associated with precise spatial volumes. As a result,
reporting the (time-varying) location associated with a
particular privacy policy is a necessary precondition for

honoring a policy or being warned when it comes into
irreconcilable conflict with another (spatial) policy. This
produces a natural incentive for participants to accurately
specify the spatial volumes to which their policies apply.
Falsifying one’s location might cause one’s policy to
be violated. Keep in mind here that the locations are
associated with policies, not actual personal identity, so
they are mostly privacy neutral.
Malicious users: Malicious sensed users might attempt
to specify unreasonably large volumes for their poli-
cies in an attempt to make it more difficult to resolve
policy conflicts. However, the worst-case scenario is
irreconcilable policies, in which case the malicious user
would be informed that the policy will not be honored.
This is a natural implication of sensors being associated
with physical locations owned by the same organizations
as the sensors. Sensed users cannot specify policies
requiring data to be shared. They can only forbid sharing.
Therefore, it is impossible for user policies to come into
conflict with each other. Finally, were malicious venue
owners to apply their policy requirements to physical
volumes exceeding their property, this would be easily
detectable and addressable through legal means.
Incentivization: Defining policy application in reference
to spatial volumes solves a number of problems, e.g., it
makes practical both policy enforcement and anonymity
(or more precisely, pseudonymity). However, it intro-
duces reliance on localization. Making users (instead
of venues) responsible for determining the volumes
associated with user policies has several benefits. First, it
keeps this crucial policy component under user control.
Second, it provides users with a strong incentive to
accurately report volumes to venues: inaccurate reports
might result in user policies being violated. Although
user policy volumes might in practice be legally con-
strained, even without legal constraints, users would have
incentives to limit these volumes because using too large
a volume would frequently produce irresolvable conflicts
with venue policies while providing no benefit to the
user.

In this framework, for user policies to be applied,
users must accurately specify the appropriate application
volumes to venues. This requires localization services
associated with users, the primary provider of which
will be user-carried smartphones. Instead of rebuilding
localization services, we will allow users to report policy
locations/volumes using the location services provided
by their smartphones, which today are generally based
on fused WiFi and GPS data. However, finer resolu-
tion may be necessary, which opens questions about
localization approaches, e.g., WiFi access point signal
strengths, audio environments, inertial measurement unit
dead reckoning, and passively inferred crowd-sourced
spatial mapping.



Venues will also be responsible for accurate local-
ization, and will have legal incentives to determine
the volumes relevant to their sensing infrastructure.
Note that, for stationary (but perhaps gimballed) sensors
such as cameras, this can be a simple, one-time field-
of-view based calibration during sensor deployment.
Mobile sensors will require on-line, possibly inertial
measurement unit assisted recalibration when locations
change. Sensors without clear sensed volumes, e.g.,
microphones, will introduce some challenges because
difficult-to-predict environmental conditions (such as
background noise floor) will influence their coverage.
This is a continuum problem, i.e., the problem cannot be
perfectly solved and applies to all systems using sensors
with difficult-to-precisely-determine coverage volumes.
However, it is not a fundamental practical problem
in our system because nearly all such sensors have
superlinear drop-offs in sensitivity with distance. As a
result, being slightly conservative about volumes for
policy application will produce the intended results with
high probability.
Responsive negotiation and enforcement: Policy ne-
gotiation in our model is the analog of call/connection
setup, while enforcement is the analog of guaranteeing
the QoS of the call/connection given the negotiated
policy. While negotiation can clearly be done in either
a centralized (per-venue) or distributed manner, enforce-
ment requires continuous interaction with the distributed
query DAGs. An important challenge here is how to
flow information about the negotiated policy and the
user scope involved through the DAGs. The obvious
approach of simply including the negotiated policy and
the user scope along with any sensor data captured
from a sensor scope that intersects the user scope is
not likely to scale. We envision using commonalities
among negotiated policies of multiple users to identify
a policy with a content hash. We also envision using
simple compact volume representations (e.g., octrees) to
capture unions of user scopes. In this manner, a common
case may be a relatively large, but simple volume (the
composite of several users) tagged with a hash that
identifies their common policy.

F. Scheduling, data processing, and storage
Policy enforcement should be as close to sensors as
practical to minimize information leakage. To this end,
Privacy Backplane will distribute abstract policy oper-
ations that the sensors execute locally, e.g., redaction
of data captured at a particular location or changes to
sensing resolution. These operations will be composed
into a set of policy operations that are executed directly
at the sensor or distributed across a set of nearby com-
putational resources that can be assembled into a query
DAG. This opens questions about which mechanisms

should be used to distribute policies across sensor/edge
resources to meet performance/energy constraints and
which should be supported for policy migration when
available resources change.
Data storage and management: Maintaining data pri-
vacy requires that any operation accessing data or deriva-
tive information must execute inside Privacy Backplane’s
trusted environment. Therefore, the backplane must man-
age data storage inside the trusted environment. One
of the primary challenges facing data management in
Privacy Backplane is the limited resources available on
trusted systems, and the need to distribute the processing
and data storage requirements across a diverse set of
systems. Data cannot always be in motion, so it must
be secure while at rest, before all policies have been
applied to it. To address this challenge in our prototype,
we are building a trusted TEE enabled cloud-based
storage service. This opens questions about managing
and placing data to support the data rate presented by
the sensors and query DAGs, and how the adaptation
mechanisms inside the backplane overlay network can
ensure that the data movement capacity is sufficient for
the processing input requirements.
Distributed adaptive query planning and execution,
with policy enforcement: Within Privacy Backplane,
query DAGs must be executed with high throughput.
Each node in the DAG computes data transformations,
forwards a representation of user scopes and their ne-
gotiated policies, and may produce redaction feedback.
Mapping DAG nodes onto the resources of Privacy
Backplane provides an opportunity to optimize both
query execution and policy enforcement. First, because
numerous DAGs are likely to be simultaneously in effect,
especially in a popular venue, it is possible to use
common subexpression elimination to reduce the total
work done by the distributed system. Second, because
DAG nodes are generally pure functions, the mapping
can be adapted to workloads. For example, in normal
operation, we might push DAG evaluation as close to
a venue’s sensors as possible. But if a crowd develops,
this would overwhelm them, and we would move DAG
nodes into the rest of the backplane.

Adaptation will generally be triggered by Privacy
Backplane itself. However, the closer we get to the sen-
sors, the more external load must be considered. While
Privacy Backplane will run on some sensor platform,
its priority will be limited and thus the amount of CPU
time available for it will depend on the platform’s other
activities. To address this, sensor platforms will be able
to initiate dynamic load balancing themselves, forcing
the backplane to redistribute load to other nodes in
Privacy Backplane.
Global real-time model: Policy negotiation has respon-
siveness requirements because the user is in the loop and



jitter degrades user experience [32] Here, the situation is
even worse because without a responsive outcome, the
user could easily enter a venue and then only later, after
their privacy has been compromised, discover that their
policy cannot be reconciled. An additional constraint is
that on some machines (e.g., sensor platforms), there
must be a mechanism for Privacy Backplane to share
very limited resources in a controlled manner with the
main task of the machine.

We plan here to use concepts from real-time systems
to provide (1) guaranteed responsiveness to the user.
Policy negotiation will be of highest priority, and will
be treated as a form of admission control for policy
enforcement. We will also use real-time concepts to pro-
vide (2) guaranteed responsiveness to critical, admission-
controlled queries (e.g., criminal investigations), and
provide (3) non-real-time, admission-control-free prior-
itization of non-critical queries (e.g., marketing). The
ensemble of admitted work (users and their policies,
the venues critical queries) will then execute with global
timing constraints respected throughout the system.

Privacy Backplane will be a distributed real-time
system with the following design elements. The sys-
tem software will implement hard real-time properties
within devices and other nodes of the distributed sys-
tem, and these entities will coordinate across nodes
to support synchronized soft real-time behavior across
the distributed system using approximate global time
with error below the human perception threshold. Users
and their policies can rely on and leverage this highly
predictable behavior. It is important to point out that
traditional adaptation or load balancing attempts to min-
imize latency or maximize throughput, making the set of
possible solutions small. In contrast, honoring a deadline
allows for many more possible solutions, and thus greater
flexibility. We anticipate that this real-time approach
to responsiveness will exhibit benefits seen in other
applications of real-time systems technology to contexts
that do not obviously have a real-time elements [33]–
[36].

V. Conclusion
We have made the case for a joint regulatory and
technical model for achieving individualized personal
privacy within IoT and similar sensing environments.
Our initial logical design and architecture was described,
along with challenges that result from these, as well as
from the overall concept. We are currently in the process
of implementing the Privacy Backplane prototype.
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[22] J. Götzfried, et al., “Cache attacks on Intel SGX,” in Proc. Euro-
pean Wkshp. on Systems Security, C. Giuffrida and A. Stavrou,
Eds. ACM, 2017, pp. 2:1–2:6.

[23] G. Chen, et al., “SgxPectre: Stealing Intel secrets from SGX
enclaves via speculative execution,” in Proc. European Symp. on
Security and Privacy. IEEE, 2019, pp. 142–157.

[24] F. Brasser, et al., “DR.SGX: automated and adjustable side-
channel protection for SGX using data location randomization,”
in Proc. Annual Computer Security Applications Conf.,
D. Balenson, Ed. ACM, 2019, pp. 788–800. [Online].
Available: https://doi.org/10.1145/3359789.3359809

[25] O. Oleksenko, et al., “Varys: Protecting SGX enclaves from
practical side-channel attacks,” in USENIX Annual Technical
Conf., H. S. Gunawi and B. Reed, Eds. USENIX Association,
2018, pp. 227–240.

[26] “Open Portable Trusted Execution Environment,”
https://www.op-tee.org/.

[27] E. S. Lubana and R. P. Dick, “Digital Foveation: an energy-
aware machine vision framework,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, pp. 2371–2380, Nov.
2018.



[28] Y. Zhu, et al., “Euphrates: Algorithm-SoC co-design for low-
power mobile continuous vision,” arXiv, Tech. Rep., Apr. 2018.

[29] J. Amacher and V. Schiavoni, “On the performance of ARM
TrustZone,” in Distributed Applications and Interoperable Sys-
tems. Springer International Publishing, 2019, pp. 133–151.

[30] P. M. VanNostrand, et al., “Confidential deep learning: execut-
ing proprietary models on untrusted devices,” arXiv preprint
arXiv:1908.10730, 2019.

[31] Z. Liu, et al., “Trusted-DNN: A TrustZone-based adaptive isola-
tion strategy for deep neural networks,” in ACM Turing Award
Celebration Conf., 2021, pp. 67–71.

[32] A. Komatsubara, “Psychological upper and lower limits of system
response time and user’s preferance on skill level,” in Proc. Int.
Conf. on Human Computer Interaction, G. Salvendy, M. J. Smith,
and R. J. Koubek, Eds., vol. 1. IEE, Aug. 1997, pp. 829–832.

[33] C. Lu, J. A. Stankovic, and G. Son, Sang H.and Tao, “Feedback
control real-time scheduling: Framework, modeling, and algo-
rithms,” Real-Time Systems, vol. 23, no. 1, pp. 85–126, July 2002.

[34] B. Lin, A. Sundararaj, and P. Dinda, “Time-sharing parallel
applications with performance isolation and control,” in Proc.
Int. Conf. on Autonomic Computing, June 2007.

[35] R. Liu, et al., “Tessellation: Space-time partitioning in a many-
core client OS,” in Proc. USENIX Conf. on Hot Topics in
Parallelism, Mar. 2009, pp. 10:1–10:6.

[36] S. Peter, et al., “Design principles for end-to-end multicore
schedulers,” in Proc. USENIX Conf. on Hot Topics in Parallelism,
June 2010.


