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ABSTRACT

Mu2e is an upcoming experiment at Fermilab that observes the direct muon-to-electron con-

version in order to look for new physics rules. To achieve rate uniformity of extracted proton spills

in Fermilab’s Delivery Ring, a Spill Regulation System is under design to regulate the rate vari-

ation of the extracted spills. This work presents the investigation of the application of machine

learning to the Spill Regulation System, including supervised learning and reinforcement learning.

Supervised learning model optimizes the signal via minimizing the difference between output and

labeled data. Different from supervised learning, reinforcement learning is a branch of machine

learning methods that involves the design a smart agent that can interact with the external envi-

ronment, free of labeled data. The results demonstrate that the machine learning based methods is

able to regulate the spill rate and can outperform the PID controllers in certain ways.
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LIST OF ABBREVIATIONS

AI: Artificial Intelligence.

DL: Deep Learning.

DQN: Deep Q-Learning.

DR: Delivery Ring.

GRU: Gated Recurrent Unit.

LSTM: Long Short-term Memory.

MDP: Markov Decistion Process.

ML: Machine Learning.

MSE: Mean Square Error.

NLP: Natural Language Processing.

Mu2e: Muon-to-Electron-Conversion Experiment.

PID: Proportional–Integral–Derivative Controller.

ReLU: Rectified Linear Unit.

RL: Reinforcement Learning.

SAC: Soft Actor Critic.

SRS: Spill Regulation System.
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CHAPTER 1

INTRODUCTION

In the world of particle physics, scientists from all around the world are interested in discov-

ering new physics beyond the Standard Model, the current description of the building blocks of

matter and how they interact. With new discoveries, it is possible to answer some of the most

challenging questions about our universe, such as how the universe changed from being dominated

by energy and radiation remnants to the one we are in today with visible matter. Particle scientists

from Fermilab want to address these challenging questions beginning with conducting the Mu2e

experiment [1] using their particle accelerator system.

Mu2e experiment, as the name suggests, probes the muon-to-electron conversion. There are

three discovery frontiers in particle physics: Cosmic, Energy and Intensity. Muon-to-electron con-

version is key to new discoveries related to Intensity. Intensity Frontier searches will provide part

of the context to interpret discoveries made on the other two frontiers and will narrow the number

of plausible theories for new physics. Moreover, observing muon-to-electron conversion will re-

move a hurdle to understanding why particles in the same category, or family, decay from heavy

to lighter, more stable mass states. Particle physicists have searched for this since the 1940s. Dis-

covering this is central to understanding what physics lies beyond the Standard Model. Fermilab

is currently constructing this experiment and the first series of experiments is expected to start in

2025.

In the Mu2e experiment setting, muon beams are generated by the process of proton extrac-

tion. Fermilab is developing a third-integer resonant slow extraction system for its Delivery Ring

to deliver protons to the Mu2e experiment. During a slow extraction process, the beam on target
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is liable to experience small intensity variations due to many factors. The experiment expects a

strict requirement in the quality of the spill. Because of this, a Spill Regulation System (SRS) is

currently under design by Fermilab. The SRS mainly consists of three components - slow regula-

tion, fast regulation, and harmonic content tracker. Traditionally, proportional–integral–derivative

(PID) controllers are used to regulate the extracted spills during fast regulation processes. A PID

controller continuously calculates an error value as the difference between a desired value and a

variable to generate the correction signals for the regulation system.

Fermilab has initiated Real-time Edge AI For Distributed Systems (READS) project [2] [3]

that embraces AI in the field of particle accelerator. Different approaches of AI techniques have

been explored under the READS project [4] [5]. In collaboration with READS, we investigated the

potential application of Machine Learning (ML) techniques in the fast regulation system in order

to replace the PID controller. First, the paper discusses the application of supervised learning.

Specifically, Recurrent Neural Networks (RNNs) are used to simulate the replacement of the PID

controller. RNNs refers to a class of neural networks where connections between nodes can create

a cycle, allowing output from preceding nodes to affect subsequent input to other nodes. The

characteristics of RNNs make them suitable for tasks that involve sequential data, such as speech

recognition. RNNs are chosen to apply to the model because of the temporal nature of the signals

outputted by the regulation system. We presented an RNN system built with Gated Recurrent Units

(GRUs) or Long short-term memory (LSTM) mechanisms, and discusses the simulated impact and

limitation of machine response characteristics on the effectiveness of both PID and ML regulation

of the spill.

Afterwards, Reinforcement Learning (RL) is studied for the application. RL is the field in

machine learning that involves the design of smart agents that interact with the environment in

order to maximize the cumulative reward. In recent years, it has shown potential in a lot of fields,
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such as robotics and artificial intelligence. RL is challenging in many ways, including the design

for the environment, action shaping and reward shaping. We presented the design of the RL agent

using the Soft Actor Critic (SAC) algorithm. The agent interacts with the physics environment

in order to find the optimal policy to generate control signals at a given timestamp during the

simulation. In a training loop, the agent observes the noised spill signal from the environment,

selects the action to regulate the spill, and then updates itself in order to maximize the overall

cumulative reward function. Results are analyzed and proof of concepts are then demonstrated by

this paper.

1.1 Thesis Organization

The rest of this thesis is structured as follows: Chapter 2 discusses the fundamental experimen-

tal physics behind the Mu2e experiment. In a broad picture, this chapter captures the essentials

for the resonant extraction process in the Mu2e experiment and then discusses the specific SRS

design where machine learning is applied to optimize performance. Chapter 3 covers the specific

machine learning techniques and results for the Mu2e experiment. This chapter first introduces the

supervised learning method, and then jumps into the reinforcement learning method. This chapter

will go through the background, architecture, and result analysis of the proposed methods. Finally,

Chapter 4 summarizes this thesis, presenting a conclusion about strengths and the challenges of

the proposed methods, along with a discussion about the future directions of this research.
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CHAPTER 2

RESONANT EXTRACTION AND SPILL REGULATION SYSTEM

This chapter introduces the Resonant Extraction process and the Spill Regulation System (SRS)

in Mu2e. The introduction for the Resonant Extraction contains the basic physics underlying the

extraction process and the proposed structure of the third integer resonant extraction in the Mu2e

experiment. The introduction for the SRS contains the three parts in its design, with an emphasis

on the Fast Regulation system, where supervised learning and reinforcement learning models are

applied.

2.1 Resonant Extraction

Resonant extraction is the type of physics process in which a circulating beam’s horizontal size

is increased gradually, and then a slice of that beam is extracted turn by turn and sent to a de-

sired location through a transfer beam line. The horizontal beam size is increased by purposefully

driving the beam close to a resonance condition.

Typically, the extraction of the beam is achieved using an electrostatic septum that is placed at

the extraction location which gives an instantaneous horizontal kick to the slice of beam that lies

past the septum position in the horizontal plane. This horizontal deflection to the beam directs it to

an extraction beam line whereby it is transported to its final location.

Figure 2.1 visualizes the explained process above [6]. It demonstrated a snapshot of the beam

at the extraction location. The slice to the right of the vertical red line (the septum) shows the

particles to be extracted.
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Figure 2.1: Resonant extraction slice.

2.1.1 Third Integer Resonant Extraction in Fermilab’s Delivery Ring of Mu2e

The Mu2e experiment uses the non-linear third-integer extraction process [7] [8] [9], which

involves the usage of sextupole elements to excite the resonance, and the tune ramping quadrupoles

to drive the beam’s horizontal tune closer to a resonant tune.

One spill of the process has a duration of 43 ms, and the number of turns over which the

extraction occurs is approximately 25,430. This means the process will extracts about 4⇥ 107

protons per spill. The extraction is to be achieved by keeping the sextupole strength constant but

delicately squeezing the horizontal tune from 9.650 to 9.666.

In Fermilab’s Delivery Ring (DR), an electro-static septum system is placed at the extraction

location. The septum provides a high electrostatic field to give an instantaneous kick in the hori-

zontal direction to the portion of the circulating beam that lies past the septum position in order to
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Figure 2.2: Details of Fermilab’s Delivery Ring.

direct it to the extraction beam line. Figure 2.2 shows the schematics of the proposed structures in

Fermilab’s Delivery Ring.

2.2 Spill Regulation System

2.2.1 Spill Regulation System Requirements

The Mu2e experiment has strict requirements on the uniformity of the pulsed muon beam

delivery to the stopping target made of aluminum. In Mu2e, the muons are produced by proton

pulses hitting the muon production target. Because of this, the intensity of the muons produced

from the target depends directly on the intensity of the protons extracted in a turn-by-turn manner

through the resonant extraction process performed at the Delivery Ring.

Thus, the Mu2e experiment requires strict rate uniformity of the proton pulse beams. The most

important reason for the requirement of rate uniformity is that drastic variations in the spill rate

could adversely affect the signal of the Mu2e experiment. For example, the electrons from the

cosmic ray could potentially mimic Mu2e electrons, influencing the performance of the Cosmic
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Ray Veto detection system.

We primarily study the innovation in the regulation method of the spill rate. Appendix A

presents the main beam parameters required for the resonant extraction at Fermilab’s DR. For

simulation, we assume that the initial number of particles is the same for every spill.

We define a factor that represents the quality of the spill, called the Spill Duty Factor (SDF),

with the ideal spill rate normalized to 1.

SDF =
1

1 + �2
spill

(2.1)

The SDF function is defined above, where �2
spill is the standard deviation of the spill rate. An

ideal spill would have a constant spill rate value of 1, therefore the ideal SDF is 1. In SRS, a good

SDF value is defined to be of 0.6 or higher.

2.2.2 Spill Regulation System Components

The Spill Regulation System (SRS) [10] [11] primarily contains three components:

• Slow spill profile regulation (Slow regulation)

• Fast random ripple regulation (Fast regulation)

• Harmonic ripple content suppressor

The slow regulation controller tracks the slow changes in the spill profile, due to the character-

istics of the proton beam that could slowly vary with time. This controller produces corrections to

the three dedicated fast tune-ramping quadrupoles’ current ramp, which are needed to achieve the

uniformity of spill rate. This slow regulation is done adaptively over many spills.

The fast regulation response is the key mechanism that is used to correct for instantaneous

ripples in the spill intensity. The experiment assumes that these fast noise ripples have a random
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nature or are a semi-random component of regular harmonic noise that the harmonic controller is

not able to suppress. Traditionally, it is the part that PID controllers play an important role. And

this is the part where we are conducting research to optimize on, aiming to use Machine Learning

(ML) to replace the use of PID controllers and upgrade this process with more modern approaches.

Finally, the harmonic content suppressor is the component that cancels out the 60Hz harmonics

that may rise from the magnet power supplies and then leak into the spill rate fluctuation.
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CHAPTER 3

MACHINE LEARNING IN FAST REGULATION

This chapter introduces the application of Machine Learning techniques to Fast Regulation in

SRS. First, the concept of neural networks is described, and the simulation setup is introduced.

Then this chapter will demonstrate specific Machine Learning (ML) models, including supervised

learning and reinforcement learning, together with the underlying algorithms. Specifically, the

RNN algorithm will be introduced in the supervised learning section, and the SAC algorithm will

be covered for reinforcement learning. Then this chapter will analyze the results of the models.

3.1 Machine Learning Overview

Machine Learning (ML) is the field that is devoted to building up predictive methods from

learning and analyzing certain types of data. ML algorithms are applied in many tasks, such as

recommendation systems, computer vision, and artificial intelligence. Given the nature that the

fast regulation system in Mu2e’s SRS involves the process of generating a control signal, it is

natural to apply ML methods.

There are a variety of approaches in Machine Learning. Specifically, we choose Deep Learning

(DL) [12] [13] models on this task. The basic building blocks in DL are the neural networks. In a

typical neural network, layers of nodes are arranged in different ways to represent the specific task.

In each training iteration, the weights and biases of the nodes are updated in order to minimize the

loss function. After a certain number of training iterations, the model is tested for fitting the task

by making predictions given new data. In this work, we have trained Recurrent Neural Network

(RNN) models and Reinforcement Learning (RL) models, and eventually let them control the
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resonant extraction process so it can regulate the extraction quality.

3.2 Physics Simulator

For the fast regulation process in SRS, we have built a physics simulator to simulate the reso-

nant extraction and generate training data for the usage of ML models [14]. We use Python to code

the environment and model, and we use the PyTorch framework to train, validate, and test the ML

models.

For the simulation, we assume a perfect extraction without any instantaneous noise in the setup.

As discussed before in Chapter 2, we separate slow extraction from the fast regulation, so that their

behaviors can be studied independently from each other. We also make the assumption that the

slow regulation system can provide an ideal quad current ramp.

Figure 3.1: An example of noised spill.

We model the noised spill using a log-normal distribution, since we expect random fluctuations

in the spill rate from the fast variation ripples. And for every spill, a new noise is generated with
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a mean value of 0. In Chapter 2, we define SDF to be a measurement for the quality of the spill.

The standard deviation for the noised spill is chosen to deliberately make the SDF of the full spill

to have a value around 0.5.

The physics simulator generates random log-normal points at 1 KHz rate. And it interpolates

the generated points to provide a smooth noise data for over 430 time steps, as we have 43 ms for 1

spill and we assign 10 time steps for 1 ms. Then the expectation value of the spill rate is normalized

to 1, and the log-normal generated noised spill is added to 1 for every spill. An example of the

generated noised spill is shown in Figure 3.1.

3.3 Supervised Learning with Recurrent Neural Networks

With the aim to replace PID controllers with ML models, we have selected Recurrent Neural

Networks (RNN) [15] as the starting point. RNNs are designed to handle training data that contains

time-series information, or sequential data. If the training data is labeled in such a fashion that the

input at time step t is sensitive to the input given in the previous time-step t � 1, a basic feed

forward neural network would perform poorly because it will fail to capture the relation of the data

through time. RNNs are designed to deal with this as it allows output from some nodes to affect

subsequent input to the same nodes. For this reason, RNNs are popular in tasks such as speech

recognition and translation in Natural Language Processing (NLP) as these tasks exhibit temporal

dynamic behaviors.

In our case, RNNs are a natural choice to be considered to replace a PID controller because

the physics data for the resonant extraction process is also temporal and thus sequential in nature.

Supposing that there is a rising spike in the spill rate as the spill proceeds, we would want the

ML model to also consider this spike when generating the regulation signal even if it happened for

example 30 time steps ago.
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The specific mechanism for RNNs to be better at dealing with temporal data is that they have

memory capabilities. While making a decision, an RNN model takes into consideration the current

input and also what it has learned from the inputs it received previously. Output from the previous

steps is fed as input to the current step, thus creating a feedback loop.

However, there are several issues related to this mechanism. When training RNN models,

sometimes the gradients can become too small or too large, resulting in situations so called “vanish-

ing gradients” or “exploding gradients”. These problems are due to the fact that RNNs backprop-

agate gradients through layers and also through time, causing the previous nodes to be considered

too many times unnecessarily.

In order to overcome the vanishing and exploding gradient problem in RNNs, we can apply

different gating mechanisms, such as Long Short-term Memory (LSTM) [16], or Gated Recurrent

Unit (GRU) [17]. In this work, GRU is chosen as the model to proceed with since it is more

lightweight.

3.3.1 Gated Recurrent Unit

The overview of a GRU is shown in Figure 3.2. The GRU consists of two types of gates. The

update gate helps the model to determine how much of the past information needs to be passed

along to the future. And the reset gate decides how much of the past information to forget.

Our implementation contains a GRU with two layers, with hidden state sizes of 128 and Recti-

fied Linear Unit (ReLU) activations [18], The model will ingest at each point in the spill a window

of the past 40 observations. To allow the model to begin regulation at the first step in the spill,

we prepend the spill profile with a vector of length 40. Each element in this prepended vector is

assigned the value of the first element in the random noise profile. Then, we walk forward in the

usual manner to predict 430 quadrupole corrections. At the end of each spill, the loss is calculated
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Figure 3.2: Gated recurrent unit.

using Mean Square Error (MSE) and the model parameters are updated.

3.3.2 Recurrent Neural Networks Results

We demonstrate here that the ML model not only performs comparablely to PID controller’s

regulation but also can outperform the PID controller, after sufficient training iterations.

Figure 3.3: Supervised learning regulation vs PID regulation.
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In our experiments, we use a window size of 40 time steps. And the ML model at time step tn

will learn and generate predictions of the current to be supplied to the quadrupole on the time step

at tn+1.

In Figure 3.3, we compare the performance of the PID controller with the supervised learning

controller by plotting the ratio of the improvement in SDF by the ML agent to that of the PID

controller. The performance of the PID controller is corresponded with the horizontal line at value

1. And we see in the figure that the ML agent starts outperforming the PID controller after around

500 training iterations.

3.4 Reinforcement Learning with Soft Actor Critic

We’ve presented that the RNN based supervised learning method can outperform PID con-

trollers. However, since RNN models rely on supervised data to train, it is not practical to apply it

in the real world for Mu2e at Fermilab. For this reason, we turned to Reinforcement Learning (RL),

which is free from training with supervised data, and can be applied potentially in the real world.

As our ultimate goal is to control a physical device, RL represents a compelling opportunity.

Reinforcement Learning [19] is the field of ML that in which a smart agent is designed to

perform a certain task in a predefined environment. The agent’s goal is learn an optimal policy

that maximizes the cumulative reward function it observes during interactions in a turn by turn

manner. Because of this, it is commonly applied to gaming Artificial Intelligence (AI) since there

are usually scoreboards in those environment setups.

Unlike in supervised learning, there is no supervised data in reinforcement learning, as the

RL agent generate its own data when interacting with the environment. The learning process is

centered around reward function, which we ascribe to the actions taken by the agent together with

the observed state from the environment. Thus the training data is heavily dependent on the action
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shaping of the agent and the reward shaping of the environment. In addition, the RL methods

we apply in our experiment is technically Deep RL, involving the usage of neural networks when

designing the RL architecture.

3.4.1 Markov Decision Process

RL can be modeled as a Markov Decision Process (MDP) which involves a state space S that

gives the agent the state of the environment, an action space A that consists of actions taken by the

agent, a reward R(st, st+1) value that is proportional to the goodness of action at to take the state

from the state st at present time t to the next state st+1, and a transition function Pat(st, st+1) that

describes the probability of transitioning from state st to state st+1 given an action at.

Figure 3.4: Interaction between agent and environment in RL.

MDPs are the foundations of Reinforcement Learning as it defines the trajectories of the inter-

actions between the agent and the environment. Figure 3.4 shows the canonical feedback loop of

the agent and the environment.

3.4.2 Value Functions and Bellman Equation

A value function estimates how good it is for the RL agent to be in a given state or how good

it is to perform an action in a given state. There are two types of value functions: the state value
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function, or V-value, and the state-value pair function, or Q-value. We will use Q-value for our RL

agent.

The Bellman equation is the central piece in RL algorithms. In summary, Bellman equation

decomposes the value function into two parts, the immediate reward and the discounted future

values. The Bellman equation greatly simplifies the computation of the value function. So that

rather than summing over multiple time steps, we can break a complex problem down into simpler,

recursive subproblems and finding their optimal solutions. The Bellman equation for the Q-value

is described below, where � is the discount factor:

Q(s, a) = r(s, a) + �maxaQ(s0, a) (3.1)

3.4.3 Policy Gradient Methods

Different Deep RL algorithms can generally be categorized into two types: value-based and

policy-based. In value-based RL, such as Deep Q-Learning (DQN) [20], the algorithms focus

on learning the value, either the state value or the state-action value. While in policy-based RL,

the agent directly learns the policy function that maps states to actions. In our case, we chose

policy-based algorithms because it can learn stochastic policies.

The key algorithm in policy-based RL is the Policy Gradient methods [21]. The fundamental

idea behind policy gradients is to push up the probabilities of actions that lead to higher reward

return, and push down the probabilities of actions that lead to lower reward return, until the agent

arrives at the optimal policy. Policy gradient works by updating the policy network’s parameters

via stochastic gradient ascent, where ⇡✓ denotes the policy with parameters ✓, and J(⇡✓) is the

expected return of the policy:
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✓k+1 = ✓k + ↵r✓J(⇡✓k) (3.2)

3.4.4 Actor Critic Methods

A disadvantage of the vanilla policy gradient method in RL is that it updates the model based

on full sampled returns, which are calculated at the end of episodes. This may lead to instability

of the model because of the high variance caused by vanilla policy gradient’s way of updating.

Figure 3.5: Actor Critic.

Actor Critic methods [22] [23] deal with these drawbacks by having the value estimates in the

model update to be based on temporal difference bootstrapped from a single step and the Bellman

function. By having this design, the agent is capable of having better policy refinement, since it

can learn during the episode. Another advantage of Actor Critic is that it can learn in continuous

environments, which is essential to our experiment because the simulation of the SRS involves

continuous components.

Actor Critic contains mainly two components: an actor and a critic. The actor learns the policy
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distribution in the direction which is suggested by the critic. And the critic estimates the value

function, in this case the state-action value Q. Both the critic and actor functions are powered by

neural networks. The architecture of an Actor Critic agent is shown in Figure 3.5.

3.4.5 Soft Actor Critic

The algorithm we use for our experiments is a variation of Actor Critic, called Soft Actor Critic

(SAC) [24] [25]. It has better capability for dealing with continuous action spaces. As mentioned

before, our environment has continuous components built in. Specifically, the control signal at

every time step should be continuous, so that we have a continuous action space. The biggest

feature of SAC is that it uses a modified objective function. An SAC agent not only seeks to

maximize the cumulative rewards, but it also update itself in order to maximize the entropy of the

policy. This feature is called Entropy Regularization.

Entropy is a quantity which says how random a random variable is. Generally, a high entropy

has the following advantages:

• Encourage exploration.

• Encourage the policy to assign equal probabilities to actions with equal Q values.

• Ensure that the model does not collapse into repeatedly selecting an action that could invoke

inconsistency in the approximated Q function.

Another difference between traditional Actor Critic and SAC is that SAC has 3 networks: 1

actor network and 2 critic networks. This is called the Clipped Double-Q trick. In every update,

the minimum of the two estimates is taken for calculation. This trick is applied in order to reduce

the bias of the estimations.
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3.4.6 Reinforcement Learning Results

Applying SAC, we have implemented and trained an RL agent that is capable of generating

regulation signals.

Different from supervised learning, in RL, we use a window size of 10 (which is our state),

because we want to capture the most recent changes in the random noised spill. To prevent the

errors accumulating, we define a termination condition. If the SDF of the corrected spill drops

below a predefined threshold, we immediately assign a large negative reward to discourage the

agent from continuing down that path. If this condition is met more than 10 times in a spill, we

stop the MDP trajectory and start a new one.

The action space is a continuous space of [�1, 1]. This value denotes the magnitude of the

increase or decrease of the regulation signal relative to the previous one. The reward is calculated

from the regulation signal and the outputted corrected spill at each time step.

The training of the model uses the experience replay technique. At each episodic iteration,

we calculate the MDP trajectory of the spill using the agent’s policy. We store the agent’s MDP

experience, which is defined as a tuple st, at, st+1, rt+1, into a replay memory. We then select a

batch of experience replays from the memory and use them to update the policy network and the

two critic networks.

Figure 3.6 shows a sample spill after this agent was trained. The red line denotes the original

noised signal, while the blue line denotes the corrected spill using the regulation signals generated

by the RL agent. From this figure, we can see that the trained agent is capable of pushing the spill

closer to 1 (denoted by the horizontal red dotted line), without losing the smoothness of the spill,

which is essential for keeping the SDF at a stable level.

Figure 3.7 shows the SDF value of the training session. The horizontal red line denotes the SDF

of the noised spill. The blue line denotes the SDF of the corrected spill calculated at each episode.
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Figure 3.6: A spill sample after trained with RL.

From the figure, we can see that the SDF increases over the training episodes. After around 700

episodes, we can see that the SDF of the corrected spill climbs over the input SDF. And it keeps

increasing and converges at aroung the SDF of 0.8, a relatively very good value.

From the figures, we can see that the RL agent trained using SAC is capable of regulate the

noised signal in a very effective way. However, there are also limitations using Reinforcement

Learning based methods. For example, one challenge is that RL relies heavily on initialization. In

our case, the action space is continuous as the RL agent can take an action value that is any real

number, which is very time-consuming for the agent to find an optimal path of actions to improve

spill regulation.

The hyperparameters and simulation settings for our RL agent training experiments can be

found in Appendix B.
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Figure 3.7: SDF of RL agent during training.
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CHAPTER 4

CONCLUSION

This paper studies the application of machine learning methods, including Supervised Learn-

ing and Reinforcement Learning, to the Spill Regulation System in Fermilab’s developing Mu2e

experiment. Supported by the results, this paper presented the deep learning based architecture

that can replace the PID controllers in simulated experimental setups.

To summarize, there are three main contributions of this paper. They are:

• Analyzed the possibility of replacing the PID controller with neural network based ML mod-

els.

• Applied a Supervised Learning based method that minimizes the difference between the

model’s output and the supervised label.

• Proposed a Reinforcement Learning based method with a smart agent that learns the control

signal at each timestamp of the control loop based on real-time observations.

4.1 Future Work

There are many directions for better optimizing the machine learning models for the SRS in

Mu2e. For Supervised Learning, we can try different RNN models, such as LSTM. We can also

apply Attention Mechanism to our models. For Reinforcement Learning, we can try different

action shaping and reward shaping methods when training RL agents.
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[17] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural
machine translation: Encoder-decoder approaches,” arXiv preprint arXiv:1409.1259, 2014.

[18] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint arXiv:1803.08375,
2018.

[19] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.



35

[21] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for rein-
forcement learning with function approximation,” Advances in neural information process-
ing systems, vol. 12, 1999.

[22] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural information pro-
cessing systems, vol. 12, 1999.

[23] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in International
conference on machine learning, PMLR, 2016, pp. 1928–1937.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” in International conference on
machine learning, PMLR, 2018, pp. 1861–1870.

[25] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine, “Soft actor-critic algorithms and applications,” arXiv preprint
arXiv:1812.05905, 2018.



36

APPENDIX A

MAIN PARAMETERS FOR RESONANT EXTRACTION AT DELIVERY RING

This appendix section provides some of the key parameters of the physics experiment setups

for the resonant extraction process at Fermilab’s Delivery Ring.

Parameter Value
Beam kinetic energy 8 GeV

Spill duration 43 ms
Number of spills per super cycle 8

Number of bunches per spill 1
Initial proton intensity 1012

Number of protons extracted per turn < 4⇥ 107

Time between proton micropulses 1.695 µs
Normalized Emittance (95 % expectation) 16⇡ mm-mrad

Spill Duty Factor (SDF) > 0.6
Reset time between spills 5 ms

Table A.1: Main Parameters for Resonant Extraction at Delivery Ring
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APPENDIX B

HYPERPARAMETERS FOR TRAINING REINFORCEMENT LEARNING MODEL

This appendix section provides the hyperparameters for the training step of the RL agent.

Hyperparameter Name Value
Discount factor � 0.999

Learning rate 0.001
Entropy temperature parameter ↵ 0.02

Batch size 32
Target smoothing factor ⌧ 0.005

Hidden layer size 32
Action shaping regulation factor 0.6

Replay buffer size 10000000

Table B.1: RL Hyperparameters
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