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Abstract 

This research paper investigates the performance of deep reinforcement learning (DRL) 

algorithms in cryptocurrencies portfolio trading, which includes BTC, ETH, LTC, AAVE, UNI, 

and SOL. Cryptocurrency market is known for its volatility and unpredictability because many 

are not backed by substantial elements, despite it has been a profitable and low-entry level 

market that attracts the public attentions. In recent years, researchers have been exploring and 

demonstrating that deep reinforcement learning could learn beat-the-market low-frequency 

trading strategies in some stock market conditions. Therefore, this paper intends to evaluate the 

effectiveness of common DRL frameworks on the cryptocurrency trading market, considering 

both the cumulative returns and the risk level measured by Sharpe ratio. We show that, with the 

proper network architecture, DRL algorithms can learn a trading strategy that gains 30\% more 

return than a baseline equal-weight strategy. 
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Abstract
This research paper investigates the performance
of deep reinforcement learning (DRL) algorithms
in cryptocurrencies portfolio trading, which in-
cludes BTC, ETH, LTC, AAVE, UNI, and SOL.
Cryptocurrency market is known for its volatil-
ity and unpredictability because many are not
backed by substantial elements, despite it has
been a profitable and low-entry level market that
attracts the public attentions. In recent years, re-
searchers have been exploring and demonstrat-
ing that deep reinforcement learning could learn
beat-the-market low-frequency trading strategies
in some stock market conditions. Therefore, this
paper intends to evaluate the effectiveness of com-
mon DRL frameworks on the cryptocurrency trad-
ing market, considering both the cumulative re-
turns and the risk level measured by Sharpe ratio.
We shown that, with the proper network architec-
ture, DRL algorithms are able to learn a trading
strategy that gains 30% more return than a base-
line equal-weight strategy.

1. Introduction
The emergence of blockchain technology has introduced a
new form of digital currency – Cryptocurrency – into the
financial system, and its market has experienced explosive
growth in recent years (Mukhopadhyay et al., 2016). Bit-
coin (BTC) itself has achieved a peak market capitalization
of over $1 trillion in 2021, and other cryptocurrencies like
Ethereum (ETH), Binance Coin (BNB), Litecoin (LTC), and
Ripple (XRP) have achieved a combined market size of over
$500 billion. The unique blockchain properties enable a
decentralized peer-to-peer network structure that provides
crypto transactions with a more transparent, secure, perma-
nent, and efficient space, which gives a better solution to the
problems that traditional financial institutions have. Thus,
more and more investors are attracted by this new market,
and have proposed a range of statistical models and machine
learning algorithms that are commonly used in stock trading
market to better predict the cryptocurrency trading market.
Nevertheless, due to its highly volatile nature, impact from
political and economic issues, unpredictable social senti-

ments, and unbounded trading time period and uncapped
daily price variation, the cryptocurrency market is subject
to significant fluctuations, and thus making the prediction
and profitable trading a complicated challenge.

Moreover, even though several researches claimed that they
could achieve a cryptocurrency price prediction with a Mean
Squared Error (MSE) of as low as 0.0011 (Parekh et al.,
2022), single stock closed price prediction or trend predic-
tion is barely helpful in real-life trading task because the
decisions like whether to buy or sell, the corresponding
amount, and the action time are still left unknown. There-
fore, the final objective of a trading prediction task should
be portfolio return-driven rather than price-driven.

Fortunately, a growing body of studies have demonstrated
the effectiveness of deep reinforcement learning algorithms
on these return-driven tasks. Through simulating a trading
environment, an agent could learn a policy that maximize
cumulative return to perform the optimal buy and sell actions
at the calculated time, based on user-input information like
initial capital amount, trading-platform specific rules, and
individual trading preference.

In this paper, we endeavor to investigate the domain of cryp-
tocurrency portfolio management using deep reinforcement
learning framework on six cryptocurrencies’ historical data
and their common technical indicators. We will use equal-
weight investing strategy as our baseline cumulative return
measurement.

2. Literature Review
2.1. Artificial Intelligence in Quantitative Finance

In recent years, researchers have been adopting and exploit-
ing machine learning (ML) algorithms to perform market
analysis and price predictions to quantitatively understand
the stock market dynamic, and some of these techniques
have been applied to the newly emerged cryptocurrency mar-
ket. Among them, advanced deep learning network LSTM
(Long Short Term Memory) and GRU (Gated Recurrent
Unit) combining with Twitter sentiment analysis achieved
the highest performance in BTC price prediction task (Ser-
afini et al., 2020) (Parekh et al., 2022). The common trading
strategies based on ML price prediction is to buy if predicted
price is higher than the current price, and sell otherwise (Ji
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et al., 2019).

On the other hand, Reinforcement Learning could derive
next-period actions based on the data in simulated environ-
ment, which allows the trader to develop an automated strat-
egy across multiple assets. (Necchi, 2016) demonstrated
that state-of-the-art RL algorithms like NPGPE learned a
long-short trading strategy that significantly outperforms the
buy-and-hold strategy on simulated stock data. (Liu et al.,
2022) proposed an open-source deep reinforcement learn-
ing library that provides structured and standardized tools
for financial tasks like performing automated stock trading
or providing future contract strategies. (Yang et al., 2021)
proposed an ensemble model with three commonly-used
RL algorithms – PPO, A2C, and DDPG – that outperforms
the Dow Jones Industrial Average index in terms of risk-
adjusted return measured by the Sharpe ratio. Finally, (Gort
et al., 2022) proposed a new training pipeline that reduces
overfitting in the trained agent, and concluded that the cor-
rected PPO agent achieved a 15% increase in cumulative
returns in the period where the cryptocurrency market has
crashed twice.

3. Contributions
Following are the major contributions of this paper:

• We compared the performance of the previously pro-
posed DRL agents on the most recent market condition
through backtesting.

• Since LSTM has been proved to be a better choice in
dealing with long-term time series data than other artifi-
cial neural networks, we combined the PPO agent with
LSTM neural network to account for the serial corre-
lation and historical memories in the cryptocurrency
data.

4. Technical Methods
4.1. Deep Reinforcement Learning Framework

Since the crypto trading is a essentially making multiple
decisions under a discrete, stochastic, and sequential envi-
ronment, we could model this task as a Markov Decision
Process (MDP), where an agent could learn a policy in
a pre-defined environment by performing a set of actions,
from which the agent will receive rewards based on the cho-
sen action. In our setting, we defined these elements as the
following:

• State: st = [ct,pt,ht, ft], where ct ∈ R is the cash
amount at time t, pt ∈ RD

+ is the market price vector
for D = 6 cryptocurrencies, ht ∈ RD

+ is the share
holding vector, and ft ∈ RI×D is a feature vector
holding the calculated information for a list of I = 6
chosen technical indicators.

• Action: at ∈ [−1, 1]D. A negative action means sell,
a positive action means buy, and 0 means hold. The
action is also adjusted to represent the amount of shares
to buy/sell for corresponding cryptocurrency type.

• Reward: rt ∈ R. We define the reward as the differ-
ence in total asset between the current time t and the
previous time t− 1, where the total asset is

mt = ct + pt
Tht

• Expected Return: Qt(st, at): the expected return from
state st until the terminal state.

Qt(st, at) = E

[
T∑

t=0

γtrt

]

• Policy: πt. At time t, the policy will determine an
action to take based on the current state st. It gives
the trader a trading strategy optimized for the rewards
defined above.

4.2. Technical Indicators

We incorporated six commonly used technical indicators
suggested by (Yang et al., 2021) and (Gort et al., 2022),
and we performed an exploratory data analysis to ensure
there are no highly correlated variables that could cause
multicollinearity issue. Technical indicators are calculated
by TA-Lib python library (Benediktsson), which include the
following:

• RSI: Relative Strength Index, a price momentum indi-
cator which measures the speed and change of price
movement.

• DX: Directional Movement Index, a price momentum
indicator which identifies in which direction the price
of an asset is moving.

• ULTOSC: Ultimate Ocsillator, a price momentum indi-
cator which measures the price momentum of an asset
across multiple timeframes.

• OBV: On Balance Volume, a volume indicator which
suggests the flowing momentum of an assets’ volume
and thus make predictions about its price

• Volume: the market volume of the asset.
• HT DCPHASE: Hilbert Transform - Dominant Cy-

cle Phase. The moving averages after removing the
dominant cycle calculated through the Hilbert Trans-
formation.

We removed indicators like daily high, daily open, and
daily low indicators, and only used the daily close as the
interested price. The resulting correlation heatmap for the
final variables is shown below.
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Figure 1. Heatmap for Features Correlation

4.3. Cryptocurrency Trading Environment

We will be deploying the learned strategies on the Alpaca
trading platform for paper-trading experiments, so we will
simulate the trading environment following the rules and
assumptions for the Alpaca platform.

Specifically, it enforces a 0.25% buy fees and 0.15% sell
fees as the transaction cost, and there is a transaction limit
for different assets. For BTC, the minimum transaction
amount is 0.0001 shares; for LTC, UNI, and AAVE, the
minimum transaction amount if 0.01; for ETH, it is 0.001;
and for SOL, it is 0.05. We will also ensure a non-negative
balance on the account, and sell action is only allowed if the
number of shares of that asset is non-negative. For all six
assets, Alpaca allows for fractional trades up to 9 digits, and
they are all non-shortable, which corresponds with our non-
negative balance here. Lastly, we set a discount factor of
γ = 0.95 for rewards gained in the long term, representing
a depreciation of money value against market inflation.

With these restrictions, we define our reward function as
follow:

mt = ct + pt
Tht − tcBt − tcSt

rt = γ(rt−1) +mt −mt−1

where tcBt is the transaction cost for buy actions at time t,
and tcSt is the transaction cost for sell actions at time t.

4.4. Deep Reinforcement Learning Algorithms

There are many DRL algorithms that are suitable for cryp-
tocurrency price prediction, and we will use the Stable Base-
line 3’s implementation of actor-critic based algorithms
PPO, and A2C as our agents (Raffin et al., 2021b). Based
on the literature review, actor-critic algorithms like A2C and
PPO are generally more robust than off-policy methods like
DDPG and DQN in terms of trading task. In actor-critic al-

gorithms, the agent simultaneously learns a policy function
(actor) and a value function (critic), where the value func-
tion is our reward, or the cumulative return over the trading
period. In our trading task, we defined our observation space
as our state space, where the values could range from neg-
ative infinity to positive infinity. Therefore, the stochastic
nature of reinforcement learning might randomly pick on
a wild value to experience, and thus could not learn much
knowledge about this space without an enormous number
of training steps to take on. Fortunately, A2C and PPO are
more advantageous under this scenario.

4.4.1. ADVANTAGE ACTOR CRITIC – A2C

The A2C algorithm (Mnih et al., 2016) compares the cur-
rent actions taken with a baseline value, which is the value
generated by taking an average action at the current state,
and the resulting difference is called Advantage Value.

A(st, at) = Q(st, at)− V (st)

By optimizing on the advantage value, the algorithm not
only evaluates how good an action is, but also how much
better it could be. Even better, A2C allows for multiprocess-
ing by assigning different batches to different workers at the
same training period, and update the policy with the aver-
aged return value, meaning that it allows for fast exploration
while maintaining stability at the same time. Therefore, it is
suitable for a portfolio trading task.

4.4.2. PROXIMAL POLICY OPTIMIZATION – PPO

The PPO algorithm also follows the actor-critic structure and
has an advantage value, except it adds a clipped range for
policy updates (Schulman et al., 2017). Advantage values
calculated outside of the clipped range are not considered
as an update. In essence, PPO searches for new policies that
are close to the old policy, which make sense in exploring
trading strategies because the buy/sell amount for a low-
frequency non-risk-prone trader is usually fixed within a
range.

4.4.3. RECURRENT PPO

Lastly, instead of using a Multi-layer Perception (MLP)
neural network as the actor and critic network in PPO, we
use a LSTM neural network following the implementation
here (Raffin et al., 2021a). Many researches have shown
that for time-series financial data, LSTM is one of the most
outperforming neural networks, and therefore it should be
a good choice in the trading task as well. Right now, we
have 1 LSTM layer with 256 hidden units for both actor and
critic network, and used tanh as the activation function.
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5. Experimental Data
We use 5-minute interval historical data of six cryptocurren-
cies AAVE/USDT, BTC/USDT, ETH/USDT, LTC/USDT,
UNI/USDT, SOL/USDT from 10/18/2021 to 03/23/2023
downloaded through Binance API as training and validation
dataset, and data from 03/24/2023 to 04/24/2023 as testing
dataset. In total, there are 899,436 training/validation data
points, and 53,562 trading data points for backtesting.

6. Backtesting Results & Analysis
We evaluate the performance of each agent based on cumu-
lative return, which is defined as

cumulative return =
rT
c0

and Sharpe Ratio

Sharpe =
√
factor

r̄

σ(r)

where factor = 60/5 ∗ 24 ∗ 365 = 105, 120, representing
the total data points per year. r is the rewards array calcu-
lated from each step, and rT is the final rewards we get, and
c0 is the intial capital amount.

Even though the overall cumulative return is negative, We
could see that the Recurrent PPO outperforms other agents
by over 20%. The general market trend in the trading period
is downward trending around early April, and since we do
not allow our algorithm to short selling, it is hard to gain
positive profit with normal buy and sell actions. However,
the both Recurrent PPO and PPO performs better than the
equal-weights trading strategy, meaning that the deep rein-
forcement learning algorithms are learning a working policy
from the past data.

7. Limitations
There are several limitations in our trading strategies.

First of all, on-policy methods generally suffer from insuffi-
cient sampling problem, meaning that the agent needs to be
trained on a large amount of data to learn a decent policy. A
typical working reinforcement learning algorithm is trained
over hundreds of episodes, yet we only trained over one
episode due to computational limitations. Parallel training
on GPU with more episodes might generate better results.

Secondly, reinforcement learning algorithms are signifi-
cantly impacted by hyper-parameters, including batch size,
learning rate, gamma, entropy coefficient, etc. Further in-
vestigations are needed to generate the optimal set of hyper-
parameters for each agent.

Thirdly, our backtest range did not test for the effectiveness
of risk control. According to (Gort et al., 2022), the Crypto

Volatility Tokens (CVIX) are ERC-20 tokens that aim to
track the implied volatility of crypto markets, and a CVIX
over 90.1 is considered as too volatile for traders to complete
any transactions. In our testing period, the CVIX varies
around 58 - 70, meaning that we are not in a risky period.

In addition, the current strategy only includes a tiny set of
trading options from the investment market. It is atypical
for general public trader to only trade cryptocurrency assets,
and therefore a model that allows for a wider range of as-
sets should be further investigated. The current researches
focus on developing strategies in a single simulated environ-
ment, and future researches should consider scenarios with
multiple trading environments.

Lastly, learning patterns from historical data is not effective
in cryptocurrency market. Unlike other investment assets
where they are backed by established banks and real money,
many cryptocurrencies (like DogeCoin) are only backed by
public sentiments. Therefore, it is also important to perform
public sentiment analysis on Twitter and Reddit, as well as
other financial journals, in order to capture this complicated
market trend.

8. Conclusion
In this paper, we exploited the Deep Reinforcement Learn-
ing Algorithms in developing a trading strategy from his-
torical data using Actor-Critic methods, and have shown
that the Recurrent PPO agent is able to outperform on the
cumulative returns than other algorithms.
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